JP4072876B2 - Laminate heat exchanger - Google Patents

Laminate heat exchanger Download PDF

Info

Publication number
JP4072876B2
JP4072876B2 JP14168198A JP14168198A JP4072876B2 JP 4072876 B2 JP4072876 B2 JP 4072876B2 JP 14168198 A JP14168198 A JP 14168198A JP 14168198 A JP14168198 A JP 14168198A JP 4072876 B2 JP4072876 B2 JP 4072876B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat
plate
heat exchanger
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14168198A
Other languages
Japanese (ja)
Other versions
JPH11337276A (en
Inventor
正廣 関
Original Assignee
セキサーマル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セキサーマル株式会社 filed Critical セキサーマル株式会社
Priority to JP14168198A priority Critical patent/JP4072876B2/en
Publication of JPH11337276A publication Critical patent/JPH11337276A/en
Application granted granted Critical
Publication of JP4072876B2 publication Critical patent/JP4072876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements

Description

【0001】
【発明の属する技術分野】
本発明は、焼却炉等から排気される排ガスの熱を回収する積層型熱交換器に関する。
【0002】
【従来の技術】
従来からこの種の積層型熱交換器として種々のものが提案され、例えば、特開平8−94277号公報等には、全長に渡って波形の凹凸部を有する波形フィンを板材を介して互いに交叉するようにして積層し、波形フィンの凹凸部と板材によって形成される流路に温度の異なる二つ流体(気体や液体)を流通させることによって、両流体間で熱の移動を行わせる熱交換器が開示されている。しかし、この熱交換器は、波形に折曲した波形フィンに沿わせて授熱媒体と受熱媒体とを互いに交叉させて流すことから、授熱媒体と受熱媒体は、波型曲線状の波型凹凸部によって形成される滑らかな流路に沿って流れ、かつ、この波型凹凸部は波形フィンの全長に沿って直線的に形成されているから、流路を流れる授熱媒体及び受熱媒体は、熱交換器の内部に長く滞留することなく直線的に抜け出てしまう。このため、授熱及び受熱媒体が短時間で通過することから、授熱媒体及び受熱媒体との熱交換効率が低いものであった。
【0003】
本発明は、このような問題を解決して授熱媒体及び受熱媒体を熱交換器の内部に長く滞留させ熱交換効率を向上することができる積層型熱交換器を提供することを目的とする。
【0004】
【課題を解決するための手段】
請求項1の発明は、全長に渡って凹部と凸部とを交互に形成した凹凸状の流路を有する伝熱板と平板状の隔板とを交互に積層し、前記伝熱板の間に介在する前記隔板によって前記伝熱板の流路を仕切るとともに、積層する前記伝熱板を交互に交叉方向に積み重ねて前記流路を直交させ、この流路に沿って流れる授熱媒体と受熱媒体とを互いに交叉させる積層型熱交換器であって、前記伝熱板又は隔板のいずれか一方に前記流路内に突出する障壁部を形成するとともに、前記凹部と凸部とを仕切る立上り部を備え、該立上り部は、湾曲した山部と谷部が連続する対称な波形曲線を成し、前記流路を前記流路方向に向かって幅広部と幅狭部とを交互に連続させて形成し、前記障壁部を前記幅広部に備えたものである。
【0005】
