JP6479074B2 - Magnetic composition, inductor and magnetic body - Google Patents
Magnetic composition, inductor and magnetic body Download PDFInfo
- Publication number
- JP6479074B2 JP6479074B2 JP2017060429A JP2017060429A JP6479074B2 JP 6479074 B2 JP6479074 B2 JP 6479074B2 JP 2017060429 A JP2017060429 A JP 2017060429A JP 2017060429 A JP2017060429 A JP 2017060429A JP 6479074 B2 JP6479074 B2 JP 6479074B2
- Authority
- JP
- Japan
- Prior art keywords
- metal magnetic
- magnetic particles
- resin
- insulating film
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 153
- 239000002184 metal Substances 0.000 claims description 153
- 239000006249 magnetic particle Substances 0.000 claims description 150
- 239000002245 particle Substances 0.000 claims description 50
- 229920005989 resin Polymers 0.000 claims description 40
- 239000011347 resin Substances 0.000 claims description 40
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 239000011651 chromium Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 50
- 239000000843 powder Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910008458 Si—Cr Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14708—Fe-Ni based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
- H01F1/26—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/06—Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F27/292—Surface mounted devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/0053—Printed inductances with means to reduce eddy currents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F2017/048—Fixed inductances of the signal type with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Coils Or Transformers For Communication (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、磁性体組成物、インダクタおよび磁性体本体に関するものである。 The present invention relates to a magnetic composition, an inductor, and a magnetic body.
高性能に対する産業界のニーズに応じて、電源コンバータの効率を増加させることが重要な考慮事項となっている。電源コンバータ(power converter)の効率が及ぼす要因は、大きくスイッチ損失及び受動素子損失に分けることができる。スイッチ損失はIGBT(insulated gate bipolar mode transistor)及びダイオード(diode)の損失、また、受動素子損失はインダクタ(inductor)及びキャパシタ(capacitor)の損失にそれぞれ分けることができる。 Increasing the efficiency of power converters is an important consideration in response to industry needs for high performance. Factors affected by the efficiency of a power converter can be broadly divided into switch loss and passive element loss. The switch loss can be divided into IGBT (insulated gate bipolar mode transistor) and diode loss, and the passive element loss can be divided into inductor and capacitor loss.
このうち、インダクタの損失には、インダクタに与える負荷の大きさが増加するにつれて増加する負荷依存損失の銅損(copper loss)や、負荷と関係なく一定の大きさを有する負荷独立損失の鉄損(iron loss)などがある。銅損とはインダクタの巻線抵抗で発生する損失のことであり、鉄損とは一定のスイッチング周波数において連続導通モードで駆動時に発生する損失のことである。 Among these, the loss of the inductor includes the copper loss of the load-dependent loss that increases as the size of the load applied to the inductor increases, and the iron loss of the load independent loss that has a constant magnitude regardless of the load. (Iron loss). Copper loss refers to loss that occurs due to the winding resistance of the inductor, and iron loss refers to loss that occurs when driving in continuous conduction mode at a constant switching frequency.
負荷依存損失は、全負荷領域において効率に影響を及ぼし、特に導通損失によって多くの影響を受けるため、重負荷において占める割合が非常に大きい。これに対し、負荷独立損失は、負荷による変化幅が少ないため、重負荷において占める割合が小さいが、軽負荷では、負荷依存損失に比べてより大きな比重を占めることから、軽負荷時の効率を改善するためには、負荷独立損失を低減することが効果的であると見なすことができる。 The load-dependent loss affects the efficiency in the entire load region, and is particularly affected by the conduction loss. On the other hand, load independent loss has a small change ratio due to load, so the ratio of heavy load is small, but light load occupies a larger specific gravity than load-dependent loss, so the efficiency at light load is reduced. To improve, it can be considered effective to reduce the load independent loss.
鉄損は、磁束密度によって大きく変動するもので、ヒステリシス損失(hysteresis loss)及び渦電流損失(eddy current loss)に区分される。ヒステリシス損失の場合、インダクタ内の不純物、電位、結晶粒界、粉末の界面による因子によって影響を受け、渦電流損失の場合、本体に含まれる粉末粒子内で発生するもので、粒子サイズ及び粒子の絶縁程度に応じて増加する可能性がある。 The iron loss greatly varies depending on the magnetic flux density, and is classified into a hysteresis loss and an eddy current loss. Hysteresis loss is affected by factors due to impurities, potential, grain boundaries, and powder interfaces in the inductor, and eddy current loss occurs in the powder particles contained in the main body. It may increase depending on the degree of insulation.
渦電流損失を低減するために粒子サイズを減少させる方法があるが、粒子サイズが減少すると、透磁率が減少するためインダクタンス(inductance)が減少するという問題点がある。 There is a method of reducing the particle size in order to reduce the eddy current loss. However, when the particle size decreases, there is a problem in that the inductance decreases because the magnetic permeability decreases.
これにより、渦電流損失を低減することができる方法が必要な実情である。 Thus, there is a need for a method that can reduce eddy current loss.
本発明は、渦電流損失を低減することにより、高効率及びインダクタンスを確保することができる磁性体組成物及びこれを含むインダクタに関するものである。 The present invention relates to a magnetic composition capable of ensuring high efficiency and inductance by reducing eddy current loss and an inductor including the same.
本発明の一実施例は、第1、第2、及び第3金属磁性粒子を含み、金属磁性粒子は、平均粒径が10〜28μmである第1金属磁性粒子と、平均粒径が1〜4.5μmである第2金属磁性粒子と、表面に形成された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含む磁性体組成物を提供する。 An embodiment of the present invention includes first, second, and third metal magnetic particles, wherein the metal magnetic particles have a first metal magnetic particle having an average particle size of 10 to 28 μm, and an average particle size of 1 to Provided is a magnetic composition comprising second metal magnetic particles having a thickness of 4.5 μm and third metal magnetic particles having an insulating film formed on the surface and having a particle size of 300 nm or less.
本発明の他の実施例は、金属磁性粒子を含む本体と、上記本体内に配置されたコイル部と、を含み、上記金属磁性粒子は、平均粒径が10〜28μmである第1金属磁性粒子と、平均粒径が1〜4.5μmである第2金属磁性粒子と、表面に配置された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含むインダクタを提供する。 Another embodiment of the present invention includes a main body including metal magnetic particles and a coil portion disposed in the main body, and the metal magnetic particles have a first metal magnetic particle having an average particle diameter of 10 to 28 μm. Provided is an inductor including particles, second metal magnetic particles having an average particle diameter of 1 to 4.5 μm, and third metal magnetic particles including an insulating film disposed on a surface and having a particle diameter of 300 nm or less. To do.
本発明のさらに他の実施例は、樹脂と、上記樹脂に分散され、平均粒径が10〜28μmである第1金属磁性粒子と、上記第1金属磁性粒子の間の上記樹脂に分散され、平均粒径が1〜4.5μmである第2金属磁性粒子と、上記第1及び第2金属磁性粒子の間の上記樹脂に分散され、表面に配置された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含む磁性体本体を提供する。 Still another embodiment of the present invention is a resin, dispersed in the resin, the first metal magnetic particles having an average particle size of 10 to 28 μm, and the resin between the first metal magnetic particles, A second metal magnetic particle having an average particle diameter of 1 to 4.5 μm and an insulating film dispersed on the resin between the first and second metal magnetic particles and disposed on the surface, and having a particle diameter of 300 nm A magnetic body including the following third metal magnetic particles is provided.
