JP4462653B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP4462653B2
JP4462653B2 JP07973898A JP7973898A JP4462653B2 JP 4462653 B2 JP4462653 B2 JP 4462653B2 JP 07973898 A JP07973898 A JP 07973898A JP 7973898 A JP7973898 A JP 7973898A JP 4462653 B2 JP4462653 B2 JP 4462653B2
Authority
JP
Japan
Prior art keywords
plate
corrugated
flow path
small
stacking direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07973898A
Other languages
Japanese (ja)
Other versions
JPH11281283A (en
Inventor
健司 楠
淳一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP07973898A priority Critical patent/JP4462653B2/en
Publication of JPH11281283A publication Critical patent/JPH11281283A/en
Application granted granted Critical
Publication of JP4462653B2 publication Critical patent/JP4462653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プレート式熱交換器における改良に関するものである。
【0002】
【従来の技術】
一般に、プレート式熱交換器は、例えば図に示す如き、矩形状の金属板の中央部にヘリンボーン状の波形断面形状の伝熱面2を有するプレート1を順次積層することで、図に示す如く、各プレート1,1…間に2つの流体の流路a,bを交互に形成し、これら流路a,bにそれぞれ異なる流体を交互に流通して両流体間でプレート1を介して熱交換を行なっている。
【0003】
および図に示す如き、従来のプレート式熱交換器によれば、プレート1の伝熱面2のヘリンボーン波形形状の断面における山谷の形状が積層方向において上下対称であるため、各プレート1,1…間に交互に形成される2つの流体の流路a,bの断面積が同じであり、これにより2つの流体の流動性能は同じである。
【0004】
上述のように2つの流体の流動性能が同じプレート式熱交換器では、許容圧損が同じで2つの流体の流量が異なる場合には、大きな流量側が支配的となってプレート式熱交換器のプレート枚数が決定されるため、他方(少ない流量側)の許容圧損からみれば過剰なプレート枚数となる。しかも、少ない流量側では液流速が低下するため、伝熱性能の低下につながる。
【0005】
このような状況に鑑み、本出願人は、図に示す如く、プレート1の伝熱面2のヘリンボーン波形形状を大山からなる波形山部3と2列の小山からなる波形山部3’とを交互に形成して積層方向における断面形状を上下非対称にすることで、各プレート1,1…間に交互に形成される2つの流体の流路a,bの断面積に大小の相対的な差を設けるようにしたプレート式熱交換器について既に出願している(実願昭44−59042号、実願昭52−161466号等)。
【0006】
【発明が解決しようとする課題】
しかし、図に示すプレート式熱交換器では、図に示すものよりも少ないプレート枚数にできるものの、2列の小山からなる波形山部3’が隣接するプレートの波形谷部と当接しない構造であるため、各プレート1,1…間の当たり点ピッチPが片方(大きな流量側)で大きくなり、耐圧レベルが低くなる問題が生じる。そのため、プレート1の板厚を大きくしなければならず、コスト面に弊害がある。また、2列の小山からなる波形山部3’で形成される各プレート1,1…間の隙間が小さいため、スケールが詰まり易くて流動、伝熱性能の低下につながる。更に、プレート1の伝熱面2の波形断面形状が大山からなる波形山部3と2列の小山からなる波形山部3’とを交互に繰り返す複雑な構造であるため、プレート1のプレス成形金型の加工に多くの時間やコストがかかるなどの問題がある。
【0007】
本発明は以上の問題点に鑑み、これを改良除去するためになされたもので、その目的とするところは、2つの流体に対して異なる流動、伝熱性能をもたらしながら、従来と同等の耐圧レベルで使用することができ、また、スケールの問題もなく、更に、プレートのプレス成形金型の加工も容易なプレート式熱交換器を提供することにある。
【0008】
【課題を解決するための手段】
前述した目的を達成するため、本発明は、伝熱面のヘリンボーン波形形状の断面における山谷の形状が積層方向において上下非対称となるプレートを積層することで、プレート相互間に交互に形成される2つの流体の流路の断面積に大小の相対的な差を設けるようにしたプレート式熱交換器において、プレートの伝熱面のヘリンボーン波形断面形状における波型山部および波型谷部をそれぞれ曲率半径の異なる大円弧面及び小円弧面で構成し、プレート同士の当接部で大円弧面同士及び小円弧面同士を当接させ、小円弧面同士のプレート積層方向と直交する方向で隣接する当接の間に、プレート積層方向の両側に凸の大円弧面で囲まれた第1流路を設けると共に、大円弧面同士のプレート積層方向と直交する方向で隣接する当接の間に、プレート積層方向の両側に凸の小円弧面で囲まれ、第1流路よりも流路面積の小さい第2流路とを設け、第1流路の流量を第2流路の流量よりも大きくし、第1流路及び第2流路が、プレート積層方向と直交する方向で円弧面同士の当接部に至るまで先細りになっていることを特徴とするものである。