請求項1の発明の構成により、例えば焼却炉などから排気させる800℃前後の排ガスと空気とを熱交換器の内部に送り込む。熱交換器は、伝熱板を互いに交叉させて積層することから、熱交換器の直交する二辺に入口部と出口部とが互いに交叉する方向に形成され、この直交する入口部から排ガスと空気とを互いに交叉させて送り出す。そして、熱交換器へと送り出された授熱媒体側の排ガスと受熱媒体側の空気は、熱交換器の伝熱部から凹部と凸部によって形成される流路を通って出口部から排出され、こうして排ガスと空気が相互に交叉状に流れて排ガスと空気とが熱交換される。このとき、排ガスと空気とが流れる流路にはそれぞれ障壁部が形成され、流路を流れる排ガスと空気は、障壁部に衝突して障壁部を迂回するように分岐するため、熱交換器の内部での排ガスと空気の滞留時間が長くなる。このため、長時間に渡って排ガスと空気との熱の授受が行われ、熱交換効率が高められる。
【0006】
【発明の実施形態】
以下、本発明の一実施例を添付図面を参照して説明する。図1〜図5は、本発明の一実施例を示し、同図において熱交換器1は、それぞれステンレス等の金属製薄板から成る伝熱板4と隔板5とを交互に積層して構成されている。伝熱板4と隔板5はそれぞれ正方形に形成され、伝熱板はプレス成型などによって全長に渡って凹部2と突部3とを交互に形成し、一方、隔板5は平板状に形成されている。このようにして伝熱板4に形成する凹部2と凸部3を伝熱板4の間に介在する隔板5で遮蔽して後述する授熱媒体と受熱媒体を流す流路8,8Aを形成する。すなわち、上面側に積層する隔板5と凹部2との間に流路8Aが形成され、さらに、下面側に重ね合わせる隔板5と凸部3との間に流路8Bが形成されることになる。なお、多数の伝熱板4を積層する際、図1に示すように、伝熱板4に形成された凹部2と凸部3が互いに直交するように一枚毎に伝熱板4を交叉させて積層する。これにより、伝熱板4に形成する流路8A,8Bが互いに交叉し、この流路8A,8B内の授熱媒体と受熱媒体とは互いに交叉して流れる。なお、流路8A,8Bは、各伝熱板4と隔板5の側縁部で開口し、これが熱媒体と受熱媒体の入口部10と出口部11となる。
【0007】
また、前記凹部2と凸部3とを仕切る立上り部12は、図4の平面図で示すように、湾曲した山部と谷部が連続する上下対称な波形曲線を成し、かつ、図5の断面図で示すように、凹部2から凸部3に向かって山型に傾斜したテーパ面となっている。すなわち、凹部2と凸部3との境界部分を波形曲線状の立上り部12で仕切ることによって凹部2と凸部3によって形成される授熱媒体と受熱媒体の流路8A,8Bは、立上り部12における山部の頂部の間が最も広く、立上り部12の谷部に向かって次第に狭くなる。すなわち、流路8A,8Bの流路方向に向かって凸弧状に湾曲した幅広部13と凹弧状に湾曲した幅狭部14とが交互に連続する。そして、前記伝熱板4の凹部2と凸部3の幅広部13には、その中心部に位置して山型に傾斜したテーパ面からなる円錐形の障壁部15,16が伝熱板4に一体形成されている。この障壁部15,16は、流路8の内側に突出するように凹部2に形成される障壁部15は凸状に突出して上面側の隔板5に当接し、一方、凸部3に形成される障壁部16は、凹状に陥没して下面側の隔板5に当接している。つまり、凸状の障壁部15は、凸部3と同じ高さであり、一方、凹状の障壁部16は、凹部2と同じ深さである。
【0008】
また、前記熱交換器1を構成する伝熱板4と隔板5は、一枚の伝熱板4と一枚の隔板5をスポット溶接等によって接合してユニット化され、このようにしてユニット化した一組の伝熱板4と隔板5を互いに交叉させて組み付ける。また、伝熱板4の両端縁には、前記凸部3及び凹部3と平行する段差部20が折曲され、この段差部20の内側に側縁プレート21を嵌め入れ、側縁プレート21を介して前記隔板5と伝熱板4の段差部20とを接合する。なお、前記側縁プレート21を伝熱板4及び隔板5より長く、また、前記伝熱板4に形成する段差部20の両端部も伝熱板4の端部から突出し、この該伝熱板4及び隔板5から突出した側縁プレート21の裏面側に位置決め用の段部22を形成している。これにより、熱交換器1の組み付けに際して伝熱板4を積層するとき、伝熱板4と隔板5の両側縁に設けた側縁プレート21を井桁状に組んで伝熱板4のコーナー部分に形成される位置決め用の段部22を下段側の伝熱板4に係合させて伝熱板4同志を相互に位置決めできる。
【0009】
以上のように構成される本実施例の熱交換器1は、授熱媒体としての例えば焼却炉などから排気させる800℃前後の排ガスと受熱媒体としての常温の空気とを図示しない送風手段及びエアダクトにより熱交換器1の内部に送り込む。なお、熱交換器1は、ユニット化した一組の伝熱板4と隔板5とを互いに交叉させて積層することから、熱交換器1の直交する二辺に授熱媒体側の排ガスと受熱媒体側の空気の入口部10と出口部11とが互いに交叉する方向に形成され、排ガスと空気は互いに交叉する方向から熱交換器1に送り出される。そして、図4中矢印a方向から熱交換器1へと送り出された排ガスは、熱交換器1の入口部10から立上り部12によって仕切られた凹部2と凸部3によって形成される流路8,8A内を通って出口部11から排出され、同様に図4中矢印b方向から熱交換器1へと送り出された空気は、熱交換器1の入口部10から立上り部12によって仕切られた凹部2と凸部3によって形成される流路8,8A内を通って出口部11から排出される。こうして排ガスと空気が相互に交叉して流れ、授熱媒体側の排ガスと受熱媒体側の空気とが熱交換され、排ガスの熱を回収して高温となったクリーンな空気を回収することができる。また、排ガスと空気の流路8,8Aとなる凹部2と凸部3は、これら凹部2と凸部3を仕切る立上り部12を湾曲した山部と谷部とからなる上下対称な波形曲線で形成して凸弧状の幅広部13と凹弧状の幅狭部14とを交互に連続させて形成するとともに、各幅広部13の中心部にそれぞれ障壁部15,16を形成することにより、幅狭部14から幅広部13へ流れる排ガス及び空気は、図4中矢印cで示すように障壁部15,16に衝突して障壁部15,16を迂回するように分岐した後、幅狭部14で合流し、幅狭部14から再び、幅広部13へと向かう。このように、流路8,8Aを流れる排ガスと空気とは幅広部13の中心に設けた障壁部15,16により、分岐させて障壁部15,16を迂回するように流れることから、熱交換器1の内部での排ガスと空気の滞留時間が長くなる。このため、長時間に渡って排ガスと空気との熱の授受が行われ、熱交換効率を高めることができる。
【0010】
以上のように、本実施例においては、凹部2と凸部3を仕切る立上り部12を湾曲した山部と谷部とからなる上下対称な波形曲線で形成して凸弧状の幅広部13と凹弧状の幅狭部14とを交互に連続する流路8,8Aを形成し、かつ、幅広部13の中心部にそれぞれ障壁部15,16を形成することにより、熱交換器1を貫流する排ガスと空気は、障壁部15,16を有する幅広部13と幅狭部14とによって、分岐と合流を繰り返して流路8,8Aを流れるため、直線的に排ガスと空気を流す場合に比べて流路8,8Aが迷路状となり、流路8,8Aの距離も長くなるため、結果的に熱交換器1の内部での排ガスと空気との滞留時間も長くなる。このため、長時間に渡って排ガスと空気との熱の授受が行われ、熱交換効率を高めることができる。
【0011】
以上、本発明の実施例について詳述したが、本発明は前記実施例に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、前記実施例では流路を波形曲線状の立上り部で凹部と突部を仕切って流路を形成したが、流路の形状は前記実施例に限るものではない。また、熱交換器を構成する伝熱板や隔板の形状等も正方形型に限らず、例えば図6に示すように、長方形型に形成してもよく、また、正方形の伝熱板や隔板からなる熱交換器を多数並設して長方形型の熱交換器を構成してもよい。さらに、授熱媒体として焼却炉の排ガスを例にして説明したが、必ずしも焼却炉用に限るものではなく、各種の熱交換用として用いることが可能である。また、授熱媒体及び受熱媒体としては気体に限らず液体など各種の流体の熱交換用として適用可能なものである。また、前記実施例では、プレス成型により、凹部と突部とからなる流路と、その流路の幅広部の中心に位置する障壁部とを伝熱板に形成した例を示したが、伝熱板側に凹部と突部とからなる流路を形成し、隔板側に障壁部を形成してもよく、要は流路に障壁部が突設する構造であればよい。
【0012】
【発明の効果】
請求項1記載の発明によれば、全長に渡って凹部と凸部とを交互に形成した凹凸状の流路を有する伝熱板と平板状の隔板とを交互に積層し、前記伝熱板の間に介在する前記隔板によって前記伝熱板の流路を仕切るとともに、積層する前記伝熱板を交互に交叉方向に積み重ねて前記流路を直交させ、この流路に沿って流れる授熱媒体と受熱媒体とを互いに交叉させる積層型熱交換器であって、前記伝熱板又は隔板のいずれか一方に前記流路内に突出する障壁部を形成するとともに、前記凹部と凸部とを仕切る立上り部を備え、該立上り部は、湾曲した山部と谷部が連続する対称な波形曲線を成し、前記流路を前記流路方向に向かって幅広部と幅狭部とを交互に連続させて形成し、前記障壁部を前記幅広部に備えたものであるから、流路を流れる排ガスと空気が障壁部に衝突して分岐するため、熱交換器の内部での排ガスと空気との滞留時間が長くなり、長時間に渡って排ガスと空気との熱の授受が可能となり、熱交換効率を高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す熱交換器の分解斜視図である。
【図2】同上伝熱板の一部を切り欠いた熱交換器の平面図である。
【図3】同上熱交換器の正面図である。
【図4】同上熱交換器の平面図である。
【図5】同上図4のA−A線断面図である。
【図6】本発明の熱交換器の変形例を示す平面図である。
【符号の説明】
1 熱交換器
2 凹部

4 伝熱板
5 隔板
8,8A 流路
12 立上り部
13 幅広部
14 幅狭部
15,16 障壁部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stacked heat exchanger that recovers heat of exhaust gas exhausted from an incinerator or the like.
[0002]
[Prior art]
Conventionally, various types of laminated heat exchangers have been proposed. For example, Japanese Patent Application Laid-Open No. 8-94277 discloses that corrugated fins having corrugated uneven portions over the entire length are crossed with each other through a plate material. Heat exchange is performed in such a way that two fluids (gas and liquid) with different temperatures are circulated through the flow path formed by the corrugated fin irregularities and the plate material so that heat is transferred between the two fluids. A vessel is disclosed. However, since this heat exchanger causes the heat transfer medium and the heat reception medium to cross each other along the corrugated fins that are bent into a corrugated shape, the heat transfer medium and the heat reception medium are corrugated in a wavy shape. Since the corrugated uneven portion flows along the smooth flow path formed by the uneven portions, and the corrugated uneven portion is formed linearly along the entire length of the corrugated fin, , It will come out linearly without staying in the heat exchanger for a long time. For this reason, since heat transfer and a heat receiving medium pass in a short time, the heat exchange efficiency with a heat transfer medium and a heat receiving medium was low.
[0003]
An object of the present invention is to provide a stacked heat exchanger capable of solving such problems and improving the heat exchange efficiency by allowing the heat transfer medium and the heat reception medium to stay in the heat exchanger for a long time. .
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, a heat transfer plate having a concavo-convex channel in which concave portions and convex portions are alternately formed over the entire length and a flat partition plate are alternately laminated, and interposed between the heat transfer plates. The heat transfer plate and the heat receiving medium flowing along the flow path are partitioned by partitioning the flow path of the heat transfer plate by the partition plate and alternately stacking the heat transfer plates to be stacked in the cross direction. And a rising portion that forms a barrier portion projecting into the flow path on either one of the heat transfer plate or the partition plate and partitions the concave portion from the convex portion. The rising portion forms a symmetrical waveform curve in which curved crests and troughs are continuous, and the wide portions and the narrow portions are alternately continued in the flow passage direction. The barrier portion is formed on the wide portion .
[0005]
With the configuration of the first aspect of the invention, for example, an exhaust gas of about 800 ° C. and air exhausted from an incinerator or the like are sent into the heat exchanger. Since the heat exchanger is formed by crossing the heat transfer plates so as to cross each other, the inlet portion and the outlet portion are formed on the two orthogonal sides of the heat exchanger in a direction crossing each other. Air is crossed and sent out. Then, the exhaust gas on the heat transfer medium side and the air on the heat reception medium side sent to the heat exchanger are discharged from the outlet portion through the flow path formed by the concave portion and the convex portion from the heat transfer portion of the heat exchanger. Thus, the exhaust gas and air flow in a crossing manner to exchange heat between the exhaust gas and air. At this time, a barrier portion is formed in each of the flow paths through which the exhaust gas and air flow, and the exhaust gas and air that flows through the flow path branch so as to collide with the barrier section and bypass the barrier section. The residence time of the exhaust gas and air inside becomes longer. For this reason, the heat exchange between the exhaust gas and the air is performed for a long time, and the heat exchange efficiency is improved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. 1 to 5 show an embodiment of the present invention, in which a heat exchanger 1 is configured by alternately laminating heat transfer plates 4 and partition plates 5 each made of a thin metal plate such as stainless steel. Has been. The heat transfer plate 4 and the partition plate 5 are each formed in a square shape, and the heat transfer plate is formed by alternately forming the recesses 2 and the protrusions 3 over the entire length by press molding or the like, while the partition plate 5 is formed in a flat plate shape. Has been. In this way, the recesses 2 and the protrusions 3 formed on the heat transfer plate 4 are shielded by the partition plate 5 interposed between the heat transfer plates 4, and flow paths 8 and 8 </ b> A through which a heat transfer medium and a heat reception medium described later flow. Form. That is, a flow path 8A is formed between the partition plate 5 and the concave portion 2 stacked on the upper surface side, and a flow path 8B is formed between the partition plate 5 and the convex portion 3 stacked on the lower surface side. become. When a large number of heat transfer plates 4 are stacked, as shown in FIG. 1, the heat transfer plates 4 are crossed one by one so that the concave portions 2 and the convex portions 3 formed in the heat transfer plates 4 are orthogonal to each other. And stack. Thereby, the flow paths 8A and 8B formed in the heat transfer plate 4 cross each other, and the heat transfer medium and the heat reception medium in the flow paths 8A and 8B flow crossing each other. The flow paths 8A and 8B are opened at the side edges of the heat transfer plates 4 and the partition plates 5, which serve as an inlet portion 10 and an outlet portion 11 for the heat medium and the heat receiving medium.
[0007]
Further, as shown in the plan view of FIG. 4, the rising portion 12 that partitions the concave portion 2 and the convex portion 3 forms a vertically symmetrical waveform curve in which a curved peak portion and a valley portion are continuous, and FIG. As shown in the cross-sectional view, the taper surface is inclined in a mountain shape from the concave portion 2 toward the convex portion 3. That is, the flow path 8A, 8B of the heat transfer medium and the heat receiving medium formed by the concave portion 2 and the convex portion 3 is formed by dividing the boundary portion between the concave portion 2 and the convex portion 3 with the rising portion 12 having a waveform curve shape. The space between the tops of the ridges at 12 is the widest and gradually narrows toward the valleys of the rising parts 12. That is, the wide portion 13 curved in a convex arc shape and the narrow portion 14 curved in a concave arc shape continue alternately in the flow channel direction of the flow channels 8A and 8B. The concave portions 2 and the wide portions 13 of the convex portions 3 of the heat transfer plate 4 have conical barrier portions 15 and 16 each having a tapered surface located in the center and inclined in a mountain shape. Are integrally formed. The barrier portions 15 and 16 are formed in the concave portion 2 so as to protrude inward of the flow path 8, and the barrier portion 15 protrudes in a convex shape and abuts against the partition plate 5 on the upper surface side. The barrier portion 16 is depressed in a concave shape and is in contact with the lower surface side partition plate 5. That is, the convex barrier portion 15 has the same height as the convex portion 3, while the concave barrier portion 16 has the same depth as the concave portion 2.
[0008]
The heat transfer plate 4 and the partition plate 5 constituting the heat exchanger 1 are unitized by joining one heat transfer plate 4 and one partition plate 5 by spot welding or the like. A set of unitized heat transfer plate 4 and partition plate 5 are assembled so as to cross each other. Further, at both end edges of the heat transfer plate 4, a step portion 20 parallel to the convex portion 3 and the concave portion 3 is bent, and a side edge plate 21 is fitted inside the step portion 20, and the side edge plate 21 is attached to the heat transfer plate 4. The partition plate 5 and the stepped portion 20 of the heat transfer plate 4 are joined together. The side edge plate 21 is longer than the heat transfer plate 4 and the partition plate 5, and both end portions of the stepped portion 20 formed on the heat transfer plate 4 protrude from the end of the heat transfer plate 4. A positioning step 22 is formed on the back side of the side edge plate 21 protruding from the plate 4 and the partition plate 5. Thereby, when the heat transfer plate 4 is laminated when the heat exchanger 1 is assembled, the side plates 21 provided on both side edges of the heat transfer plate 4 and the partition plate 5 are assembled in a cross-beam shape and the corner portion of the heat transfer plate 4 is assembled. The positioning step portions 22 formed on the bottom plate can be engaged with the lower heat transfer plate 4 so that the heat transfer plates 4 can be positioned relative to each other.
[0009]
The heat exchanger 1 of the present embodiment configured as described above includes an air duct and an air duct (not shown) that exhaust gas around 800 ° C. exhausted from, for example, an incinerator as a heat transfer medium and room temperature air as a heat reception medium. Is fed into the heat exchanger 1. In addition, since the heat exchanger 1 laminates the united heat transfer plate 4 and the partition plate 5 so as to cross each other, the heat exchanger 1 side exhaust gas on the heat transfer medium side is disposed on two orthogonal sides of the heat exchanger 1. The inlet portion 10 and the outlet portion 11 of the air on the heat receiving medium side are formed in a direction crossing each other, and the exhaust gas and air are sent to the heat exchanger 1 from the direction crossing each other. The exhaust gas sent to the heat exchanger 1 from the direction of arrow a in FIG. 4 is a flow path 8 formed by the concave portion 2 and the convex portion 3 partitioned by the rising portion 12 from the inlet portion 10 of the heat exchanger 1. , 8A is discharged from the outlet 11 and similarly sent to the heat exchanger 1 from the direction of arrow b in FIG. 4, the air is partitioned from the inlet 10 of the heat exchanger 1 by the rising portion 12. The liquid is discharged from the outlet portion 11 through the flow paths 8 and 8A formed by the concave portion 2 and the convex portion 3. In this way, the exhaust gas and the air cross each other, and the exhaust gas on the heat transfer medium side and the air on the heat reception medium side are subjected to heat exchange, and the heat of the exhaust gas can be recovered to recover clean air that has become high temperature. . Further, the concave portion 2 and the convex portion 3 serving as the exhaust gas and air flow paths 8 and 8A are vertically symmetrical waveform curves composed of a peak portion and a valley portion that are curved at the rising portion 12 that partitions the concave portion 2 and the convex portion 3. By forming the convex arc-shaped wide portions 13 and the concave arc-shaped narrow portions 14 alternately and continuously, and forming the barrier portions 15 and 16 in the center of each wide portion 13, respectively, The exhaust gas and the air flowing from the portion 14 to the wide portion 13 collide with the barrier portions 15 and 16 to branch around the barrier portions 15 and 16 as shown by an arrow c in FIG. Merge and go from the narrow part 14 to the wide part 13 again. As described above, the exhaust gas and the air flowing through the flow paths 8 and 8A are branched by the barrier portions 15 and 16 provided at the center of the wide portion 13, and flow so as to bypass the barrier portions 15 and 16, so that heat exchange is performed. The residence time of the exhaust gas and air inside the vessel 1 becomes longer. For this reason, the heat exchange between the exhaust gas and the air is performed for a long time, and the heat exchange efficiency can be improved.
[0010]
As described above, in this embodiment, the rising portion 12 that partitions the concave portion 2 and the convex portion 3 is formed by a vertically symmetrical waveform curve composed of a curved peak portion and a valley portion, and the convex arc-shaped wide portion 13 and the concave portion are formed. Exhaust gas flowing through the heat exchanger 1 by forming the flow paths 8 and 8A alternately continuing with the arc-shaped narrow portions 14 and forming the barrier portions 15 and 16 at the center of the wide portion 13, respectively. And air flow through the flow passages 8 and 8A by branching and merging repeatedly by the wide portion 13 and the narrow portion 14 having the barrier portions 15 and 16, and therefore flow in comparison with the case where the exhaust gas and air flow linearly. Since the paths 8 and 8A are labyrinths and the distance between the channels 8 and 8A is increased, the residence time of the exhaust gas and air inside the heat exchanger 1 is also increased as a result. For this reason, the heat exchange between the exhaust gas and the air is performed for a long time, and the heat exchange efficiency can be improved.
[0011]
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various deformation | transformation implementation is possible within the range of the summary of this invention. For example, in the above-described embodiment, the flow path is formed by partitioning the concave portion and the projecting portion by the wavy curved rising portion, but the shape of the flow path is not limited to the above-described embodiment. Further, the shape of the heat transfer plate and the partition plate constituting the heat exchanger is not limited to the square shape, but may be formed in a rectangular shape as shown in FIG. 6, for example. A rectangular heat exchanger may be configured by arranging a large number of heat exchangers made of plates. Furthermore, although the exhaust gas from the incinerator has been described as an example of the heat transfer medium, the heat transfer medium is not necessarily limited to the incinerator, and can be used for various types of heat exchange. Further, the heat transfer medium and the heat reception medium are not limited to gases and can be applied for heat exchange of various fluids such as liquid. In the above-described embodiment, an example is shown in which the flow path composed of the concave portion and the protrusion and the barrier portion positioned at the center of the wide portion of the flow path are formed on the heat transfer plate by press molding. A flow path including a recess and a protrusion may be formed on the hot plate side, and a barrier portion may be formed on the partition plate side. In short, any structure in which the barrier portion protrudes from the flow path may be used.
[0012]
【The invention's effect】
According to the first aspect of the present invention, the heat transfer plate having the uneven flow path formed by alternately forming the concave portions and the convex portions over the entire length and the flat plate-like partition plates are alternately laminated, and the heat transfer A heat transfer medium that divides the flow path of the heat transfer plate by the partition plate interposed between the plates, and alternately stacks the heat transfer plates to be stacked in the crossing direction so that the flow paths are orthogonal to each other. And a heat receiving medium, and a heat exchanger plate or a partition plate, wherein either one of the heat transfer plate or the partition plate is formed with a barrier portion protruding into the flow path, and the concave portion and the convex portion are formed. A rising portion for partitioning, wherein the rising portion forms a symmetrical waveform curve in which a curved peak portion and a valley portion are continuous, and the wide portion and the narrow portion are alternately arranged in the flow path direction. it is continuously formed, since the barrier section is obtained with the wide portion, flowing through the channel Since the gas and air collide with the barrier section and branch off, the residence time of the exhaust gas and air inside the heat exchanger becomes longer, and heat can be exchanged between the exhaust gas and air for a long time. Exchange efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a heat exchanger showing an embodiment of the present invention.
FIG. 2 is a plan view of the heat exchanger in which a part of the heat transfer plate is cut away.
FIG. 3 is a front view of the heat exchanger.
FIG. 4 is a plan view of the same heat exchanger.
5 is a cross-sectional view taken along the line AA in FIG. 4; FIG.
FIG. 6 is a plan view showing a modification of the heat exchanger of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Concave part 3 Convex part 4 Heat-transfer plate 5 Separation plate 8, 8A Flow path
12 Rise
13 Wide part
14 narrow part
15, 16 Barrier part

Claims (1)

全長に渡って凹部と凸部とを交互に形成した凹凸状の流路を有する伝熱板と平板状の隔板とを交互に積層し、前記伝熱板の間に介在する前記隔板によって前記伝熱板の流路を仕切るとともに、積層する前記伝熱板を交互に交叉方向に積み重ねて前記流路を直交させ、この流路に沿って流れる授熱媒体と受熱媒体とを互いに交叉させる積層型熱交換器であって、前記伝熱板又は隔板のいずれか一方に前記流路内に突出する障壁部を形成するとともに、前記凹部と凸部とを仕切る立上り部を備え、該立上り部は、湾曲した山部と谷部が連続する対称な波形曲線を成し、前記流路を前記流路方向に向かって幅広部と幅狭部とを交互に連続させて形成し、前記障壁部を前記幅広部に備えたことを特徴とする積層型熱交換器。A heat transfer plate having a concavo-convex channel in which concave and convex portions are alternately formed over the entire length and a flat plate-like partition plate are alternately stacked, and the heat transfer plate is interposed between the heat transfer plates. A laminated type in which the heat transfer plates are stacked in an intersecting direction alternately and the flow paths are orthogonally crossed by dividing the heat plate flow paths, and the heat transfer medium and the heat reception medium flowing along the flow paths cross each other. A heat exchanger, wherein a barrier portion protruding into the flow path is formed on either one of the heat transfer plate or the partition plate , and includes a rising portion that partitions the concave portion and the convex portion, and the rising portion is Forming a symmetrical wavy curve in which curved peaks and troughs are continuous, and forming the flow path by alternately and continuously forming wide portions and narrow portions toward the flow path direction, A laminated heat exchanger provided in the wide portion .
JP14168198A 1998-05-22 1998-05-22 Laminate heat exchanger Expired - Lifetime JP4072876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14168198A JP4072876B2 (en) 1998-05-22 1998-05-22 Laminate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14168198A JP4072876B2 (en) 1998-05-22 1998-05-22 Laminate heat exchanger

Publications (2)

Publication Number Publication Date
JPH11337276A JPH11337276A (en) 1999-12-10
JP4072876B2 true JP4072876B2 (en) 2008-04-09

Family

ID=15297741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14168198A Expired - Lifetime JP4072876B2 (en) 1998-05-22 1998-05-22 Laminate heat exchanger

Country Status (1)

Country Link
JP (1) JP4072876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251587A1 (en) * 2013-03-08 2014-09-11 Danfoss A/S Double dimple pattern heat exchanger
US10145625B2 (en) 2013-03-08 2018-12-04 Danfoss A/S Dimple pattern gasketed heat exchanger

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051171A2 (en) * 2002-12-02 2004-06-17 Lg Electronics Inc. Heat exchanger of ventilating system
KR100602605B1 (en) 2004-07-15 2006-07-19 최영환 Plate type combustion pipe in boiler
JP5487423B2 (en) * 2009-07-14 2014-05-07 株式会社神戸製鋼所 Heat exchanger
JP6028214B2 (en) * 2012-01-13 2016-11-16 パナソニックIpマネジメント株式会社 Heat exchange element and heat exchange type ventilation equipment using it
EP2657636B1 (en) * 2012-04-23 2015-09-09 GEA Ecoflex GmbH Plate heat exchanger
WO2015093619A1 (en) * 2013-12-21 2015-06-25 京セラ株式会社 Heat exchanger member and heat exchanger
JP6519807B2 (en) * 2016-07-28 2019-05-29 Toto株式会社 Solid oxide fuel cell device
GB2552956A (en) * 2016-08-15 2018-02-21 Hs Marston Aerospace Ltd Heat exchanger device
WO2018124980A2 (en) * 2016-12-26 2018-07-05 Ptt Global Chemical Public Company Limited A heat exchanger for exchanging heat of fluids having different temperatures
JP7021013B2 (en) * 2018-06-25 2022-02-16 トヨタ自動車株式会社 Cooler
CN110887396B (en) 2018-09-10 2021-03-05 浙江盾安热工科技有限公司 Heat exchanger flat tube and heat exchanger with same
JP7428538B2 (en) * 2020-02-27 2024-02-06 三菱重工業株式会社 heat exchange core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251587A1 (en) * 2013-03-08 2014-09-11 Danfoss A/S Double dimple pattern heat exchanger
US10113814B2 (en) * 2013-03-08 2018-10-30 Danfoss A/S Double dimple pattern heat exchanger
US10145625B2 (en) 2013-03-08 2018-12-04 Danfoss A/S Dimple pattern gasketed heat exchanger

Also Published As

Publication number Publication date
JPH11337276A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP4072876B2 (en) Laminate heat exchanger
US5469914A (en) All-welded plate heat exchanger
JP3675475B2 (en) Plate heat exchanger
US4307779A (en) Plate heat exchanger
KR940004308A (en) Multilayer Heat Exchanger and Manufacturing Method Thereof
JPWO2009013801A1 (en) Plate stack heat exchanger
US4699209A (en) Heat exchanger design for cryogenic reboiler or condenser service
JP3691136B2 (en) Plate stack as heat exchanger
US7044206B2 (en) Heat exchanger plate and a plate heat exchanger
US6164372A (en) Heat exchanger
KR20010015811A (en) Heat exchanger
JPS63189784A (en) Heat exchanger
JP4462653B2 (en) Plate heat exchanger
JP2005195190A (en) Multiplate heat exchanger
JPS61122493A (en) Plate type heat exchanger
JPH08105697A (en) Heat exchanger
JP4317983B2 (en) Plate type heat exchanger
CN112146484B (en) Plate heat exchanger
KR960005790B1 (en) Heat-exchangers
GB2110812A (en) Heat exchanger
JPH03230096A (en) Plate fin type heat exchanger
JPH0435735Y2 (en)
JPH053912Y2 (en)
JPH0583838B2 (en)
JP2001355978A (en) Gas cooling laminated heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term