本発明のさらに他の実施例は、樹脂に分散された金属磁性粒子を含み、上記金属磁性粒子は、表面に配置された絶縁膜を含み、粒径が300nm以下である第1金属磁性粒子と、平均粒径が1〜28μmである第2金属磁性粒子と、を含み、上記第1金属磁性粒子の含有量は上記磁性体組成物の上記金属磁性粒子の含有量を100wt%とすると1〜20wt%であり、上記第2金属磁性粒子は上記磁性体組成物の上記金属磁性粒子の含有量を100wt%とすると残量である磁性体組成物を提供する。 Still another embodiment of the present invention includes metal magnetic particles dispersed in a resin, the metal magnetic particles including an insulating film disposed on a surface, and first metal magnetic particles having a particle size of 300 nm or less; Second metal magnetic particles having an average particle diameter of 1 to 28 μm, and the content of the first metal magnetic particles is 1 to 1 when the content of the metal magnetic particles in the magnetic composition is 100 wt%. When the content of the metal magnetic particles in the magnetic composition is 100 wt%, the second metal magnetic particles provide a remaining magnetic composition.
本発明の一実施例によると、インダクタの渦電流損失を改善するとともに、高効率及びインダクタンスを確保することができる。 According to one embodiment of the present invention, it is possible to improve the eddy current loss of the inductor and ensure high efficiency and inductance.
以下では、添付の図面を参照して本発明の好ましい実施例について説明する。しかし、本発明の実施例は様々な他の形態に変形されることができ、本発明の範囲は以下で説明する実施例に限定されない。また、本発明の実施例は、当該技術分野で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。したがって、図面における要素の形状及び大きさなどはより明確な説明のために拡大縮小表示(または強調表示や簡略化表示)がされることがある。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art. Accordingly, the shape and size of the elements in the drawings may be enlarged / reduced (or highlighted or simplified) for a clearer description.
以下、本発明による磁性体組成物について説明する。 The magnetic composition according to the present invention will be described below.
本発明の一実施例による磁性体組成物は、金属磁性粒子を含み、金属磁性粒子は、平均粒径が10〜28μmである第1金属磁性粒子と、平均粒径が1〜4.5μmである第2金属磁性粒子と、表面に形成された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含む。 A magnetic composition according to an embodiment of the present invention includes metal magnetic particles, and the metal magnetic particles include first metal magnetic particles having an average particle diameter of 10 to 28 μm and average particle diameters of 1 to 4.5 μm. It includes certain second metal magnetic particles and third metal magnetic particles including an insulating film formed on the surface and having a particle size of 300 nm or less.
上記磁性体組成物は、金属磁性粒子及び樹脂を含み、上記樹脂に上記金属磁性粒子が分散された形態を有することができる。 The magnetic composition may include metal magnetic particles and a resin, and the metal magnetic particles may be dispersed in the resin.
上記金属磁性粒子は、鉄(Fe)、シリコン(Si)、クロム(Cr)、アルミニウム(Al)、ニッケル(Ni)、コバルト(Co)からなる群より選択されたいずれか一つ以上を含むことができ、例えば、Fe−Si−Cr系合金であることができる。 The metal magnetic particles include at least one selected from the group consisting of iron (Fe), silicon (Si), chromium (Cr), aluminum (Al), nickel (Ni), and cobalt (Co). For example, it can be an Fe—Si—Cr alloy.
上記樹脂は、エポキシ(epoxy)樹脂やポリイミド(polyimide)樹脂などの熱硬化性樹脂であることができる。 The resin may be a thermosetting resin such as an epoxy resin or a polyimide resin.
上記金属磁性粒子は、互いに異なるサイズを有する第1及び第2並びに第3金属磁性粒子を含む。具体的には、上記第1金属磁性粒子は10〜28μmの平均粒径を有し、上記第2金属磁性粒子は1〜4.5μmの平均粒径を有し、第3金属磁性粒子は300nm以下の粒径を有することを満たす。すなわち、上記1金属磁性粒子は粗大粉末、上記第2金属磁性粒子は微粉末、上記第3金属磁性粒子は超微粉末であることができる。 The metal magnetic particles include first, second, and third metal magnetic particles having different sizes. Specifically, the first metal magnetic particles have an average particle size of 10 to 28 μm, the second metal magnetic particles have an average particle size of 1 to 4.5 μm, and the third metal magnetic particles are 300 nm. Satisfies having the following particle size. That is, the first metal magnetic particles can be coarse powder, the second metal magnetic particles can be fine powder, and the third metal magnetic particles can be ultrafine powder.
上記第1金属磁性粒子は、低周波数帯域で磁性体組成物のヒステリシス(hysteresis)損失を小さくするとともに、高周波数帯域で磁性体組成物の渦電流(eddy current)損失を最小限に抑えるために、10〜28μmの平均粒径を有する。 The first metal magnetic particles reduce the hysteresis loss of the magnetic composition in the low frequency band and minimize the eddy current loss of the magnetic composition in the high frequency band. , Having an average particle size of 10 to 28 μm.
上記第2金属磁性粒子は、磁性体組成物の飽和電流(saturation current;Isat)を高めるために、1〜4.5μmの平均粒径を有することができ、第3金属磁性粒子は、本体の粉末充填率及び渦電流損失を低減するために、300nm以下の粒径を有する。 The second metal magnetic particles may have an average particle size of 1 to 4.5 μm in order to increase a saturation current (Isat) of the magnetic composition. In order to reduce the powder filling rate and eddy current loss, it has a particle size of 300 nm or less.
一般に、金属磁性粒子のサイズを減少させると、渦電流損失を低減することができるが、インダクタの本体の透磁率が減少するため、インダクタにおける主要な因子であるインダクタンスの実現が困難となる。 In general, when the size of the metal magnetic particles is reduced, eddy current loss can be reduced. However, since the magnetic permeability of the inductor body is reduced, it is difficult to realize inductance that is a main factor in the inductor.
本発明の一実施例による磁性体組成物は、表面に形成された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子を含む。これにより、粒子サイズが小さい第3金属磁性粒子を含むことで渦電流損失を低減することができ、第3金属磁性粒子の表面に形成された絶縁膜によってインダクタンスを確保することができる。 A magnetic composition according to an embodiment of the present invention includes third metal magnetic particles including an insulating film formed on a surface and having a particle size of 300 nm or less. Thereby, the eddy current loss can be reduced by including the third metal magnetic particles having a small particle size, and the inductance can be secured by the insulating film formed on the surface of the third metal magnetic particles.
上記絶縁膜は、酸化膜であってもよく、1層以上形成されることができ、最大3層からなることができる。 The insulating film may be an oxide film, may be formed of one or more layers, and may have a maximum of three layers.
上記絶縁膜が、1層の場合はFeOからなることができ、2層の場合はFeO/SiO及びFeO/CrOのうち選択された一つの構造を有することができ、3層の場合はFeO/CrO/SiOの構造を有することができる。 The insulating film can be made of FeO in the case of one layer, and can have one structure selected from FeO / SiO and FeO / CrO in the case of two layers, and FeO / in the case of three layers. It can have a CrO / SiO structure.
