JPH0277516A - Method for treating steelmaking slag producing at steelmaking process - Google Patents

Method for treating steelmaking slag producing at steelmaking process

Info

Publication number
JPH0277516A
JPH0277516A JP63251353A JP25135388A JPH0277516A JP H0277516 A JPH0277516 A JP H0277516A JP 63251353 A JP63251353 A JP 63251353A JP 25135388 A JP25135388 A JP 25135388A JP H0277516 A JPH0277516 A JP H0277516A
Authority
JP
Japan
Prior art keywords
ladle
slag
molten steel
ladle slag
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63251353A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kawakami
川上 光博
Kazuyuki Yamada
和之 山田
Shigeyoshi Matsuo
松尾 重良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63251353A priority Critical patent/JPH0277516A/en
Publication of JPH0277516A publication Critical patent/JPH0277516A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To reduce unit consumption of a flux needing to refining by adding the prescribed quantity of flux into molten steel tapped into a ladle to execute prevention of re-phosphorization and heat holding of the molten steel and directly re-charging the ladle slag into a refining furnace after discharging the molten steel. CONSTITUTION:At the time of tapping the molten steel into the ladle from the refining furnace, the flux of lime, etc., is added at 1-10kg/t of molten steel to the molten steel in the ladle. By this method, the re-phosphorization and molten metal temp. drop are prevented. Successively, the molten steel is discharged into a casting machine from the ladle, and the remained ladle slag is directly re-charged into the refining furnace. Before re-charging this, it is desirable to avoid heat loss by bringing this ladle slag into contact with cooling material of scrap, etc., as chargable into the refining furnace and cooling. By re-charging the above ladle slag into the refining furnace, the unit consumption of the flux in the refining furnace is reduced and also by recovering the metal content in the ladle slag, the steelmaking cost can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製綱スラグ、特に取鍋スラグの処理法に関し
、より詳しくは、再生処理を行うことなく直接精錬炉に
再装入する、取鍋スラグの処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for treating steelmaking slag, particularly ladle slag, and more specifically, a method for directly recharging steelmaking slag into a smelting furnace without performing regeneration treatment. This invention relates to a method for treating ladle slag.

(従来の技術) 製鋼過程で必然的に発生する製鋼スラグは、従来は主と
して費用をかけて陸上に廃棄するか、海上に投棄して埋
立てに利用していた。しかしながら、最近は取鍋スラグ
に再生処理を行って精錬炉に再装入し、その有効利用を
図ることが行なわれ始めている。
(Prior Art) Steelmaking slag, which is inevitably generated during the steelmaking process, has conventionally been mainly disposed of on land at a high cost, or dumped at sea and used for landfill. However, recently, efforts have been made to recycle ladle slag and re-charge it into the refining furnace in order to utilize it effectively.

例えば、転炉などでの鋼の精錬においては、脱リン、脱
硫を目的とした副原料としてフラックス(媒溶剤)を添
加するため、いわゆる精錬スラグが生成する。製鋼過程
の終点である出鋼工程においては、通常はこのスラグの
流入を抑制しながら溶鋼を取鍋に流出させるため、取鍋
内での復リン防止および溶鋼保温を目的として、取鍋内
に生石灰などのフラックスを再び添加することが行われ
ている。
For example, in the refining of steel in a converter or the like, flux (solvent) is added as an auxiliary raw material for the purpose of dephosphorization and desulfurization, so that so-called refining slag is produced. In the tapping process, which is the final point of the steelmaking process, the molten steel is normally flowed into the ladle while suppressing the inflow of slag. Fluxes such as quicklime are being added again.

このように出鋼時にを鍋内にフラックスとして生石灰を
添加する製鋼法により生じた取鍋スラグを有効利用する
方法が、特開昭61−194107号に開示されている
。この方法では取鍋から溶鋼を払い出した後に、回収し
た取鍋スラグを冷却、破砕および磁選処理して脱リン、
脱硫用の副原料として再生し、これを再び精錬炉に添加
して精錬炉における滓化を促進させ、副原料の原単位低
減を図っている。
Japanese Patent Laid-Open No. 194107/1983 discloses a method of effectively utilizing the ladle slag produced by the steel manufacturing method in which quicklime is added as flux into the ladle during tapping. In this method, after the molten steel is discharged from the ladle, the collected ladle slag is cooled, crushed, and subjected to magnetic separation to dephosphorize and
It is recycled as an auxiliary raw material for desulfurization and added to the smelting furnace again to promote slag formation in the smelting furnace, thereby reducing the unit consumption of auxiliary raw materials.

(発明が解決しようとする課題) しかしながら、前記の従来法においては、取鍋スラグを
製鋼副原料(脱リン、脱硫用)として有効に再利用する
ことに着眼したため、取鍋スラグを冷却、破砕および磁
選処理して、副原料として再生させている。この方法に
は次の二つの問題点がある。
(Problems to be Solved by the Invention) However, in the conventional method described above, the focus was on effectively reusing the ladle slag as a secondary raw material for steelmaking (for dephosphorization and desulfurization), so the ladle slag was cooled and crushed. It is then subjected to magnetic separation treatment and recycled as an auxiliary raw material. This method has the following two problems.

第一に、現状では、取鍋スラグの廃棄および役人生石灰
に要する費用に比べて、この方法による再生処理に要す
る費用の方が高く、再利用がかえってコストアップをも
たらす結果となる。
First, at present, the cost required for reprocessing using this method is higher than the cost required for disposing of ladle slag and for processing lime, and reuse results in an increase in cost.

第二に、破砕及び磁選処理中に発生する粉塵が工場内外
の環境衛生上の問題を起こす。
Second, the dust generated during the crushing and magnetic separation process causes environmental health problems inside and outside the factory.

ここに、本発明の目的は、精錬に要するフラックス原単
位の低減に加えて、取鍋スラグに含まれるメタル分の回
収をも図ることができ、しかも従来法の上記問題点をい
ずれも解消することができる方法を提供することである
Here, the purpose of the present invention is to be able to recover the metal content contained in ladle slag in addition to reducing the flux consumption rate required for refining, and to solve all of the above-mentioned problems of the conventional method. The purpose is to provide a method that can be used.

(課題を解決するための手段) 前述の従来法における二つの問題点は、取鍋スラグを再
生のために冷却、破砕および磁選処理するために生ずる
ことから、本発明者らはこれらの工程を省略することに
着目し、取鍋スラグを従来法のように副原料として再利
用するのではなく、全体として製鋼原料として再利用す
るという別の発想に基づき、取鍋スラグを直接精錬炉に
再装入することについて検討した。
(Means for Solving the Problems) The two problems in the conventional method described above arise because the ladle slag is subjected to cooling, crushing, and magnetic separation treatment for regeneration, so the present inventors have improved these steps. Based on a different idea of reusing the ladle slag as a raw material for steelmaking as a whole, rather than reusing it as an auxiliary raw material as in the conventional method, the ladle slag is directly recycled into the smelting furnace. We considered charging.

酸素上・底吹転炉において実験した結果、取鍋スラグを
直接精錬炉へ再装入することによって、精錬炉における
フラックス原単位が低減すると共に、取鍋スラグに含ま
れるメタル分が回収されて出鋼歩留りが向上することを
確認した。すなわち、従来のように脱リン、脱硫用の副
原料ではなく、全体として製鋼原料とするという発想の
転換によって、取鍋スラグの直接再装入により従来の製
鋼コストを大幅に低減できることを見出した。
As a result of experiments in oxygen top/bottom-blown converters, it was found that by directly recharging ladle slag into the smelting furnace, the flux consumption rate in the smelting furnace was reduced, and the metal content contained in the ladle slag was recovered. It was confirmed that the steel tapping yield improved. In other words, by changing the way of thinking to using ladle slag as a raw material for steelmaking as a whole rather than as an auxiliary raw material for dephosphorization and desulfurization as in the past, it was discovered that conventional steelmaking costs could be significantly reduced by directly recharging ladle slag. .

さらに、取鍋スラグの精錬炉への再装入は、安全面や高
温対策上の問題から、スラグを成る程度冷却してから行
うことが好ましいが、この冷却をスクラップ等の冷却材
を入れた排滓鍋(ノロ鍋)に取鍋スラグを排滓すること
により行うことで、取鍋スラグの熱損失を抑えながら短
時間に冷却することができることをも見出し、本発明を
完成した。
Furthermore, when recharging the ladle slag into the smelting furnace, it is preferable to cool the slag to a certain extent due to safety and high temperature measures. The inventors have also discovered that ladle slag can be cooled in a short time while suppressing heat loss by discharging ladle slag into a slag ladle (slag ladle), and have completed the present invention.

なお、本発明の方法では、取鍋スラグを破砕セずに直接
再利用するために、粉塵による環境衛生上の問題は発生
しない。
In addition, in the method of the present invention, since the ladle slag is directly reused without being crushed, environmental hygiene problems due to dust do not occur.

ここに、本発明の要旨とするところは、精錬炉から取鍋
への出鋼に際して熔綱トン当り1〜10kgのフラック
スを取鍋内に添加して復リン防止と溶鋼保温を図り、次
いで取鍋から溶鋼を払い出した後に残る取鍋スラグを精
錬炉に直接再装入することを特徴とする、製鋼過程で発
生する製鋼スラグの処理法である。
The gist of the present invention is to prevent rephosphorization and keep the molten steel warm by adding 1 to 10 kg of flux per ton of molten steel into the ladle when tapping the steel from the refining furnace to the ladle. This is a method for treating steelmaking slag generated during the steelmaking process, which is characterized by directly recharging the ladle slag that remains after discharging molten steel from the ladle into the refining furnace.

本発明の好適態様によれば、前記取鍋スラグを精錬炉に
再装入する前に、これを精錬炉に装入可能なスクラップ
などの冷却材と接触させて冷却しておく。
According to a preferred embodiment of the invention, before the ladle slag is re-charged into the smelting furnace, it is cooled by contacting with a coolant such as scrap that can be charged into the smelting furnace.

このように、本発明は、取鍋スラグ全体を製鋼原料とし
て理解することにより初めて可能となったものであり、
このスラグを副原料と位置づけた従来法とは全く異なる
着想に基づく。そのため、本発明では、従来法では不可
欠であった取鍋スラグの再生処理がなく、従来法の問題
点も同時に解決されたのである。
In this way, the present invention was made possible for the first time by understanding the entire ladle slag as a raw material for steelmaking.
This method is based on a completely different concept from the conventional method, which uses slag as an auxiliary raw material. Therefore, the present invention does not require recycling treatment of ladle slag, which was essential in the conventional method, and the problems of the conventional method are also solved at the same time.

(作用) 次に、添付図面によって本発明をさらに具体的に説明す
る。
(Operation) Next, the present invention will be explained in more detail with reference to the accompanying drawings.

第11は本発明に係る方法の各工程fat〜(flを示
す略式説明図である。
The 11th is a schematic explanatory diagram showing each step fat to (fl) of the method according to the present invention.

+a+工程において、精錬炉である転炉1から取鍋2に
出鋼された溶鋼3には、出鋼時に合金鉄、脱酸剤および
フラックスが投入され、成分の調整と復リン防止および
溶鋼温度低下の防止が図られる。
In the +a+ process, ferroalloy, deoxidizer, and flux are added to the molten steel 3 tapped from the converter 1, which is a refining furnace, into the ladle 2 at the time of tapping, to adjust the composition, prevent rephosphorization, and control the molten steel temperature. This will help prevent the decline.

この工程自体は周知であり、従来と同様に実施できる。This process itself is well known and can be carried out in the same manner as before.

フラックスとしては生石灰が好ましいが、その他のフラ
ックス(例、ドロマイト)も使用できる。フラックスの
添加量は、転炉から取鍋に流入した精錬スラグの量や綱
の脱酸状態によっても異なるが、例えば粒度10〜30
0のものを溶鋼トン当たり1〜10眩投入する。
Quicklime is preferred as the flux, but other fluxes (eg, dolomite) can also be used. The amount of flux added varies depending on the amount of refining slag that has flowed into the ladle from the converter and the deoxidization state of the wire, but for example, the amount of flux added is 10 to 30.
0 to 10 to 10 per ton of molten steel.

次いで、取鍋内の溶鋼は(bl工程(鋳込み工程)でタ
ンデイシュ4へ払い出され、図示のように連続鋳造法あ
るいは造塊法により鋳型に流出させる。
Next, the molten steel in the ladle is discharged to the tundish 4 in a (bl process (casting process)), and is caused to flow into a mold by a continuous casting method or an ingot forming method as shown in the figure.

この際、取鍋2内に残った取鍋スラグ5は(cl工程で
ノロ鍋6などに排滓される。この取鍋スラグ5は、その
ままあるいは冷却後、工程(dlで運搬車7によって運
ばれ、工程+81で精錬炉(転炉)8に例えばスクラッ
プシュートから再装入され、製鋼原料として利用される
。すなわち、取鍋スラグの再装入の前に、その再生処理
は行わない。
At this time, the ladle slag 5 remaining in the ladle 2 is drained into a slag ladle 6 or the like in the (cl process). Then, in step +81, the ladle slag is re-charged into the refining furnace (converter) 8 from, for example, a scrap chute, and used as a raw material for steelmaking.In other words, the ladle slag is not recycled before being re-charged.

取鍋内において、添加されたフラックスはプリメルトの
状態にある。取鍋スラグは、このフラックスに脱酸生成
物(AQzos 、Sing、MnO等)や取鍋に流入
した精錬スラグが混合して生成した複合スラグである。
Inside the ladle, the added flux is in a pre-melt state. Ladle slag is a composite slag produced by mixing this flux with deoxidized products (AQzos, Sing, MnO, etc.) and refining slag that has flowed into the ladle.

取鍋スラグの代表的な組成を次に示す。The typical composition of ladle slag is shown below.

この組成および後述する実施例からも明らかなように、
本発明により、再生処理を省略して精錬炉に取鍋スラグ
を直接再装入しても、滓化促進効果および脱リン、脱硫
能は充分に維持されるため、精錬炉における生石灰原単
位の低減に充分寄与する。
As is clear from this composition and the examples described below,
According to the present invention, even if ladle slag is directly re-charged into the smelting furnace without regenerating treatment, the slag promotion effect and dephosphorization and desulfurization ability are sufficiently maintained. fully contributes to the reduction.

加えて、本発明の方法では、精錬炉に直接再装入された
取鍋スラグがメタル分を含有しており、これが鋼中に移
行することにより出鋼歩留まりも向上する。また、本発
明の方法では、スラグ中のメタル分が製鋼原料として有
効利用されるため、取鍋からタンデイシュへのi@鋼の
払い出しを早めに終了させることによりスラグ中のメタ
ル含有量が多くなっても、メタル分の損失にはならない
In addition, in the method of the present invention, the ladle slag directly re-charged into the refining furnace contains metal, and this transfers into the steel, thereby improving the tapping yield. In addition, in the method of the present invention, the metal content in the slag is effectively used as a raw material for steelmaking, so the metal content in the slag can be increased by ending the discharging of the i@steel from the ladle to the tundish early. However, there is no loss of metal.

そのため、高品質の鋼を容易に製造することができる。Therefore, high quality steel can be easily produced.

本発明の方法による精錬炉への取鍋スラグの再装入量は
、約10〜20kg/ を程度が好ましい9通常は取鍋
スラグの全量を精錬炉に戻すことができるが、取鍋スラ
グの生成量あるいはその組成によっては一部のみを精錬
炉に再装入し、残りは他用途に向けるか、廃棄する。
The amount of ladle slag to be re-charged into the smelting furnace according to the method of the present invention is preferably about 10 to 20 kg/kg.9 Normally, the entire amount of ladle slag can be returned to the smelting furnace; Depending on the amount produced or its composition, only a portion may be reinjected into the smelting furnace, and the remainder may be used for other purposes or discarded.

このように、取鍋スラグを精錬炉で再利用する場合、精
錬炉におけるスラグの冷却能を考慮すると、再装入時の
スラグ温度が高いほど有利であり、出鋼歩留まりの向上
効果も大きくなる。その意味では、ノロ鍋6に排滓され
た取鍋スラグ5は、冷却せずに直ちに熱滓状態で精錬炉
に再利用することが好ましい。
In this way, when ladle slag is reused in a smelting furnace, considering the cooling capacity of the slag in the smelting furnace, the higher the slag temperature at the time of recharging, the more advantageous it is, and the greater the effect of improving the steel tapping yield. . In this sense, it is preferable that the ladle slag 5 discharged into the slag ladle 6 is immediately reused in a hot slag state in the smelting furnace without being cooled.

しかし、取鍋スラグの温度があまりに高いと、例えばス
クラップシュートから精錬炉に再装入する際に、雨天時
には水蒸気爆発などの危険性があり、またシュートなど
の装入経路および計重機の防熱対策も必要となる。した
がって、実際の操業においては、これらの問題点を考慮
して、取鍋スラグを成る程度冷却してから、精錬炉に再
装入することが有利である。
However, if the temperature of the ladle slag is too high, there is a risk of a steam explosion during rainy weather when recharging it into the smelting furnace from the scrap chute, for example, and heat insulation measures are taken for the charging route such as the chute and the weighing machine. is also required. Therefore, in actual operation, taking these problems into consideration, it is advantageous to cool the ladle slag to a certain extent before recharging it into the smelting furnace.

取鍋スラグは、溶鋼を払い出してから排滓鍋に排滓され
た直後はまだ溶融状態であり、そのまま自然冷却で放熱
させる場合には冷却に長時間を要する。したがって、排
滓鍋の回転率が低下し、徘滓鍋数を増加させなければな
らない。さらに、冷却中に高温に曝されるため排滓鍋に
熱変形が生じ、鍋寿命が低下してコストアンプにつなが
る。
The ladle slag is still in a molten state immediately after discharging the molten steel and being discharged into the slag ladle, and it takes a long time to cool it down if it is allowed to radiate heat by natural cooling. Therefore, the rotation rate of the slag pan is reduced, and the number of slag pans must be increased. Furthermore, since the slag pan is exposed to high temperatures during cooling, thermal deformation occurs in the slag pan, shortening the life of the pan and increasing costs.

また、取鍋スラグの冷却を単に放熱により行うと、温度
降下によりスラグから失われた熱量は損失となり、有効
利用されない。
Furthermore, if the ladle slag is simply cooled by heat radiation, the amount of heat lost from the slag due to temperature drop becomes a loss and is not effectively utilized.

本発明の好I!1m様によれば、この冷却中の熱損失を
最小にし、かつ冷却時間を短縮させることのできるスラ
グ冷却法として、冷却材としてスクラップなどの精錬炉
に装入可能な材料を使用し、これを取鍋スラグと接触さ
せることにより取鍋スラグの冷却を行う、具体的には、
例えば、冷却材を予め排滓鍋に入貢しておき、この排滓
鍋に取鍋からスラグを排滓することで、冷却材による取
鍋スラグの冷却を行うことができる。
Advantages of the present invention! According to Mr. 1m, as a slag cooling method that can minimize heat loss during cooling and shorten cooling time, it uses materials that can be charged into the smelting furnace, such as scrap, as a coolant. Cooling the ladle slag by bringing it into contact with the ladle slag, specifically,
For example, the ladle slag can be cooled by the coolant by supplying the coolant to a slag ladle in advance and discharging the slag from the ladle to the slag ladle.

冷却材としては、スクラップの他に冷故銑、あるいは鉄
鉱石などの酸化鉄系冷却材なども利用できる0通常、取
鍋から排滓時の取鍋スラグの温度は約1400℃前後で
あるが、このような冷却法によりスラグ温度を約800
〜1000℃程度まで低下させてから、精錬炉に再装入
することが好ましい、スラグの冷却速度は排滓鍋に入貢
した冷却材量に依存するので、スラグ温度あるいはスラ
グ冷却時間をこの冷却材大置量により制御することがで
きる。
In addition to scrap, cooled pig iron or iron oxide coolants such as iron ore can be used as a coolant.Normally, the temperature of ladle slag when it is discharged from the ladle is around 1400℃. , by such cooling method, the slag temperature can be reduced to about 800℃.
It is preferable to cool the slag to about 1000°C before recharging it into the smelting furnace.The cooling rate of the slag depends on the amount of coolant added to the slag pan, so the slag temperature or slag cooling time is It can be controlled by the amount of wood placed.

上述した冷却法によれば、取鍋スラグの冷却と同時に、
冷却材として使用したスクラップなどの材料を昇温させ
ることもでき、熱損失が最小となる。そのため、排滓鍋
中の取鍋スラグと冷却材との混合物を精錬炉に製鋼原料
として投入した場合の冷却能が小さくなることから、出
鋼の歩留り向上効果が大きい。また、取鍋スラグの冷却
時間を大幅に短縮し、取鍋スラグを最短時間で精錬炉に
直接再装入することが可能となり、排滓鍋の回転率を上
げ、鍋寿命を伸ばすことができる。さらに、取鍋スラグ
に含有されるメタル分の排滓鍋内面への焼付き防止効果
もあることが判明した。
According to the cooling method described above, at the same time as cooling the ladle slag,
Materials used as coolant, such as scrap, can also be heated, minimizing heat loss. Therefore, when the mixture of ladle slag and coolant in the slag ladle is fed into the refining furnace as a raw material for steelmaking, the cooling capacity is reduced, so the effect of improving the yield of steel tapping is large. In addition, the cooling time of the ladle slag is significantly shortened, and the ladle slag can be directly re-charged into the smelting furnace in the shortest possible time, increasing the rotation rate of the slag ladle and extending the life of the ladle. . Furthermore, it has been found that the metal contained in the ladle slag has the effect of preventing seizure of the inner surface of the slag ladle.

この冷却法を、第1図により説明すると、(fl工程に
示したように、ノロ鍋6に予めスクラップ9を入貢して
おき、その中に熔融状態の取鍋スラグ5をfc)工程に
示す如く流入させるのである。その後は、同様に(dl
の運搬工程を経て、te+工程で精錬炉8に製鋼原料と
して再装入される。空ノロ鍋6には、スクラップ9が再
び入貢され、次回の排滓に備える。
To explain this cooling method with reference to FIG. 1, (as shown in the fl process, scrap 9 is placed in the slag ladle 6 in advance, and the molten ladle slag 5 is poured into the fc process). It flows in as shown. After that, similarly (dl
After the transportation process, it is re-charged into the refining furnace 8 as a steelmaking raw material in the te+ process. The empty slag pot 6 is loaded with scrap 9 again to prepare for the next slag discharge.

このように、取鍋スラグを精錬炉に再装入する前に冷却
する場合には、上述したスクラップなどを冷却材として
利用した冷却法を採用することが特に有利であるが、そ
の他の方法で取鍋スラグを冷却することも可能であるこ
とは言うまでもない。
In this way, when cooling the ladle slag before recharging it into the smelting furnace, it is particularly advantageous to employ the cooling method described above that uses scrap etc. as a coolant, but there are other methods. It goes without saying that it is also possible to cool the ladle slag.

次に、実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

IJmli上 250トンの酸素上・底吹き転炉による炭素鋼精錬の実
施例を以下に示す。
An example of carbon steel refining using a 250 ton oxygen top/bottom blowing converter on IJmli is shown below.

本例では、第1図に示すように、転炉から取鍋へ?′8
鋼を出鋼する際に、流入した精錬スラグから溶鋼への復
リン防止と溶鋼温度低下防止の目的で、フラックス(生
石灰)  5kg/lを添加し、他に合金鉄(Mn合金
> 10kg八および脱酸剤(AQ、Si合金)4kg
/lも併せて投入した0次いで、溶鋼を取鍋から払い出
した後、取鍋に残った取鍋スラグの組成を分析したとこ
ろ、次の第2表に示す通りであった。
In this example, as shown in Figure 1, from the converter to the ladle? '8
When tapping steel, 5 kg/l of flux (quicklime) is added in order to prevent rephosphorization from the refined slag that has flowed into the molten steel and to prevent a drop in the temperature of the molten steel. Deoxidizer (AQ, Si alloy) 4kg
Then, after the molten steel was discharged from the ladle, the composition of the ladle slag remaining in the ladle was analyzed, and the composition was as shown in Table 2 below.

取鍋に残ったスラグを直ちにノロ鍋に移し、冷却を行わ
ずに、熱滓状態で転炉に各種の量で再装入して転炉吹錬
を行った。なお、転炉の吹錬初期には通常通り生石灰を
投入した。
The slag remaining in the ladle was immediately transferred to a slag ladle, and without cooling, various amounts of slag were charged into the converter in the form of hot slag to perform converter blowing. At the beginning of the converter blowing process, quicklime was added as usual.

第2図は、本例の一連の操業データから、溶銑中のSi
 (重量%)と生石灰原単位(kg/l、溶鋼1を当た
りの生石灰所要量(kg))とを、取鍋スラグを使用し
ない場合と、取鍋スラグを約10および約20kg/ 
を添加した場合とで比較して、グラフにまとめた結果を
示す。
Figure 2 shows Si in hot metal based on a series of operational data for this example.
(wt%) and quicklime basic unit (kg/l, required amount of quicklime (kg) per 1 molten steel), when ladle slag is not used, when ladle slag is used, about 10 kg/l and about 20 kg/l
The results are summarized in a graph comparing the results with the addition of .

第2図の結果から明らかなように、本発明にしたがって
取鍋スラグを転炉に再装入することにより、従来の通常
の吹錬で転炉に投入していた生石灰原単位を1.添加ス
ラグl kg/を当たり0.3〜0.7kg/を削減す
ることができた。
As is clear from the results in FIG. 2, by recharging the ladle slag into the converter according to the present invention, the unit consumption of quicklime, which was charged into the converter in conventional blowing, was reduced by 1. It was possible to reduce the amount of added slag by 0.3 to 0.7 kg/kg/kg.

また、取鍋スラグを添加しない場合にはホタル石を平均
して1.0 kg/を使用することが必要であったが、
本発明方法により取鍋スラグを10kg/を添加した場
合にはホタル石の使用!(kg/l)はゼロとなった。
In addition, when ladle slag was not added, it was necessary to use 1.0 kg of fluorspar on average.
When 10 kg/l of ladle slag is added according to the method of the present invention, fluorite is used! (kg/l) became zero.

取鍋スラグの使用によりホタル石を使用しないで吹錬が
可能になったのである。
The use of ladle slag made it possible to perform blowing without using fluorite.

次の第3表に、取鍋スラグを添加しない従来の吹錬法と
、取鍋スラグ20kir/lを上記と同様に熱滓(lA
度約800℃)または冷滓(常温)として添加して吹錬
した場合とについて、生石灰使用量、鉄鉱石使用量並び
に出鋼歩留りの代表例を示した。
The following Table 3 shows the conventional blowing method without adding ladle slag and the hot slag (lA
Typical examples of the amount of quicklime used, the amount of iron ore used, and the tapping yield are shown for cases in which the amount of quicklime used, the amount of iron ore used, and the steel tapping yield are shown for cases where the slag is added as cold slag (at room temperature) and blown.

取鍋スラグの添加が出鋼量に寄与することがわかる、特
に、熱滓を添加した場合に出鋼量歩留まりが高くなり、
またこの場合、冷却材として鉄鉱石の使用量も多くなっ
ている。なお、この場合の取鍋スラグの冷却は、スクラ
ップにより行った。
It can be seen that the addition of ladle slag contributes to the yield of steel, especially when hot slag is added, the yield of steel produced increases.
In this case, the amount of iron ore used as a coolant is also increased. In this case, the ladle slag was cooled using scrap.

第3表 出鋼歩留り比較 実施例1と同様にして転炉から出鋼した溶鋼を取鍋内で
処理した。取鍋から溶鋼を払い出した後、残った取鍋ス
ラグ6、θトンを、予めスクラップを0〜2.0トン入
置しておいたノロ鍋に排滓し、取鍋スラグが約800℃
に達するまでの冷却時間を測定した。
Table 3 Comparison of Steel Tapping Yield Molten steel tapped from a converter in the same manner as in Example 1 was processed in a ladle. After discharging the molten steel from the ladle, the remaining ladle slag 6,0 tons is drained into a ladle in which 0 to 2.0 tons of scrap has been placed in advance, and the ladle slag is heated to about 800℃.
The cooling time until reaching the temperature was measured.

ノロ鍋に大雪したスクラップ量と冷却時間との関係を第
3図に示す、スクラップを入れなかった時は冷却に25
0〜300分を要したが、2.0トン入れると20分程
度で冷却することができる。すなわち、スクラップを大
雪したノロ鍋に取鍋スラグを排滓することにより、冷却
時間が顕著に短縮されることがわかる。また、図から明
らかなように、入貢スクラップ量の増大と冷却時間の短
縮は直線的に相関し、スクラップ量により冷却時間を制
御することができることがわかる。
Figure 3 shows the relationship between the amount of scrap deposited in the ladle and the cooling time.
It took 0 to 300 minutes, but if 2.0 tons were added, it could be cooled in about 20 minutes. That is, it can be seen that the cooling time is significantly shortened by discharging the ladle slag into a slag ladle filled with scraps. Furthermore, as is clear from the figure, the increase in the amount of contributed scrap and the shortening of the cooling time are linearly correlated, and it can be seen that the cooling time can be controlled by the amount of scrap.

こうして冷却されたノロ鍋内の取鍋スラグを添加して転
炉吹錬を行った場合にも、実施例1に示したのと同様の
効果が得られ、生石灰原単位はほぼ半減し、ホタル石の
使用量は略ゼロとなり、出鋼歩留まりも第3表の冷涼添
加の場合と同程度に改善された。
Even when the ladle slag in the ladle cooled in this way was added to perform converter blowing, the same effect as shown in Example 1 was obtained, the quicklime consumption rate was almost halved, and the firefly The amount of stone used was almost zero, and the steel tapping yield was improved to the same level as in the case of cold addition shown in Table 3.

(発明の効果) 以上詳述したように、本発明によればフラフクスの添加
により生成した取鍋スラグを、従来のように手間のかか
る再生処理を省略し、製鋼原料として直接精錬炉に再装
入することによって、再生に伴うコスト削減を図るとと
もに、再生処理中の粉砕に伴う粉塵発生の環境問題も回
避できる。
(Effects of the Invention) As described in detail above, according to the present invention, the ladle slag produced by adding fluffox can be directly reloaded into the smelting furnace as a raw material for steelmaking, without requiring the conventional and time-consuming recycling process. By using this method, it is possible to reduce the cost associated with recycling and also avoid the environmental problem of dust generation caused by pulverization during the recycling process.

また、取鍋スラグの直接再装入によって、生石灰、ホタ
ル石原単位の低減に加えて、スラグ中のメタル分が鋼に
移行すること、および再装入される取鍋スラグの温度を
従来法とは異なり高温に保持できることから出鋼歩留り
が向上するという経済効果が発揮される。
In addition, by directly recharging ladle slag, in addition to reducing the unit consumption of quicklime and fluorite, the metal content in the slag is transferred to steel, and the temperature of the ladle slag to be recharged is lower than that of conventional methods. Unlike steel, it can be maintained at a high temperature, which has the economical effect of improving the tapping yield.

本発明の好i!i態様においては、スクラップなどの冷
却材により排滓された取鍋スラグを安全面や装置面で問
題がなくなる程度に冷却する。この方法による冷却は、
短時間でスラグ温度を下げることができるため、排滓鍋
の回転率を上げ、鍋寿命の低下を防ぐこともできる。ま
た、取鍋スラグの冷却と同時にスクラップが昇温される
ことから、これらを製鋼原料として再投入した場合の冷
却能が小さく、出鋼歩留りが向上する。さらに、スクラ
ップの量により冷却速度や冷却温度を制御することがで
き、操作も容易である。
The advantages of the present invention! In the i aspect, the ladle slag that has been discharged is cooled by a coolant such as scrap to such an extent that there are no problems in terms of safety or equipment. Cooling by this method is
Since the slag temperature can be lowered in a short time, the rotation rate of the slag ladle can be increased and the life of the ladle can be prevented from decreasing. Furthermore, since the temperature of the scrap is raised at the same time as the ladle slag is cooled, the cooling capacity when these are reintroduced as raw materials for steelmaking is small, and the steel tapping yield is improved. Furthermore, the cooling rate and cooling temperature can be controlled depending on the amount of scrap, and the operation is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる方法の取鍋スラグの再装入フ
ローの一例を図示する工程図;第2図は、溶銑のSi量
と生石灰原単位との関係を取鍋スラグを添加しない場合
と、約10kg/lおよび約20kr八添加した場合と
について示すグラフ;および 第3図は、冷却に使用したスクラップの大置量と取鍋ス
ラグの冷却時間との関係を示すグラフである。
Fig. 1 is a process diagram illustrating an example of the recharging flow of ladle slag in the method according to the present invention; Fig. 2 shows the relationship between the amount of Si in hot metal and the basic unit of quicklime without adding ladle slag. and FIG. 3 is a graph showing the relationship between the large amount of scrap used for cooling and the cooling time of ladle slag.

Claims (2)

【特許請求の範囲】[Claims] (1)精錬炉から取鍋への出鋼に際して溶鋼トン当り1
〜10kgのフラックスを取鍋内に添加して復リン防止
と溶鋼保温を図り、次いで取鍋から溶鋼を払い出した後
に残る取鍋スラグを精錬炉に直接再装入することを特徴
とする、製鋼過程で発生する製鋼スラグの処理法。
(1) 1 per ton of molten steel when tapping from the refining furnace to the ladle
A steelmaking process characterized by adding ~10 kg of flux into the ladle to prevent rephosphorization and to keep the molten steel warm, and then directly recharging the ladle slag that remains after discharging the molten steel from the ladle into the refining furnace. A method for treating steelmaking slag generated during the process.
(2)前記取鍋スラグを精錬炉に再装入する前に、これ
を精錬炉に装入可能な冷却材と接触させて冷却すること
を特徴とする、請求項1記載の方法。
2. The method according to claim 1, wherein the ladle slag is cooled by contacting with a coolant capable of being introduced into the smelting furnace before being reinjected into the smelting furnace.
JP63251353A 1988-06-10 1988-10-05 Method for treating steelmaking slag producing at steelmaking process Pending JPH0277516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251353A JPH0277516A (en) 1988-06-10 1988-10-05 Method for treating steelmaking slag producing at steelmaking process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-143255 1988-06-10
JP14325588 1988-06-10
JP63251353A JPH0277516A (en) 1988-06-10 1988-10-05 Method for treating steelmaking slag producing at steelmaking process

Publications (1)

Publication Number Publication Date
JPH0277516A true JPH0277516A (en) 1990-03-16

Family

ID=26475030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251353A Pending JPH0277516A (en) 1988-06-10 1988-10-05 Method for treating steelmaking slag producing at steelmaking process

Country Status (1)

Country Link
JP (1) JPH0277516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397379A (en) * 1993-09-22 1995-03-14 Oglebay Norton Company Process and additive for the ladle refining of steel
JP2009221560A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Method for recycling slag in ladle
CN102399917A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 Method for recycling residual hot steel slag in continuous casted steel ladle
JP2013064188A (en) * 2011-09-20 2013-04-11 Nippon Steel & Sumitomo Metal Corp Method for recycling steelmaking slag as resource
JP2014031563A (en) * 2012-08-06 2014-02-20 Nippon Steel & Sumitomo Metal Method for treating a lead-containing ladle slag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397379A (en) * 1993-09-22 1995-03-14 Oglebay Norton Company Process and additive for the ladle refining of steel
JP2009221560A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Method for recycling slag in ladle
CN102399917A (en) * 2010-09-07 2012-04-04 鞍钢股份有限公司 Method for recycling residual hot steel slag in continuous casted steel ladle
JP2013064188A (en) * 2011-09-20 2013-04-11 Nippon Steel & Sumitomo Metal Corp Method for recycling steelmaking slag as resource
JP2014031563A (en) * 2012-08-06 2014-02-20 Nippon Steel & Sumitomo Metal Method for treating a lead-containing ladle slag

Similar Documents

Publication Publication Date Title
JP5292870B2 (en) Reuse method of slag in ladle
JP5807720B2 (en) Hot metal refining method
US4537629A (en) Method for obtaining high purity ductile iron
JP4999483B2 (en) Manufacturing method of stainless steel
US4105439A (en) Method for production of refined steel
JP5063966B2 (en) Manufacturing method of molten steel
JPH0277516A (en) Method for treating steelmaking slag producing at steelmaking process
JP5455193B2 (en) Stainless steel manufacturing method
JP4065097B2 (en) Converter steelmaking
US3463629A (en) Manufacturing steel and alloys of iron
JP2011084811A (en) Method for producing molten pig iron
KR100544422B1 (en) Method for Manufacturing Molten Steel
JPH08193210A (en) Method for using metal in molten slag
JPH01176040A (en) Method for recovering metal from molten iron desulfurized slag
US4120696A (en) Process for the production of steel
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JP3158912B2 (en) Stainless steel refining method
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JP3924059B2 (en) Steelmaking method using multiple converters
KR940008927B1 (en) Mill arrangement with temporary storage vessel and process for operating the same
TWI802183B (en) BOF steelmaking method
SU981381A1 (en) Method for producing iron and its alloys from iron ore materials
US3690867A (en) Electric-arc steelmaking
JP4224910B2 (en) Hot treatment method for molten slag produced during hot metal decarburization treatment
JPH0978115A (en) Method for recycling dust in converter steelmaking method