【0009】
【発明の実施の形態】
図1は本発明の実施形態を示し、3枚のプレート1の積層状態における伝熱面2の部分断面図である。
【0010】
図1に示す実施形態は、プレート1の伝熱面2のヘリンボーン波形断面形状における波形山部3の半径Rと波形谷部4の半径rとを異なる半径寸法としたものである。詳しくは、波形山部3の半径Rを波形谷部4の半径rより大径寸法に設定し、波形山部3を半径Rの大円弧面で構成すると共に、波形谷部4を半径rの小円弧面で構成するようにしたものである。
【0011】
上述の如く構成すると、伝熱面2の波形断面形状における波形山部3の半径Rと波形谷部4の半径rの半径寸法が異なるため(R>r)、各プレート1,1…間に交互に形成される2つの流体の第1流路aおよび第2流路bの断面積が異なり(a>b)、2つの流体に対して異なる流動、伝熱性能を得ることができる。しかも、波形山部3の半径Rと波形谷部4の半径rの半径寸法が異なるだけで波形山部3が全て隣接するプレート1の波形谷部4に当接する構造であるため、各プレート1,1…間の当たり点ピッチPは図4に示す従来のものと同じにでき、耐圧レベルが低下することはない。従って、図4に示す従来のものと同等の耐圧レベルで使用することができ、プレート1の板厚を大きくする必要がなくなり、無駄なコストアップを避けることができる。また、各プレート1,1…間に小さな隙間がないため、スケールの詰まりを防止することができる。更に、プレート1の伝熱面2の波形断面形状が複雑な構造でないため、プレート1のプレス成形金型の加工が容易となり、プレス成形金型の製作における時間やコストを大幅に削減することができる。
【0012】
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されることなく種々の構造が可能である。
【0013】
尚、上述の各実施形態では、プレート間隙(成形深さH)が同じプレート1で説明したが、本発明は異なるプレート間隙のプレートに採用することも可能である。
【0014】
【発明の効果】
以上説明したように、本発明によれば、プレートの伝熱面のヘリンボーン波形断面形状における波形山部と波形谷部の半径を異なる寸法としたので、2つの流体に対して異なる流動、伝熱性能をもたらしながら、従来と同等の耐圧レベルで使用することができ、また、スケールの問題もなく、更に、プレートのプレス成形金型の加工も容易なプレート式熱交換器が得られる。
【図面の簡単な説明】
【図1】 本発明に係るプレート式熱交換器の第1の実施形態におけるプレート積層状態の図3A−A線の断面図である。
【図2】 プレート式熱交換器のプレートの平面図である。
【図3】 プレート式熱交換器の第1従来例におけるプレート積層状態の図3A−A線の断面図である。
【図4】 プレート式熱交換器の第2従来例におけるプレート積層状態の図3A−A線の断面図である。
【符号の説明】
1 プレート
2 伝熱面
3 波形山部(大円弧面)
4 波形谷部(小円弧面)
R 波形山部の半径
r 波形谷部の半径
H 成形深さ
a 第1流路
b 第2流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvements in plate heat exchangers.
[0002]
[Prior art]
In general, the plate type heat exchanger, for example as shown in FIG. 2, by sequentially laminating a plate 1 having a heat transfer surface 2 of the herringbone-like waveform cross section in the center portion of a rectangular metal plate, Figure 3 As shown, two fluid flow paths a and b are alternately formed between the plates 1, 1..., And different fluids are alternately circulated through the flow paths a and b so that the two fluids pass through the plate 1. Heat exchange.
[0003]
As shown in FIGS. 2 and 3 , according to the conventional plate heat exchanger, the shape of the peaks and valleys in the cross section of the herringbone corrugated shape of the heat transfer surface 2 of the plate 1 is vertically symmetrical in the stacking direction. , 1... Are alternately formed between the two fluid passages a and b, so that the flow performances of the two fluids are the same.