上記絶縁膜がFeOからなる1層の場合は、薄い絶縁膜の特性上、優れた磁気特性を有することができる。 When the insulating film is a single layer made of FeO, it can have excellent magnetic properties in terms of the characteristics of the thin insulating film.
上記絶縁膜が2層の場合は、上記絶縁膜は、コアの表面に形成され、FeOからなる第1層と、上記第1層上に形成され、SiO及びCrOのうち選択された一つからなる第2層と、を含むことができる。上記第2層の厚さは、上記第1層の厚さに比べて同一であるかまたは小さければよい。SiOは優れた絶縁特性を有し、CrOは上記コアの表面が空気中に露出するため生じ得る急激な酸化を防止する役割を果たすことができる。 In the case where the insulating film has two layers, the insulating film is formed on the surface of the core and is formed on the first layer made of FeO and the selected one of SiO and CrO. And a second layer. The thickness of the second layer may be the same as or smaller than the thickness of the first layer. SiO has excellent insulating properties, and CrO can play a role in preventing rapid oxidation that may occur because the surface of the core is exposed to the air.
上記絶縁膜が3層の場合は、コアに絶縁膜が形成され、上記絶縁膜は、上記コアの表面に形成され、FeOからなる第1層と、上記第1層上に形成され、CrOからなる第2層と、上記第2層上に形成され、SiOからなる第3層と、を含む構造であることができる。各層の厚さは、同一であるかまたは異なってもよい。 When the insulating film has three layers, an insulating film is formed on the core. The insulating film is formed on the surface of the core, and is formed on the first layer made of FeO and the first layer. And a third layer made of SiO and formed on the second layer. The thickness of each layer may be the same or different.
上記3層からなる絶縁膜は、FeO、SiO及びCrO層を含む構造で、コアの表面酸化防止及び優れた絶縁特性を有することができ、渦電流損失を低くすることでインダクタの効率を向上させることができる。 The three-layer insulating film has a structure including FeO, SiO and CrO layers, can prevent the surface oxidation of the core and have excellent insulating characteristics, and improve the efficiency of the inductor by reducing eddy current loss. be able to.
上記絶縁膜の厚さは、上記第3金属磁性粒子の粒径の1〜20%であることができる。 The insulating film may have a thickness of 1 to 20% of a particle size of the third metal magnetic particle.
上記絶縁膜の厚さが上記第3金属磁性粒子の粒径の20%を超えると、逆に透磁率及び磁化率が低下する可能性があるため、できる限り厚さを薄くすることが好ましい。 If the thickness of the insulating film exceeds 20% of the particle size of the third metal magnetic particles, the magnetic permeability and the magnetic susceptibility may be reduced. Therefore, it is preferable to make the thickness as thin as possible.
上記金属磁性粒子100wt%に対して、上記第1金属磁性粒子の含有量は70〜79wt%、上記第2金属磁性粒子の含有量は10〜20wt%、及び上記第3金属磁性粒子の含有量は1〜20wt%を満たす。 The content of the first metal magnetic particles is 70 to 79 wt%, the content of the second metal magnetic particles is 10 to 20 wt%, and the content of the third metal magnetic particles with respect to 100 wt% of the metal magnetic particles. Satisfies 1 to 20 wt%.
インダクタの透磁率のために、上記第1金属磁性粒子の含有量は、上記金属磁性粒子100wt%に対して70〜79wt%であることができ、上記第2金属磁性粒子の含有量は、上記金属磁性粒子100wt%に対して10〜20wt%であることができる。 Due to the magnetic permeability of the inductor, the content of the first metal magnetic particles may be 70 to 79 wt% with respect to 100 wt% of the metal magnetic particles, and the content of the second metal magnetic particles may be It may be 10 to 20 wt% with respect to 100 wt% of the metal magnetic particles.
渦電流損失の低減及びインダクタンスの向上のために、上記第3金属磁性粒子の含有量は、上記金属磁性粒子100wt%に対して1〜20wt%であることができる。 In order to reduce eddy current loss and improve inductance, the content of the third metal magnetic particles may be 1 to 20 wt% with respect to 100 wt% of the metal magnetic particles.
上記第3金属磁性粒子の含有量が1wt%未満であれば、インダクタンスの向上効果が十分でなく、上記第3金属磁性粒子の含有量が20wt%を超えると、インダクタの本体の充填率が増加してインダクタンスは増加することができるが、Q値(Q factor)が減少するという問題点があるため、上記第3金属磁性粒子の含有量は1〜20wt%であることが好ましい。 If the content of the third metal magnetic particles is less than 1 wt%, the effect of improving the inductance is not sufficient, and if the content of the third metal magnetic particles exceeds 20 wt%, the filling factor of the inductor body increases. The inductance can be increased, but the Q value (Q factor) is decreased. Therefore, the content of the third metal magnetic particles is preferably 1 to 20 wt%.
本発明の一実施例による磁性体組成物は、粒径が300nm以下の範囲を有し、表面に形成された絶縁膜を含む第3金属磁性粒子を含むため、インダクタの本体の粉末充填率の増加及び渦電流損失の低減により、インダクタンスが向上し、高効率を有することができる。 The magnetic composition according to an embodiment of the present invention includes third metal magnetic particles having a particle size of 300 nm or less and including an insulating film formed on the surface. By increasing and reducing eddy current loss, inductance can be improved and high efficiency can be achieved.
以下、添付の図面を参照して本発明によるインダクタについて説明する。 Hereinafter, an inductor according to the present invention will be described with reference to the accompanying drawings.
図1は本発明の一実施例によるインダクタの斜視図を概略的に示すものであり、図2は図1のI−I'方向の切断面を概略的に示すもので、本発明の一実施例によるインダクタの断面図を概略的に示すものであり、図3は図2のA部分の拡大図を概略的に示すものである。 FIG. 1 schematically shows a perspective view of an inductor according to an embodiment of the present invention, and FIG. 2 schematically shows a cut surface in the II ′ direction of FIG. FIG. 3 schematically shows a sectional view of an inductor according to an example, and FIG. 3 schematically shows an enlarged view of a portion A in FIG.
図1〜図3を参照すると、本発明の一実施例によるインダクタ100は、金属磁性粒子61、63、65を含む本体50と、本体内に配置されたコイル部20、41、42と、を含み、金属磁性粒子は、平均粒径が10〜28μmである第1金属磁性粒子61と、平均粒径が1〜4.5μmである第2金属磁性粒子63と、表面に形成された絶縁膜65bを含み、粒径が300nm以下である第3金属磁性粒子65と、を含む。 1 to 3, an inductor 100 according to an embodiment of the present invention includes a main body 50 including metal magnetic particles 61, 63, and 65, and coil portions 20, 41, and 42 disposed in the main body. In addition, the metal magnetic particles include first metal magnetic particles 61 having an average particle diameter of 10 to 28 μm, second metal magnetic particles 63 having an average particle diameter of 1 to 4.5 μm, and an insulating film formed on the surface And third metal magnetic particles 65 having a particle diameter of 300 nm or less.
上記本体50は、インダクタの外側の外観をなす。上記本体50は、一面及び上記一面と相対する下面、並びに上記一面と他面を接続する面を有することができる。図1に示されたL、W、及びTは、それぞれの長さ方向、幅方向、及び厚さ方向を示す。上記本体50は、コイル層の積層方向(厚さ方向)に相対する上面及び下面、長さ方向に相対する端面、及び幅方向に対向する側面を含む六面体形状であってもよく、印刷回路基板への実装時に、上記本体の下面(他面)は印刷回路基板に接する実装面となることができる。各面が接する角は研磨(Grinding)などによって丸くてもよいが、これに制限されるものではない。 The main body 50 has an external appearance of the inductor. The main body 50 may have one surface, a lower surface facing the one surface, and a surface connecting the one surface and the other surface. L, W, and T shown in FIG. 1 indicate the length direction, the width direction, and the thickness direction, respectively. The main body 50 may have a hexahedral shape including an upper surface and a lower surface facing the stacking direction (thickness direction) of the coil layer, an end surface facing the length direction, and a side surface facing the width direction. When mounted on the substrate, the lower surface (other surface) of the main body may be a mounting surface in contact with the printed circuit board. The angle at which each surface contacts may be rounded by grinding or the like, but is not limited thereto.
上記本体50は、磁気特性を示す磁性物質を含む。 The main body 50 includes a magnetic material exhibiting magnetic characteristics.
上記本体50は、コイル部を形成した後、その上部及び下部に磁性物質を含むシートを積層した後、これを圧着及び硬化することで形成することができる。上記磁性物質は、金属磁性粒子が含まれた樹脂であってもよい。 The main body 50 can be formed by forming a coil portion, laminating sheets containing a magnetic substance on the upper and lower portions, and then crimping and curing the sheet. The magnetic substance may be a resin containing metal magnetic particles.
図3を参照すると、上記本体50は、金属磁性粒子61、63、65が樹脂60に分散された形態であることができる。 Referring to FIG. 3, the main body 50 may have a form in which metal magnetic particles 61, 63, 65 are dispersed in a resin 60.
上記金属磁性粒子61、63、65は、鉄(Fe)、シリコン(Si)、クロム(Cr)、アルミニウム(Al)、及びニッケル(Ni)からなる群より選択されたいずれか一つ以上を含むことができ、Fe−Si−Cr系合金であることができる。 The metal magnetic particles 61, 63, 65 include at least one selected from the group consisting of iron (Fe), silicon (Si), chromium (Cr), aluminum (Al), and nickel (Ni). And can be an Fe-Si-Cr alloy.
上記樹脂60は、エポキシ(epoxy)樹脂やポリイミド(polyimide)樹脂などの熱硬化性樹脂であることができる。 The resin 60 may be a thermosetting resin such as an epoxy resin or a polyimide resin.
インダクタの渦電流損失は、粒子サイズ及び粒子の絶縁程度に応じて増加し、周波数が増加するにつれて渦電流損失が増加する。上記渦電流損失を低減する方法として本体内に含まれる金属磁性粒子サイズを減少させる方法が挙げられるが、金属磁性粒子サイズを減少させると、本体の透磁率が減少してインダクタのインダクタンス値が減少するという問題点が発生する。 The eddy current loss of the inductor increases with the particle size and the degree of particle insulation, and the eddy current loss increases as the frequency increases. As a method of reducing the eddy current loss, there is a method of reducing the size of the metal magnetic particles contained in the main body. However, when the metal magnetic particle size is reduced, the magnetic permeability of the main body is reduced and the inductance value of the inductor is reduced. Problem occurs.
図3を参照すると、本発明の一実施例によるインダクタの本体50は、表面に形成された絶縁膜65bを含み、粒径が300nm以下である第3金属磁性粒子65を含むことにより、渦電流損失を低減することができ、本体の金属磁性粒子の充填率を増加させるため、インダクタンスを確保することができる。 Referring to FIG. 3, an inductor body 50 according to an embodiment of the present invention includes an insulating film 65 b formed on a surface thereof, and includes third metal magnetic particles 65 having a particle size of 300 nm or less. Since the loss can be reduced and the filling rate of the metal magnetic particles in the main body is increased, the inductance can be ensured.
上記絶縁膜65bは、酸化膜であってもよく、1層以上形成されることができ、最大3層からなることができる。例えば、絶縁膜65bは、それぞれ異なる材料で形成された最大3層を含んでもよい。 The insulating film 65b may be an oxide film, may be formed of one or more layers, and may have a maximum of three layers. For example, the insulating film 65b may include a maximum of three layers formed of different materials.
上記絶縁膜65bが、1層の場合はFeOからなることができ、2層の場合はFeO/SiO及びFeO/CrOのうち選択された一つの構造を有することができ、3層の場合はFeO/CrO/SiOの構造を有することができる。 The insulating film 65b can be made of FeO in the case of one layer, can have one structure selected from FeO / SiO and FeO / CrO in the case of two layers, and FeO in the case of three layers. / CrO / SiO structure.
上記絶縁膜がFeOからなる1層を有する場合は、薄い絶縁膜の特性上、優れた磁気特性を有することができる。 When the insulating film has one layer made of FeO, it can have excellent magnetic characteristics in terms of the characteristics of the thin insulating film.
上記絶縁膜65bが2層の場合は、コア65aの表面に絶縁膜が形成され、FeOからなる第1層65b'と、上記第1層上に形成され、SiO及びCrOのうち選択された一つからなる第2層65b''と、を含むことができる。上記第2層の厚さDb''は、上記第1層の厚さDb'に比べて同一であるかまたは小さければよい。SiOは優れた絶縁特性を有し、CrOはコアの表面が空気中に露出するため生じ得る急激な酸化を防止する役割を果たすことができる。 When the insulating film 65b has two layers, an insulating film is formed on the surface of the core 65a, and is formed on the first layer 65b ′ made of FeO and the first layer, and one selected from SiO and CrO. And a second layer 65b ″ made of two. The thickness Db ″ of the second layer may be the same as or smaller than the thickness Db ′ of the first layer. SiO has excellent insulating properties, and CrO can play a role in preventing rapid oxidation that may occur because the surface of the core is exposed to the air.
上記絶縁膜65bが3層からなる場合は、コアに絶縁膜が形成され、上記絶縁膜は、上記コアの表面に形成され、FeOからなる第1層65b'と、上記第1層上に形成され、CrOからなる第2層65b''と、上記第2層上に形成され、SiOからなる第3層65b'''と、を含む構造であることができる。各層の厚さは、同一であるかまたは異なってもよい。 When the insulating film 65b is composed of three layers, an insulating film is formed on the core, and the insulating film is formed on the surface of the core, and is formed on the first layer 65b ′ made of FeO and the first layer. The structure may include a second layer 65b ″ made of CrO and a third layer 65b ′ ″ made of SiO and formed on the second layer. The thickness of each layer may be the same or different.
上記3層からなる絶縁膜は、FeO、SiO及びCrO層を含む構造で、コアの表面酸化防止及び優れた絶縁特性を有することができ、渦電流損失を低くすることでインダクタの効率を向上させることができる。 The three-layer insulating film has a structure including FeO, SiO and CrO layers, can prevent the surface oxidation of the core and have excellent insulating characteristics, and improve the efficiency of the inductor by reducing eddy current loss. be able to.
上記絶縁膜の厚さは、上記第3金属磁性粒子の粒径の1〜20%であることができる。 The insulating film may have a thickness of 1 to 20% of a particle size of the third metal magnetic particle.
上記絶縁膜の厚さが上記第3金属磁性粒子の粒径の20%を超えると、逆に透磁率及び磁化率が低下する可能性があるため、できる限り厚さを薄くすることが好ましい。 If the thickness of the insulating film exceeds 20% of the particle size of the third metal magnetic particles, the magnetic permeability and the magnetic susceptibility may be reduced. Therefore, it is preferable to make the thickness as thin as possible.
インダクタの透磁率のために、上記第1金属磁性粒子61の含有量は、上記磁性体組成物の上記金属磁性粒子100wt%に対して70〜79wt%であることができ、上記第2金属磁性粒子63の含有量は、上記磁性体組成物の上記金属磁性粒子100wt%に対して10〜20wt%であることができる。 Due to the magnetic permeability of the inductor, the content of the first metal magnetic particles 61 may be 70 to 79 wt% with respect to 100 wt% of the metal magnetic particles of the magnetic composition. The content of the particles 63 may be 10 to 20 wt% with respect to 100 wt% of the metal magnetic particles of the magnetic composition.
渦電流損失の低減及びインダクタンスの向上のために、上記第3金属磁性粒子65の含有量は、上記金属磁性粒子100wt%に対して1〜20wt%であることができる。 In order to reduce eddy current loss and improve inductance, the content of the third metal magnetic particles 65 may be 1 to 20 wt% with respect to 100 wt% of the metal magnetic particles.
上記第3金属磁性粒子の含有量が1wt%未満であれば、インダクタンスの向上効果が十分でなく、上記第3金属磁性粒子の含有量が20wt%を超えると、インダクタの本体の充填率が増加してインダクタンスは増加することができるが、Q値(Q factor)が減少するという問題点があるため、上記第3金属磁性粒子の含有量は1〜20wt%であることが好ましい。 If the content of the third metal magnetic particles is less than 1 wt%, the effect of improving the inductance is not sufficient, and if the content of the third metal magnetic particles exceeds 20 wt%, the filling factor of the inductor body increases. The inductance can be increased, but the Q value (Q factor) is decreased. Therefore, the content of the third metal magnetic particles is preferably 1 to 20 wt%.
下記表1は、第3金属磁性粒子の含有量によるインダクタのインダクタンスを示すものである。各サンプルは、同一のサイズ及び材料を使用し、第3金属磁性粒子の含有量だけを異ならせた。 Table 1 below shows the inductance of the inductor depending on the content of the third metal magnetic particles. Each sample used the same size and material, and differed only in the content of the third metal magnetic particles.
上記表1を参照すると、上記第3金属磁性粒子の含有量が増加するにつれてインダクタのインダクタンス容量が20wt%まで増加することが分かる。これは、インダクタの本体の粉末充填率の増加に伴う本体の透磁率の増加に起因するものと判断される。 Referring to Table 1, it can be seen that the inductance capacity of the inductor increases to 20 wt% as the content of the third metal magnetic particles increases. This is considered to be caused by an increase in the magnetic permeability of the main body accompanying an increase in the powder filling rate of the main body of the inductor.
また、上記第3金属磁性粒子の含有量が20wt%を超えると、インダクタのインダクタンスが再び減少することが分かる。 It can also be seen that when the content of the third metal magnetic particles exceeds 20 wt%, the inductance of the inductor decreases again.
図4は第3金属磁性粒子の含有量によるインダクタの本体の断面構造を示す走査電子顕微鏡写真(scanning electron microscope;SEM)である。 FIG. 4 is a scanning electron microscope (SEM) showing a cross-sectional structure of the inductor body according to the content of the third metal magnetic particles.
上記本体は、平均粒径が10〜28μmである第1金属磁性粒子と、平均粒径が1〜4.5μmである第2金属磁性粒子と、表面に形成された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含む。 The main body includes first metal magnetic particles having an average particle diameter of 10 to 28 μm, second metal magnetic particles having an average particle diameter of 1 to 4.5 μm, and an insulating film formed on the surface. And third metal magnetic particles having a thickness of 300 nm or less.
図4を参照すると、第1金属磁性粒子及び第2金属磁性粒子の間に超微粉末を有する第3金属磁性粒子が含まれ、第3金属磁性粒子の含有量が増加するにつれて本体の粉末充填率が増加することが分かる。 Referring to FIG. 4, a third metal magnetic particle having an ultrafine powder is included between the first metal magnetic particle and the second metal magnetic particle, and the powder filling of the main body as the content of the third metal magnetic particle increases. It can be seen that the rate increases.
図5は第3金属磁性粒子の含有量によるインダクタの周波数によるQ値の変化を示すグラフである。 FIG. 5 is a graph showing changes in the Q value according to the frequency of the inductor depending on the content of the third metal magnetic particles.
図5を参照すると、第3金属磁性粒子の含有量が増加するにつれて本体の粉末充填率が増加するため、共振周波数に影響を及ぼす寄生キャパシタンス(parasitic capacitance)が減少し、Q値が減少するものと判断される。これに対し、第3金属磁性粒子の含有量が20wt%を超えると、Q値が大幅に減少することが分かる。 Referring to FIG. 5, as the content of the third metal magnetic particles increases, the powder filling rate of the main body increases, so that the parasitic capacitance affecting the resonance frequency decreases and the Q value decreases. It is judged. On the other hand, it can be seen that when the content of the third metal magnetic particles exceeds 20 wt%, the Q value is significantly reduced.
上記コイル部は、インダクタ100のコイルから発現される特性を通じて電子機器内において様々な機能を行う役割を果たす。例えば、インダクタ100はパワーインダクタであってもよい。この場合、コイル部は、電気を磁場の形態で保存して出力電圧を維持し、電源を安定させる役割などを果たすことができる。 The coil part plays a role of performing various functions in the electronic device through characteristics expressed from the coil of the inductor 100. For example, the inductor 100 may be a power inductor. In this case, the coil part can store the electricity in the form of a magnetic field to maintain the output voltage and stabilize the power source.
上記コイル部は、上記支持部材20の上面及び下面にそれぞれ形成された第1及び第2コイルパターン41、42を含む。上記第1及び第2コイルパターン41、42は、上記支持部材20を基準に相対して配置されたコイル層である。 The coil portion includes first and second coil patterns 41 and 42 formed on the upper surface and the lower surface of the support member 20, respectively. The first and second coil patterns 41 and 42 are coil layers disposed relative to the support member 20.
上記第1及び第2コイルパターン41、42は、フォトリソグラフィ工法またはめっき工法を用いて形成することができる。 The first and second coil patterns 41 and 42 can be formed using a photolithography method or a plating method.
上記支持部材20は、第1及び第2コイルパターン41、42を支持することができるものであればその材質または種類が特に限定されず、例えば、銅箔積層板(CCL)、ポリプロピレングリコール(PPG)基板、フェライト基板または金属系軟磁性基板などであることができる。また、絶縁樹脂からなる絶縁基板であってもよい。絶縁樹脂としては、エポキシ樹脂のような熱硬化性樹脂、ポリイミドのような熱可塑性樹脂、またはこれらにガラス繊維または無機フィラーなどの補強材が含浸された樹脂、例えば、プリプレグ(prepreg)、ABF(Ajinomoto Build−up Film)、FR−4、BT(Bismaleimide Triazine)樹脂、PID(Photo Imageable Dielectric)樹脂などが用いられることができる。剛性維持の観点においては、ガラス繊維及びエポキシ樹脂を含む絶縁基板を用いることができるが、これに限定されるものではない。 The support member 20 is not particularly limited in material or type as long as it can support the first and second coil patterns 41 and 42. For example, a copper foil laminate (CCL), polypropylene glycol (PPG) ) A substrate, a ferrite substrate, a metal-based soft magnetic substrate, or the like. Further, it may be an insulating substrate made of an insulating resin. As the insulating resin, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polyimide, or a resin in which a reinforcing material such as glass fiber or an inorganic filler is impregnated, for example, a prepreg, ABF ( Ajinomoto Build-up Film (FR-4), BT (Bismaleimide Triazine) resin, PID (Photo Imageable Dielectric) resin, or the like can be used. In terms of maintaining rigidity, an insulating substrate containing glass fiber and epoxy resin can be used, but is not limited thereto.
