JP6470296B2 - Biaxially stretched ethylene polymer film and package - Google Patents

Biaxially stretched ethylene polymer film and package Download PDF

Info

Publication number
JP6470296B2
JP6470296B2 JP2016547421A JP2016547421A JP6470296B2 JP 6470296 B2 JP6470296 B2 JP 6470296B2 JP 2016547421 A JP2016547421 A JP 2016547421A JP 2016547421 A JP2016547421 A JP 2016547421A JP 6470296 B2 JP6470296 B2 JP 6470296B2
Authority
JP
Japan
Prior art keywords
ethylene polymer
biaxially stretched
ethylene
film
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016547421A
Other languages
Japanese (ja)
Other versions
JPWO2016039275A1 (en
Inventor
哲司 天満
哲司 天満
勉 窪田
勉 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Tohcello Inc
Original Assignee
Mitsui Chemicals Tohcello Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Tohcello Inc filed Critical Mitsui Chemicals Tohcello Inc
Publication of JPWO2016039275A1 publication Critical patent/JPWO2016039275A1/en
Application granted granted Critical
Publication of JP6470296B2 publication Critical patent/JP6470296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、耐屈曲性、透明性に優れ、且つ特定の範囲の熱収縮性を有する包装材料に好適な二軸延伸エチレン重合体フィルムおよび包装体に関する。   The present invention relates to a biaxially stretched ethylene polymer film and a package that are excellent in bending resistance and transparency, and suitable for packaging materials having a specific range of heat shrinkability.

エチレン・α−オレフィンランダム共重合体、所謂線状低密度ポリエチレン(LLDPE)は、高圧法低密度ポリエチレンに比べ、透明性、耐ストレスクラッキング性、低温ヒートシール性、ヒートシール強度、耐衝撃性等に優れておりその特徴を活かして食品包装用のシーラントとして広く用いられている。中でも、シングルサイト触媒で重合されたエチレン・α−オレフィンランダム共重合体は、更に透明性、低温ヒートシール性、夾雑物シール性、ホットタック性にも優れている。   Ethylene / α-olefin random copolymer, so-called linear low density polyethylene (LLDPE) is more transparent, stress cracking resistance, low temperature heat sealability, heat seal strength, impact resistance, etc. than high pressure method low density polyethylene It is widely used as a sealant for food packaging taking advantage of its characteristics. Among them, the ethylene / α-olefin random copolymer polymerized with a single site catalyst is further excellent in transparency, low-temperature heat sealability, contaminant sealability, and hot tack property.

エチレン・α−オレフィンランダム共重合体フィルムの透明性、機械的強度等を改良する方法としてエチレン・α−オレフィンランダム共重合体を特定の条件下で二軸延伸する方法(特許文献1)、エチレン・α−オレフィンランダム共重合体及びエチレン・α−オレフィンランダム共重合体に高密度ポリエチレンあるいは高圧法低密度ポリエチレンを加えてなる組成物を二軸延伸してなる収縮フィルム(特許文献2)が提案されている。   A method of biaxially stretching an ethylene / α-olefin random copolymer under specific conditions as a method for improving the transparency, mechanical strength, etc. of the ethylene / α-olefin random copolymer film (Patent Document 1), ethylene・ Proposed shrink film (Patent Document 2) formed by biaxial stretching of α-olefin random copolymer and ethylene / α-olefin random copolymer with high-density polyethylene or high-pressure low-density polyethylene added Has been.

また、二軸延伸エチレン重合体フィルムの易引裂き性、耐屈曲性を改良する方法として、特定の融解特性を有するエチレン共重合体組成物を用いてなる二軸延伸エチレン重合体フィルム(特許文献3)、あるいは、当該二軸延伸重合体フィルムと他の重合体との積層フィルム(特許文献4、特許文献5)が提案されている。   Further, as a method for improving easy tearability and bending resistance of a biaxially stretched ethylene polymer film, a biaxially stretched ethylene polymer film using an ethylene copolymer composition having specific melting characteristics (Patent Document 3) Or a laminated film (Patent Document 4, Patent Document 5) of the biaxially stretched polymer film and another polymer has been proposed.

しかしながら、かかる方法で得られる二軸延伸エチレン重合体フィルムは、熱収縮率が大きい為か、当該フィルムを包装用フィルムに用いた場合は、ヒートシールした際にフィルムが収縮し、外観が悪化する虞があることが判った。
一方、二軸延伸エチレン重合体フィルムの熱収縮率を抑える方法として、延伸フィルムを熱処理して、100℃での熱収縮率を30%以下にする方法(特許文献6)が提案されており、実施例3には、密度が0.922g/cmのエチレン・α‐オレフィン共重合体を用いて、120℃でのMDの熱収縮率が48.6%、TDの熱収縮率が50.4%(MD+TD=99.0%)の二軸延伸フィルムを得たことが記載されている。
However, the biaxially stretched ethylene polymer film obtained by such a method has a large heat shrinkage rate, or when the film is used as a packaging film, the film shrinks when heat sealed, and the appearance deteriorates. It turns out that there is a fear.
On the other hand, as a method of suppressing the heat shrinkage rate of the biaxially stretched ethylene polymer film, a method (Patent Document 6) has been proposed in which the stretched film is heat-treated so that the heat shrinkage rate at 100 ° C. is 30% or less. In Example 3, using an ethylene / α-olefin copolymer having a density of 0.922 g / cm 3 , the thermal contraction rate of MD at 120 ° C. is 48.6%, and the thermal contraction rate of TD is 50. It is described that a biaxially stretched film of 4% (MD + TD = 99.0%) was obtained.

特開昭58−90924号公報JP 58-90924 A 特開昭57−181828号公報JP-A-57-181828 特許第4601988号公報Japanese Patent No. 4601988 特許第4813438号公報Japanese Patent No. 481438 特許第4498913号公報Japanese Patent No. 4498913 特許第3030128号公報Japanese Patent No. 3030128

しかしながら、本発明者が検討した結果、特許文献3の実施例3に記載された熱収縮率では、未だ、ヒートシール部の外観は改良されず、一方、熱収縮率を単に低減させると、二軸延伸エチレン重合体フィルムの易引裂き性、耐屈曲性が損なわれる、というトレードオフの関係があることが判った。   However, as a result of investigation by the present inventor, the heat shrinkage rate described in Example 3 of Patent Document 3 still does not improve the appearance of the heat seal part. It has been found that there is a trade-off relationship that easy tearability and flex resistance of the axially stretched ethylene polymer film are impaired.

本発明は、耐屈曲性、透明性に優れ、且つヒートシールをしても、ヒートシール部の外観に優れる二軸延伸エチレン重合体フィルムを提供することを目的とする。 The present invention is, bend resistance, excellent transparency, and even if the heat sealing, and to provide a biaxially oriented ethylene polymer film excellent in appearance of the heat-sealed portion.

本発明は、密度が915〜938Kg/m、示差走査熱量計(DSC)により得られる融解熱量(ΔH)が100〜200J/g、融解開始温度〜110℃の範囲の融解熱量(ΔH)が50〜80J/g、110℃〜融解終了温度の範囲の融解熱量(ΔH)が35〜100J/gの範囲にあり、(ΔH)/(ΔH)が0.5〜1.5の範囲にあるエチレン系重合体組成物(A)から得られる二軸延伸エチレン重合体フィルムであって、当該二軸延伸エチレン重合体フィルムの熱収縮特性(熱収縮率)が、120℃の熱収縮率で、縦方向(MD)の熱収縮率(%)と横方向(TD)の熱収縮率(%)の和〔MD+TD〕が、15%<〔MD+TD〕<85%の範囲にあることを特徴とする二軸延伸エチレン重合体フィルムに関する。
また、本発明は、上記の二軸延伸エチレン重合体フィルムを含む包装体に関する。
The present invention has a density of 915 to 938 Kg / m 3 , a heat of fusion (ΔH T ) obtained by a differential scanning calorimeter (DSC) of 100 to 200 J / g, and a heat of fusion (ΔH L) in the range of the melting start temperature to 110 ° C. ) Is 50-80 J / g, the heat of fusion (ΔH H ) in the range of 110 ° C. to the end of melting temperature is in the range of 35-100 J / g, and (ΔH H ) / (ΔH L ) is 0.5-1. A biaxially stretched ethylene polymer film obtained from the ethylene polymer composition (A) in the range of 5, wherein the heat shrinkage property (heat shrinkage rate) of the biaxially stretched ethylene polymer film is 120 ° C. The sum of the thermal shrinkage (MD) in the machine direction (MD) and the thermal shrinkage (%) in the transverse direction (TD) [MD + TD] is in the range of 15% <[MD + TD] <85%. A biaxially stretched ethylene polymer film characterized by To do.
Moreover, this invention relates to the package body containing said biaxially stretched ethylene polymer film.

本発明の二軸延伸エチレン重合体フィルムは、耐屈曲性、透明性に優れ、且つヒートシールをしても、ヒートシール部の外観に優れるので、かかる特性を活かし、包装材料として種々の用途に使用し得る。 Biaxially oriented ethylene polymer films of the present invention, bend resistance, excellent transparency, and even if the heat seal, is excellent in appearance of the heat seal portion, taking advantage of such properties, for various applications as packaging materials Can be used.

以下、本発明に係る二軸延伸エチレン重合体フィルムについて詳細に説明する。
[エチレン系重合体組成物(A)]
本発明の二軸延伸エチレン重合体フィルムを形成するエチレン系重合体組成物(A)は、密度が915〜938Kg/m、好ましくは920〜935Kg/m、示差走査熱量計(DSC)により得られる融解熱量(ΔH)が100〜200J/g、好ましくは130〜200J/g、融解開始温度〜110℃の範囲の融解熱量(ΔH)が50〜80J/g、好ましくは55〜80J/g、110℃〜融解終了温度の範囲の融解熱量(ΔH)が35〜100J/g、好ましくは50〜95J/gの範囲にあり、(ΔH)/(ΔH)が0.5〜1.5、好ましくは0.65〜1.4の範囲にあるエチレン系重合体組成物である。
Hereinafter, the biaxially stretched ethylene polymer film according to the present invention will be described in detail.
[Ethylene polymer composition (A)]
The ethylene-based polymer composition (A) that forms the biaxially stretched ethylene polymer film of the present invention has a density of 915 to 938 Kg / m 3 , preferably 920 to 935 Kg / m 3 , and a differential scanning calorimeter (DSC). The heat of fusion (ΔH T ) obtained is 100 to 200 J / g, preferably 130 to 200 J / g, and the heat of fusion (ΔH L ) in the range of the melting start temperature to 110 ° C. is 50 to 80 J / g, preferably 55 to 80 J. / G, the heat of fusion (ΔH H ) in the range of 110 ° C. to the end of melting temperature is 35-100 J / g, preferably 50-95 J / g, and (ΔH H ) / (ΔH L ) is 0.5. It is an ethylene polymer composition in the range of -1.5, preferably 0.65-1.4.

密度が上記範囲外、あるいは(ΔH)が上記範囲外のエチレン系重合体組成物は、二軸延伸フィルムの成形が困難な場合がある。また、(ΔH)が35J/g未満、あるいは(ΔH)/(ΔH)が0.5未満のエチレン系重合体は、二軸延伸フィルムを成形しても、耐屈曲性に優れる二軸延伸フィルムが得られない虞がある。An ethylene polymer composition having a density outside the above range or (ΔH T ) outside the above range may make it difficult to form a biaxially stretched film. Further, an ethylene polymer having (ΔH H ) of less than 35 J / g or (ΔH T ) / (ΔH L ) of less than 0.5 is excellent in bending resistance even when a biaxially stretched film is formed. There is a possibility that an axially stretched film cannot be obtained.

本発明に係るエチレン系重合体組成物(A)は、フィルム形成能がある限り、メルトフローレート(MFR:ASTM D1238 荷重2160g、温度190℃)は特に限定はされないが、通常、0.5〜10g/10分、好ましくは0.8〜5g/10分の範囲にある。   As long as the ethylene-based polymer composition (A) according to the present invention has film-forming ability, the melt flow rate (MFR: ASTM D1238 load 2160 g, temperature 190 ° C.) is not particularly limited. It is in the range of 10 g / 10 min, preferably 0.8-5 g / 10 min.

本発明に係るエチレン系重合体組成物(A)の密度は、後述するように密度勾配管により測定される。
本発明に係るエチレン系重合体組成物(A)の各熱融解量は、示差走査熱量計(DSC)を用いて、以下の方法で測定した値である。
The density of the ethylene polymer composition (A) according to the present invention is measured by a density gradient tube as described later.
Each heat melting amount of the ethylene polymer composition (A) according to the present invention is a value measured by the following method using a differential scanning calorimeter (DSC).

示差走査熱量計(DSC)としてティ・エイ・インスツルメント社製Q100を用い、試料約5mgを精秤し、JIS K 7122に準拠し、10℃から加熱速度:10℃/分で180℃迄昇温して試料を一旦融解させた後、180℃に10分間維持し、冷却速度:10℃/分で10℃迄降温して結晶化させた後、10℃に5分間維持した後、再度加熱速度:10℃/分で180℃迄昇温して熱融解曲線を得、得られた熱融解曲線から、試料の熱融解量(ΔH)、得られた熱融解曲線を110℃で二分し、融解開始温度〜110℃の範囲の融解熱量(ΔH)及び110℃〜融解終了温度の範囲の融解熱量(ΔH)を求めた。Using a Q100 manufactured by TA Instruments as a differential scanning calorimeter (DSC), weigh accurately about 5 mg of the sample, and in accordance with JIS K 7122, from 10 ° C. to a heating rate of 10 ° C./min to 180 ° C. The sample was melted once by heating, then maintained at 180 ° C. for 10 minutes, cooled to 10 ° C. at a cooling rate of 10 ° C./minute, crystallized, then maintained at 10 ° C. for 5 minutes, and again Heating rate: The temperature was raised to 180 ° C. at 10 ° C./min to obtain a thermal melting curve. From the obtained thermal melting curve, the thermal melting amount (ΔH T ) of the sample, and the obtained thermal melting curve was divided into 110 minutes at 110 ° C. Then, the heat of fusion (ΔH L ) in the range from the melting start temperature to 110 ° C. and the heat of fusion (ΔH H ) in the range from 110 ° C. to the end temperature of melting were determined.

本発明で用いられるエチレン系重合体組成物(A)の(ΔH)は、主としてエチレン系重合体組成物(A)に含まれる低密度成分に由来し、(ΔH)は、主としてエチレン系重合体組成物(A)に含まれる高密度成分に由来するものであり、(ΔH)/(ΔH)が上記範囲にあるということは、換言すれば、本発明に係るエチレン系重合体組成物(A)は、特定の範囲の組成分布を有するエチレン系重合体とも言えるものである。(ΔH L ) of the ethylene polymer composition (A) used in the present invention is mainly derived from a low density component contained in the ethylene polymer composition (A), and (ΔH H ) is mainly ethylene-based. It is derived from the high-density component contained in the polymer composition (A), and (ΔH H ) / (ΔH L ) is in the above range, in other words, the ethylene-based polymer according to the present invention. The composition (A) can be said to be an ethylene polymer having a specific range of composition distribution.

したがって、本発明に係るエチレン系重合体組成物(A)は、チーグラー触媒、シングルサイト触媒等を適宜選択し、得られるエチレン系重合体の組成分布(密度分布)を調整することにより得られるが、密度の異なるエチレン系重合体を適宜混合することによっても得られる。その場合は、密度の異なるエチレン系重合体、例えば、密度が895〜915kg/mの範囲にある重合体の量及び密度が915〜965kg/mの範囲にある重合体の量を夫々増減することによっても得られる。Therefore, the ethylene polymer composition (A) according to the present invention can be obtained by appropriately selecting a Ziegler catalyst, a single site catalyst or the like and adjusting the composition distribution (density distribution) of the resulting ethylene polymer. It can also be obtained by appropriately mixing ethylene polymers having different densities. In that case, different ethylene polymer density, for example, the amount of the respective increase or decrease of the polymer amount and density of the polymer having a density in the range of 895~915kg / m 3 is in the range of 915~965kg / m 3 Can also be obtained.

本発明で用いられるエチレン系重合体組成物(A)は、特には、密度の異なるエチレン系重合体を混合することにより得られる、下記エチレン共重合体組成物(A−1)またはエチレン共重合体組成物(A−2)が好ましい。なお、エチレン共重合体組成物(A−1)およびエチレン共重合体組成物(A−2)の密度範囲、各融解熱量はエチレン系重合体組成物(A)の密度範囲、各融解熱量と同じである。   The ethylene polymer composition (A) used in the present invention is particularly obtained by mixing ethylene polymers having different densities, and the following ethylene copolymer composition (A-1) or ethylene copolymer The combined composition (A-2) is preferred. In addition, the density range of ethylene copolymer composition (A-1) and ethylene copolymer composition (A-2), each heat of fusion are the density range of ethylene polymer composition (A), each heat of fusion and The same.

[エチレン共重合体組成物(A−1)]
本発明で用いられ得るエチレン共重合体組成物(A−1)は、密度が895〜925Kg/m、好ましくは900〜920Kg/mの範囲にあるエチレン・α−オレフィンランダム共重合体(a1)成分と密度が926〜970Kg/m、好ましくは930〜965Kg/mの範囲にあるエチレン系重合体(a2)成分とからなるエチレン共重合体組成物であり、好ましくは、エチレン・α−オレフィンランダム共重合体(a1)成分が5〜95重量部、より好ましくは20〜80重量部及びエチレン系重合体(a2)成分が95〜5重量部、より好ましくは80〜20重量部〔(a1)+(a2)=100重量部〕の範囲にある。
[Ethylene copolymer composition (A-1)]
The ethylene copolymer composition (A-1) that can be used in the present invention has an ethylene / α-olefin random copolymer having a density in the range of 895 to 925 Kg / m 3 , preferably 900 to 920 Kg / m 3 ( a1) component and density 926~970Kg / m 3, preferably ethylene copolymer composition comprising ethylene polymer (a2) component in the range 930~965Kg / m 3, preferably, ethylene The α-olefin random copolymer (a1) component is 5-95 parts by weight, more preferably 20-80 parts by weight and the ethylene-based polymer (a2) component is 95-5 parts by weight, more preferably 80-20 parts by weight. [(A1) + (a2) = 100 parts by weight].

本発明で用いられ得るエチレン共重合体組成物(A−1)は、フィルム形成能がある限り、メルトフローレート(MFR:ASTM D1238、荷重2160g、温度190℃)は特に限定はされないが、通常、0.5〜10g/10分、好ましくは0.8〜5g/10分の範囲にある。   As long as the ethylene copolymer composition (A-1) that can be used in the present invention has film-forming ability, the melt flow rate (MFR: ASTM D1238, load 2160 g, temperature 190 ° C.) is not particularly limited. 0.5 to 10 g / 10 min, preferably 0.8 to 5 g / 10 min.

[エチレン共重合体組成物(A−2)]
本発明で用いられ得るエチレン共重合体組成物(A−2)は、密度が895〜925Kg/m、好ましくは900〜920Kg/mの範囲にあるエチレン・α−オレフィンランダム共重合体(a1)成分、密度が926〜970Kg/m、好ましくは930〜965Kg/mの範囲にあるエチレン系重合体(a2)成分及び密度が910〜935Kg/m、好ましくは915〜930Kg/mの範囲にある高圧法低密度ポリエチレン(a3)とからなるエチレン共重合体組成物である。
[Ethylene copolymer composition (A-2)]
The ethylene copolymer composition (A-2) that can be used in the present invention has an ethylene / α-olefin random copolymer having a density in the range of 895 to 925 Kg / m 3 , preferably 900 to 920 Kg / m 3 ( a1) component, density 926~970Kg / m 3, preferably 930~965Kg / ethylene polymer in the range of m 3 (a2) component and the density of 910~935Kg / m 3, preferably 915~930Kg / m 3. An ethylene copolymer composition comprising high-pressure low-density polyethylene (a3) in the range of 3 .

エチレン共重合体組成物(A−2)は、(a1)、(a2)および(a3)のうち、エチレン・α−オレフィンランダム共重合体(a1)成分が、好ましくは5〜95重量部、より好ましくは20〜80重量部〔(a1)+(a2)=100重量部〕の範囲にあることが望ましい。また、上記エチレン共重合体組成物(A−2)において、エチレン系重合体(a2)成分が95〜5重量部、より好ましくは40〜70重量部〔(a1)+(a2)=100重量部〕の範囲にあることが望ましい。また、エチレン共重合体組成物(A−2)は、エチレン・α−オレフィンランダム共重合体(a1)成分+エチレン系重合体(a2)成分が、好ましくは50〜95重量部、好ましくは60〜90重量部及び高圧法低密度ポリエチレン(a3)が50〜5重量部、好ましくは30〜10重量部〔[(a1)+(a2)]+(a3)=100重量部〕の範囲にあることが望ましい。   In the ethylene copolymer composition (A-2), among the components (a1), (a2) and (a3), the ethylene / α-olefin random copolymer (a1) component is preferably 5 to 95 parts by weight, More preferably, it is in the range of 20 to 80 parts by weight [(a1) + (a2) = 100 parts by weight]. In the ethylene copolymer composition (A-2), the ethylene polymer (a2) component is 95 to 5 parts by weight, more preferably 40 to 70 parts by weight [(a1) + (a2) = 100 parts by weight. Part] is desirable. In the ethylene copolymer composition (A-2), the ethylene / α-olefin random copolymer (a1) component + ethylene-based polymer (a2) component is preferably 50 to 95 parts by weight, preferably 60 parts. -90 parts by weight and high-pressure process low density polyethylene (a3) are in the range of 50-5 parts by weight, preferably 30-10 parts by weight [[(a1) + (a2)] + (a3) = 100 parts by weight]. It is desirable.

本発明に係るエチレン共重合体組成物(A−2)は、フィルム形成能がある限り、メルトフローレート(MFR:ASTM D1238、荷重2160g、温度190℃)は特に限定はされないが、通常、0.5〜10g/10分、好ましくは0.8〜5g/10分の範囲にある。   As long as the ethylene copolymer composition (A-2) according to the present invention has a film forming ability, the melt flow rate (MFR: ASTM D1238, load 2160 g, temperature 190 ° C.) is not particularly limited, but is usually 0. .5 to 10 g / 10 min, preferably 0.8 to 5 g / 10 min.

[エチレン・α−オレフィンランダム共重合体(a1)]
本発明の二軸延伸エチレン重合体フィルムを形成し得るエチレン共重合体組成物(A−1)またはエチレン共重合体組成物(A−2)を構成する成分であるエチレン・α−オレフィンランダム共重合体(a1)は、密度が895〜925Kg/m、好ましくは900〜920Kg/mの範囲にあるエチレンと炭素数4以上のα−オレフィン、例えば、1−ブテン、1−ヘプテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン等のα−オレフィン、好ましくは炭素数が6以上のα−オレフィンとのランダム共重合体である。本発明に係るエチレン・α−オレフィンランダム共重合体(a1)は前記範囲の密度であれば、1種あるいは2種以上の混合物であってもよい。
[Ethylene / α-olefin random copolymer (a1)]
An ethylene / α-olefin random copolymer which is a component constituting the ethylene copolymer composition (A-1) or the ethylene copolymer composition (A-2) capable of forming the biaxially stretched ethylene polymer film of the present invention. The polymer (a1) has a density of 895 to 925 Kg / m 3 , preferably 900 to 920 Kg / m 3 , and an α-olefin having 4 or more carbon atoms, such as 1-butene, 1-heptene, 1 -Random copolymers with α-olefins such as hexene, 1-octene, 4-methyl-1-pentene, preferably α-olefins having 6 or more carbon atoms. The ethylene / α-olefin random copolymer (a1) according to the present invention may be one type or a mixture of two or more types as long as the density is in the above range.

本発明に係るエチレン・α−オレフィンランダム共重合体(a1)のメルトフローレート(MFR:ASTM D1238、荷重2160g、温度190℃)は、後述のエチレン系重合体(a2)とのエチレン共重合体組成物(A−1)またはエチレン系重合体(a2)と高圧法低密度ポリエチレン(a3)との組成物(A−2)とした際に、フィルム形成能がある限りとくに限定はされないが、通常0.01〜10g/10分、好ましくは0.2〜5g/10分の範囲にある。   The melt flow rate (MFR: ASTM D1238, load 2160 g, temperature 190 ° C.) of the ethylene / α-olefin random copolymer (a1) according to the present invention is an ethylene copolymer with an ethylene polymer (a2) described later. When the composition (A-1) or the composition (A-2) of the ethylene-based polymer (a2) and the high-pressure method low-density polyethylene (a3) is used, there is no particular limitation as long as it has a film-forming ability. Usually, it is in the range of 0.01 to 10 g / 10 minutes, preferably 0.2 to 5 g / 10 minutes.

また、かかるエチレン・α−オレフィンランダム共重合体(a1)は、分子量分布(重量平均分子量:Mw、と数平均分子量:Mn、との比:Mw/Mnで表示)が通常1.5〜4.0、好ましくは1.8〜3.5の範囲にある。このMw/Mnはゲル透過クロマトグラフィー(GPC)によって測定できる。
また、エチレン・α−オレフィンランダム共重合体(a1)は、示差走査熱量計(DSC)の昇温速度10℃/分で測定した吸熱曲線から求めた鋭いピークが1個ないし複数個あり、該ピークの最高温度、すなわち融点が通常70〜130℃、好ましくは80〜120℃の範囲にある。
In addition, the ethylene / α-olefin random copolymer (a1) usually has a molecular weight distribution (weight average molecular weight: Mw, number average molecular weight: Mn, ratio expressed by Mw / Mn) of 1.5 to 4 in general. 0.0, preferably in the range of 1.8 to 3.5. This Mw / Mn can be measured by gel permeation chromatography (GPC).
The ethylene / α-olefin random copolymer (a1) has one or a plurality of sharp peaks determined from an endothermic curve measured at a heating rate of 10 ° C./min of a differential scanning calorimeter (DSC), The maximum temperature of the peak, that is, the melting point is usually in the range of 70 to 130 ° C, preferably 80 to 120 ° C.

上記のようなエチレン・α−オレフィンランダム共重合体(a1)は、チーグラー触媒、シングルサイト触媒等を用いた従来公知の製造法により調整することができるが、シングルサイト触媒(メタロセン触媒)により得られた共重合体がとくに好ましい。このメタロセン化合物を含む触媒は、(a)遷移金属のメタロセン化合物と、(b)有機アルミニウムオキシ化合物と、(c)担体とから形成されることが好ましく、さらに必要に応じて、これらの成分と(d)有機アルミニウム化合物および/または有機ホウ素化合物とから形成さていてもよい。   The ethylene / α-olefin random copolymer (a1) as described above can be prepared by a conventionally known production method using a Ziegler catalyst, a single site catalyst or the like, but is obtained by a single site catalyst (metallocene catalyst). The copolymers obtained are particularly preferred. The catalyst containing the metallocene compound is preferably formed from (a) a transition metal metallocene compound, (b) an organoaluminum oxy compound, and (c) a carrier, and if necessary, these components and (D) It may be formed from an organoaluminum compound and / or an organoboron compound.

なお、このようなメタロセン化合物を含むオレフィン重合用触媒、および触媒を用いたエチレン・α−オレフィンランダム共重合体(a1)の調整方法は、たとえば特開平8−269270号公報に記載されている。   An olefin polymerization catalyst containing such a metallocene compound and a method for adjusting the ethylene / α-olefin random copolymer (a1) using the catalyst are described in, for example, JP-A-8-269270.

[エチレン系重合体(a2)]
本発明の二軸延伸エチレン重合体フィルムを形成し得るエチレン共重合体組成物(A−1)またはエチレン共重合体組成物(A−2)を構成する他の成分であるエチレン系重合体(a2)は、密度が926〜970Kg/m、好ましくは930〜965Kg/mの範囲にあるエチレンの単独重合体またはエチレンと炭素数3以上のα−オレフィン、例えば、プロピレン、1−ブテン、1−ヘプテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン等のα−オレフィンとのランダム共重合体である。本発明に係るエチレン系重合体(a2)は前記範囲の密度であれば、1種あるいは2種以上の混合物であってもよい。
[Ethylene polymer (a2)]
An ethylene-based polymer (A-1) that can form the biaxially stretched ethylene polymer film of the present invention or an ethylene polymer that is another component constituting the ethylene copolymer composition (A-2) ( a2) has a density of 926~970Kg / m 3, preferably ethylene in the range of 930~965Kg / m 3 homopolymer or ethylene and having 3 or more carbon α- olefins, for example, propylene, 1-butene, It is a random copolymer with α-olefin such as 1-heptene, 1-hexene, 1-octene, 4-methyl-1-pentene. The ethylene polymer (a2) according to the present invention may be one type or a mixture of two or more types as long as the density is in the above range.

エチレン系重合体(a2)のメルトフローレート(MFR:ASTM D1238、荷重2160g、温度190℃)は、前述のエチレン・α−オレフィンランダム共重合体(a1)とのエチレン共重合体組成物(A−1)及びエチレン系重合体(a1)及び後述の高圧法低密度ポリエチレン(a3)との組成物(A−2)とした際に、フィルム形成能がある限りとくに限定はされないが、通常0.01〜100g/10分、好ましくは0.1〜80g/10分の範囲にある。   The melt flow rate (MFR: ASTM D1238, load 2160 g, temperature 190 ° C.) of the ethylene polymer (a2) is an ethylene copolymer composition (A1) with the ethylene / α-olefin random copolymer (a1). -1) and ethylene-based polymer (a1) and a composition (A-2) with a high-pressure method low-density polyethylene (a3) described later, the film is not particularly limited as long as it has a film-forming ability, but usually 0 0.01 to 100 g / 10 min, preferably 0.1 to 80 g / 10 min.

エチレン系重合体(a2)は、さらには、密度が926〜945Kg/m、好ましくは935〜945Kg/mの範囲のエチレン系重合体(a2−1)成分の密度が946〜970Kg/m、好ましくは950〜965Kg/mの範囲のエチレン系重合体(a2−2)成分と低密度成分と高密度成分を併用すると、より縦/横方向の何れにも容易に引裂け易い二軸延伸エチレン重合体多層フィルムが得られる。Ethylene polymer (a2) further has a density 926~945Kg / m 3, preferably 935~945Kg / ethylene polymer of the range of m 3 (a2-1) density components 946~970Kg / m 3 , preferably 950 to 965 Kg / m 3 in the range of the ethylene polymer (a2-2) component, the low density component and the high density component are used in combination. An axially stretched ethylene polymer multilayer film is obtained.

エチレン系重合体(a2)としてエチレン系重合体(a2−1)成分とエチレン系重合体(a2−2)成分を用いる場合は、エチレン系重合体(a2−1)成分を1〜99重量部、好ましくは30〜70重量部及びエチレン系重合体(a2−2)成分を99〜1重量部、好ましくは70〜30重量部〔(a2−1)+(a2−2)=100重量部〕の割合とすることが望ましい。   When the ethylene polymer (a2-1) component and the ethylene polymer (a2-2) component are used as the ethylene polymer (a2), 1 to 99 parts by weight of the ethylene polymer (a2-1) component is used. , Preferably 30 to 70 parts by weight and 99 to 1 part by weight of ethylene polymer (a2-2) component, preferably 70 to 30 parts by weight [(a2-1) + (a2-2) = 100 parts by weight] It is desirable to make the ratio.

また、かかるエチレン系重合体(a2)は、分子量分布(重量平均分子量:Mw、と数平均分子量:Mn、との比:Mw/Mnで表示)が通常1.5〜4.0、好ましくは1.8〜3.5の範囲にある。このMw/Mnはゲル透過クロマトグラフィー(GPC)によって測定できる。   Further, the ethylene polymer (a2) has a molecular weight distribution (weight average molecular weight: Mw, ratio of number average molecular weight: Mn: expressed as Mw / Mn) is usually 1.5 to 4.0, preferably It is in the range of 1.8 to 3.5. This Mw / Mn can be measured by gel permeation chromatography (GPC).

また、エチレン系重合体(a2)は、示差走査熱量計(DSC)の昇温速度10℃/分で測定した吸熱曲線から求めた鋭いピークが1個ないし複数個あり、該ピークの最高温度、すなわち融点が通常122〜135℃、の範囲にある。   The ethylene polymer (a2) has one or more sharp peaks determined from an endothermic curve measured at a heating rate of 10 ° C./min of a differential scanning calorimeter (DSC), the maximum temperature of the peak, That is, the melting point is usually in the range of 122 to 135 ° C.

上記のようなエチレン系重合体(a2)は、チーグラー触媒、シングルサイト触媒等を用いた従来公知の製造法により調整することができる。特に、エチレン系重合体(a2)としてエチレン系重合体(a2−1)を用いる場合は、シングルサイト触媒(メタロセン触媒)により得られた共重合体がとくに好ましい。このメタロセン化合物を含む触媒は、(a)遷移金属のメタロセン化合物と、(b)有機アルミニウムオキシ化合物と、(c)担体とから形成されることが好ましく、さらに必要に応じて、これらの成分と(d)有機アルミニウム化合物および/または有機ホウ素化合物とから形成さていてもよい。   The ethylene polymer (a2) as described above can be prepared by a conventionally known production method using a Ziegler catalyst, a single site catalyst or the like. In particular, when the ethylene polymer (a2-1) is used as the ethylene polymer (a2), a copolymer obtained with a single site catalyst (metallocene catalyst) is particularly preferable. The catalyst containing the metallocene compound is preferably formed from (a) a transition metal metallocene compound, (b) an organoaluminum oxy compound, and (c) a carrier, and if necessary, these components and (D) It may be formed from an organoaluminum compound and / or an organoboron compound.

なお、このようなメタロセン化合物を含むオレフィン重合用触媒、および触媒を用いたエチレン系重合体(a2)の調整方法は、たとえば特開平8−269270号公報に記載されている。   An olefin polymerization catalyst containing such a metallocene compound and a method for preparing an ethylene polymer (a2) using the catalyst are described in, for example, JP-A-8-269270.

一方、エチレン系重合体(a2)としてエチレン系重合体(a2−2)を用いる場合は、シングルサイト触媒(メタロセン触媒)により得られる重合体であってもよいが、従来公知のチーグラー触媒等で製造されている、所謂高密度ポリエチレンであってもよい。   On the other hand, when the ethylene polymer (a2-2) is used as the ethylene polymer (a2), a polymer obtained by a single site catalyst (metallocene catalyst) may be used, but a conventionally known Ziegler catalyst or the like may be used. The so-called high density polyethylene produced may be used.

[高圧法低密度ポリエチレン(a3)]
本発明の二軸延伸エチレン重合体を形成し得るエチレン共重合体組成物(A−2)を構成する他の一つの成分である高圧法低密度ポリエチレン(a3)は、密度が910〜935Kg/m、好ましくは915〜930Kg/mの範囲にある。かかる高圧法低密度ポリエチレンは、高圧下で重合されるエチレンの単独重合体、若しくは5重量%以下の、他のα−オレフィンあるいは酢酸ビニル等のビニル化合物との共重合体で、低密度ポリエチレンの範疇に入るエチレン系重合体である。
[High pressure low density polyethylene (a3)]
The high-pressure low-density polyethylene (a3), which is another component constituting the ethylene copolymer composition (A-2) that can form the biaxially stretched ethylene polymer of the present invention, has a density of 910 to 935 Kg / m 3, preferably in the range of 915~930Kg / m 3. The high-pressure method low-density polyethylene is a homopolymer of ethylene polymerized under high pressure, or a copolymer of 5% by weight or less with other α-olefin or vinyl compound such as vinyl acetate. It is an ethylene polymer that falls into the category.

密度が910Kg/m未満の高圧法低密度ポリエチレンは、前記エチレン共重合体組成物(A−2)として二軸延伸多層フィルムを成形した場合に得られるフィルムがブロッキングし易く、引裂き強度が強く、本発明の目的が達成出来ない虞がある。The high-pressure low-density polyethylene having a density of less than 910 kg / m 3 is easy to block when the biaxially stretched multilayer film is molded as the ethylene copolymer composition (A-2), and has high tear strength. The object of the present invention may not be achieved.

高圧法低密度ポリエチレン(a3)のメルトフローレート(MFR:ASTM D1238、荷重2160g、温度190℃)は、前述のエチレン・α−オレフィンランダム共重合体(a1)及びエチレン系重合体(a2)とのエチレン共重合体組成物(A−2)とした際に、フィルム形成能がある限りとくに限定はされないが、通常、0.1〜30g/10分、好ましくは0.1〜10g/10分の範囲にある。   The melt flow rate (MFR: ASTM D1238, load 2160 g, temperature 190 ° C.) of the high-pressure low-density polyethylene (a3) is the same as that of the above-mentioned ethylene / α-olefin random copolymer (a1) and ethylene-based polymer (a2). The ethylene copolymer composition (A-2) is not particularly limited as long as it has a film-forming ability, but is usually 0.1 to 30 g / 10 minutes, preferably 0.1 to 10 g / 10 minutes. It is in the range.

本発明に係るエチレン共重合体組成物(A−1)及びエチレン共重合体組成物(A−2)は、各々別個にエチレン・α−オレフィンランダム共重合体(a1)、エチレン系重合体(a2)及び高圧法低密度ポリエチレン(a3)を得た後、ヘンシェルミキサー、タンブラーブレンダー、V−ブレンダー等によりドライブレンドする方法またはドライブレンドした後、単軸押出機、多軸押出機、バンバリーミキサー等により溶融混練することにより得られる。   The ethylene copolymer composition (A-1) and the ethylene copolymer composition (A-2) according to the present invention are each independently an ethylene / α-olefin random copolymer (a1), an ethylene polymer ( After obtaining a2) and high-pressure method low density polyethylene (a3), dry blending with a Henschel mixer, tumbler blender, V-blender or the like, or after dry blending, single screw extruder, multi-screw extruder, Banbury mixer, etc. Obtained by melt kneading.

本発明に係るエチレン共重合体組成物(A−1)はまた、連続・多段重合プロセスにより、複数の重合器を用いて、エチレン・α−オレフィンランダム共重合体(a1)とエチレン系重合体(a2)を夫々重合した後、混合してエチレン共重合体組成物(A−1)とする方法、1個の重合器を用いて、先にエチレン・α−オレフィンランダム共重合体(a1)若しくはエチレン系重合体(a2)を重合した後、続いてエチレン系重合体(a2)若しくはエチレン・α−オレフィンランダム共重合体(a1)を重合する方法等、種々公知の重合方法を採り得る。   The ethylene copolymer composition (A-1) according to the present invention can also be obtained by using a plurality of polymerizers by a continuous / multistage polymerization process to produce an ethylene / α-olefin random copolymer (a1) and an ethylene polymer. A method in which (a2) is polymerized and then mixed to obtain an ethylene copolymer composition (A-1). Using one polymerizer, an ethylene / α-olefin random copolymer (a1) Alternatively, various known polymerization methods such as a method of polymerizing the ethylene polymer (a2) and then polymerizing the ethylene polymer (a2) or the ethylene / α-olefin random copolymer (a1) can be employed.

本発明に係るエチレン系重合体組成物(A)、エチレン共重合体組成物(A−1)、エチレン共重合体組成物(A−2)若しくはそれら組成物を構成するエチレン・α−オレフィンランダム共重合体(a1)、エチレン系重合体(a2)または高圧法低密度ポリエチレン(a3)には本発明の目的を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、帯電防止剤、防曇剤、ブロッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応じて配合することができる。   Ethylene-based polymer composition (A), ethylene copolymer composition (A-1), ethylene copolymer composition (A-2) or ethylene / α-olefin random constituting these compositions according to the present invention The copolymer (a1), ethylene-based polymer (a2) or high-pressure low-density polyethylene (a3) is used within a range that does not impair the purpose of the present invention, and generally used antioxidants, weathering stabilizers, antistatic agents, Additives such as antifogging agents, antiblocking agents, lubricants, nucleating agents, pigments or other polymers can be blended as necessary.

[エチレン・α―オレフィンランダム共重合体(B)]
本発明の二軸延伸エチレン重合体フィルムは、前記エチレン系重合体組成物(A)から形成されるが、当該フィルムの片面あるいは両面に前記エチレン系重合体組成物(A)とは異なるエチレン・α―オレフィンランダム共重合体(B)を有していてもよい。
本発明に係るエチレン・α―オレフィンランダム共重合体(B)は、密度が890〜945Kg/m、好ましくは900〜940Kg/mの範囲にある。かかる密度範囲にあるエチレン・α―オレフィンランダム共重合体(B)からなる層を有する場合は、低温ヒートシール性が付与され、高速充填やピロー包装など、低温シール性や低いシール圧力でのシール性や高速でのヒートシールに優位である。
[Ethylene / α-olefin random copolymer (B)]
The biaxially stretched ethylene polymer film of the present invention is formed from the ethylene polymer composition (A), but is different from the ethylene polymer composition (A) on one or both sides of the ethylene polymer composition (A). You may have an alpha-olefin random copolymer (B).
The ethylene / α-olefin random copolymer (B) according to the present invention has a density of 890 to 945 Kg / m 3 , preferably 900 to 940 Kg / m 3 . When it has a layer made of an ethylene / α-olefin random copolymer (B) in such a density range, it is given low-temperature heat sealability, and seals at low-temperature sealability and low sealing pressure, such as high-speed filling and pillow packaging. It is superior to heat sealing at high speed and high speed.

密度が890Kg/m未満のエチレン・α―オレフィンランダム共重合体は二軸延伸エチレン重合体多層フィルムを製造する際、特に後述のフラット方式(テンター方式)により二軸延伸する場合に延伸ロールあるいはテンタークリップに融着する虞があり、また、得られる二軸延伸エチレン重合体多層フィルムもブロッキングし易い。一方、密度が945Kg/mを超えるエチレン・α―オレフィンランダム共重合体は得られる二軸延伸エチレン重合体フィルムの低温ヒートシール性の付与効果が少ない。The ethylene / α-olefin random copolymer having a density of less than 890 kg / m 3 is used to produce a biaxially stretched ethylene polymer multilayer film, particularly when it is biaxially stretched by the flat method (tenter method) described later, There is a possibility of fusion to the tenter clip, and the resulting biaxially stretched ethylene polymer multilayer film is also likely to be blocked. On the other hand, an ethylene / α-olefin random copolymer having a density exceeding 945 kg / m 3 has little effect of imparting a low temperature heat seal property to the resulting biaxially stretched ethylene polymer film.

本発明に係るエチレン・α―オレフィンランダム共重合体(B)は、フィルム形成能がある限り、メルトフローレート(MFR:ASTM D1238、荷重2160g、温度190℃)は特に限定はされないが、通常、0.5〜10g/10分、好ましくは0.8〜5g/10分の範囲にある。
また、本発明に係るエチレン・α―オレフィンランダム共重合体(B)は上記エチレン系重合体(a2)と同様にチーグラー触媒、シングルサイト触媒等を用いた従来公知の製造法により調整することができる。
また、本発明に係るエチレン・α―オレフィンランダム共重合体(B)は、単一の重合体であっても、二種以上のエチレン・α―オレフィンランダム共重合体からなる組成物であってもよい。
As long as the ethylene / α-olefin random copolymer (B) according to the present invention has film-forming ability, the melt flow rate (MFR: ASTM D1238, load 2160 g, temperature 190 ° C.) is not particularly limited. It is in the range of 0.5 to 10 g / 10 minutes, preferably 0.8 to 5 g / 10 minutes.
Further, the ethylene / α-olefin random copolymer (B) according to the present invention can be prepared by a conventionally known production method using a Ziegler catalyst, a single site catalyst or the like in the same manner as the ethylene polymer (a2). it can.
The ethylene / α-olefin random copolymer (B) according to the present invention may be a single polymer or a composition comprising two or more types of ethylene / α-olefin random copolymers. Also good.

本発明に係るエチレン・α―オレフィンランダム共重合体(B)には、本発明の目的を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、帯電防止剤、防曇剤、ブロッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応じて配合することができる。   In the ethylene / α-olefin random copolymer (B) according to the present invention, an antioxidant, a weathering stabilizer, an antistatic agent, an antifogging agent, and an antiblocking agent which are usually used within a range not impairing the object of the present invention. Additives such as agents, lubricants, nucleating agents, pigments, or other polymers can be blended as necessary.

[二軸延伸エチレン重合体フィルム]
本発明の二軸延伸エチレン重合体フィルムは、前記エチレン系重合体組成物(A)、好ましくはエチレン共重合体組成物(A−1)、若しくはエチレン共重合体組成物(A−2)から形成され得る二軸延伸エチレン重合体フィルムである。
本発明の二軸延伸エチレン重合体フィルムは、単層であっても、二層あるいは、三層以上の層構成を有するフィルムであってもよい。なお、二層あるいは三層以上の層構成を有する場合、上記二軸延伸エチレン重合体フィルムは、各層が同一の配合から構成された多層フィルムであってもよい。
本発明の二軸延伸エチレン重合体フィルムが単層または同一の配合から構成されている二層以上の層(以下、「基材層1」と呼称することがある。)である場合は、便宜上、二軸延伸エチレン重合体フィルムの片面を熱融着層側、他の片面をラミネート層側と呼称する。
一方、本発明の二軸延伸エチレン重合体フィルムが少なくとも2層以上の層構造を有する場合、少なくともエチレン系重合体組成物(A)からなる基材層、好ましくはエチレン共重合体組成物(A−1)、若しくはエチレン共重合体組成物(A−2)からなる層を含む基材層2とすることができる。
本発明の二軸延伸エチレン重合体フィルムは、基材層のみからなる膜厚比が、全体に対して100%であってもよい。熱融着層側またはラミネート層側に基材層と異なる配合の樹脂層を設ける場合、二軸延伸エチレン重合体フィルム全体に対する基材層の膜厚比の下限値は、例えば、70%以上が好ましく、75%以上がより好ましく、80%以上がさらに好ましい。基材層を前記範囲にすることが、二軸延伸エチレン重合体フィルムの熱収縮率を所定の範囲内とする観点から好ましい。当該基材層の膜厚比の上限値は、98%以下が好ましく、95%以下がより好ましく、92%以下がさらに好ましい。これにより多層構造の特性を発揮させることができる。
また、本発明の二軸延伸エチレン重合体フィルムが例えば三層構成を有する場合は、便宜上、熱融着層/基材層/ラミネート層と呼称する。その場合、基材層は、本発明に係る前記エチレン系重合体組成物(A)、好ましくはエチレン共重合体組成物(A−1)、若しくはエチレン共重合体組成物(A−2)から形成されるが、熱融着層あるいはラミネート層は、密度が異なるエチレン系重合体組成物(A)で形成されていてもよいし、前記エチレン・α―オレフィンランダム共重合体(B)から形成されていてもよい。また、熱融着層あるいはラミネート層は、上記エチレン系重合体組成物(A)およびエチレン・α―オレフィンランダム共重合体(B)の混合物から形成されていてもよい。
[Biaxially stretched ethylene polymer film]
The biaxially stretched ethylene polymer film of the present invention is composed of the ethylene polymer composition (A), preferably the ethylene copolymer composition (A-1), or the ethylene copolymer composition (A-2). A biaxially stretched ethylene polymer film that can be formed.
The biaxially stretched ethylene polymer film of the present invention may be a single layer, a film having a layer structure of two layers or three layers or more. In addition, when it has a layer structure of two layers or three layers or more, the multilayer film in which each layer was comprised from the same mixing | blending may be sufficient as the said biaxially stretched ethylene polymer film.
When the biaxially stretched ethylene polymer film of the present invention is a single layer or two or more layers (hereinafter sometimes referred to as “base material layer 1”) composed of the same composition, for convenience. In addition, one side of the biaxially stretched ethylene polymer film is referred to as a heat fusion layer side, and the other side is referred to as a laminate layer side.
On the other hand, when the biaxially stretched ethylene polymer film of the present invention has a layer structure of at least two layers, a base material layer composed of at least an ethylene polymer composition (A), preferably an ethylene copolymer composition (A -1) or the base material layer 2 including a layer made of the ethylene copolymer composition (A-2).
The biaxially stretched ethylene polymer film of the present invention may have a film thickness ratio consisting only of the base material layer of 100% with respect to the whole. When a resin layer having a different composition from the base material layer is provided on the heat sealing layer side or the laminate layer side, the lower limit value of the film thickness ratio of the base material layer to the entire biaxially stretched ethylene polymer film is, for example, 70% or more. Preferably, 75% or more is more preferable, and 80% or more is more preferable. It is preferable that the base layer is in the above range from the viewpoint of setting the thermal shrinkage rate of the biaxially stretched ethylene polymer film within a predetermined range. The upper limit of the film thickness ratio of the base material layer is preferably 98% or less, more preferably 95% or less, and still more preferably 92% or less. Thereby, the characteristic of a multilayer structure can be exhibited.
In addition, when the biaxially stretched ethylene polymer film of the present invention has, for example, a three-layer structure, it is referred to as a heat fusion layer / base material layer / laminate layer for convenience. In that case, the base material layer is made of the ethylene-based polymer composition (A) according to the present invention, preferably the ethylene copolymer composition (A-1), or the ethylene copolymer composition (A-2). Although formed, the heat-sealing layer or the laminate layer may be formed of an ethylene polymer composition (A) having a different density, or formed of the ethylene / α-olefin random copolymer (B). May be. The heat-sealing layer or the laminate layer may be formed from a mixture of the ethylene polymer composition (A) and the ethylene / α-olefin random copolymer (B).

本発明の二軸延伸エチレン重合体フィルムは、他の熱可塑性樹脂性フィルムなどと貼り合せる場合の接着性の改良、あるいは印刷を施す為に、ラミネート側、あるいはラミネート層の表面をコロナ処理、火炎処理、プラズマ処理、アンダーコート処理等の表面活性化処理を行っておいてもよい。
本発明の二軸延伸エチレン重合体フィルムが多層構成を有する場合は、基材層は前記エチレン系重合体組成物(A)、好ましくはエチレン共重合体組成物(A−1)、若しくはエチレン共重合体組成物(A−2)から形成される必要があるが、基材層の片面に、例えば、前記エチレン・α―オレフィンランダム共重合体(B)からなる熱融着層を有する二層構成、あるいは、基材層の他の片面に、例えば、エチレン・α―オレフィンランダム共重合体(B)あるいは、それ以外のエチレン・α−オレフィンランダム共重合体からなるラミネート層を有する三層構成を採りえる。
The biaxially stretched ethylene polymer film of the present invention has a corona treatment or flame treatment on the laminate side or the surface of the laminate layer in order to improve adhesion when printing with other thermoplastic resin films or to perform printing. Surface activation treatment such as treatment, plasma treatment, and undercoat treatment may be performed.
When the biaxially stretched ethylene polymer film of the present invention has a multilayer structure, the base material layer is the ethylene polymer composition (A), preferably the ethylene copolymer composition (A-1), or the ethylene copolymer. Although it is necessary to form from a polymer composition (A-2), it is a two layer which has the heat-fusion layer which consists of the said ethylene-alpha-olefin random copolymer (B) on the single side | surface of a base material layer, for example Configuration, or three-layer configuration having a laminate layer made of, for example, ethylene / α-olefin random copolymer (B) or other ethylene / α-olefin random copolymer on the other surface of the base material layer Can be adopted.