[0004]
As described above, in the plate heat exchanger having the same flow performance of the two fluids, when the allowable pressure loss is the same and the flow rates of the two fluids are different, the large flow rate side is dominant and the plate of the plate heat exchanger Since the number of plates is determined, the number of plates is excessive when viewed from the allowable pressure loss on the other side (small flow rate side). Moreover, since the liquid flow rate is reduced on the low flow rate side, the heat transfer performance is reduced.
[0005]
In view of such a situation, as shown in FIG. 4 , the applicant assigns the corrugated peak 3 of the heat transfer surface 2 of the plate 1 to a corrugated peak 3 ′ composed of large mountains and a corrugated peak 3 ′ composed of two rows of small peaks. Are alternately formed so that the cross-sectional shape in the stacking direction is asymmetrical in the vertical direction, so that the cross-sectional areas of the two fluid flow paths a and b alternately formed between the plates 1, 1. An application has already been filed for a plate heat exchanger in which a difference is provided (Japanese Utility Application No. 44-59042, Japanese Utility Application No. 52-161466, etc.).
[0006]
[Problems to be solved by the invention]
However, in the plate heat exchanger shown in FIG. 4 , although the number of plates can be smaller than that shown in FIG. 3 , the corrugated crest 3 ′ formed by two rows of small crests does not contact the corrugated trough of the adjacent plate. Because of the structure, the contact point pitch P between the plates 1, 1... Increases on one side (large flow rate side), resulting in a problem that the pressure resistance level is lowered. Therefore, the plate thickness of the plate 1 has to be increased, which is harmful to cost. In addition, since the gap between each plate 1, 1... Formed by the corrugated crest 3 'composed of two rows of small ridges is small, the scale is easily clogged, leading to a decrease in flow and heat transfer performance. Further, the corrugated cross-sectional shape of the heat transfer surface 2 of the plate 1 is a complicated structure in which the corrugated crest 3 composed of large mountains and the corrugated crest 3 ′ composed of two rows of small mountains are alternately repeated. There is a problem that a lot of time and cost are required for machining the mold.
[0007]
The present invention has been made in view of the above problems, and has been made to improve and remove this problem. The object of the present invention is to provide different flow and heat transfer performances for two fluids, while maintaining the same pressure resistance as conventional ones. It is an object of the present invention to provide a plate heat exchanger that can be used at a level, is free from scale problems, and can be easily processed into a plate press mold.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention forms two or more plates alternately by laminating plates in which peaks and valleys in the cross section of the herringbone corrugated shape of the heat transfer surface are vertically asymmetric in the laminating direction. In a plate-type heat exchanger in which the cross-sectional areas of two fluid flow paths are made to have a large and small relative difference, the corrugated peak and corrugated trough in the herringbone corrugated cross-sectional shape of the heat transfer surface of the plate are respectively curved. It consists of a large arc surface and a small arc surface with different radii, and the large arc surfaces and the small arc surfaces are brought into contact with each other at the contact portion between the plates, and adjacent to each other in a direction perpendicular to the plate stacking direction between the small arc surfaces. Between the contact portions , a first flow path surrounded by convex large circular arc surfaces is provided on both sides in the plate stacking direction, and between the adjacent contact portions in a direction perpendicular to the plate stacking direction between the large circular arc surfaces. In addition, A second channel having a channel area smaller than that of the first channel is provided on both sides in the rate stacking direction, and the first channel has a larger flow rate than the second channel. However, the first flow path and the second flow path are tapered to reach the abutting portions of the arcuate surfaces in a direction orthogonal to the plate stacking direction .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the present invention and is a partial cross-sectional view of a heat transfer surface 2 in a laminated state of three plates 1.
[0010]
In the embodiment shown in FIG. 1, the radius R of the corrugated peak 3 and the radius r of the corrugated trough 4 in the herringbone corrugated cross-sectional shape of the heat transfer surface 2 of the plate 1 are different from each other. Specifically , the radius R of the corrugated peak 3 is set to be larger than the radius r of the corrugated trough 4, the corrugated peak 3 is configured by a large circular arc surface of radius R, and the corrugated trough 4 is set to a radius r. It is made up of small arc surfaces .
[0011]
When configured as described above, the radius R of the corrugated crest 3 and the radius r of the corrugated trough 4 in the corrugated cross-sectional shape of the heat transfer surface 2 are different (R> r), so that each plate 1, 1. The cross-sectional areas of the first flow path a and the second flow path b of two fluids that are alternately formed are different (a> b), and different flow and heat transfer performances can be obtained for the two fluids. In addition, since each of the corrugated crests 3 is in contact with the corrugated trough 4 of the adjacent plate 1 only by changing the radius R of the corrugated peak 3 and the radius r of the corrugated trough 4, each plate 1 , 1... Can be made the same as the conventional pitch shown in FIG. 4, and the withstand voltage level is not lowered. Therefore, it can be used at the same pressure resistance level as the conventional one shown in FIG. 4, and it is not necessary to increase the plate thickness of the plate 1, thereby avoiding an unnecessary increase in cost. Further, since there is no small gap between the plates 1, 1..., Clogging of the scale can be prevented. Furthermore, since the corrugated cross-sectional shape of the heat transfer surface 2 of the plate 1 is not a complicated structure, the processing of the press molding die of the plate 1 is facilitated, and the time and cost in manufacturing the press molding die can be greatly reduced. it can.
[0012]
As mentioned above , although embodiment of this invention was described , this invention is not limited to said embodiment, A various structure is possible.
[0013]
In each of the above-described embodiments, the plate 1 having the same plate gap (molding depth H) has been described. However, the present invention can be applied to plates having different plate gaps.
[0014]
【The invention's effect】
As described above, according to the present invention, the radius of the corrugated peak and the corrugated trough in the herringbone corrugated cross-sectional shape of the heat transfer surface of the plate is set to different dimensions, so that different flows and heat transfer are performed for the two fluids. A plate-type heat exchanger can be obtained that can be used at a pressure level equivalent to that of the prior art while bringing about performance, is free from scale problems, and can be easily processed into a press mold for the plate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view taken along the line AA of FIG. 3 in a plate lamination state in a first embodiment of a plate heat exchanger according to the present invention.
FIG. 2 is a plan view of a plate of the plate heat exchanger.
FIG. 3 is a cross-sectional view taken along the line AA of FIG. 3 in a plate lamination state in a first conventional example of a plate heat exchanger.
FIG. 4 is a cross-sectional view taken along the line AA of FIG. 3 in a plate stacking state in a second conventional example of a plate heat exchanger.
[Explanation of symbols]
1 plate 2 heat transfer surface 3 corrugated peak (large arc surface)
4 Wave trough (small arc surface)
R Waveform peak radius r Waveform valley radius H Molding depth
a First flow path
b Second flow path

Claims (1)

伝熱面のヘリンボーン波形形状の断面における山谷の形状が積層方向において上下非対称となるプレートを積層することで、プレート相互間に交互に形成される2つの流体の流路の断面積に大小の相対的な差を設けるようにしたプレート式熱交換器において、
プレートの伝熱面のヘリンボーン波形断面形状における波型山部および波型谷部をそれぞれ曲率半径の異なる大円弧面及び小円弧面で構成し、プレート同士の当接部で大円弧面同士及び小円弧面同士を当接させ、小円弧面同士のプレート積層方向と直交する方向で隣接する当接の間に、プレート積層方向の両側に凸の大円弧面で囲まれた第1流路を設けると共に、大円弧面同士のプレート積層方向と直交する方向で隣接する当接の間に、プレート積層方向の両側に凸の小円弧面で囲まれ、第1流路よりも流路面積の小さい第2流路とを設け、第1流路の流量を第2流路の流量よりも大きくし、第1流路及び第2流路が、プレート積層方向と直交する方向で円弧面同士の当接部に至るまで先細りになっていることを特徴とするプレート式熱交換器。
By laminating plates in which the shape of the peaks and valleys in the cross section of the herringbone corrugated shape of the heat transfer surface is vertically asymmetric in the laminating direction, the relative cross-sectional area of the two fluid flow paths formed alternately between the plates is large and small In the plate type heat exchanger designed to provide a certain difference,
The corrugated crest and corrugated trough in the herringbone corrugated cross-sectional shape of the heat transfer surface of the plate are composed of a large arc surface and a small arc surface with different radii of curvature, respectively, and the large arc surface and the small arc surface are in contact with each other. A first flow path surrounded by large circular arc surfaces convex on both sides in the plate stacking direction is provided between the contact portions adjacent to each other in the direction perpendicular to the plate stacking direction between the small arc surfaces. And between the contact portions adjacent to each other in the direction perpendicular to the plate stacking direction between the large arc surfaces, surrounded by small arc surfaces convex on both sides in the plate stacking direction, and having a channel area larger than that of the first channel. A small second flow path is provided, the flow rate of the first flow path is made larger than the flow rate of the second flow path, and the first flow path and the second flow path are formed between the arcuate surfaces in a direction perpendicular to the plate stacking direction. plate heat, characterized in that tapers up to the abutment Exchanger.
JP07973898A 1998-03-26 1998-03-26 Plate heat exchanger Expired - Fee Related JP4462653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07973898A JP4462653B2 (en) 1998-03-26 1998-03-26 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07973898A JP4462653B2 (en) 1998-03-26 1998-03-26 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JPH11281283A JPH11281283A (en) 1999-10-15
JP4462653B2 true JP4462653B2 (en) 2010-05-12

Family

ID=13698570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07973898A Expired - Fee Related JP4462653B2 (en) 1998-03-26 1998-03-26 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP4462653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095328A (en) * 2011-03-02 2011-06-15 常州大学 M-type corrugated-plate heat exchanger plate bundle with positioning control point

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821926B1 (en) * 2001-03-09 2003-10-24 Ciat Sa PLATE HEAT EXCHANGER, PLATE BELONGING TO SUCH EXCHANGER AND USE OF SUCH EXCHANGER
EP1630510B2 (en) 2004-08-28 2014-03-05 SWEP International AB A plate heat exchanger
FR2931542A1 (en) 2008-05-22 2009-11-27 Valeo Systemes Thermiques HEAT EXCHANGER WITH PLATES, IN PARTICULAR FOR MOTOR VEHICLES
JP5595064B2 (en) * 2010-02-22 2014-09-24 三菱電機株式会社 Plate heat exchanger and heat pump device
SE534918C2 (en) 2010-06-24 2012-02-14 Alfa Laval Corp Ab Heat exchanger plate and plate heat exchanger
PT2591303E (en) * 2010-07-08 2015-11-16 Swep Int Ab A plate heat exchanger
EP2700894B1 (en) * 2011-04-18 2018-11-07 Mitsubishi Electric Corporation Plate-type heat exchanger and heat pump device
JP6562918B2 (en) * 2013-12-05 2019-08-21 スウェップ インターナショナル アクティエボラーグ Heat exchange plate with various pitches
CN107036480B (en) * 2016-02-04 2020-07-10 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchange plate and plate heat exchanger using same
EP3225947A1 (en) * 2016-03-30 2017-10-04 Alfa Laval Corporate AB Heat transfer plate and plate heat exchanger comprising a plurality of such heat transfer plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095328A (en) * 2011-03-02 2011-06-15 常州大学 M-type corrugated-plate heat exchanger plate bundle with positioning control point

Also Published As

Publication number Publication date
JPH11281283A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US9389028B2 (en) Plate heat exchanger
JP3354934B2 (en) Plate heat exchanger for two liquids with different flow rates
EP0047073B1 (en) Plate heat exchanger
RU2502932C2 (en) Heat exchanger
JP4462653B2 (en) Plate heat exchanger
RU2511779C2 (en) Heat exchanger
EP1739379A2 (en) Heat exchange unit
US6237679B1 (en) Plate heat exchangers
EP2361365A2 (en) Plate and gasket for a plate heat exchanger
JP3212350B2 (en) Plate heat exchanger
CN105793661A (en) Heat exchanging plate with varying pitch
JP4072876B2 (en) Laminate heat exchanger
CN211451981U (en) Plate heat exchanger
CN217585468U (en) Fin assembly and evaporator thereof
JP2001280887A (en) Plate type heat exchanger
JP7214923B2 (en) heat transfer plate
JPH07260385A (en) Plate type heat exchanger
CN112146484B (en) Plate heat exchanger
CN212320510U (en) Heat exchange plate with variable flow cross-sectional area and heat exchanger thereof
CN210718781U (en) Heat exchanger plate and plate heat exchanger
CN112629295A (en) Novel printed circuit board type heat exchanger core body of three-dimensional spiral winding type runner
JP2010117101A (en) Plate-type heat exchanger
JPH07260384A (en) Plate type heat exchanger
CN217504442U (en) Heat exchanger
JPS6051037B2 (en) Plate heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees