JP2003286523A - Method for recycling magnesia-based waste brick - Google Patents

Method for recycling magnesia-based waste brick

Info

Publication number
JP2003286523A
JP2003286523A JP2002093212A JP2002093212A JP2003286523A JP 2003286523 A JP2003286523 A JP 2003286523A JP 2002093212 A JP2002093212 A JP 2002093212A JP 2002093212 A JP2002093212 A JP 2002093212A JP 2003286523 A JP2003286523 A JP 2003286523A
Authority
JP
Japan
Prior art keywords
magnesia
based waste
waste brick
recycling
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093212A
Other languages
Japanese (ja)
Inventor
Takamasa Imai
崇雅 今井
Norio Honjo
則夫 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002093212A priority Critical patent/JP2003286523A/en
Publication of JP2003286523A publication Critical patent/JP2003286523A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recycling a magnesia-based waste brick once used for a ladle or the like. <P>SOLUTION: The method for recycling the magnesia-based waste brick is characterized by using the magnesia-based waste brick crushed to sizes of 50 mm or less, as a part of an auxiliary material used when melting a raw metallic material and the auxiliary material with the use of an electric furnace having a furnace wall of the magnesia-based refractor, while controlling an MgO content in the slag to 10-20 wt.%. The use of the magnesia-based waste brick for a part of the auxiliary material reduces an eroding amount of the furnace wall made from the magnesia-based refractory in the electric furnace, without increasing power consumption so mush to melt it. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、マグネシア系廃レ
ンガの再利用方法、詳細にはマグネシア系廃レンガをマ
グネシア系耐火物の炉壁を有する電気炉の副原料の一部
として再利用する方法に関する。 【0002】 【従来の技術】従来、取鍋等に用いているMgO−C,
MgO−Cr,Al2 3 −MgO−C等のマグネシア
系レンガは、溶損等による摩耗が大きくなって寿命がく
ると、炉壁から取り外されて廃棄物になっている。この
廃レンガは、用途がないために埋め立て処分されてい
た。しかし、最近埋め立て処分をするにしても廃棄物処
分場が少なく、かつ遠くなっておりきており、また廃レ
ンガは重いため、処分場の経費も運搬の経費もますます
高くなってきている。 【0003】一方、マグネシア系耐火物の炉壁を有する
電気炉は、その炉壁に上記MgOを主成分とするレンガ
を用いているものである。最近、このマグネシア系耐火
物の炉壁を有する電気炉は、超高出力操業をするため、
炉壁の溶損が激しくなり、その溶損部の補修に長時間を
要している。 【0004】マグネシア系耐火物の炉壁を有する転炉の
炉壁の溶損を保護する方法として、吹錬終了前4〜5分
のときに吹錬終了時のスラッグ中MgOが6〜9重量%
となるように調整した量の軽焼ドロマイト等のMgO含
有物質を添加して吹錬を続けると共に、吹錬終了後排滓
時の残留スラグ中にも軽焼ドロマイト等のMgO含有物
質を投入富化して炉体を揺動させ該MgO富化スラグを
内壁面にコーテングすることが特公昭56−12293
号公報に開示されている。しかし、上記公報には、Mg
O含有物質として軽焼ドロマイトを用いることが記載さ
れているが、マグネシア系レンガを用いることが開示さ
れていなばかりでなく、電気炉の操業における副原料の
一部として使用することも開示されていない。 【0005】 【発明が解決しようとする課題】本発明は、マグネシア
系廃レンガを再利用する方法を提供することを課題とす
るものである。 【0006】 【課題を解決するための手段】上記課題を解決するた
め、本発明のマグネシア系廃レンガの再利用方法におい
ては、マグネシア系耐火物の炉壁を有する電気炉を用い
て原料の金属材料および副原料を溶解するときの副原料
の一部として、破砕したマグネシア系廃レンガをスラグ
中のMgOが10〜20重量%になるよう装入または添
加して使用することである。 【0007】 【発明の実施の形態】次に、本発明のマグネシア系廃レ
ンガの再利用方法を詳細に説明する。本発明のマグネシ
ア系廃レンガの再利用方法は、マグネシア系耐火物の炉
壁を有する電気炉を用いて原料の金属材料および副原料
を溶解するときの副原料の一部として、マグネシア系廃
レンガをスラグ中のMgOが10〜20重量%になるよ
う使用することであるが、上記マグネシア系耐火物の炉
壁を有する電気炉は、MgOを主成分とする焼成または
非焼成レンガ、不定型のマグネシア系耐火物等を使用し
ているエルー式アーク炉、高周波溶解炉等の電気炉であ
る。 【0008】本発明のマグネシア系廃レンガの再利用方
法において再利用できるマグネシア系廃レンガは、取
鍋、エルー式アーク炉等の電気炉、高周波溶解炉等の炉
に使用された後廃棄物となったMgO−C,MgO−C
r,Al2 3 −MgO−C等のMgOを主成分とする
焼成または非焼成レンガである。本発明において、再利
用するマグネシア系廃レンガをスラグ中のMgOが10
〜20重量%になるように使用するのは、スラグ中のM
gOが10重量%未満でも、また20重量%を超えても
融点が高くなるため、溶解に必要な電力を多く必要とす
るので溶解コストが高くなり、また10重量%より少な
いと、マグネシア系廃レンガの使用量が少なくなるとと
もに、炉壁のマグネシア系レンガの溶損量を少なくする
効果が小さくなるからである。 【0009】上記スラグ中に添加する粉砕したマグネシ
ア系廃レンガの大きさは、細かいと溶解時に飛散すると
ともに、粉砕するための経費が高くなり、また大き過ぎ
ると溶解するのに時間がかかるので、直径が50mm以
下にするのが好ましい。また、上記粉砕したマグネシア
系廃レンガを電気炉に添加する時期は、溶解中のスラグ
に投入してもよいが、溶解開始前に原料の金属材料と一
緒に装入しておいたほうが、サイズの大きな廃レンガが
未溶融のまま残るのを防止することができ、また最初か
らスラグ中のMgO含有量を高くしたほうが炉壁レンガ
の溶損量を少なくなるので好ましい。 【0010】 【実施例】以下本発明の実施例について説明する。溶解
能力25トンのエルー式電気炉に下記表1に示す重量の
鋼原料、副原料およびマグネシア系廃レンガを装入し、
通電して溶解および精錬(溶解および精錬時間:1.5
時間)して、約1700℃で出鋼およびスラグを排出し
た。この排出したスラグの成分組成(サンプルは溶解終
了直前に採取した。)は表1に記載したとおりである。
また、操業によって生じた電気炉炉壁からのMgO溶損
量は、各チャージ毎のスラグ組成、重量等の実測値から
計算(計算方法は、表1の下に記載する。)して求め
た。その結果を下記表1に示す。 【0011】 【表1】 【0012】上記表1の結果によると、電気炉炉壁のM
gO溶損量は、本発明例が24〜88kgであり、比較
例が109と118kgであった。本発明例は比較例と
比較すると約4.9分の1〜1.2分の1であった。 【0013】 【効果】本発明のマグネシア系廃レンガの再利用方法
は、上記構成にしたことにより、次のような優れた効果
を奏する。 (1)粉砕したマグネシア系廃レンガをスラグ中のMg
Oが10〜20重量%になるように添加することによっ
て、溶解するための使用電力量をあまり多くすることな
く電気炉のマグネシア系耐火物の炉壁の溶損量を少なく
することができる。 (2)高温に加熱することができる電気炉であるので、
融点の高いマグネシア系廃レンガを溶かすこと(利用す
る)ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recycling magnesia-based waste bricks, and more particularly, to a method for reusing magnesia-based waste bricks with a magnesia-based refractory furnace wall. The present invention relates to a method of reusing as a part of an auxiliary material. [0002] Conventionally, MgO-C,
MgO-Cr, magnesia bricks such as Al 2 O 3 -MgO-C, when wear due to erosion, etc. becomes in life comes large, have become waste removed from the oven wall. This waste brick had been landfilled for no use. However, even if landfills are used recently, the number of waste disposal sites is becoming small and distant, and the cost of disposal sites and transportation costs are increasing due to the heavy waste bricks. On the other hand, an electric furnace having a magnesia-based refractory furnace wall uses the above-mentioned brick mainly composed of MgO for the furnace wall. Recently, electric furnaces with magnesia-based refractory furnace walls have been operating at ultra-high power,
The melting of the furnace wall becomes severe, and it takes a long time to repair the damaged part. As a method for protecting the furnace wall of a converter having a magnesia-based refractory furnace wall from melting, 4 to 5 minutes before the end of the blowing, MgO in the slug at the end of the blowing is 6 to 9% by weight. %
An MgO-containing substance such as lightly-burned dolomite is added in such an amount as to adjust so that the blowing is continued, and the MgO-containing substance such as lightly-burned dolomite is also added to the residual slag at the time of discharging after the completion of blowing. And the furnace body is rocked to coat the MgO-enriched slag on the inner wall surface.
No. 6,086,045. However, the above publication discloses that Mg
Although the use of lightly fired dolomite as an O-containing substance is described, not only the use of magnesia-based bricks is disclosed, but also the use thereof as a part of an auxiliary material in the operation of an electric furnace is disclosed. Absent. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for recycling magnesia-based waste bricks. [0006] In order to solve the above-mentioned problems, in the method of recycling magnesia-based waste bricks of the present invention, a raw material metal is produced by using an electric furnace having a magnesia-based refractory furnace wall. As a part of the auxiliary material when dissolving the material and the auxiliary material, crushed magnesia-based waste brick is charged or added so that MgO in the slag becomes 10 to 20% by weight and used. Next, a method for recycling magnesia-based waste bricks of the present invention will be described in detail. The method for recycling magnesia-based waste bricks of the present invention is a method for reusing a magnesia-based waste brick as a part of a sub-raw material when melting a raw metal material and a sub-raw material using an electric furnace having a furnace wall of magnesia-based refractory. Is used so that the MgO in the slag is 10 to 20% by weight. However, the electric furnace having the magnesia-based refractory furnace wall includes a fired or unfired brick containing MgO as a main component, and an irregular type. Electric furnaces such as aeru-type arc furnaces and high-frequency melting furnaces using magnesia-based refractories. The magnesia-based waste brick that can be reused in the method for recycling magnesia-based waste brick of the present invention can be used as a waste material after being used in a ladle, an electric furnace such as an Eru type arc furnace, or a furnace such as a high-frequency melting furnace. MgO-C, MgO-C
r, it is calcined or uncalcined bricks mainly of MgO, such as Al 2 O 3 -MgO-C. In the present invention, the magnesia-based waste brick to be reused has a MgO content of 10% in slag.
The amount used to be 〜20% by weight is the amount of M in the slag.
If the gO is less than 10% by weight or more than 20% by weight, the melting point becomes high, so that a large amount of electric power is required for melting, so that the melting cost becomes high. This is because the amount of the brick used is reduced and the effect of reducing the amount of erosion of the magnesia brick on the furnace wall is reduced. If the size of the crushed magnesia-based waste brick added to the slag is too small, it is scattered at the time of melting, and the cost for crushing becomes high. If it is too large, it takes time to melt. Preferably, the diameter is 50 mm or less. In addition, when the above-mentioned crushed magnesia-based waste brick is added to the electric furnace, it may be charged into the slag being melted, but it is better to charge it together with the raw metal material before starting melting. It is preferable to increase the content of MgO in the slag from the beginning, because the amount of erosion of the furnace wall brick is reduced. An embodiment of the present invention will be described below. Steel raw materials, auxiliary raw materials and magnesia-based waste bricks having the weights shown in Table 1 below were charged into a 25-ton melting aileu electric furnace.
Melting and refining by applying current (melting and refining time: 1.5
Hour) and tapping and slag were discharged at about 1700 ° C. The composition of the discharged slag (sample was collected immediately before the end of dissolution) is as described in Table 1.
In addition, the amount of MgO erosion from the furnace wall of the electric furnace caused by the operation was calculated from the actually measured values of the slag composition, weight, and the like for each charge (the calculation method is described below Table 1). . The results are shown in Table 1 below. [Table 1] [0012] According to the results in Table 1 above, the M
The gO erosion amount was 24 to 88 kg for the examples of the present invention, and 109 and 118 kg for the comparative examples. The present invention example was about 4.9-1-1.2 as compared with the comparative example. The method for recycling magnesia-based waste bricks of the present invention has the following excellent effects by adopting the above configuration. (1) Pulverized magnesia-based waste brick is treated with Mg in slag.
By adding O in an amount of 10 to 20% by weight, the amount of erosion of the magnesia-based refractory furnace wall of the electric furnace can be reduced without increasing the amount of electric power used for melting. (2) Since it is an electric furnace that can be heated to a high temperature,
Magnesia waste brick with high melting point can be melted (utilized).

Claims (1)

【特許請求の範囲】 【請求項1】 マグネシア系耐火物の炉壁を有する電気
炉を用いて原料の金属材料および副原料を溶解するとき
の副原料の一部として、破砕したマグネシア系廃レンガ
をスラグ中のMgOが10〜20重量%になるように使
用することを特徴とするマグネシア系廃レンガの再利用
方法。
Claims: 1. A crushed magnesia-based waste brick as a part of an auxiliary material when melting a metal material and an auxiliary material using an electric furnace having a furnace wall of magnesia-based refractory. A method for recycling magnesia-based waste bricks, wherein MgO in slag is used in an amount of 10 to 20% by weight.
JP2002093212A 2002-03-28 2002-03-28 Method for recycling magnesia-based waste brick Pending JP2003286523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093212A JP2003286523A (en) 2002-03-28 2002-03-28 Method for recycling magnesia-based waste brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093212A JP2003286523A (en) 2002-03-28 2002-03-28 Method for recycling magnesia-based waste brick

Publications (1)

Publication Number Publication Date
JP2003286523A true JP2003286523A (en) 2003-10-10

Family

ID=29237789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093212A Pending JP2003286523A (en) 2002-03-28 2002-03-28 Method for recycling magnesia-based waste brick

Country Status (1)

Country Link
JP (1) JP2003286523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531534A (en) * 2005-04-01 2009-09-03 テキント コンパニア テクニカ インテルナツィオナレ ソシエタ ペル アチオニ Method and apparatus for recovering refractory debris and ladle slag as process slag in ferrous metallurgy production at EAF and for performing related metering on a furnace for forming process slag
CN103031406A (en) * 2012-02-10 2013-04-10 新疆八一钢铁股份有限公司 Double-heat addition electric furnace lining baking process
JP2016168549A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Method of reusing refractory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531534A (en) * 2005-04-01 2009-09-03 テキント コンパニア テクニカ インテルナツィオナレ ソシエタ ペル アチオニ Method and apparatus for recovering refractory debris and ladle slag as process slag in ferrous metallurgy production at EAF and for performing related metering on a furnace for forming process slag
CN103031406A (en) * 2012-02-10 2013-04-10 新疆八一钢铁股份有限公司 Double-heat addition electric furnace lining baking process
JP2016168549A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Method of reusing refractory

Similar Documents

Publication Publication Date Title
JP4602379B2 (en) Method for producing alumina cement
JP4163186B2 (en) Refining flux and manufacturing method thereof
JP2003286523A (en) Method for recycling magnesia-based waste brick
CN1936029A (en) Method for utilizing waste steel ladle pouring material as converter slag-making fluxing agent
RU2347764C2 (en) Method of producing portland cement clinker from industrial wastes
JP5663121B2 (en) Reusing used carbon-containing unfired brick
CN110183212A (en) A kind of intermediate frequency furnace furnace lining dry dnockout of conite matter and preparation method thereof
JPH11335718A (en) Method for utilizing magnesia base waste brick
CN104944994B (en) Magnesia-carbon brick for acid steel-making and basic refining furnaces
CN110564912A (en) Acid arc furnace lining
JP2003201183A (en) Refractory for casting operation
JP5822081B2 (en) Mud material for closing blast furnace exit hole
JPH08188475A (en) High-alumina refractory
JP6538522B2 (en) Reuse method of tundish refractories for continuous casting
JP5303915B2 (en) Usage of used MgO-C brick
JP2000263014A (en) Method for using aluminum dross residual ash and alumina magnesia castable refractory material
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JP5682120B2 (en) Copper smelting furnace and continuous copper smelting furnace
US20230212077A1 (en) Refractory lining design and steel practice for low refractory waste, and refractory based on reclaimed low-impurity magnesia-carbon aggregate
JP3722776B2 (en) Steel additive
JPH06116617A (en) Method for using mgo refractory in molten steel treating tank
WO2023132949A1 (en) Refractory lining design and separation via destructive hydration
JP3598843B2 (en) Method for reducing unslagged CaO and MgO in slag
JP2010138428A (en) MATERIAL FOR ADJUSTING CONCENTRATION OF MgO IN CONVERTER SLAG, AND STEEL MANUFACTURING PROCESS IN CONVERTER
JP4351744B2 (en) Refractory using aluminum dross residual ash processed product as raw material