上記支持部材20の上面及び下面において、中央部は貫通して孔を形成し、上記孔にフェライトまたは金属磁性粒子などの磁性体で充填することで、コア部55を形成することができる。上記磁性体で充填されるコア部を形成することにより、インダクタンス(L)を向上させることができる。上記コア部には、上記本体50を形成するものと同一の材料が充填されることができる。 In the upper and lower surfaces of the support member 20, the core portion 55 can be formed by penetrating the central portion to form a hole and filling the hole with a magnetic material such as ferrite or metal magnetic particles. By forming the core portion filled with the magnetic material, the inductance (L) can be improved. The core portion can be filled with the same material that forms the body 50.
上記支持部材20の両面上に積層された上記第1コイルパターン41と上記第2コイルパターン42は、上記支持部材を貫通するビア45を介して電気的に接続される。 The first coil pattern 41 and the second coil pattern 42 stacked on both surfaces of the support member 20 are electrically connected via vias 45 penetrating the support member.
上記ビア45は、機械ドリルやレーザードリルなどを用いて、上記支持部材20を貫通する貫通孔を形成した後、上記貫通孔の内部にめっきで導電性物質を満たすことで形成することができる。 The via 45 can be formed by forming a through hole penetrating the support member 20 using a mechanical drill, a laser drill, or the like and then filling the inside of the through hole with a conductive material by plating.
上記ビア45は、支持部材20の両面上にそれぞれ配置された上側の第1コイルパターン41と下側の第2コイルパターン42を電気的に接続することができるものであれば、その形状または材質は特に限定されない。ここで、上側及び下側は、図面におけるコイルパターンの積層方向を基準に判断する。 The via 45 may have any shape or material as long as it can electrically connect the upper first coil pattern 41 and the lower second coil pattern 42 respectively disposed on both surfaces of the support member 20. Is not particularly limited. Here, the upper side and the lower side are determined based on the lamination direction of the coil patterns in the drawing.
上記ビア45は、銅(Cu)、アルミニウム(Al)、銀(Ag)、スズ(Sn)、金(Au)、ニッケル(Ni)、鉛(Pb)、またはこれらの合金などの導電性物質を含むことができる。 The via 45 is made of a conductive material such as copper (Cu), aluminum (Al), silver (Ag), tin (Sn), gold (Au), nickel (Ni), lead (Pb), or an alloy thereof. Can be included.
上記ビア45の断面は台形または砂時計形状であることができる。 The cross section of the via 45 may have a trapezoidal shape or an hourglass shape.
上記ビア45の断面は砂時計形状であってもよい。上記形状は、上記支持部材の上面または下面を加工することで実現することができる。これにより、上記ビアの断面幅を減少させることができる。上記ビアの断面幅は、60〜80μmであることができるが、これに限定されるものではない。 The cross section of the via 45 may have an hourglass shape. The shape can be realized by processing the upper surface or the lower surface of the support member. Thereby, the cross-sectional width of the via can be reduced. The via may have a cross-sectional width of 60 to 80 μm, but is not limited thereto.
上記第1及び第2コイルパターン41、42は、絶縁層(図示せず)によって被覆され、上記本体50及びコア部55をなす磁性材料とは直接接触しない。 The first and second coil patterns 41 and 42 are covered with an insulating layer (not shown) and are not in direct contact with the magnetic material forming the main body 50 and the core portion 55.
上記絶縁層は、第1及び第2コイルパターンを保護する役割を果たす。 The insulating layer serves to protect the first and second coil patterns.
上記絶縁層の材質は絶縁物質を含むものであればいずれも適用することができ、例えば、通常の絶縁コーティングに用いられる絶縁物質、例えば、エポキシ樹脂、ポリイミド樹脂、液晶結晶性ポリマー樹脂などを含むことができ、公知の感光性絶縁(Photo Imageable Dielectric:PID)樹脂などが用いられることもできるが、これに限定されるものではない。 Any material can be applied as long as the material of the insulating layer contains an insulating material, for example, an insulating material used for a normal insulating coating, for example, an epoxy resin, a polyimide resin, a liquid crystal crystalline polymer resin, etc. A known photosensitive insulating (PID) resin can be used, but the present invention is not limited thereto.
図1及び図2を参照すると、上記第1及び第2コイルパターン41、42と電気的に接続され、上記本体50の両端面に形成された第1及び第2外部電極81、82を含む。 Referring to FIGS. 1 and 2, the first and second external electrodes 81 and 82 formed on both end surfaces of the main body 50 are electrically connected to the first and second coil patterns 41 and 42.
上記第1及び第2外部電極81、82は、上記本体50の両端面に露出する上記第1及び第2コイルパターン41、42のそれぞれの引出端子と電気的に接続される。 The first and second external electrodes 81 and 82 are electrically connected to the respective lead terminals of the first and second coil patterns 41 and 42 exposed at both end surfaces of the main body 50.
上記第1及び第2外部電極81、82は、インダクタが電子機器に実装されるとき、インダクタ内のコイル部を電子機器と電気的に接続させる役割を果たす。 The first and second external electrodes 81 and 82 serve to electrically connect the coil portion in the inductor to the electronic device when the inductor is mounted on the electronic device.
上記第1及び第2外部電極81、82は、導電性金属を含む導電性ペーストを用いて形成することができ、上記導電性金属は、銅(Cu)、ニッケル(Ni)、スズ(Sn)、及び銀(Ag)のうち少なくとも一つまたはこれらの合金であることができる。 The first and second external electrodes 81 and 82 can be formed using a conductive paste containing a conductive metal, and the conductive metal includes copper (Cu), nickel (Ni), and tin (Sn). , And at least one of silver (Ag) or an alloy thereof.
上記第1及び第2外部電極は、上記ペースト層上に形成されためっき層を含むことができる。 The first and second external electrodes may include a plating layer formed on the paste layer.
上記めっき層は、ニッケル(Ni)、銅(Cu)、及びスズ(Sn)からなる群より選択されたいずれか一つ以上を含むことができ、例えば、ニッケル(Ni)層とスズ(Sn)層が順に形成されたものであってもよい。 The plating layer may include any one or more selected from the group consisting of nickel (Ni), copper (Cu), and tin (Sn), for example, a nickel (Ni) layer and tin (Sn). The layers may be formed in order.
以上、本発明の実施例について詳細に説明したが、本発明の技術的範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で多様な修正及び変形が可能であるということは、当技術分野の通常の知識を有する者には明らかである。 Although the embodiments of the present invention have been described in detail above, the technical scope of the present invention is not limited thereto, and various modifications can be made without departing from the technical idea of the present invention described in the claims. And that variations are possible will be apparent to those of ordinary skill in the art.
100 インダクタ
20 支持部材
41 第1コイルパターン
42 第2コイルパターン
45 ビア
50 本体
55 コア部
60 樹脂
61 第1金属磁性粒子
63 第2金属磁性粒子
65 第3金属磁性粒子
81 第1外部電極
82 第2外部電極
DESCRIPTION OF SYMBOLS 100 Inductor 20 Support member 41 1st coil pattern 42 2nd coil pattern 45 Via 50 Main body 55 Core part 60 Resin 61 1st metal magnetic particle 63 2nd metal magnetic particle 65 3rd metal magnetic particle 81 1st external electrode 82 2nd External electrode
Claims (17)
前記金属磁性粒子は、
平均粒径が10〜28μmである第1金属磁性粒子と、
平均粒径が1〜4.5μmである第2金属磁性粒子と、
表面に配置された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含み、
前記絶縁膜は、3層からなり、FeO/CrO/SiOである、
磁性体組成物。 Containing metal magnetic particles,
The metal magnetic particles are
First metal magnetic particles having an average particle size of 10 to 28 μm;
Second metal magnetic particles having an average particle diameter of 1 to 4.5 μm;
Including a third metal magnetic particle including an insulating film disposed on a surface and having a particle size of 300 nm or less,
The insulating film is composed of three layers and is FeO / CrO / SiO.
Magnetic material composition.
前記金属磁性粒子は前記樹脂に分散され、
前記第2金属磁性粒子は前記第1金属磁性粒子の間の前記樹脂に分散され、
前記第3金属磁性粒子は前記第1及び第2金属磁性粒子の間の前記樹脂に分散される、請求項1に記載の磁性体組成物。 The magnetic composition further includes a resin,
The metal magnetic particles are dispersed in the resin,
The second metal magnetic particles are dispersed in the resin between the first metal magnetic particles,
The magnetic composition according to claim 1 , wherein the third metal magnetic particles are dispersed in the resin between the first and second metal magnetic particles.
前記金属磁性粒子は前記樹脂に分散された形態である、請求項1に記載の磁性体組成物。 Including resin,
The magnetic material composition according to claim 1, wherein the metal magnetic particles are dispersed in the resin.
前記本体内に配置されたコイル部と、を含み、
前記金属磁性粒子は、平均粒径が10〜28μmである第1金属磁性粒子と、平均粒径が1〜4.5μmである第2金属磁性粒子と、表面に配置された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含み、
前記絶縁膜は、3層からなり、FeO/CrO/SiOである、
インダクタ。 A body containing metal magnetic particles;
A coil portion disposed in the main body,
The metal magnetic particles include first metal magnetic particles having an average particle diameter of 10 to 28 μm, second metal magnetic particles having an average particle diameter of 1 to 4.5 μm, and an insulating film disposed on the surface. Third metal magnetic particles having a particle size of 300 nm or less,
The insulating film is composed of three layers and is FeO / CrO / SiO.
Inductor.
前記第2金属磁性粒子は前記第1金属磁性粒子の間の前記樹脂に分散され、
前記第3金属磁性粒子は前記第1及び第2金属磁性粒子の間の前記樹脂に分散される、請求項7に記載のインダクタ。 The metal magnetic particles are dispersed in a resin,
The second metal magnetic particles are dispersed in the resin between the first metal magnetic particles,
The inductor according to claim 7 , wherein the third metal magnetic particles are dispersed in the resin between the first and second metal magnetic particles.
前記金属磁性粒子は前記樹脂に分散された形態である、請求項7から11の何れか1項に記載のインダクタ。 The body includes a resin;
The metal magnetic particles are form dispersed in the resin, an inductor according to any one of claims 7 11.
前記樹脂に分散され、平均粒径が10〜28μmである第1金属磁性粒子と、前記第1金属磁性粒子の間の前記樹脂に分散され、平均粒径が1〜4.5μmである第2金属磁性粒子と、
前記第1及び第2金属磁性粒子の間の前記樹脂に分散され、表面に配置された絶縁膜を含み、粒径が300nm以下である第3金属磁性粒子と、を含み、
前記絶縁膜は、3層からなり、FeO/CrO/SiOである、
磁性体本体。 Resin,
The first metal magnetic particles dispersed in the resin and having an average particle diameter of 10 to 28 μm, and the first metal magnetic particles dispersed in the resin between the first metal magnetic particles and having an average particle diameter of 1 to 4.5 μm. Metal magnetic particles,
A third metal magnetic particle including an insulating film dispersed on the resin between the first and second metal magnetic particles and disposed on the surface, and having a particle size of 300 nm or less;
The insulating film is composed of three layers and is FeO / CrO / SiO.
Magnetic body.
前記樹脂と前記第1〜第3金属磁性粒子は、前記コイル部を取り囲むように配置され、前記コイル部の中央部の孔に延長してコア部を形成する、請求項14に記載の磁性体本体。 The magnetic body further includes a coil portion disposed in the magnetic body,
The magnetic body according to claim 14 , wherein the resin and the first to third metal magnetic particles are disposed so as to surround the coil portion, and extend to a hole in a central portion of the coil portion to form a core portion. Body.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160110459 | 2016-08-30 | ||
KR10-2016-0110459 | 2016-08-30 | ||
KR1020160119972A KR101983184B1 (en) | 2016-08-30 | 2016-09-20 | Magnetic composition and inductor comprising the same |
KR10-2016-0119972 | 2016-09-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018037635A JP2018037635A (en) | 2018-03-08 |
JP6479074B2 true JP6479074B2 (en) | 2019-03-06 |
Family
ID=61243333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017060429A Active JP6479074B2 (en) | 2016-08-30 | 2017-03-27 | Magnetic composition, inductor and magnetic body |
Country Status (4)
Country | Link |
---|---|
US (2) | US10497505B2 (en) |
JP (1) | JP6479074B2 (en) |
KR (1) | KR102427931B1 (en) |
CN (1) | CN107785149B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10763019B2 (en) * | 2017-01-12 | 2020-09-01 | Tdk Corporation | Soft magnetic material, core, and inductor |
JP6504288B1 (en) * | 2018-03-09 | 2019-04-24 | Tdk株式会社 | Soft magnetic metal powder, dust core and magnetic parts |
JP7172113B2 (en) * | 2018-04-24 | 2022-11-16 | Tdk株式会社 | Coil component and its manufacturing method |
JP7246143B2 (en) * | 2018-06-21 | 2023-03-27 | 太陽誘電株式会社 | Magnetic substrate containing metal magnetic particles and electronic component containing said magnetic substrate |
JP6780833B2 (en) | 2018-08-22 | 2020-11-04 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Coil electronic components |
JP7222220B2 (en) * | 2018-10-31 | 2023-02-15 | Tdk株式会社 | Magnetic core and coil parts |
CN109470606B (en) * | 2018-11-02 | 2021-05-25 | 大连海事大学 | Microfluid inductance type oil detection device |
JP7420534B2 (en) * | 2019-02-28 | 2024-01-23 | 太陽誘電株式会社 | Soft magnetic alloy powder and its manufacturing method, coil parts made from soft magnetic alloy powder and circuit board mounted thereon |
JP7392275B2 (en) * | 2019-03-27 | 2023-12-06 | Tdk株式会社 | Composite particles, cores and inductor elements |
JP2020161760A (en) * | 2019-03-28 | 2020-10-01 | 太陽誘電株式会社 | Winding coil component, manufacturing method of the same, and circuit substrate on which winding coil component is mounted |
KR102293033B1 (en) * | 2020-01-22 | 2021-08-24 | 삼성전기주식회사 | Magnetic composite sheet and coil component |
JP7338529B2 (en) * | 2020-03-24 | 2023-09-05 | Tdk株式会社 | Fluidizing particles and magnetic cores |
US11742141B2 (en) | 2020-03-27 | 2023-08-29 | Murata Manufacturing Co., Ltd. | Metal magnetic particle, inductor, method for manufacturing metal magnetic particle, and method for manufacturing metal magnetic core |
JP7456233B2 (en) | 2020-03-27 | 2024-03-27 | 株式会社村田製作所 | Metal magnetic particles, inductor, method for manufacturing metal magnetic particles, and method for manufacturing metal magnetic core |
US12087487B2 (en) * | 2020-03-31 | 2024-09-10 | Taiyo Yuden Co., Ltd. | Coil component |
KR20220067019A (en) * | 2020-11-17 | 2022-05-24 | 삼성전기주식회사 | Magnetic sheet and coil component using thereof |
CN114823032B (en) * | 2022-05-19 | 2022-12-20 | 广东泛瑞新材料有限公司 | Alloy magnetic core and preparation method and application thereof |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0625704A (en) * | 1992-07-07 | 1994-02-01 | Nkk Corp | Production of magnetic metal powder excellent in corrosion resistance |
US6961223B2 (en) * | 2000-10-27 | 2005-11-01 | Alps Electric Co., Ltd. | Spin-valve thin-film magnetic element without sensing current shunt and thin-film magnetic head including the same |
US6992871B2 (en) * | 2003-08-06 | 2006-01-31 | Micron Technology, Inc. | Microtransformer for system-on-chip power supply |
WO2006035911A1 (en) * | 2004-09-30 | 2006-04-06 | Sumitomo Electric Industries, Ltd. | Soft magnetic material, dust core and method for producing soft magnetic material |
JP4585493B2 (en) * | 2006-08-07 | 2010-11-24 | 株式会社東芝 | Method for producing insulating magnetic material |
JP2009054709A (en) * | 2007-08-24 | 2009-03-12 | Fuji Electric Device Technology Co Ltd | Dust core and manufacturing method therefor |
JP5227756B2 (en) * | 2008-01-31 | 2013-07-03 | 本田技研工業株式会社 | Method for producing soft magnetic material |
JP2009283774A (en) * | 2008-05-23 | 2009-12-03 | Sumitomo Electric Ind Ltd | Soft magnetic powder |
JP2011032496A (en) * | 2009-07-29 | 2011-02-17 | Tdk Corp | Magnetic material, magnet and method for producing the magnetic material |
JP5240234B2 (en) * | 2010-04-30 | 2013-07-17 | 株式会社デンソー | Manufacturing method of dust core |
CN101996723B (en) * | 2010-09-29 | 2012-07-25 | 清华大学 | Composite soft magnetic powder core and preparation method thereof |
JP6091744B2 (en) * | 2011-10-28 | 2017-03-08 | 太陽誘電株式会社 | Coil type electronic components |
JP6115057B2 (en) * | 2012-09-18 | 2017-04-19 | Tdk株式会社 | Coil parts |
JP2014196554A (en) * | 2013-03-08 | 2014-10-16 | Ntn株式会社 | Powder for magnetic core, dust magnetic core and method of producing the powder for magnetic core and the dust magnetic core |
KR20150011168A (en) | 2013-07-22 | 2015-01-30 | 삼성전기주식회사 | Magnetic material, the manufacturing method of the same and electric part comprising the same |
KR20150014346A (en) | 2013-07-29 | 2015-02-06 | 삼성전기주식회사 | Chip electronic component and manufacturing method thereof |
JP2015026812A (en) | 2013-07-29 | 2015-02-05 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Chip electronic component and manufacturing method thereof |
JP6326207B2 (en) | 2013-09-20 | 2018-05-16 | 太陽誘電株式会社 | Magnetic body and electronic component using the same |
KR101994722B1 (en) | 2013-10-14 | 2019-07-01 | 삼성전기주식회사 | Multilayered electronic component |
KR101686989B1 (en) * | 2014-08-07 | 2016-12-19 | 주식회사 모다이노칩 | Power Inductor |
KR101588966B1 (en) | 2014-08-11 | 2016-01-26 | 삼성전기주식회사 | Chip electronic component |
JP6550731B2 (en) | 2014-11-28 | 2019-07-31 | Tdk株式会社 | Coil parts |
KR20160076840A (en) | 2014-12-23 | 2016-07-01 | 삼성전기주식회사 | Chip electronic component and manufacturing method thereof |
-
2017
- 2017-03-27 JP JP2017060429A patent/JP6479074B2/en active Active
- 2017-03-28 US US15/471,727 patent/US10497505B2/en active Active
- 2017-05-16 CN CN201710341862.4A patent/CN107785149B/en active Active
-
2019
- 2019-05-17 KR KR1020190058169A patent/KR102427931B1/en active IP Right Grant
- 2019-10-30 US US16/668,504 patent/US11367558B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20180061550A1 (en) | 2018-03-01 |
JP2018037635A (en) | 2018-03-08 |
US20200066437A1 (en) | 2020-02-27 |
KR20190057244A (en) | 2019-05-28 |
CN107785149A (en) | 2018-03-09 |
US10497505B2 (en) | 2019-12-03 |
KR102427931B1 (en) | 2022-08-03 |
US11367558B2 (en) | 2022-06-21 |
CN107785149B (en) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6479074B2 (en) | Magnetic composition, inductor and magnetic body | |
JP2015079958A (en) | Chip electronic component, and mounting board and packaging unit of chip electronic component | |
JP6104863B2 (en) | Chip electronic component and manufacturing method thereof | |
KR101952859B1 (en) | Chip electronic component and manufacturing method thereof | |
KR102597152B1 (en) | Inductor | |
KR102105389B1 (en) | Multilayered electronic component | |
KR102052766B1 (en) | Chip electronic component | |
US10192673B2 (en) | Inductor | |
KR101983184B1 (en) | Magnetic composition and inductor comprising the same | |
US11404205B2 (en) | Magnetic coupling coil element and method of manufacturing the same | |
JP7240813B2 (en) | coil parts | |
KR102105395B1 (en) | Chip electronic component and board having the same mounted thereon | |
JP2019024113A (en) | Chip electronic component and mounting board thereof | |
KR102105396B1 (en) | Chip electronic component and board having the same mounted thereon | |
KR102653217B1 (en) | Inductor | |
US10115518B2 (en) | Coil electronic component | |
JP7311221B2 (en) | coil parts | |
US11170927B2 (en) | Coil component | |
KR102122925B1 (en) | Coil electronic component | |
KR102559973B1 (en) | Inductor | |
KR102538912B1 (en) | Coil component | |
KR20170097862A (en) | Coil component | |
KR102653200B1 (en) | Inductor | |
KR102194724B1 (en) | Coil electronic component | |
KR20170090737A (en) | Coil component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180918 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6479074 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |