JP5455193B2 - Stainless steel manufacturing method - Google Patents

Stainless steel manufacturing method Download PDF

Info

Publication number
JP5455193B2
JP5455193B2 JP2009111195A JP2009111195A JP5455193B2 JP 5455193 B2 JP5455193 B2 JP 5455193B2 JP 2009111195 A JP2009111195 A JP 2009111195A JP 2009111195 A JP2009111195 A JP 2009111195A JP 5455193 B2 JP5455193 B2 JP 5455193B2
Authority
JP
Japan
Prior art keywords
slag
raw material
electric furnace
charged
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009111195A
Other languages
Japanese (ja)
Other versions
JP2010261062A (en
Inventor
敏明 宮本
貴博 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2009111195A priority Critical patent/JP5455193B2/en
Publication of JP2010261062A publication Critical patent/JP2010261062A/en
Application granted granted Critical
Publication of JP5455193B2 publication Critical patent/JP5455193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、ステンレス製鋼用の原料を溶解炉で溶解し、粗精錬炉で粗脱炭し、二次精錬炉で仕上げ脱炭するステンレス鋼の製造方法に関する。   The present invention relates to a method for producing stainless steel in which a raw material for stainless steel is melted in a melting furnace, roughly decarburized in a coarse smelting furnace, and finished decarburized in a secondary smelting furnace.

耐食性が優れるステンレス鋼は、水周り製品や外装建材などに広く用いられている。図5は、一般的なステンレス鋼の製造方法を例示する。図5に示す製造方法では、まずステンレス製鋼用の原料を電気炉1で溶解して溶銑2とする。受銑鍋3を介して溶銑2を粗精錬炉である転炉4に注銑し、転炉4で酸素吹精して粗脱炭する。粗脱炭された溶鋼を取鍋5に出鋼する。さらに、溶鋼を二次精錬炉である真空脱ガス装置6(VOD)で仕上げ脱炭し、連続鋳造装置7(CC)でスラブ8を形成する。さらにスラブ8を熱間圧延してステンレスの熱間圧延鋼帯とし、必要に応じて冷間圧延して冷間圧延鋼帯とする。   Stainless steel, which has excellent corrosion resistance, is widely used in water-related products and exterior building materials. FIG. 5 illustrates a typical stainless steel manufacturing method. In the manufacturing method shown in FIG. 5, first, a raw material for stainless steel is melted in an electric furnace 1 to form a hot metal 2. The hot metal 2 is poured into a converter 4 which is a coarse smelting furnace through a receiving pan 3, and rough decarburization is performed by blowing oxygen in the converter 4. The roughly decarburized molten steel is taken out into the ladle 5. Further, the molten steel is decarburized by vacuum degassing apparatus 6 (VOD), which is a secondary refining furnace, and slab 8 is formed by continuous casting apparatus 7 (CC). Further, the slab 8 is hot-rolled to obtain a stainless hot-rolled steel strip, and if necessary, cold-rolled to obtain a cold-rolled steel strip.

図6は、従来のステンレス鋼の製造方法における転炉4での処理の概要を示す。転炉4では、まず電気炉1で溶解された溶銑2が注入される(注銑)。次いで、ノズル9から酸素吹精して溶銑2を粗脱炭するとともに、必要に応じて副原料を装入して成分調整する。この酸素吹精による粗脱炭処理を通じてスラグ10が生成される。ステンレス鋼の溶銑2には、易酸化性元素であるクロム(Cr)が含まれる。溶銑2中のクロムが酸化されてクロム酸化物となりスラグ10中へ移行するので、スラグ10はクロム酸化物を含む。粗脱炭が終了(終点に到達)すると、溶銑2のみが取鍋5へ出鋼され、スラグ10が転炉4内に残される。溶銑2の出鋼後、転炉4からスラグ10を容器11へ排滓する。容器11へ排滓されたスラグ10は、冷却された後、Crやマンガン(Mn)などの有価成分の回収、いわゆる地金回収が行われる。回収された地金は、電気炉1で溶解するステンレス製鋼用の原料として使用される。地金回収後のスラグは、路盤改良材などに二次利用または廃棄される。スラグ10を転炉4で排滓して地金回収する場合、ハンドリング可能な温度にまで冷却するので、スラグ10が保有している熱が無駄になる。逆に、スラグ10が保有する熱を有効に利用しようとすると、高温の状態での地金の回収が難しいという問題がある。   FIG. 6 shows an outline of processing in the converter 4 in the conventional stainless steel manufacturing method. In the converter 4, the hot metal 2 melted in the electric furnace 1 is first poured (injection). Subsequently, oxygen is blown from the nozzle 9 to roughly decarburize the molten iron 2 and, if necessary, the auxiliary raw material is charged to adjust the components. The slag 10 is produced | generated through the rough | crude decarburization process by this oxygen blowing. The hot metal 2 of stainless steel contains chromium (Cr) which is an easily oxidizable element. Since the chromium in the hot metal 2 is oxidized to become chromium oxide and moves into the slag 10, the slag 10 contains chromium oxide. When the rough decarburization is finished (the end point is reached), only the hot metal 2 is steeled to the ladle 5 and the slag 10 is left in the converter 4. After the hot metal 2 is discharged, the slag 10 is discharged from the converter 4 into the container 11. After the slag 10 discharged to the container 11 is cooled, recovery of valuable components such as Cr and manganese (Mn), so-called bullion recovery, is performed. The recovered metal is used as a raw material for stainless steel that is melted in the electric furnace 1. Slag after bullion collection is secondarily used or discarded for roadbed improvement materials. When the slag 10 is discharged by the converter 4 and the metal is collected, the slag 10 is cooled to a temperature at which it can be handled, so that the heat held by the slag 10 is wasted. On the contrary, if the heat held by the slag 10 is used effectively, there is a problem that it is difficult to recover the metal in a high temperature state.

高温の転炉生成スラグから有価成分を回収する先行技術として、転炉で出鋼後、排滓しないで次チャージの溶銑または炭材を装入して、クロム分を還元回収することが提案されている(特許文献1参照)。また、脱炭精錬で生成されるスラグ中の有価成分を回収する先行技術として、容器に排滓したスラグに溶鉄およびアルミニウムを投入し、スラグ中のクロム酸化物を還元してクロムを溶鉄中に回収することが提案されている(特許文献2参照)。また、スラグの顕熱を利用する先行技術として、複数の転炉で操業する場合、1つの転炉から容器に排滓されるスラグをガスバーナーで加熱して保温し、もう一つの転炉から排滓される高温状態のスラグを足し、次に操業を開始する転炉へ当該スラグを装入して再使用することが提案されている(特許文献3参照)。   As a prior art for recovering valuable components from high-temperature converter-generated slag, it is proposed to reduce and recover the chromium content by charging the hot metal or charcoal of the next charge without discharging after steel is output from the converter. (See Patent Document 1). In addition, as a prior art for recovering valuable components in slag produced by decarburization refining, molten iron and aluminum are introduced into the slag discharged into the vessel, and chromium oxide in the slag is reduced to bring chromium into the molten iron. It has been proposed to collect (see Patent Document 2). Moreover, as a prior art using slag heat, when operating in multiple converters, the slag discharged from one converter into a container is heated with a gas burner, and the temperature is maintained from the other converter. It has been proposed to add high-temperature slag that is rejected, and then insert the slag into a converter that starts operation next and reuse it (see Patent Document 3).

特開平6−73424号公報JP-A-6-73424 特開2001−234226号公報JP 2001-234226 A 特開平5−25532号公報JP-A-5-25532

しかし、特許文献1では、次チャージの溶銑を装入する場合、既に溶解している溶銑に対してスラグの熱を溶解に有効利用したことにはならず、クロム分回収済みのスラグを排滓するときに熱の損失が発生する。また、炭材を装入する場合には、炉壁を保護するために付着されているコーティングスラグが溶解されるので、炉寿命が低下するという問題がある。また、特許文献2では、容器に排滓したスラグに溶鉄を注入するので、スラグの熱を溶解に有効利用したことにはならない。また、高価なアルミニウムを多く必要とするのでコストが高くなるとともに、スラグを排滓した容器に溶鉄を注入して回収クロムの受け皿とするので、還元回収処理後の溶鉄中のクロム濃度を余り高くすることができないという問題がある。また、特許文献3では、追加のスラグが発生するまでの待機中に、容器に排滓されたスラグを保温するためにバーナー加熱を必要とするので、熱の有効利用という観点からは十分でない。   However, in Patent Document 1, when the molten iron of the next charge is charged, the heat of the slag is not effectively used for melting with respect to the molten iron that has already been melted, and the slag that has recovered the chromium content is discharged. When heat loss occurs. In addition, when the carbon material is charged, since the coating slag adhered to protect the furnace wall is melted, there is a problem that the life of the furnace is reduced. Moreover, in patent document 2, since molten iron is inject | poured into the slag discharged | emitted in the container, it does not use effectively the heat | fever of slag for melt | dissolution. In addition, since a large amount of expensive aluminum is required, the cost is increased, and molten iron is poured into a container in which slag is discharged to form a recovered chromium tray, so that the chromium concentration in the molten iron after the reduction recovery process is too high. There is a problem that you can not. In Patent Document 3, burner heating is required to keep the slag discharged in the container warm during standby until additional slag is generated, which is not sufficient from the viewpoint of effective use of heat.

本発明の目的は、粗脱炭で生成されるスラグの熱を電気炉での溶解に有効利用することができ、またスラグ中に含まれるクロム分を溶銑の成分として利用することができるステンレス鋼の製造方法を提供することである。   An object of the present invention is stainless steel in which the heat of slag produced by rough decarburization can be effectively used for melting in an electric furnace, and chromium contained in the slag can be used as a component of hot metal. It is to provide a manufacturing method.

本発明は、ステンレス製鋼用の原料を電気炉で溶解し、粗精錬炉で粗脱炭し、二次精錬炉で仕上げ脱炭するステンレス鋼の製造方法において、
粗精錬炉の粗脱炭で生成されるクロム酸化物を含むスラグを排滓し、
電気炉に原料を初装して予め定める範囲の電力原単位で溶解させ、
当該スラグをホットチャージ状態で電気炉に装入し、
装入されたスラグを原料とともに溶解することを特徴とするステンレス鋼の製造方法である。
The present invention is a method for producing stainless steel in which raw materials for stainless steel are melted in an electric furnace, roughly decarburized in a coarse smelting furnace, and finish decarburized in a secondary smelting furnace.
Excluding slag containing chromium oxide produced by rough decarburization in a rough smelting furnace,
Raw materials are first installed in an electric furnace and melted in a predetermined power unit,
The slag is charged into an electric furnace in a hot charge state,
A stainless steel manufacturing method characterized by melting a slag charged together with a raw material.

また本発明で、前記原料の組成を、フェロクロム合金:10重量%以上、Si:0.5〜1.5重量%とし、フェロクロム合金中のSi含有量を3重量%以上とすることを特徴とする。   In the present invention, the composition of the raw material is ferrochrome alloy: 10 wt% or more, Si: 0.5 to 1.5 wt%, and the Si content in the ferrochrome alloy is 3 wt% or more. To do.

また本発明前記電気炉に前記原料を初装して、400〜500kWh/Tonの電力原単位で溶解させ
前記スラグを電気炉に装入し、続いて追加の原料を電気炉に装入することを特徴とする。
The present invention is to initial spectacles wear the raw material into the electric furnace, dissolved in electric power consumption rate of 400~500kWh / Ton,
The slag is charged into an electric furnace, and then additional raw materials are charged into the electric furnace.

本発明によれば、祖脱炭で生成されるスラグをホットチャージ状態で電気炉に装入するので、スラグが保有する熱を原料に付与して熔解に有効利用することができる。また、熔解される原料に含まれる還元成分によってスラグ中のクロム酸化物を還元し、クロム分を溶銑へ回収することができる。スラグ装入前の原料の溶解に際しては、予め定める範囲の電力原単位で溶解させ、溶銑と未溶解の原料とを混在させるようにすることができる。 According to the present invention, since the slag produced by the decarburization is charged into the electric furnace in a hot charge state, the heat held by the slag can be applied to the raw material and effectively used for melting. Moreover, the chromium oxide in slag can be reduced by the reducing component contained in the raw material to be melted, and the chromium content can be recovered into the hot metal. When melting the raw material before charging the slag, it is possible to mix the molten iron and the undissolved raw material by dissolving them in a predetermined power unit.

また、本発明によれば、ステンレス製鋼用原料としてのフェロクロム合金のSi含有量を規定し、さらに原料組成のフェロクロム合金およびSi量を所定範囲とすることによって、原料でスラグ中のクロム酸化物を一層効率的に還元し、クロム分を回収することができる。   Further, according to the present invention, the Si content of the ferrochrome alloy as the raw material for stainless steel is specified, and further the chromium oxide in the slag is made of the raw material by setting the ferrochrome alloy of the raw material composition and the Si amount within a predetermined range. Reduction can be performed more efficiently, and chromium can be recovered.

また、本発明によれば、スラグの装入に続けて追加の原料を装入するので、装入のための炉蓋開放の頻度を少なくして熱損失を抑制することができる。さらに、電気炉内でスラグの上に導通のある原料が位置するので、導通不良の発生が防止される。スラグ装入前の原料の初装では、400〜500kWh/Tonの電力原単位で溶解させるので、山盛およびスプラッシュの発生を防止することができる。 Further, according to the present invention, since the additional raw material is charged subsequent to the charging of the slag, the frequency of opening the furnace lid for charging can be reduced to suppress heat loss. Furthermore, since the conductive material is located on the slag in the electric furnace, the occurrence of poor conduction is prevented. In the initial wearing of the raw material before charging the slag, since it is melted at a power unit of 400 to 500 kWh / Ton, it is possible to prevent the occurrence of piles and splash.

本発明の実施の形態であるステンレス鋼の製造方法の概要を示す図である。It is a figure which shows the outline | summary of the manufacturing method of the stainless steel which is embodiment of this invention. ホットチャージ状態でスラグを電気炉に装入する状況を示す図である。It is a figure which shows the condition which inserts slag into an electric furnace in a hot charge state. 溶解電力原単位が山盛およびスプラッシュに及ぼす影響を示すグラフである。It is a graph which shows the influence which a dissolution electric power basic unit exerts on a mountain peak and a splash. スラグ中のクロム酸化物の還元に及ぼす原料中のFeCr量とSi量の影響を示すグラフである。It is a graph which shows the influence of the amount of FeCr in a raw material on the reduction | restoration of the chromium oxide in slag, and the amount of Si. 一般的なステンレス鋼の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of a general stainless steel. 従来のステンレス鋼の製造方法における転炉4での処理の概要を示す図である。It is a figure which shows the outline | summary of the process in the converter 4 in the manufacturing method of the conventional stainless steel.

図1は、本発明の実施の形態であるステンレス鋼の製造方法の概要を示す。本実施形態のステンレス鋼の製造方法は、前述のステンレス製鋼用の原料を電気炉1で溶解し、粗精錬炉である転炉4で粗脱炭し、二次精錬炉であるVOD6で仕上げ脱炭する工程を含み、転炉4の粗脱炭で生成されるクロム酸化物を含むスラグ10を排滓し、当該スラグ10をホットチャージ状態で電気炉1に装入し、装入されたスラグ10を原料とともに溶解する。図1に示す方法のうち転炉4での排滓までは、前述の図6と同一であるため説明を省く。   FIG. 1 shows an outline of a method for producing stainless steel according to an embodiment of the present invention. In this embodiment, the stainless steel raw material is melted in the electric furnace 1, roughly decarburized in the converter 4 that is a rough smelting furnace, and finished in the VOD 6 that is a secondary smelting furnace. Including a step of charring, slag 10 containing chromium oxide generated by rough decarburization of converter 4 is discharged, slag 10 is charged into electric furnace 1 in a hot-charged state, and the slag charged 10 is dissolved together with the raw material. Since the method shown in FIG. 1 up to the removal in the converter 4 is the same as that shown in FIG. 6, a description thereof will be omitted.

本実施形態のステンレス鋼の製造方法の特徴とするところは、転炉4で排滓されたスラグ10を、ホットチャージ状態で電気炉1に装入することにある。ここで、ホットチャージ状態で電気炉1に装入とは、粗脱炭を終えて転炉4から容器11に排滓されたスラグ10を、積極的に冷却することなく、また地金回収処理をすることなく、顕熱を保有したままで電気炉1に装入することをいう。ホットチャージ状態のスラグ10は、容器11の中で液相または表層部分のみが若干固相になっている状態である。このことによって、スラグ10は、電気炉1の中で原料に対してその保有する熱を付与することができるので、熱損失を抑制して原料の溶解に有効利用することができる。   A feature of the stainless steel manufacturing method of the present embodiment is that the slag 10 discharged in the converter 4 is charged into the electric furnace 1 in a hot-charged state. Here, charging into the electric furnace 1 in the hot charge state means that the slag 10 that has been subjected to rough decarburization and discharged from the converter 4 to the container 11 is not actively cooled, and the bullion is recovered. It refers to charging the electric furnace 1 while maintaining sensible heat. The slag 10 in the hot charge state is a state in which only the liquid phase or the surface layer portion in the container 11 is slightly solid. By this, since the slag 10 can give the heat which the slag 10 holds with respect to a raw material in the electric furnace 1, a heat loss can be suppressed and it can utilize effectively for melt | dissolution of a raw material.

図2は、ホットチャージ状態でスラグを電気炉に装入する状況を示す。電気炉1は、炉体21と、炉蓋22と、三相交流式の3本の電極23と、不図示の電源および傾動装置等を含む。電気炉1では、炉体21内に合金やスクラップなどのステンレス製鋼用の原料24を装入し、炉蓋22に形成される貫通孔から挿入される電極23で原料24に通電し、原料24を溶解して溶銑2とする。転炉4の粗脱炭で生成されるスラグ10は、容器11に排滓され、ホットチャージの状態で電気炉1の炉体21へ装入される。電気炉1の炉体21へのスラグ10の装入は、初装時でもよく、また追装時でもよい。初装とは、電気炉1で溶銑2を出鋼した後、電気炉1の炉体21内へ初めて原料24を装入することをいう。追装とは、先に装入された原料24がある程度溶解され、液相の溶銑2と固相の原料24とが炉体21内で混在する状態で、追加の原料24を装入することをいう。   FIG. 2 shows a situation in which slag is charged into an electric furnace in a hot charge state. The electric furnace 1 includes a furnace body 21, a furnace lid 22, three three-phase AC type electrodes 23, a power source and a tilting device (not shown), and the like. In the electric furnace 1, a raw material 24 for stainless steel such as an alloy or scrap is charged in a furnace body 21, and the raw material 24 is energized by an electrode 23 inserted from a through hole formed in the furnace lid 22. Is dissolved to obtain hot metal 2. The slag 10 produced by the rough decarburization of the converter 4 is discharged into the container 11 and charged into the furnace body 21 of the electric furnace 1 in a hot charged state. The slag 10 may be charged into the furnace body 21 of the electric furnace 1 at the time of initial installation or at the time of additional installation. The initial loading means that the raw material 24 is first charged into the furnace body 21 of the electric furnace 1 after the hot metal 2 is steeled in the electric furnace 1. The additional charging means charging the additional raw material 24 in a state where the raw material 24 previously charged is dissolved to some extent and the liquid phase molten iron 2 and the solid phase raw material 24 are mixed in the furnace body 21. Say.

図2では、追装時にスラグ10を電気炉1の炉体21へ装入する場合について示す。初装または追装のいずれの場合であっても、スラグ10を炉体21に装入し、続いて原料24を炉体21に装入する。スラグ10の装入に続けて原料24を装入することによって、装入のための炉蓋22開放の頻度を少なくして熱損失を抑制することができる。また、電気炉1では、電極23から原料24への通電により主として抵抗発熱で原料24を溶解するが、スラグ10の上に導通のある原料24を装入することによって、通電不良の発生が防止される。図2に示す追装時にスラグ10を電気炉1へ装入する場合、スラグ装入前に電気炉1へ装入された原料24が、溶解されて溶銑2と混在する状態になるまでの溶解電力原単位を、400〜500kWh/Tonに調整することが望ましい。   In FIG. 2, it shows about the case where the slag 10 is inserted into the furnace body 21 of the electric furnace 1 at the time of additional installation. In either case of initial loading or additional loading, the slag 10 is charged into the furnace body 21 and then the raw material 24 is charged into the furnace body 21. By charging the raw material 24 following the charging of the slag 10, the frequency of opening the furnace lid 22 for charging can be reduced to suppress heat loss. In the electric furnace 1, the raw material 24 is melted mainly by resistance heating by energization from the electrode 23 to the raw material 24. However, by introducing the conductive raw material 24 on the slag 10, the occurrence of poor conduction is prevented. Is done. When the slag 10 is charged into the electric furnace 1 during the additional loading shown in FIG. 2, melting until the raw material 24 charged into the electric furnace 1 before the slag charging is melted and mixed with the molten iron 2. It is desirable to adjust the power intensity to 400 to 500 kWh / Ton.

以下、溶解電力源単位の範囲限定理由について説明する。図3は、溶解電力原単位が山盛およびスプラッシュに及ぼす影響を示す。図3では、横軸に電力原単位、縦軸に山盛およびスプラッシュの発生頻度を表す。ここで、山盛とは、原料24を追装すると、装入した原料24が炉体21の炉壁の上端を超え、炉蓋22を閉じることが困難になる状態をいう。スプラッシュとは、原料24やスラグ10を追装すると、先に装入された原料24が溶解して形成される溶銑2が飛散することをいう。発生頻度は、原料24を装入した総回数に対して、山盛またはスプラッシュがそれぞれ発生した回数の比を百分率で表した。電力原単位が400kWh/Ton未満の場合、先に装入した原料24の溶解が十分進まず、未溶解の原料24が多いので、炉体21中の原料24の嵩が高くなる。このような嵩が高い原料24の上にスラグ10を装入し、さらに原料24を追装すると、山盛が発生する。逆に、電力原単位が500kWh/Tonを超えると、原料24の溶解が十分に進み、炉体21の中は液相の溶銑2のみとなる。このような状態で、原料24やスラグ10を電気炉1へ装入すると、溶銑2が飛散してスプラッシュが発生する。スプラッシュは、炉壁を痛める原因となる。したがって、スラグ装入前の原料24の溶解に際しては、溶銑2と未溶解の原料24とが適当に混在し、山盛およびスプラッシュの発生を防止することができる400〜500kWh/Tonの電力原単位とすることが望ましい。   Hereinafter, the reason for limiting the range of dissolved power source units will be described. FIG. 3 shows the effect of dissolved power intensity on peak and splash. In FIG. 3, the horizontal axis represents the power consumption rate, and the vertical axis represents the frequency of peaking and splashing. Here, “mountain” refers to a state in which when the raw material 24 is additionally mounted, the charged raw material 24 exceeds the upper end of the furnace wall of the furnace body 21 and it is difficult to close the furnace lid 22. Splash means that when the raw material 24 or the slag 10 is additionally mounted, the hot metal 2 formed by melting the raw material 24 previously charged is scattered. Occurrence frequency represented the ratio of the frequency | count that the peak or the splash each generate | occur | produced with respect to the total frequency | count which charged the raw material 24 in percentage. When the power unit is less than 400 kWh / Ton, melting of the raw material 24 charged first does not proceed sufficiently, and there are many undissolved raw materials 24, so the bulk of the raw material 24 in the furnace body 21 increases. When the slag 10 is charged on such a bulky raw material 24 and then the raw material 24 is additionally mounted, heaps are generated. On the other hand, when the electric power consumption exceeds 500 kWh / Ton, melting of the raw material 24 sufficiently proceeds, and only the liquid phase molten iron 2 is contained in the furnace body 21. When the raw material 24 and the slag 10 are charged into the electric furnace 1 in such a state, the hot metal 2 scatters and splash is generated. Splash causes damage to the furnace wall. Therefore, when the raw material 24 before slag charging is melted, the molten iron 2 and the undissolved raw material 24 are mixed appropriately, and 400 to 500 kWh / Ton electric power unit capable of preventing the occurrence of piles and splashes. Is desirable.

電気炉1にスラグ10を装入し、続いて原料24を装入し、原料24とスラグ10とが混在する状態で電極23に通電して溶解する。溶解される原料24によりスラグ10中のクロム酸化物を還元する。電気炉1の溶解工程でスラグ10中のクロム酸化物を還元し、クロムを溶銑2へ回収することによって、別工程での地金回収処理をすることなく、スラグ10中のクロムを溶銑2の成分として利用することができる。溶解される原料24の組成を、フェロクロム合金(以下、FeCrで表す)が10重量%以上、Siが0.5〜1.5重量%とし、FeCr中のSi含有量を3重量%以上とする。このことによって、スラグ10中のクロム酸化物を一層効率的に還元し、回収されるクロムを溶銑の成分として利用することができる。   The slag 10 is charged into the electric furnace 1, and then the raw material 24 is charged, and the electrode 23 is energized and melted in a state where the raw material 24 and the slag 10 are mixed. The chromium oxide in the slag 10 is reduced by the raw material 24 to be dissolved. By reducing the chromium oxide in the slag 10 in the melting step of the electric furnace 1 and recovering the chromium into the molten iron 2, the chromium in the slag 10 is removed from the molten iron 2 without performing a metal recovery process in another step. It can be used as an ingredient. The composition of the raw material 24 to be melted is 10% by weight or more for the ferrochrome alloy (hereinafter referred to as FeCr), 0.5 to 1.5% by weight for Si, and the Si content in FeCr is 3% by weight or more. . As a result, the chromium oxide in the slag 10 can be more efficiently reduced, and the recovered chromium can be used as a hot metal component.

以下、原料24の組成範囲限定理由について説明する。図4は、スラグ中のクロム酸化物の還元に及ぼす原料中のFeCr量とSi量の影響を示す。図4では、装入原料中のFeCr量およびSi量を種々に変化させて電気炉1でスラグ10とともに溶解し、スラグ10中のクロム酸化物を還元する試験をした結果を表す。   Hereinafter, the reason for limiting the composition range of the raw material 24 will be described. FIG. 4 shows the effect of the amount of FeCr and Si in the raw material on the reduction of chromium oxide in the slag. FIG. 4 shows the results of a test in which the FeCr amount and the Si amount in the charging raw material are variously changed and dissolved together with the slag 10 in the electric furnace 1 to reduce chromium oxide in the slag 10.

以下、図4を参照して組成範囲の限定理由を説明する。   Hereinafter, the reason for limiting the composition range will be described with reference to FIG.

FeCr:10重量%以上
FeCrには、一般的にSiが含まれている。特に、3重量%以上のSiを含有するFeCrを原料中に10重量%以上含有させることで、FeCr中に含まれるSiによって、クロム酸化物を効率的に還元することができる。FeCrが10重量%未満では、スラグ中のクロム酸化物を還元するために、還元剤としてのSiを追加しなければならない。スラグ中のクロム酸化物の還元という観点からは、FeCr含有量の上限値を特に規定しない。他の原料との関係および鋼種系から必要とされる溶銑中のCr量を満足するように上限値を選定することができる。FeCrは、ステンレス鋼の必須成分であるCrの供給源であるため、溶銑のCr量の観点からも、原料中に10重量%以上含有させることが好ましい。
FeCr: 10 wt% or more FeCr generally contains Si. In particular, by containing 10 wt% or more of FeCr containing 3 wt% or more of Si in the raw material, chromium oxide can be efficiently reduced by Si contained in FeCr. If FeCr is less than 10% by weight, Si as a reducing agent must be added to reduce chromium oxide in the slag. From the viewpoint of reduction of chromium oxide in the slag, the upper limit value of the FeCr content is not particularly specified. The upper limit value can be selected so as to satisfy the relationship with other raw materials and the amount of Cr in the hot metal required from the steel type. Since FeCr is a supply source of Cr, which is an essential component of stainless steel, it is preferable to contain 10% by weight or more in the raw material from the viewpoint of the amount of Cr in the hot metal.

Si:0.5〜1.5重量%
Siは、スラグ中のクロム酸化物を還元する還元剤として必須である。含有量が0.5重量%未満では、クロム酸化物を十分に還元することができず還元不良を生じる。1.5重量%を超えて含有すると、電気炉で生成されるスラグ量を不要に増大させるとともに、出鋼時にスラグが突沸するフォーミングを発生する。したがって、Si量を0.5〜1.5重量%とする。
Si: 0.5 to 1.5% by weight
Si is essential as a reducing agent that reduces chromium oxide in the slag. If the content is less than 0.5% by weight, the chromium oxide cannot be sufficiently reduced, resulting in poor reduction. If the content exceeds 1.5% by weight, the amount of slag generated in the electric furnace is unnecessarily increased, and forming occurs in which the slag bumps at the time of steel output. Therefore, the Si amount is set to 0.5 to 1.5% by weight.

以下本発明の実施例について説明する。本実施例では、容量160Tonの電気炉、粗脱炭炉として容量80Tonの転炉、仕上げ脱炭炉として容量80TonのVODを使用し、転炉での粗脱炭で生成されるスラグを排滓し、当該スラグをホットチャージ状態で電気炉へ装入してステンレス鋼を製造した。   Examples of the present invention will be described below. In this embodiment, an electric furnace with a capacity of 160 Ton, a converter with a capacity of 80 Ton as a rough decarburization furnace, and a VOD with a capacity of 80 Ton as a finishing decarburization furnace, the slag generated by the rough decarburization in the converter is discharged. Then, the slag was charged into an electric furnace in a hot charge state to produce stainless steel.

電気炉での溶解に使用したステンレス製鋼用の原料は、FeCrが45Ton、普通鋼屑が83Ton、コークスが4Ton、残部がステンレス屑で、原料総量が171Tonであった。原料総量中のFeCr含有量は26.3重量%であり、FeCr中のSi含有量は4.0重量%であった。また、配合比から求められる装入原料中のSi含有量は、1.05重量%であった。   The raw material for the stainless steel used for melting in the electric furnace was 45 Ton of FeCr, 83 Ton of ordinary steel scrap, 4 Ton of coke, stainless steel scrap of the remainder, and the total amount of raw material was 171 Ton. The FeCr content in the total raw material was 26.3% by weight, and the Si content in FeCr was 4.0% by weight. Moreover, Si content in the charging raw material calculated | required from a compounding ratio was 1.05 weight%.

電気炉で上記の原料と造滓剤とを溶解し、80Tonの溶銑を電気炉から転炉へ注銑した。転炉で、CaOを1230kg投入した後に酸素上吹し、Cを0.25重量%まで粗脱炭した。このときの粗脱炭された溶鋼のCr含有量は16.3重量%、Si含有量は0重量%であった。粗脱炭を通じて生成されたスラグ量は、5Tonであった。転炉の出鋼口から溶鋼のみを取鍋に出鋼した後、転炉を出鋼口と逆の方向へ傾動し、スラグを全量スラグポットに排滓した。排滓したスラグを、強制冷却することなく、また地金回収することなく、ホットチャージ状態で電気炉へ装入した。このときのスラグポット内のスラグは、表層部分のみが固まっている状態であった。取鍋に出鋼した溶鋼は、VODで仕上げ脱炭し、連続鋳造してスラブとした。   The above raw materials and the iron making agent were melted in an electric furnace, and 80 Ton hot metal was poured from the electric furnace to the converter. In the converter, 1230 kg of CaO was introduced and then oxygen was blown over to roughly decarburize C to 0.25 wt%. At this time, the crude decarburized molten steel had a Cr content of 16.3% by weight and a Si content of 0% by weight. The amount of slag produced through rough decarburization was 5 Ton. After only the molten steel was taken out from the converter outlet to the ladle, the converter was tilted in the opposite direction to the outlet and the entire amount of slag was discharged into the slag pot. The discharged slag was charged into the electric furnace in a hot charge state without forced cooling and without collecting the metal. At this time, the slag in the slag pot was in a state where only the surface layer portion was solidified. The molten steel produced in the ladle was finish-decarburized with VOD and continuously cast into a slab.

ホットチャージ状態でスラグを電気炉に装入するに際し、原料を初装する場合には、先にスラグを装入し、続いて原料を装入した。原料を追装する場合には、先に装入した原料を電力原単位が400〜500kWh/Tonになるようにして溶解し、溶銑および原料が混在する状態でスラグを装入し、続いて追加の原料を装入した。初装および追装のいずれの場合とも、装入した原料の組成は、先に電気炉で溶解した上記の原料と同一組成である。スラグをホットチャージ状態で電気炉に装入する方法で1チャージ分の溶解が終了した後、1チャージ分の溶解に要した電力原単位を求め、スラグの装入なしで溶解した場合の1チャージ分の電力原単位と比較した。また、溶解原料の配合比から求められるCr分の重量%と、電気炉で1チャージ分の溶解が終了した後の溶銑中のCr含有量とを比較し、スラグ中のCr酸化物からCrを還元回収したことによるCr量の増分を求めた。   When the slag was charged into the electric furnace in the hot charge state, when the raw material was initially charged, the slag was charged first and then the raw material was charged. When refilling the raw material, the raw material previously charged is melted so that the electric power unit becomes 400 to 500 kWh / Ton, and the slag is charged in a state where the molten iron and the raw material are mixed, and then added. The raw materials were charged. In both cases of initial loading and additional loading, the composition of the charged raw material is the same as that of the raw material previously melted in the electric furnace. After melting one charge by the method of charging the slag into the electric furnace in a hot charge state, the power unit required for melting one charge is obtained, and one charge when melting without charging the slag Compared to the electricity intensity of the minute. Also, the weight percentage of Cr obtained from the mixing ratio of the melting raw material and the Cr content in the hot metal after the melting of one charge in the electric furnace was compared, and Cr was obtained from the Cr oxide in the slag. The increment of Cr amount due to reduction and recovery was determined.

スラグをホットチャージ状態で電気炉へ装入することで、電気炉での溶解電力原単位を10kWh/Ton低減し、スラグが保有する顕熱を利用してエネルギー節減をすることができた。また、溶解される原料でスラグ中のCr酸化物からCrを還元回収することにより、溶銑中のCr分を約0.9重量%増加することができた。   By charging the slag into an electric furnace in a hot-charged state, the unit of melting power in the electric furnace was reduced by 10 kWh / Ton, and energy was saved by utilizing the sensible heat possessed by the slag. Moreover, by reducing and recovering Cr from the Cr oxide in the slag with the raw material to be melted, the Cr content in the hot metal could be increased by about 0.9% by weight.

1 電気炉
2 溶銑
4 転炉
6 VOD
7 CC
10 スラグ
24 原料
1 Electric furnace 2 Hot metal 4 Converter 6 VOD
7 CC
10 Slag 24 Raw material

Claims (3)

ステンレス製鋼用の原料を電気炉で溶解し、粗精錬炉で粗脱炭し、二次精錬炉で仕上げ脱炭するステンレス鋼の製造方法において、
粗精錬炉の粗脱炭で生成されるクロム酸化物を含むスラグを排滓し、
電気炉に原料を初装して予め定める範囲の電力原単位で溶解させ、
当該スラグをホットチャージ状態で電気炉に装入し、
装入されたスラグを原料とともに溶解することを特徴とするステンレス鋼の製造方法。
In the method for producing stainless steel, the raw material for stainless steel is melted in an electric furnace, roughly decarburized in a coarse smelting furnace, and finished decarburized in a secondary smelting furnace.
Excluding slag containing chromium oxide produced by rough decarburization in a rough smelting furnace,
Raw materials are first installed in an electric furnace and melted in a predetermined power unit,
The slag is charged into an electric furnace in a hot charge state,
A method for producing stainless steel, wherein the charged slag is melted together with raw materials.
前記原料の組成を、
フェロクロム合金:10重量%以上、Si:0.5〜1.5重量%とし、
フェロクロム合金中のSi含有量を3重量%以上とすることを特徴とする請求項1記載のステンレス鋼の製造方法。
The composition of the raw material is
Ferrochrome alloy: 10 wt% or more, Si: 0.5 to 1.5 wt%,
The method for producing stainless steel according to claim 1, wherein the Si content in the ferrochrome alloy is 3 wt% or more.
前記電気炉に前記原料を初装して、400〜500kWh/Tonの電力原単位で溶解させ、
前記スラグを電気炉に装入し、続いて追加の原料を電気炉に装入することを特徴とする請求項1または2記載のステンレス鋼の製造方法。
The raw material is initially installed in the electric furnace, and is dissolved in a power unit of 400 to 500 kWh / Ton,
The method for producing stainless steel according to claim 1 or 2, wherein the slag is charged into an electric furnace, and then an additional raw material is charged into the electric furnace.
JP2009111195A 2009-04-30 2009-04-30 Stainless steel manufacturing method Active JP5455193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111195A JP5455193B2 (en) 2009-04-30 2009-04-30 Stainless steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111195A JP5455193B2 (en) 2009-04-30 2009-04-30 Stainless steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2010261062A JP2010261062A (en) 2010-11-18
JP5455193B2 true JP5455193B2 (en) 2014-03-26

Family

ID=43359399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111195A Active JP5455193B2 (en) 2009-04-30 2009-04-30 Stainless steel manufacturing method

Country Status (1)

Country Link
JP (1) JP5455193B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642008B2 (en) 2011-03-31 2014-12-17 日新製鋼株式会社 Stainless steel manufacturing method
JP2013144292A (en) * 2011-12-12 2013-07-25 Jfe Steel Corp Method for reducing substance containing chromium oxide
JP2013124417A (en) * 2011-12-16 2013-06-24 Nippon Steel & Sumitomo Metal Corp METHOD FOR TREATING Cr-CONTAINING SLAG
CN111705181A (en) * 2020-04-30 2020-09-25 马鞍山市中桥金属材料有限公司 Electric furnace primary smelting low-phosphorus 15-5PH stainless steel mother solution and smelting method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215913A (en) * 1988-02-24 1989-08-29 Kawasaki Steel Corp Manufacture of stainless steel by smelting reduction
JPH05339618A (en) * 1992-06-03 1993-12-21 Kawasaki Steel Corp Method for recycling slag in converter slag ladle
JPH07310109A (en) * 1994-05-12 1995-11-28 Sumitomo Metal Ind Ltd Production of stainless steel
JP4189112B2 (en) * 2000-02-24 2008-12-03 新日本製鐵株式会社 Processing method for slag refining stainless steel
JP2002069520A (en) * 2000-08-29 2002-03-08 Nippon Steel Corp Method for recovering chromium in slag
JP2002256323A (en) * 2001-02-27 2002-09-11 Nippon Steel Corp Method for reforming roughly decarburized slag in molten stainless steel
DE10323507A1 (en) * 2003-05-24 2004-12-09 Sms Demag Ag Process for the recovery of metallic elements, in particular metallic chromium, from slags containing metal oxide in an electric arc furnace

Also Published As

Publication number Publication date
JP2010261062A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5522320B1 (en) Steelmaking slag reduction treatment method
CN105886787B (en) A kind of method that vanadium is reclaimed from corundum slag containing vanadium
CN101928847B (en) Process for smelting magnesium alloy
CN105112594B (en) Tumble the method for stove smelting ferrovanadium
CN103642976A (en) H13 steel smelting process
JP5455193B2 (en) Stainless steel manufacturing method
CN109468539A (en) A kind of heat resisting cast steel and production method
JPWO2013187348A1 (en) Method for producing metallic chromium
JP5589688B2 (en) Hot metal production method
JP5625654B2 (en) Hot metal production method
KR101818372B1 (en) Operating method for electric arc furnace
JP4065097B2 (en) Converter steelmaking
JP5324142B2 (en) Refining method using electric furnace
RU2521930C1 (en) Charge and method for electric-furnace aluminothermic production of ferroboron using it
JP2003293024A (en) Method for operating electric furnace
Dutta et al. Electric Furnace Processes
JP6221707B2 (en) Slag processing method and slag processing apparatus
JPH0277516A (en) Method for treating steelmaking slag producing at steelmaking process
Ho et al. Energy audit of a steel mill
RU2312901C1 (en) Rail steel melting method
JP3793473B2 (en) Operation method of a converter equipped with a hot metal storage furnace
JP6658241B2 (en) Metal raw material melting method
JP3717625B2 (en) Electric arc furnace slag reduction method
KR101821584B1 (en) Method for recovering valuable metals and method of predicting chromium oxide content from electric furnace slag
Bisaka et al. Optimisation of SiMn Production of Transalloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5455193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250