JP6471526B2 - A method for melting auxiliary materials in an arc bottom-blown electric furnace. - Google Patents

A method for melting auxiliary materials in an arc bottom-blown electric furnace. Download PDF

Info

Publication number
JP6471526B2
JP6471526B2 JP2015028604A JP2015028604A JP6471526B2 JP 6471526 B2 JP6471526 B2 JP 6471526B2 JP 2015028604 A JP2015028604 A JP 2015028604A JP 2015028604 A JP2015028604 A JP 2015028604A JP 6471526 B2 JP6471526 B2 JP 6471526B2
Authority
JP
Japan
Prior art keywords
auxiliary material
furnace
electric furnace
melting
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015028604A
Other languages
Japanese (ja)
Other versions
JP2016151035A (en
Inventor
勝彦 加藤
勝彦 加藤
幹男 府高
幹男 府高
田中 康弘
康弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015028604A priority Critical patent/JP6471526B2/en
Publication of JP2016151035A publication Critical patent/JP2016151035A/en
Application granted granted Critical
Publication of JP6471526B2 publication Critical patent/JP6471526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、アーク式底吹き電気炉に装入する副原料の溶解方法に関する。   The present invention relates to a method for melting an auxiliary material to be charged in an arc type bottom blowing electric furnace.

アーク式電気炉でスクラップ等を溶解して溶融金属を溶製する際、副原料として例えば石灰や生石灰を装入することが一般的に行われている。上記副原料は一般に通電性が悪く、溶融金属(以下では「溶湯」とも言う。)からの受熱によって加熱溶解される。従って、アーク式電気炉に装入された副原料の溶解処理には一定の時間を要し、生産を効率化するためには、副原料の加熱溶解を迅速に行うことが必要となる。近年、副原料として、例えば転炉脱炭スラグのようにCaOを多く含むものを生石灰の代替品として使用したり、有価金属を含む酸化物や水酸化物をリサイクル目的で使用することが増えており、副原料の加熱溶解を迅速に行う必要性が顕在化している。   When melting molten metal by melting scrap or the like in an arc electric furnace, generally, for example, lime or quick lime is charged as an auxiliary material. The auxiliary material generally has poor electrical conductivity and is heated and melted by receiving heat from a molten metal (hereinafter also referred to as “molten metal”). Therefore, the melting process of the auxiliary material charged in the arc electric furnace requires a certain time, and in order to increase the production efficiency, it is necessary to quickly heat and dissolve the auxiliary material. In recent years, as a secondary raw material, for example, those containing a large amount of CaO, such as converter decarburized slag, have been used as a substitute for quicklime, and oxides and hydroxides containing valuable metals have been increasingly used for recycling purposes. Therefore, the need to quickly heat and dissolve the auxiliary material has become apparent.

例えば、特許文献1の請求項1には、酸化物を電気精錬炉(アーク式電気炉)で溶解・還元してNiやCrといった有価金属を回収する技術が開示されている。特許文献1記載の技術では、通電中では電極の先端位置が0.75×炉の深さ以下となるように電力負荷を調整し、さらに電極の先端位置が0.75×炉の深さ以下であるとき、通電開始時と通電終了時の電極先端位置の差Sが0.35×炉の深さ以下となるように電力負荷を調整することで酸化物の加熱を促進する。
また、特許文献2には、電気炉精錬において、酸化物を主要成分の一つとするスラグ調整剤や、クロム酸化物を含むクロム鉱石を用いることが記載されている(特許文献2の第4頁参照)。特許文献2記載の技術では、スラグ調整剤やクロム鉱石等の副原料を電気炉内に均一に分散させるため、炉底にガス吹き込みノズル(プラグ)を3個配置し、ガス吹き込みノズルから電気炉内の溶湯にガスを吹き込み溶湯を撹拌する。底吹き撹拌のガス流量は、ガス吹き込みノズル1個当たり70L/分(4.2Nm/Hr)とされている。
For example, claim 1 of Patent Document 1 discloses a technique for recovering valuable metals such as Ni and Cr by melting and reducing oxides in an electric smelting furnace (arc electric furnace). In the technique described in Patent Document 1, the power load is adjusted so that the tip position of the electrode is equal to or less than 0.75 × furnace depth during energization, and the tip position of the electrode is equal to or less than 0.75 × furnace depth. In this case, heating of the oxide is promoted by adjusting the electric power load so that the difference S between the electrode tip positions at the start of energization and at the end of energization is 0.35 × the depth of the furnace or less.
Patent Document 2 describes the use of a slag adjusting agent containing oxide as one of main components and chromium ore containing chromium oxide in electric furnace refining (page 4 of Patent Document 2). reference). In the technique described in Patent Document 2, in order to uniformly disperse auxiliary materials such as slag adjusting agents and chrome ore in the electric furnace, three gas injection nozzles (plugs) are arranged at the furnace bottom, and the electric furnace is started from the gas injection nozzle. Gas is blown into the molten metal inside and the molten metal is stirred. The gas flow rate of the bottom blowing agitation is 70 L / min (4.2 Nm 3 / Hr) per gas blowing nozzle.

特開平8−260014号公報JP-A-8-260014 特開平1−294815号公報JP-A-1-294815

しかしながら、特許文献1記載の方法では、過大な投入電力が必要となるだけでなく、3時間を超える長時間の処理を前提とするため、酸化物等の副原料の効率的な加熱溶解を実現することができない。   However, the method described in Patent Document 1 not only requires excessive input power, but also presupposes a long-time treatment exceeding 3 hours, thereby realizing efficient heating and melting of auxiliary materials such as oxides. Can not do it.

また、副原料の粒径が大きな場合(例えば25mmオーバー)、本発明者等の知見によれば、特許文献2に記載されている溶湯の成分均一化程度の撹拌では副原料の迅速な加熱が実現できず、短時間の処理では副原料の未溶解が発生するため、副原料の溶解を完了させるためには長時間の処理が必要となることがわかっている。因みに、特許文献2には、スラグ調整剤の形状(直径)は3mm以下、クロム鉱石の実質的粒径は1mm未満と記載されている。   In addition, when the particle size of the auxiliary material is large (for example, over 25 mm), according to the knowledge of the present inventors, rapid stirring of the auxiliary material can be achieved with stirring that is about equalizing the components of the molten metal described in Patent Document 2. It is not possible to realize this, and it is known that a long time treatment is required to complete the dissolution of the auxiliary material because the auxiliary material is not dissolved in a short time treatment. Incidentally, Patent Document 2 describes that the shape (diameter) of the slag adjusting agent is 3 mm or less, and the substantial particle size of the chromium ore is less than 1 mm.

本発明はかかる事情に鑑みてなされたもので、アーク式電気炉に装入される副原料の粒径が大きな場合(例えば25mmオーバー)であっても、迅速に副原料を加熱溶解させて精錬不足を抑制することが可能な方法を提供することを課題とする。
なお、本課題は、副原料が金属原料に比べて、通電性が低く、特に熱伝導率が低いことに起因する課題である。
The present invention has been made in view of such circumstances, and even when the particle size of the auxiliary material charged into the arc electric furnace is large (for example, over 25 mm), the auxiliary material is rapidly heated and melted for refining. It is an object to provide a method capable of suppressing the shortage.
In addition, this subject is a subject resulting from a low electrical conductivity, especially a low heat conductivity compared with a metal raw material.

上記課題を達成するため、本発明は、アーク式底吹き電気炉に装入する、酸化物、炭酸化物、及び水酸化物のいずれか一又は二以上である副原料の溶解方法であって
篩目25mmオーバーの前記副原料が炉内装入物の5〜30質量%とされ、
篩目3.15mmアンダーの前記副原料が炉内装入物の3質量%以上かつ塩基度が2.5以下とされていることを特徴としている。
In order to achieve the above object, the present invention is a method for melting an auxiliary material that is charged in an arc-type bottom-blown electric furnace and is one or more of oxide, carbonate, and hydroxide ,
The auxiliary material having a sieve mesh over 25 mm is 5-30% by mass of the furnace interior,
The auxiliary material having a mesh size of 3.15 mm or less is 3% by mass or more of the furnace interior and the basicity is 2.5 or less.

ここで、酸化物は生石灰、珪石、マグネシアやアルミナなどの金属酸化物、廃炉材、スラグ等であり、炭酸化物は石灰岩、ドロマイト等であり、水酸化物は金属水酸化物等である。
篩目25mmオーバーの副原料はJIS Z8801−2:2000の公称目開き25mmの板ふるいの篩上に残留する副原料、篩目3.15mmアンダーの副原料は同JISの公称目開き3.15mmの板ふるいの篩下の副原料を指す。
篩目3.15mmアンダーの副原料の塩基度は、質量%CaO/質量%SiOによって算出した値である。
Here, the oxide is quick lime, quartzite, metal oxide such as magnesia or alumina, waste furnace material, slag, etc., the carbonate is limestone, dolomite, etc., and the hydroxide is metal hydroxide or the like.
The auxiliary material with a mesh size over 25 mm is a secondary material remaining on the sieve of a plate sieve with a nominal opening of 25 mm of JIS Z8801-2: 2000, and the auxiliary material with a mesh size under 3.15 mm is 3.15 mm with a nominal opening of JIS This refers to the auxiliary material under the sieve of the plate sieve.
The basicity of the auxiliary material with a mesh size of 3.15 mm under is a value calculated by mass% CaO / mass% SiO 2 .

篩目25mmオーバーの副原料(以下、「塊状副原料」と呼ぶことがある。)の質量比率を規定したのは、加熱しにくい、ひいては溶解しにくい副原料を規定したものである。
副原料として、生石灰の代替品である転炉脱炭スラグの塊状物等の使用を想定すると、塊状副原料は炉内装入物の5〜30質量%となる。
The mass ratio of the auxiliary material having a mesh size over 25 mm (hereinafter sometimes referred to as “bulk auxiliary material”) is defined as the auxiliary material which is difficult to heat and thus difficult to dissolve.
Assuming the use of a lump of converter decarburization slag, which is a substitute for quick lime, as an auxiliary material, the mass auxiliary material is 5 to 30% by mass of the furnace interior.

篩目3.15mmアンダーの副原料(以下、「微粉副原料」と呼ぶことがある。)は、溶湯との接触により容易に溶解するので、加熱時間の観点で顕著な問題にはなりにくい。本発明では、溶解した微粉副原料を用いて塊状副原料の溶解を促進させる。微粉副原料が3質量%以上であれば、溶解した微粉副原料が塊状副原料の周囲に存在することとなり、後述する撹拌ガスの作用も含めて塊状副原料の加熱及び溶解の促進に寄与する。
微粉副原料の上限値は特に定めないが、塊状副原料が5〜30質量%であれば、製造する溶湯の量を確保するうえで25質量%程度であればよい。
The auxiliary raw material having a mesh size of 3.15 mm or less (hereinafter sometimes referred to as “fine powder auxiliary raw material”) is easily dissolved by contact with the molten metal, and therefore is not likely to be a significant problem in terms of heating time. In the present invention, dissolution of the bulk auxiliary material is promoted using the dissolved fine powder auxiliary material. If the fine powder auxiliary material is 3% by mass or more, the dissolved fine powder auxiliary material is present around the massive auxiliary material, and contributes to the heating and dissolution of the massive auxiliary material including the action of the stirring gas described later. .
The upper limit of the fine powder auxiliary material is not particularly defined, but if the bulk auxiliary material is 5 to 30% by mass, it may be about 25% by mass for securing the amount of molten metal to be produced.

溶解した後の微粉副原料が一定の流動性を有していると、溶湯と共に塊状副原料の加熱促進に寄与する。本発明者等は、微粉副原料の塩基度が2.5以下であれば、溶解した後の微粉副原料に一定の流動性があり塊状副原料への熱伝達に寄与することを発見した。
微粉副原料の塩基度の下限値は特に定めないが、通常のアーク式底吹き電気炉に装入する副原料を想定すると、0.6程度である。
If the fine powder auxiliary material after melting has a certain fluidity, it contributes to the heating promotion of the bulk auxiliary material together with the molten metal. The present inventors have found that if the basicity of the fine powder auxiliary material is 2.5 or less, the fine powder auxiliary material after dissolution has a certain fluidity and contributes to heat transfer to the bulk auxiliary material.
The lower limit value of the basicity of the fine powder auxiliary material is not particularly defined, but is assumed to be about 0.6 when an auxiliary material charged in a normal arc type bottom blowing electric furnace is assumed.

また、本発明に係るアーク式底吹き電気炉における副原料の溶解方法では、前記アーク式底吹き電気炉の炉底に、湯面面積1m当たり0.12個以上の撹拌ガス吹き込みプラグを配置し、前記撹拌ガス吹き込みプラグからプラグ1個当たり10Nm/Hr以上の撹拌ガスを炉内に吹き込むことを好適とする。
ここで、湯面面積は、アーク式底吹き電気炉を上方から平面視した溶湯湯面の面積である。
Moreover, in the melting method of the auxiliary material in the arc type bottom blowing electric furnace according to the present invention, 0.12 or more stirring gas blowing plugs per 1 m 2 of the molten metal surface area are arranged on the bottom of the arc type bottom blowing electric furnace. Further, it is preferable that a stirring gas of 10 Nm 3 / Hr or more per plug is blown into the furnace from the stirring gas blowing plug.
Here, the molten metal surface area is an area of the molten metal surface when the arc type bottom blowing electric furnace is viewed from above.

本構成は、溶湯の上層に浮かせた副原料層を、撹拌によって溶解した溶湯と接触させ、より効果的な加熱を実現する条件を規定する。具体的には、撹拌ガス吹き込みプラグから炉内に吹き込まれた撹拌ガスを、できるだけ溶湯浴面(湯面)の広範囲に作用させ、湯面上層の副原料層を効率的に撹拌させる条件を規定する。   In this configuration, the sub-material layer floated on the upper layer of the molten metal is brought into contact with the molten metal melted by stirring, thereby defining conditions for realizing more effective heating. Specifically, the conditions that allow the stirring gas blown into the furnace from the stirring gas blowing plug to act as widely as possible on the surface of the molten metal bath (hot water surface) to efficiently stir the auxiliary material layer on the upper surface of the hot water surface are specified. To do.

上記副原料層には、加熱溶解が進行した副原料溶解層と、未溶解である副原料未溶解層がある。副原料層は、副原料溶解層の上部に副原料未溶解層が存在する場合、両者が混在している場合の双方があり得る。撹拌ガス吹き込みプラグ周辺における撹拌ガスの流量をプラグ1個当たり10Nm/Hr以上とすることで、副原料未溶解層、副原料溶解層、溶湯層の接触を、より促進させることができ、溶湯による未溶解副原料及び溶解副原料の加熱を促進し、併せて溶解副原料による未溶解副原料の加熱を促進することができる。
なお、撹拌ガスの流量が多くなり過ぎると、溶湯層並びに副原料層を吹き抜ける撹拌ガスが顕著となり、吹き込んだ撹拌ガスの一部が撹拌に利用できなくなる。そのため、撹拌ガス流量の上限値をプラグ1個当たり100Nm/Hrとすると良い。
The auxiliary material layer includes an auxiliary material dissolved layer that has been heated and dissolved and an auxiliary material undissolved layer that is not dissolved. The auxiliary material layer may be both in the case where the auxiliary material undissolved layer is present above the auxiliary material dissolved layer and in the case where both are mixed. By setting the flow rate of the stirring gas around the stirring gas blowing plug to 10 Nm 3 / Hr or more per plug, the contact of the auxiliary raw material undissolved layer, the auxiliary raw material dissolved layer, and the molten metal layer can be further promoted. The heating of the undissolved auxiliary material and the dissolved auxiliary material can be promoted, and the heating of the undissolved auxiliary material by the dissolved auxiliary material can be promoted.
If the flow rate of the stirring gas is too large, the stirring gas that blows through the molten metal layer and the auxiliary material layer becomes significant, and a part of the blown stirring gas cannot be used for stirring. Therefore, the upper limit value of the stirring gas flow rate is preferably set to 100 Nm 3 / Hr per plug.

撹拌ガス吹き込みプラグから炉内に吹き込まれる撹拌ガスの流量を規定することにより副原料の加熱促進が相応に可能となるが、副原料の加熱促進に、さらなる改善の余地があることが判明した。
本発明者等は、上層に浮いている副原料未溶解層が湯面に平行な方向、即ち水平方向に移動しにくいことを発見した。その原因として、加熱中の固体からなる塊状副原料が溶湯浴面のほぼ全体に浮いて存在し、湯面に平行な方向への塊状副原料の流動性が確保されにくいことが考えられた。これは、撹拌ガス吹き込みプラグの直上並びにその周辺で撹拌され加熱された塊状副原料が撹拌領域の外側へ移動しにくく、撹拌領域に存在する塊状副原料と撹拌領域周辺の弱撹拌領域に存在する塊状副原料とが置換されにくいことを意味する。
また、塊状副原料の熱伝導率が一般に低い(20%クロム溶鋼の熱伝導率が22W/mKであるのに対し、例えば酸化物の熱伝導率は0.9W/mK程度)ため、撹拌領域に存在する加熱された塊状副原料が、隣接する弱撹拌領域に存在する塊状副原料の加熱に寄与しにくいことも考えられた。
By regulating the flow rate of the stirring gas blown into the furnace from the stirring gas blowing plug, it becomes possible to accelerate the heating of the auxiliary material, but it has been found that there is room for further improvement in the heating promotion of the auxiliary material.
The present inventors have found that the auxiliary raw material undissolved layer floating in the upper layer is difficult to move in the direction parallel to the molten metal surface, that is, in the horizontal direction. As a cause of this, it was considered that the bulk auxiliary material consisting of the solid being heated floated on almost the entire surface of the molten bath, and it was difficult to ensure the fluidity of the bulk auxiliary material in the direction parallel to the molten metal surface. This is because the bulk auxiliary material stirred and heated immediately above and around the stirring gas blowing plug does not easily move to the outside of the stirring region, and is present in the bulk auxiliary material existing in the stirring region and the weak stirring region around the stirring region. It means that the bulk auxiliary material is difficult to be replaced.
In addition, since the thermal conductivity of the bulk auxiliary material is generally low (the thermal conductivity of 20% chromium molten steel is 22 W / mK, for example, the thermal conductivity of oxide is about 0.9 W / mK), the stirring region It was also considered that the heated bulk auxiliary material present in the column hardly contributes to the heating of the bulk auxiliary material present in the adjacent weak stirring region.

本発明者等は、上記知見に基づき、副原料層の加熱を促進するには、湯面面積1m当たりの撹拌ガス吹き込みプラグ個数を所定範囲とすればよいことに想到した。撹拌ガス吹き込みプラグ個数を所定範囲とすることで、撹拌ガス吹き込みによって塊状副原料の上方に溶湯が露出する撹拌領域が所定量確保される。その結果、アーク通電箇所が所定量確保され、湯面全体の塊状副原料の加熱が促進される。具体的には、撹拌ガス吹き込みプラグ個数を湯面面積1m当たり0.12個以上としてプラグの設置個数を多くすることで、弱撹拌領域の面積が減少し、湯面全域の副原料加熱が促進できる。
なお、プラグの設置個数には物理的な上限値(設置場所)が存在し、一般には湯面面積1m当たり0.5個程度と考えられる。
Based on the above knowledge, the present inventors have conceived that the number of stirring gas blowing plugs per 1 m 2 of the molten metal surface area should be within a predetermined range in order to promote heating of the auxiliary material layer. By setting the number of stirring gas blowing plugs within a predetermined range, a predetermined amount of stirring region in which the molten metal is exposed above the bulk auxiliary material is secured by blowing the stirring gas. As a result, a predetermined amount of arc energized portions are secured, and heating of the bulk auxiliary material over the entire molten metal surface is promoted. Specifically, by increasing the number of plugs installed by setting the number of stirring gas blowing plugs to be 0.12 or more per 1 m 2 of the hot water surface area, the area of the weak stirring region is reduced, and the auxiliary material heating of the entire hot water surface is reduced. Can promote.
Note that there is a physical upper limit (installation location) for the number of plugs installed, and it is generally considered to be about 0.5 per 1 m 2 of the molten metal surface area.

請求項1及び2に係る本発明によれば、塊状副原料を多く配合しても、溶解した微粉副原料によって塊状副原料の加熱溶解を促進することができ、アーク式底吹き電気炉における塊状副原料の加熱不足や溶解残りによる精錬不足を抑制することができる。
特に、請求項2に係る本発明によれば、塊状副原料の加熱溶解を、より促進することができるので、アーク式底吹き電気炉における精錬が促進され、さらには安定化させることができる。
According to the present invention according to claims 1 and 2, even if a large amount of the bulk auxiliary material is blended, the molten fine raw material can be heated and melted by the dissolved fine powder auxiliary material, and the bulk in the arc-type bottom blowing electric furnace It is possible to suppress insufficient heating of the auxiliary raw materials and insufficient refining due to dissolution residue.
In particular, according to the second aspect of the present invention, heating and melting of the bulk auxiliary material can be further promoted, so that refining in an arc type bottom blowing electric furnace is promoted and further stabilized.

本発明の一実施の形態に係る副原料の溶解方法で用いられるアーク式底吹き電気炉の縦断面図である。It is a longitudinal cross-sectional view of the arc type bottom blowing electric furnace used with the melting | dissolving method of the auxiliary material which concerns on one embodiment of this invention. 同アーク式底吹き電気炉の炉底に設置した撹拌ガス吹き込みプラグの配置を示す模式図であって、(A)は撹拌ガス吹き込みプラグ数が3個の場合、(B)は撹拌ガス吹き込みプラグ数が4個の場合、(C)は撹拌ガス吹き込みプラグ数が5個の場合をそれぞれ示している。It is a schematic diagram which shows arrangement | positioning of the stirring gas blowing plug installed in the furnace bottom of the arc type bottom blowing electric furnace, (A) is the number of stirring gas blowing plugs, (B) is the stirring gas blowing plug When the number is four, (C) shows the case where the number of the stirring gas blowing plugs is five.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

本発明は、5ton〜150tonの溶湯が溶製できるアーク式底吹き電気炉を対象とする。なお、本発明が対象とするアーク式底吹き電気炉の好ましい炉容量の下限は10ton、より好ましくは30tonであり、好ましい炉容量の上限は100tonである。
本発明の一実施の形態に係る副原料の溶解方法で用いられるアーク式底吹き電気炉10の縦断面図を図1に示す。
アーク式底吹き電気炉10の炉体11は有底円筒状とされ、中心軸の周りには3本の電極15が平面視して正三角形状に配置されている(図2参照)。溶湯16を保持する炉底12は耐火物でお碗状に形成され、炉体側壁部には水冷パネル14が配置されている。
The present invention is directed to an arc-type bottom blowing electric furnace capable of melting 5 to 150 ton of molten metal. In addition, the minimum of the preferable furnace capacity of the arc type bottom blowing electric furnace which this invention makes object is 10 tons, More preferably, it is 30 tons, The upper limit of a preferable furnace capacity is 100 tons.
FIG. 1 shows a longitudinal sectional view of an arc-type bottom blowing electric furnace 10 used in the auxiliary material melting method according to the embodiment of the present invention.
The furnace body 11 of the arc type bottom blowing electric furnace 10 has a bottomed cylindrical shape, and around the central axis, three electrodes 15 are arranged in a regular triangle shape in plan view (see FIG. 2). The furnace bottom 12 holding the molten metal 16 is formed in a bowl shape with a refractory, and a water cooling panel 14 is disposed on the side wall of the furnace body.

炉底12には、細い管を束状にした細管集合型プラグや多孔質耐火物からなるポーラスプラグなどの撹拌ガス吹き込みプラグ13が複数埋設されている。窒素ガスやアルゴンガスなどの撹拌ガスを撹拌ガス吹き込みプラグ13から溶湯16に吹き込み、溶湯16を撹拌する。
撹拌ガス吹き込みプラグ13は、湯面面積1m当たり0.12個以上配置する。撹拌ガス吹き込みプラグ13の配置例を図2に示す。本例では、上方から炉底12を見て、3本の電極15を囲繞する正6角形を想定し、1つおきに選択した正6角形の頂点に撹拌ガス吹き込みプラグ13を配置するケース(撹拌ガス吹き込みプラグ13が3個)を図2(A)に、正6角形から2つおきに頂点を削除し、残った頂点に撹拌ガス吹き込みプラグ13を配置するケース(撹拌ガス吹き込みプラグ13が4個)を図2(B)に、正6角形から頂点を1つ削除し、残った頂点に撹拌ガス吹き込みプラグ13を配置するケース(撹拌ガス吹き込みプラグ13が5個)を図2(C)にそれぞれ示す。
In the furnace bottom 12, a plurality of stirring gas blowing plugs 13 such as a thin tube assembly type plug in which thin tubes are bundled and a porous plug made of a porous refractory are embedded. Stirring gas such as nitrogen gas or argon gas is blown into the molten metal 16 from the stirring gas blowing plug 13 to stir the molten metal 16.
The number of the stirring gas blowing plugs 13 is 0.12 or more per 1 m 2 of the hot water surface area. An arrangement example of the stirring gas blowing plug 13 is shown in FIG. In this example, assuming a regular hexagon surrounding the three electrodes 15 when looking at the furnace bottom 12 from above, a case where the stirring gas blowing plugs 13 are arranged at the apexes of every other regular hexagon ( FIG. 2A shows a case in which every two vertices are removed from the regular hexagon and the stirring gas blowing plugs 13 are arranged at the remaining vertices (the stirring gas blowing plug 13 has three stirring gas blowing plugs 13). 4 (B), FIG. 2 (B) shows a case where one vertex is deleted from the regular hexagon, and the stirring gas blowing plug 13 is arranged at the remaining vertex (five stirring gas blowing plugs 13). ) Respectively.

次に、アーク式底吹き電気炉10を用いて副原料を溶解する方法について説明する。
スクラップ、合金鉄、鋳銑、粒鉄などの金属原料をアーク式底吹き電気炉10内に予め装入し、通電を開始することで金属原料の溶解を開始する。なお、金属原料の一部は通電開始以降に装入しても良い。
Next, a method for melting the auxiliary material using the arc type bottom blowing electric furnace 10 will be described.
A metal raw material such as scrap, alloy iron, cast iron, and granular iron is charged in the arc-type bottom-blown electric furnace 10 in advance, and melting of the metal raw material is started by starting energization. A part of the metal raw material may be charged after the start of energization.

副原料の炉内への装入は、金属原料への通電開始前、金属原料の溶解完了後、その中間のいずれでも良い。
副原料は、酸化物、炭酸化物、及び水酸化物のいずれか一又は二以上であり、篩目25mmオーバーの塊状副原料が炉内装入物の5〜30質量%、篩目3.15mmアンダーの微粉副原料が炉内装入物の3質量%以上、好ましくは25質量%以下とされている。また、微粉副原料の塩基度は2.5以下である。
なお、塊状副原料が炉内装入物の5〜30質量%、微粉副原料が炉内装入物の3質量%〜25質量%とすると、金属原料は炉内装入物の45〜92質量%となる。
The charging of the auxiliary raw material into the furnace may be performed before the start of energization of the metal raw material or after the completion of the melting of the metal raw material.
The auxiliary raw material is one or more of oxide, carbonate, and hydroxide, and the bulk auxiliary raw material with a mesh size over 25 mm is 5 to 30% by mass of the furnace interior, and the mesh size is under 3.15 mm. The fine powder auxiliary material is 3 mass% or more, preferably 25 mass% or less of the furnace interior. The basicity of the fine powder auxiliary material is 2.5 or less.
When the bulk auxiliary material is 5 to 30% by mass of the furnace interior input and the fine powder auxiliary material is 3% to 25% by mass of the furnace interior input, the metal raw material is 45 to 92% by mass of the furnace interior input. Become.

撹拌ガス吹き込みプラグ13による撹拌ガスの吹き込みは、金属原料や副原料の溶解開始時から行っても良いが、プラグの目詰まりを防止するため、材料装入前から撹拌ガスの炉内吹き込みを行うとなお良い。
撹拌ガスの吹き込み流量は、プラグ1個当たり10Nm/Hr以上とする。
The stirring gas may be blown by the stirring gas blowing plug 13 from the beginning of the melting of the metal raw material and the auxiliary raw material. However, in order to prevent plug clogging, the stirring gas is blown into the furnace before the material is charged. And even better.
The flow rate of the stirring gas is set to 10 Nm 3 / Hr or more per plug.

アーク式底吹き電気炉10に装入された金属原料は、電極15と金属原料とのアーク通電によって加熱され溶解が進む。金属原料の溶解が進行すると、炉内には溶湯層と、その上部に、比重に従って浮いている副原料層が生成する。   The metal raw material charged in the arc type bottom blowing electric furnace 10 is heated and melted by the electric current flowing between the electrode 15 and the metal raw material. As melting of the metal raw material proceeds, a molten metal layer is formed in the furnace, and an auxiliary raw material layer floating according to the specific gravity is formed on the molten metal layer.

アーク通電は、主として金属原料及び溶解後の溶湯16との間で発生する。副原料にはアーク通電が実質的に発生せず、金属原料及び溶解後の溶湯16からの受熱によって副原料は加熱溶解する。本実施の形態では、金属原料及び溶解後の溶湯16からの受熱に加えて、溶解した微粉副原料が塊状副原料の周囲に存在し、塊状副原料の加熱溶解を促進させる。   Arc energization mainly occurs between the metal raw material and the molten metal 16 after melting. The sub-material is not substantially energized by arc, and the sub-material is heated and melted by receiving heat from the metal material and the molten metal 16 after melting. In the present embodiment, in addition to the heat received from the metal raw material and the molten metal 16 after melting, the dissolved fine powder auxiliary material is present around the massive auxiliary material, and promotes melting of the massive auxiliary material by heating.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、電極数を3本としているが、これに限定されるものではなく、1本や2本、あるいは4本以上でもよい。   Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above embodiment, the number of electrodes is three, but the number of electrodes is not limited to this, and may be one, two, or four or more.

本発明の効果について検証するために実施した検証試験について説明する。
アーク式底吹き電気炉には、100tonの溶湯が溶製できるものを使用した。電極は24インチ径×3本、総投入電力は1ケースを除いて40MW、各ケースの通電時間は60分とした。
A verification test carried out to verify the effects of the present invention will be described.
As the arc type bottom blowing electric furnace, a furnace capable of melting a 100 ton melt was used. The electrodes were 3 x 24 inch diameter, the total input power was 40 MW except for one case, and the energization time for each case was 60 minutes.

使用した炉内装入物は以下の通りである。
a)金属原料:スクラップ、合金鉄、鋳銑(高炉溶銑を凝固させたもの)を合計55ton(炉内装入物の55質量%)
b)副原料
・塊状副原料:25mmオーバーの転炉脱炭スラグを30ton(炉内装入物の30質量%)
・微粉副原料:3.15mmアンダーの転炉脱炭スラグを3ton(炉内装入物の3質量%)
・その他の副原料:3.15mmオーバー〜25mmアンダーの転炉脱炭スラグを10ton(炉内装入物の10質量%)
なお、微粉副原料には、3.15mmアンダーの珪石や生石灰を含ませ、微粉副原料の塩基度は2.0、2.5、3.0の3水準とした。
The furnace interior contents used are as follows.
a) Metal raw materials: Total of 55 tons of scrap, alloy iron, cast iron (solidified blast furnace hot metal) (55% by mass of furnace interior contents)
b) Auxiliary raw materials / bulk auxiliary raw materials: 25 tons of converter decarburized slag 30 tons (30% by mass of furnace interior contents)
・ Powder auxiliary material: 3.15mm under converter decarburization slag 3ton (3% by mass of furnace interior)
・ Other auxiliary materials: 3.15 mm over to 25 mm under converter decarburization slag 10 tons (10 mass% of furnace interior contents)
In addition, the fine powder auxiliary material contained 3.15 mm under silica and quicklime, and the basicity of the fine powder auxiliary material was set at three levels of 2.0, 2.5, and 3.0.

撹拌ガス吹き込みプラグから溶湯に吹き込むガス流量は、プラグ1個当たり10Nm/Hr、4.2Nm/Hrの2条件とした。なお、4.2Nm/Hrは特許文献2に記載されているガス流量である。
また、炉底に配置した撹拌ガス吹き込みプラグの数は、3個(図2(A)参照)、4個(図2(B)参照)、5個(図2(C)参照)の3条件とした。湯面面積1m当たりのプラグ数は、プラグ数が3個の場合0.11個、プラグ数が4個の場合0.14個、プラグ数が5個の場合0.18個である。なお、プラグ数3個は特許文献2記載の条件である。
Gas flow blown from the stirring gas blowing plug in the melt was set to 2 conditions 10Nm 3 /Hr,4.2Nm 3 / Hr per plug. Note that 4.2 Nm 3 / Hr is a gas flow rate described in Patent Document 2.
The number of stirring gas blowing plugs arranged at the furnace bottom is three (see FIG. 2 (A)), four (see FIG. 2 (B)), and five (see FIG. 2 (C)). It was. The number of plugs per 1 m 2 of the molten metal surface area is 0.11 when the number of plugs is 3, 0.14 when the number of plugs is 4, and 0.18 when the number of plugs is 5. The number of plugs of 3 is the condition described in Patent Document 2.

通電処理後、溶湯とスラグを炉体から鍋へ排出した。排出する際に出湯口を観察し、副原料の溶解残りが観察されず、脱硫処理結果としての硫黄濃度が安定して低位の場合を◎、溶解残りは観察されず、脱硫処理結果としての硫黄濃度のバラつきがやや見られた場合(実操業としては採用可)を○、溶解残りは観察されず、硫黄濃度がやや高めの場合(実操業としては採用可)を△、溶解残りが観察された場合や脱硫が不足して実操業としては採用できないと判断された場合を×とした。
試験結果の一覧を表1に示す。
After the energization treatment, the molten metal and slag were discharged from the furnace body to the pan. Observe the outlet at the time of discharge, the residue of auxiliary materials is not observed, the sulfur concentration as a result of desulfurization treatment is stable and low, ◎, the residue of dissolution is not observed, sulfur as a result of desulfurization treatment ○ If the concentration variation is slightly observed (adopted for actual operation), no dissolution residue is observed, and if the sulfur concentration is slightly higher (applicable for actual operation), Δ, dissolution residue is observed In the case where it was judged that it could not be adopted as an actual operation due to insufficient desulfurization.
Table 1 shows a list of test results.

Figure 0006471526
Figure 0006471526

検証試験の結果から以下のことが明らかとなった。
比較例1、2に示すように、特許文献2の条件(プラグ1個当たりのガス流量4.2Nm/Hr、プラグ数3個)では、塊状副原料の加熱促進が不十分であったが、実施例1、5に示すように、微粉副原料を3質量%かつ塩基度を2.5以下とすることにより改善が可能である。
湯面面積1m当たりのプラグ数及び撹拌ガス吹き込み量を増加させることによって、さらなる改善が可能である(実施例1に対する実施例2、3、4、実施例5に対する実施例6参照)。
微粉副原料の塩基度を低下させることによって、さらなる改善が可能である(実施例2に対する実施例6参照)。
The results of the verification test revealed the following.
As shown in Comparative Examples 1 and 2, under the conditions of Patent Document 2 (gas flow rate per plug: 4.2 Nm 3 / Hr, number of plugs: 3), heating of the bulk auxiliary material was insufficient. As shown in Examples 1 and 5, improvement is possible by making the fine powder auxiliary material 3 mass% and the basicity 2.5 or less.
Further improvement is possible by increasing the number of plugs per 1 m 2 of hot water surface area and the amount of stirring gas blowing (see Examples 2, 3, 4 for Example 1 and Example 6 for Example 5).
Further improvements are possible by reducing the basicity of the fine powdered auxiliary material (see Example 6 relative to Example 2).

なお、実施例2に比べて実施例4の溶解結果がさらに改善されているが、実施例2及び4では、プラグ数及び撹拌ガス吹き込み量の増加によってアーク通電面積が実施例1に比べて拡大しているため、投入電力をアップした実施例4では、その効果が表れているものと考えられる。   In addition, although the melting result of Example 4 is further improved as compared with Example 2, in Examples 2 and 4, the arc energization area is expanded as compared with Example 1 due to the increase in the number of plugs and the amount of stirring gas blown. Therefore, in Example 4 where the input power is increased, it is considered that the effect appears.

10:アーク式底吹き電気炉、11:炉体、12:炉底、13:撹拌ガス吹き込みプラグ、14:水冷パネル、15:電極、16:溶湯 10: arc type bottom blowing electric furnace, 11: furnace body, 12: furnace bottom, 13: stirring gas blowing plug, 14: water cooling panel, 15: electrode, 16: molten metal

Claims (2)

アーク式底吹き電気炉に装入する、酸化物、炭酸化物、及び水酸化物のいずれか一又は二以上である副原料の溶解方法であって
篩目25mmオーバーの前記副原料が炉内装入物の5〜30質量%とされ、
篩目3.15mmアンダーの前記副原料が炉内装入物の3質量%以上かつ塩基度が2.5以下とされていることを特徴とするアーク式底吹き電気炉における副原料の溶解方法。
A method for melting an auxiliary material that is charged in an arc-type bottom-blown electric furnace and is one or more of oxide, carbonate, and hydroxide ,
The auxiliary material having a sieve mesh over 25 mm is 5-30% by mass of the furnace interior,
A method for melting an auxiliary material in an arc-type bottom-blown electric furnace, characterized in that the auxiliary material having a mesh size of 3.15 mm or less is 3% by mass or more of the furnace interior and the basicity is 2.5 or less.
請求項1記載のアーク式底吹き電気炉における副原料の溶解方法において、前記アーク式底吹き電気炉の炉底に、湯面面積1m当たり0.12個以上の撹拌ガス吹き込みプラグを配置し、前記撹拌ガス吹き込みプラグからプラグ1個当たり10Nm/Hr以上の撹拌ガスを炉内に吹き込むことを特徴とするアーク式底吹き電気炉における副原料の溶解方法。 2. The method for melting auxiliary raw materials in an arc-type bottom-blown electric furnace according to claim 1, wherein at least 0.12 stirring gas blowing plugs per 1 m 2 of the molten metal surface area are disposed on the bottom of the arc-type bottom-blown electric furnace. A method of melting an auxiliary material in an arc type bottom blowing electric furnace, wherein a stirring gas of 10 Nm 3 / Hr or more per plug is blown into the furnace from the stirring gas blowing plug.
JP2015028604A 2015-02-17 2015-02-17 A method for melting auxiliary materials in an arc bottom-blown electric furnace. Active JP6471526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028604A JP6471526B2 (en) 2015-02-17 2015-02-17 A method for melting auxiliary materials in an arc bottom-blown electric furnace.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028604A JP6471526B2 (en) 2015-02-17 2015-02-17 A method for melting auxiliary materials in an arc bottom-blown electric furnace.

Publications (2)

Publication Number Publication Date
JP2016151035A JP2016151035A (en) 2016-08-22
JP6471526B2 true JP6471526B2 (en) 2019-02-20

Family

ID=56696153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028604A Active JP6471526B2 (en) 2015-02-17 2015-02-17 A method for melting auxiliary materials in an arc bottom-blown electric furnace.

Country Status (1)

Country Link
JP (1) JP6471526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2961323T3 (en) * 2019-04-22 2024-03-11 Nippon Steel Corp Method of producing cast iron containing chromium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528035A (en) * 1984-05-21 1985-07-09 Metro Materials Corporation Composition and process to create foaming slag cover for molten steel
JP2564604B2 (en) * 1988-05-19 1996-12-18 日本鋼管株式会社 Electric furnace refining method for chromium-containing steel
JP3510367B2 (en) * 1995-01-13 2004-03-29 日新製鋼株式会社 Operating method of electric smelting furnace with improved desulfurization ability
AT404841B (en) * 1995-04-10 1999-03-25 Voest Alpine Ind Anlagen SYSTEM AND METHOD FOR PRODUCING MELTING IRON
JPH11335718A (en) * 1998-05-28 1999-12-07 Toa Steel Co Ltd Method for utilizing magnesia base waste brick

Also Published As

Publication number Publication date
JP2016151035A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
KR101560512B1 (en) Steel slag reduction method
TW522169B (en) Method of making iron and steel
JP5166805B2 (en) Method for producing molten iron by arc heating
JP5166804B2 (en) Molten iron manufacturing method
JP6471526B2 (en) A method for melting auxiliary materials in an arc bottom-blown electric furnace.
JP5398329B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
JP4711735B2 (en) Method of melting fly ash mixed powder into molten slag
JP6476971B2 (en) How to operate an arc bottom electric furnace
TW202039868A (en) Method for producing chromium-containing molten steel
JP5455193B2 (en) Stainless steel manufacturing method
JP2021084092A (en) By-product processing method
JP5332769B2 (en) How to use electric furnace slag
JP5303915B2 (en) Usage of used MgO-C brick
JP3692856B2 (en) Hot repair method for converter
KR102522360B1 (en) Method for producing chromium-containing molten iron
JP6538522B2 (en) Reuse method of tundish refractories for continuous casting
JP5506515B2 (en) Dephosphorization method
JP6468063B2 (en) Method for accelerating melting of metal raw material in arc electric furnace
JP2006241478A (en) Method for operating converter
JP3603969B2 (en) Method for producing hot metal containing chromium and / or nickel
JP2003286523A (en) Method for recycling magnesia-based waste brick
CN103866079A (en) Zero-lime smelting method for converter steelmaking
JP2004124145A (en) Blowing method in converter
JPH02203189A (en) Sprue part of fixed type electric furnace for low-carbon ferrochrome
JP2002155308A (en) Air-blowing tuyere of shaft kiln

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R151 Written notification of patent or utility model registration

Ref document number: 6471526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350