本発明の二軸延伸エチレン重合体フィルムの熱収縮特性(熱収縮率)としては、120℃の熱収縮率において、縦方向(MD)の熱収縮率(%)と横方向(TD)の熱収縮率(%)の和〔MD+TD〕120が、15%<〔MD+TD〕120<85%、好ましくは25%<〔MD+TD〕120<75%、より好ましくは30%<〔MD+TD〕120<70%、さらに好ましくは35%<〔MD+TD〕120<65%、最も好ましくは37%<〔MD+TD〕120<62%の範囲を満たす(ただし、上記上限値と上記下限値を含む)。
〔MD+TD〕120の熱収縮率が15%未満の二軸延伸エチレン重合体フィルムは、延伸された二軸延伸エチレン重合体フィルムの配向が緩和され過ぎる為か、得られる二軸延伸エチレン重合体フィルムは、耐屈曲性が著しく低下する虞がある。一方、〔MD+TD〕120の熱収縮率が85%を超える二軸延伸エチレン重合体フィルムは、ヒートシールした場合、ヒートシール部が収縮し、ヒートシール部の外観が劣る虞がある。
また、本発明の二軸延伸エチレン重合体フィルムにおいて、120℃の熱収縮率におけるMD方向の熱収縮率とTD方向の熱収縮率の和を〔MD+TD〕120とし、100℃の熱収縮率におけるMD方向の熱収縮率とTD方向の熱収縮率の和を〔MD+TD〕100としたとき、[〔MD+TD〕120−〔MD+TD〕100]の下限値は、例えば、27%以上が好ましく、30%以上がより好ましく、40%以上がさらに好ましい。一方、[〔MD+TD〕120−〔MD+TD〕100]の上限値は、例えば、65%以下が好ましく、55%以下がより好ましく、50%以下がより好ましく、45%以下がさらに好ましい。120℃と100℃の熱収縮率差を上記範囲内とすることにより、優れた易引裂き性、耐屈曲性、及びヒートシール部の外観性を得ることが可能になる。
As the heat shrinkage characteristics (heat shrinkage rate) of the biaxially stretched ethylene polymer film of the present invention, the heat shrinkage rate (%) in the machine direction (MD) and the heat in the transverse direction (TD) at a heat shrinkage rate of 120 ° C. Sum of shrinkage (%) [MD + TD] 120 is 15% <[MD + TD] 120 <85%, preferably 25% <[MD + TD] 120 <75%, more preferably 30% <[MD + TD] 120 <70% More preferably, it satisfies the range of 35% <[MD + TD] 120 <65%, and most preferably 37% <[MD + TD] 120 <62% (however, the upper limit value and the lower limit value are included).
[MD + TD] 120 biaxially oriented ethylene polymer film heat shrinkage rate is less than 15% of, for either a two resulting biaxially stretched ethylene polymer film oriented too is relieved of the stretching biaxially oriented ethylene polymer films There is a possibility that the bending resistance is remarkably lowered. On the other hand, when the biaxially stretched ethylene polymer film having a thermal shrinkage ratio of [MD + TD] 120 exceeding 85% is heat-sealed, the heat-sealed portion may shrink and the appearance of the heat-sealed portion may be deteriorated.
Further, in the biaxially stretched ethylene polymer film of the present invention, the sum of the thermal shrinkage rate in the MD direction and the thermal shrinkage rate in the TD direction at a heat shrinkage rate of 120 ° C. is [MD + TD] 120, and the heat shrinkage rate at 100 ° C. When the sum of the thermal shrinkage in the MD direction and the thermal shrinkage in the TD direction is [MD + TD] 100 , the lower limit of [[MD + TD] 120- [MD + TD] 100 ] is preferably 27% or more, for example, 30% The above is more preferable, and 40% or more is more preferable. On the other hand, the upper limit of [[MD + TD] 120- [MD + TD] 100 ] is, for example, preferably 65% or less, more preferably 55% or less, more preferably 50% or less, and further preferably 45% or less. By setting the difference in heat shrinkage between 120 ° C. and 100 ° C. within the above range, it is possible to obtain excellent easy tearing, bending resistance, and appearance of the heat seal part.

本発明の二軸延伸エチレン重合体フィルムは、シール外観を向上させる観点から好ましくは、120℃におけるMD方向またはTD方向の少なくとも一方の熱収縮率の範囲は、−0.5%以上、50%以下、より好ましくは0%以上、40%以下、さらに好ましくは0%を超え、35%未満、さらに好ましくは0%を超え、30%以下、最も好ましくは0%を超え、25%以下である。また他方の120℃における熱収縮率の範囲は、−10%以上、65%以下、さらに好ましくは−5%以上、60%以下、さらに好ましくは0%を超え55%未満、さらに好ましくは10%以上、53%以下、さらに好ましくは20%以上、52%以下、最も好ましくは30%以上、50%以下である。前記熱収縮率は延伸倍率のより高い方向が大きくなる。例えば、TD方向の延伸倍率がMD方向の延伸倍率より高い場合には、熱収縮率においてもTD方向の熱収縮率がMD方向の熱収縮率より大きくなる。
さらに、耐屈曲性を顕著に向上させる観点から、一方向(例えばMD方向)の熱収縮率が好ましくは0%を超え、より好ましくは8%以上、さらに好ましくは15%以上である。他方向(例えばTD方向)の熱収縮率は好ましくは−10%を超え、より好ましくは50%以下、より好ましくは45%以下、さらに好ましくは35%以下である。
また、本発明の二軸延伸エチレン重合体フィルムにおいて、一方向(例えばMD方向)における120℃の熱収縮率をMD120とし、MD方向における100℃の熱収縮率をMD100としたとき、[MD120−MD100]の下限値は、例えば、−2%以上が好ましく、3%以上がより好ましく、10%以上がより好ましく、15%以上がさらに好ましい。一方、一方向(例えばMD方向)における[MD120−MD100]の上限値は、例えば、20%以下が好ましく、18%以下がより好ましく、15%以下がより好ましく、12%以下がさらに好ましい。一方向(例えばMD方向)における120℃と100℃の熱収縮率差を上記範囲内とすることにより、一方向(例えばMD方向)の延伸倍率が低い二軸延伸エチレン重合体フィルムの場合にも、優れた易引裂き性、耐屈曲性、及びヒートシール部の外観性を得ることができる。
The biaxially stretched ethylene polymer film of the present invention is preferably from the viewpoint of improving the seal appearance, and the range of the thermal shrinkage rate in at least one of the MD direction or TD direction at 120 ° C. is −0.5% or more and 50%. Or less, more preferably 0% or more and 40% or less, more preferably more than 0%, less than 35%, still more preferably more than 0%, 30% or less, most preferably more than 0% and 25% or less. . The other range of heat shrinkage at 120 ° C. is −10% or more and 65% or less, more preferably −5% or more and 60% or less, more preferably more than 0% and less than 55%, and still more preferably 10%. Thus, it is 53% or less, more preferably 20% or more and 52% or less, and most preferably 30% or more and 50% or less. The heat shrinkage rate increases in the direction of higher draw ratio. For example, when the draw ratio in the TD direction is higher than the draw ratio in the MD direction, the heat shrinkage rate in the TD direction is larger than the heat shrinkage rate in the MD direction also in the heat shrinkage rate.
Furthermore, from the viewpoint of significantly improving the bending resistance, the thermal shrinkage rate in one direction (for example, MD direction) is preferably more than 0%, more preferably 8% or more, and further preferably 15% or more. The thermal shrinkage rate in the other direction (for example, TD direction) is preferably more than −10%, more preferably 50% or less, more preferably 45% or less, and further preferably 35% or less.
In the biaxially stretched ethylene polymer film of the present invention, when the thermal shrinkage rate at 120 ° C. in one direction (for example, MD direction) is MD 120 and the thermal shrinkage rate at 100 ° C. in the MD direction is MD 100 , the lower limit of MD 120 -MD 100], for example, preferably not less than -2%, more preferably at least 3%, more preferably at least 10%, more preferably 15% or more. On the other hand, the upper limit of [MD 120 -MD 100 ] in one direction (for example, MD direction) is, for example, preferably 20% or less, more preferably 18% or less, more preferably 15% or less, and further preferably 12% or less. . Even in the case of a biaxially stretched ethylene polymer film having a low stretch ratio in one direction (for example, MD direction) by making the difference in heat shrinkage between 120 ° C. and 100 ° C. in one direction (for example, MD direction) within the above range. Excellent tearability, bending resistance, and heat seal appearance can be obtained.

本発明の二軸延伸エチレン重合体フィルムは、好ましくは、MD方向の引裂き強度およびTD方向の引裂き強度のうち一方を(T)、他方を(T)(但し、T≧Tである。)とする。この場合、引裂き強度(T)が、例えば、250〜10N/cm、好ましくは230〜20N/cm、特に好ましくは200〜20N/cmである。上記(T)/(T)が、例えば、0.10〜1、好ましくは0.20〜1の範囲にある。
また、本発明の二軸延伸エチレン重合体フィルムにおいて、機械的強度を向上させる観点から、MD方向またはTD方向の少なくとも一方の引裂き強度(例えばMD方向の引裂き強度)の下限値は好ましくは60N/cm以上、より好ましくは65N/cm以上、より好ましくは76N/cm以上、より好ましくは80N/cm以上、最も好ましくは84N/cm以上である。また、当該引裂き強度は高いほど機械的強度が向上するため好ましい。なお、本発明の二軸延伸エチレン重合体フィルムを、例えば、包装体等の用途である包装用フィルムとして使用する際の開封容易性の観点から、上限値を設けることがより好ましい。引裂き強度の上限値としては好ましくは175N/cm以下、より好ましくは160N/cm以下、より好ましくは150N/cm以下、より好ましくは145N/cm以下、最も好ましくは135N/cm以下である。
また、他方(例えばMD方向)の引裂き強度を上記の引裂き強度より任意の値で小さくすることで引裂き性に方向性を付与することができ、切断の容易性の観点から好ましい。当該切断の容易性は、本発明の二軸延伸エチレン系フィルムを包装体等の用途である包装用フィルムとして使用した場合に非常に有効である。一方の引裂き強度が60N/cm以上である場合、他方の引裂き強度は機械的強度保持の観点から、20N/cm以上であることが好ましく、一方の引裂き強度と他方の引裂き強度との差が好ましくは、20N/cm以上、120N/cm以下、より好ましくは25N/cm以上、100N/cm以下、より好ましくは30N/cm以上、80N/cm以下、より好ましくは32N/cm以上、70N/cm以下、最も好ましくは35N/cm以上、60N/cm以下である。
In the biaxially stretched ethylene polymer film of the present invention, preferably, one of the tear strength in the MD direction and the tear strength in the TD direction is (T S ) and the other is (T W ) (where T S ≧ T W. Yes.) In this case, the tear strength (T S ) is, for example, 250 to 10 N / cm, preferably 230 to 20 N / cm, and particularly preferably 200 to 20 N / cm. The (T W ) / (T S ) is, for example, in the range of 0.10 to 1, preferably 0.20 to 1.
Further, in the biaxially stretched ethylene polymer film of the present invention, from the viewpoint of improving mechanical strength, the lower limit value of at least one tear strength in the MD direction or TD direction (for example, tear strength in the MD direction) is preferably 60 N / cm or more, more preferably 65 N / cm or more, more preferably 76 N / cm or more, more preferably 80 N / cm or more, and most preferably 84 N / cm or more. Further, the higher the tear strength, the better the mechanical strength. In addition, it is more preferable to provide an upper limit value from the viewpoint of ease of opening when the biaxially stretched ethylene polymer film of the present invention is used as a packaging film that is an application of, for example, a package. The upper limit of the tear strength is preferably 175 N / cm or less, more preferably 160 N / cm or less, more preferably 150 N / cm or less, more preferably 145 N / cm or less, and most preferably 135 N / cm or less.
Moreover, directionality can be provided to tearability by making the tear strength of the other (for example, MD direction) smaller than the above tear strength by an arbitrary value, which is preferable from the viewpoint of ease of cutting. The ease of cutting is very effective when the biaxially stretched ethylene-based film of the present invention is used as a packaging film that is used for a package or the like. When one tear strength is 60 N / cm or more, the other tear strength is preferably 20 N / cm or more from the viewpoint of maintaining mechanical strength, and a difference between one tear strength and the other tear strength is preferred. Is 20 N / cm or more and 120 N / cm or less, more preferably 25 N / cm or more and 100 N / cm or less, more preferably 30 N / cm or more and 80 N / cm or less, more preferably 32 N / cm or more and 70 N / cm or less. Most preferably, it is 35 N / cm or more and 60 N / cm or less.

引裂き強度(T)が250N/cm以下である二軸延伸エチレン重合体フィルムは、引裂き強度が適度で、易引裂き性に優れたフィルムとなり、引裂き強度(T)が10N/cm以上である二軸延伸エチレン重合体フィルムは、引裂き強度が適度にあり、包装材料としての耐久性に優れる。(T)/(T)が0.10以上である二軸延伸エチレン重合体フィルムは、引裂き性に方向性が生じ、縦/横何れかの方向に裂け易いフィルムとなる。また、本発明の二軸延伸エチレン重合体フィルムは、好ましくは透明性(ヘイズ)が0.5〜15%の範囲にある。ヘイズが15%以下とすることにより、優れた透明性を得ることができる。また、耐屈曲性は1000個/m以下、好ましくは700個/m以下であることが好ましい。1000個/m以下の場合、輸送中や保管中、陳列中にピンホールが開くことを抑制することができる。A biaxially stretched ethylene polymer film having a tear strength (T S ) of 250 N / cm or less is a film having an appropriate tear strength and excellent tearability, and a tear strength (T S ) of 10 N / cm or more. The biaxially stretched ethylene polymer film has an appropriate tear strength and is excellent in durability as a packaging material. A biaxially stretched ethylene polymer film having (T W ) / (T S ) of 0.10 or more has a directionality in tearability and becomes a film that is easily torn in either the longitudinal or transverse direction. The biaxially stretched ethylene polymer film of the present invention preferably has a transparency (haze) in the range of 0.5 to 15%. By setting the haze to 15% or less, excellent transparency can be obtained. Further, the flex resistance is 1000 pieces / m 2 or less, preferably 700 pieces / m 2 or less. In the case of 1000 pieces / m 2 or less, pinholes can be prevented from opening during transportation, storage, and display.

本発明の二軸延伸エチレン重合体フィルムの厚さは用途により種々決定され得るが、通常、厚さが、約10〜320μm、好ましくは約15〜230μmの範囲にあり、例えば、三層構成を有する場合は、二軸延伸エチレン重合体フィルムの基材層の厚さが約10〜200μm、好ましくは約15〜130μm、熱融着層の厚さが約0.2〜60μm、好ましくは約0.4〜40μmの範囲、二軸延伸エチレン重合体フィルムの全体の厚さが、約10〜320μm、好ましくは約15〜230μmの範囲にある。   Although the thickness of the biaxially stretched ethylene polymer film of the present invention can be variously determined depending on the application, the thickness is usually in the range of about 10 to 320 μm, preferably about 15 to 230 μm. In the case of having a biaxially stretched ethylene polymer film, the base material layer has a thickness of about 10 to 200 μm, preferably about 15 to 130 μm, and the heat fusion layer has a thickness of about 0.2 to 60 μm, preferably about 0 In the range of 4 to 40 μm, the total thickness of the biaxially stretched ethylene polymer film is in the range of about 10 to 320 μm, preferably about 15 to 230 μm.

本発明の二軸延伸エチレン重合体フィルムが多層構成を有する場合は、熱融着層は基材層の片面に形成されていても、両面に形成されていてもよい。熱融着層が両面に形成された二軸延伸エチレン重合体フィルムはオーバーラップ包装用フィルム、水物充填用包装体用シーラントフィルム、あるいは、貼り合わせ用基材フィルムとして使用し得る。
また、本発明の二軸延伸エチレン重合体フィルムが多層構成を有する場合は、基材層の片面に熱融着層、他の片面にラミネート層を有してもよい。片面に熱融着層、他の片面にラミネート層が形成された二軸延伸エチレン重合体フィルムは、ラミネート層に熱可塑性樹脂フィルムをラミネートすることで、スタンディングパウチ袋やスパウト袋、または三方袋などに使用し得る。このように、本発明の二軸延伸エチレン重合体フィルムは、包装体に好適に利用できる。
When the biaxially stretched ethylene polymer film of the present invention has a multilayer structure, the heat-sealing layer may be formed on one side or both sides of the base material layer. The biaxially stretched ethylene polymer film having a heat-sealing layer formed on both sides can be used as an overlap packaging film, a water filling packaging sealant film, or a bonding base film.
In addition, when the biaxially stretched ethylene polymer film of the present invention has a multilayer structure, it may have a heat-sealing layer on one side of the base material layer and a laminate layer on the other side. A biaxially stretched ethylene polymer film with a heat-sealable layer on one side and a laminate layer on the other side can be a standing pouch bag, spout bag, or three-sided bag by laminating a thermoplastic resin film to the laminate layer. Can be used for Thus, the biaxially stretched ethylene polymer film of the present invention can be suitably used for a package.

本発明の二軸延伸エチレン重合体フィルムは、ラミネート面あるいはラミネート層に、熱可塑性樹脂フィルムが積層されていてもよい。
上記熱可塑性樹脂フィルムとしては、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリ4−メチル−1−ペンテン、ポリブテン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン−6、ナイロン−66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体もしくはその鹸化物、ポリビニルアルコール、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー、あるいはこれらの混合物等から得られるフィルムを例示することができる。
In the biaxially stretched ethylene polymer film of the present invention, a thermoplastic resin film may be laminated on the laminate surface or the laminate layer.
Examples of the thermoplastic resin film include polyolefin (polyethylene, polypropylene, poly-4-methyl-1-pentene, polybutene, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, Nylon-66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer or saponified product thereof, polyvinyl alcohol, polyacrylonitrile, polycarbonate, polystyrene, ionomer, or a mixture thereof. The film to be used can be exemplified.

また、上記熱可塑性樹脂フィルムは、無延伸フィルムであっても、延伸フィルムであっても良いし、1種または2種以上の共押し出し成形、押出しラミネート、ドライラミネート、サーマルラミネート等で得られる積層体であっても良い。中でも、二軸延伸熱可塑性フィルム、とくにポリプロピレン、ポリエチレンテレフタレート、ポリアミドからなる二軸延伸熱可塑性フィルムが好ましい。
本発明の二軸延伸エチレン重合体フィルムにおいては、ラミネート面あるいはラミネート層に、紙、アルミニウム箔等からなる基材が積層されていてもよい。
The thermoplastic resin film may be an unstretched film or a stretched film, or a laminate obtained by one or more types of coextrusion molding, extrusion lamination, dry lamination, thermal lamination, and the like. It may be the body. Among them, a biaxially stretched thermoplastic film, particularly a biaxially stretched thermoplastic film made of polypropylene, polyethylene terephthalate, or polyamide is preferable.
In the biaxially stretched ethylene polymer film of the present invention, a substrate made of paper, aluminum foil or the like may be laminated on the laminate surface or laminate layer.

[二軸延伸エチレン重合体フィルムの製造方法]
本発明の二軸延伸エチレン重合体フィルムは、種々公知の方法、例えば、二軸延伸エチレン重合体フィルムを形成する前記エチレン系重合体組成物(A)、あるいは、熱融着層を形成する前記エチレン・α―オレフィンランダム共重合体(B)、あるいは、ラミネート層を構成するエチレン・α‐オレフィンランダム共重合体とを、押出し成形、あるいは共押出し成形し、チューブラー方式又はフラット方式(テンター方式)により、上記範囲で縦(MD)方向及び横(TD)方向に二軸延伸することにより得られる。二軸延伸は同時二軸延伸でも、逐次二軸延伸でもよい。これら方式の中でも、フラット方式により得られる二軸延伸エチレン重合体フィルムが、より透明性に優れるので好ましい。フラット方式による場合は、通常、押出し成形して得たシートを90〜125℃の温度範囲で縦方向に2倍〜12倍、好ましくは3倍〜10倍延伸した後、90〜140℃の温度範囲で横方向に3倍〜15倍、好ましくは5倍〜15倍延伸することにより得られる。例えば、二軸延伸エチレン重合体フィルムについては、縦(MD)方向よりも横(TD)方向の延伸倍率を大きくすることができる。
[Method for producing biaxially stretched ethylene polymer film]
The biaxially stretched ethylene polymer film of the present invention can be obtained by various known methods, for example, the ethylene polymer composition (A) for forming a biaxially stretched ethylene polymer film, or the above-mentioned for forming a heat fusion layer. Extrusion molding or coextrusion molding of ethylene / α-olefin random copolymer (B) or ethylene / α-olefin random copolymer constituting the laminate layer, tubular system or flat system (tenter system) ) Is obtained by biaxial stretching in the longitudinal (MD) direction and transverse (TD) direction within the above range. Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. Among these methods, a biaxially stretched ethylene polymer film obtained by a flat method is preferable because it is more excellent in transparency. In the case of the flat method, the sheet obtained by extrusion molding is usually stretched 2 to 12 times, preferably 3 to 10 times in the longitudinal direction in a temperature range of 90 to 125 ° C, and then a temperature of 90 to 140 ° C. It is obtained by stretching 3 to 15 times, preferably 5 to 15 times in the transverse direction. For example, for a biaxially stretched ethylene polymer film, the stretch ratio in the transverse (TD) direction can be made larger than that in the longitudinal (MD) direction.

そして、二軸延伸して得たフィルムは、好ましくは115〜140℃の温度範囲で、6秒間から60秒間で、ヒートセットを行うことにより、120℃の熱収縮率が、上記範囲を満たす二軸延伸エチレン重合体フィルムを得ることが出来る。ヒートセットを行う際に、フィルム幅に対してテンターのクリップ間幅を緩和させても良い。   The film obtained by biaxial stretching preferably has a heat shrinkage rate of 120 ° C. satisfying the above range by performing heat setting in a temperature range of 115 to 140 ° C. for 6 to 60 seconds. An axially stretched ethylene polymer film can be obtained. When performing heat setting, the inter-clip width of the tenter may be relaxed with respect to the film width.

ヒートセットの温度が80℃以下では十分なヒートセットを行うことが出来ず、120℃の熱収縮率を上記範囲内に調整することが困難な場合があり、一方、140℃を超える場合は得られる二軸延伸エチレン重合体フィルムの熱収縮率が小さくなりすぎ、120℃の熱収縮率を上記範囲内に調整することが困難な場合がある。   If the temperature of the heat set is 80 ° C. or lower, sufficient heat setting cannot be performed, and it may be difficult to adjust the heat shrinkage rate of 120 ° C. within the above range. The resulting biaxially stretched ethylene polymer film has a too small heat shrinkage rate, and it may be difficult to adjust the heat shrinkage rate at 120 ° C. within the above range.

また、ヒートセット時間が、6秒未満では十分なヒートセットが行うことが出来ず、60秒を超える場合は、得られる二軸延伸エチレン重合体フィルムの熱収縮率が小さくなりすぎ、120℃の熱収縮率を上記範囲内に調整することが困難な場合がある。
なお、二軸延伸して得たフィルムをヒートセットする場合、さらにフィルム幅に対してクリップ間幅を緩和しながらヒートセットすることで、十分なヒートセット効果を得ることが出来る。
すなわち、フィルム幅に対してクリップ間幅を緩和しながら、ヒートセットの加熱温度および加熱時間を上記範囲内とすることにより、MD方向およびTD方向における120℃と100℃の熱収縮率差、MD方向における120℃と100℃の熱収縮率差、多層構造の二軸延伸エチレン重合体フィルムにおける120℃の熱収縮率を、上述の範囲内とすることができる。
Further, if the heat setting time is less than 6 seconds, sufficient heat setting cannot be performed, and if it exceeds 60 seconds, the heat shrinkage rate of the obtained biaxially stretched ethylene polymer film becomes too small, It may be difficult to adjust the heat shrinkage rate within the above range.
In addition, when heat-setting a film obtained by biaxial stretching, a sufficient heat-setting effect can be obtained by further heat-setting while relaxing the inter-clip width with respect to the film width.
That is, the heat shrinkage difference between 120 ° C. and 100 ° C. in the MD direction and the TD direction is achieved by adjusting the heating temperature and heating time of the heat set within the above range while relaxing the inter-clip width with respect to the film width, MD The difference in heat shrinkage between 120 ° C. and 100 ° C. in the direction, and the heat shrinkage at 120 ° C. in the biaxially stretched ethylene polymer film having a multilayer structure can be within the above-mentioned ranges.

本発明の二軸延伸エチレン重合体フィルムのラミネート面、あるいはラミネート層面に他の熱可塑性樹脂フィルムを貼り合せる場合は種々公知の方法、例えば、必要に応じてコロナ処理した二軸延伸エチレン重合体フィルムのラミネート面あるいはラミネート層面にウレタン型接着剤、イソシアネート系接着剤を塗布した後、熱可塑性樹脂フィルムとドライラミネートする方法あるいは、ラミネート面あるいはラミネート層面と熱可塑性樹脂フィルムとを高圧法低密度ポリエチレンを用いて押出しラミネートする方法を採り得る。   When another thermoplastic resin film is bonded to the laminate surface or the laminate layer surface of the biaxially stretched ethylene polymer film of the present invention, various known methods, for example, a biaxially stretched ethylene polymer film subjected to corona treatment as necessary After applying urethane type adhesive or isocyanate adhesive to the laminate surface or laminate layer surface, dry laminate with the thermoplastic resin film, or use the high pressure method low density polyethylene for the laminate surface or laminate layer surface and the thermoplastic resin film. It is possible to adopt an extrusion lamination method.

次に本発明を、実施例を通して説明するが、本発明はそれら実施例によって限定されるものではない。
本発明における各種試験法および評価法は次の通りである。
(1)メルトフローレート(g/10分)
ASTM D1238に準拠し、荷重2160g、温度190℃の条件で測定した。
(2)密度(Kg/m
MFRを測定して得た重合体ストランドを120℃で2時間処理し、1時間かけて室温(23℃)まで徐冷した後、JIS K 7112に準拠し、D法(密度勾配管)により測定した。
EXAMPLES Next, although this invention is demonstrated through an Example, this invention is not limited by these Examples.
Various test methods and evaluation methods in the present invention are as follows.
(1) Melt flow rate (g / 10 min)
Based on ASTM D1238, the load was 2160 g and the temperature was 190 ° C.
(2) Density (Kg / m 3 )
The polymer strand obtained by measuring MFR was treated at 120 ° C. for 2 hours, slowly cooled to room temperature (23 ° C.) over 1 hour, and then measured by the D method (density gradient tube) according to JIS K 7112. did.

(3)ヘイズ(曇価)(%)
Haze Meter(日本電色工業社製 NDH−2000)を使用してフィルム1枚の曇り度をJIS K 7136に準拠して測定した。
(4)引裂き強度(N/cm)
JIS P8116及びASTM1922に準拠し、軽荷重引裂試験機(東洋精機製作所製TypeD)を使用し、フィルムから引裂き方向に長さ64mm(長辺)及び引裂き方向と直角方向に幅50mm(短辺)の長方形の試験片を用意し、短辺の中央に端から13mmの切り込みを入れて、引裂き強度を測定した。
(3) Haze (cloudiness value) (%)
The haze of one film was measured according to JIS K 7136 using Haze Meter (NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.).
(4) Tear strength (N / cm)
In accordance with JIS P8116 and ASTM 1922, using a light load tear tester (Type D manufactured by Toyo Seiki Seisakusho), the film has a length of 64 mm (long side) in the tear direction and a width of 50 mm (short side) in the direction perpendicular to the tear direction. A rectangular test piece was prepared, a 13 mm cut was made in the center of the short side, and the tear strength was measured.

(5)熱収縮率(%)
フィルムの長さ方向がフィルムの流れ方向(MD)、幅方向(TD)となるように100mm幅、100mm長さの試験片を切り出し、濾紙に挟み所定温度のオーブン内に15分間放置後、取り出して室温まで放冷した後の試験片の寸法変化を測定し収縮率を測定した。
(6)耐屈曲性
テスター産業製のゲルボフレックステスターを使用し、フィルムから210mm幅、297mm長さの試験片を切り出し、屈曲角度440度、屈曲速度40回/分で、−30℃の各雰囲気下で、3000回の屈曲試験を行った後、屈曲試験後の試験片で袋をつくり、三菱ガス化学製のエージレスシールチェックでピンホール数を測定した。そして単位平米あたりのピンホール数で評価した。
(7)ヒートシール強度
15μm厚のNy(銘柄;ユニチカ株式会社製 ONBC−15)とドライラミネートしたフィルムを、東洋精機製ヒートシールテスターを使用し、フィルムから100mm幅、150mm長さの試験片を切り出し、半分に折って、ヒーター温度が110℃〜140℃で、シール圧力が1Kgf/cm、シール時間が1秒で、ヒートシールを行った後、シールした試験片を幅15mmの試験片に切り出し、オリエンテック製テンシロンRT1225型を使用し、垂直剥離強度を測定した。
(5) Thermal shrinkage (%)
A 100 mm wide and 100 mm long test piece was cut out so that the film length direction would be the film flow direction (MD) and the width direction (TD), sandwiched between filter papers, left in an oven at a predetermined temperature for 15 minutes, and then removed. Then, the dimensional change of the test piece after being allowed to cool to room temperature was measured, and the shrinkage rate was measured.
(6) Bending resistance Using a gelboflex tester manufactured by Tester Sangyo, a test piece of 210 mm width and 297 mm length was cut out from the film, and each of −30 ° C. at a bending angle of 440 degrees and a bending speed of 40 times / min. Under an atmosphere, after 3000 bending tests, a bag was made with the test piece after the bending test, and the number of pinholes was measured with an ageless seal check made by Mitsubishi Gas Chemical. And it evaluated by the number of pinholes per unit square meter.
(7) Heat seal strength 15 μm-thick Ny (brand: ONBC-15 manufactured by Unitika Co., Ltd.) and a dry-laminated film were used, and a 100 mm wide and 150 mm long test piece was removed from the film using a Toyo Seiki heat seal tester. Cut out and folded in half. Heat seal was performed at a heater temperature of 110 ° C to 140 ° C, a seal pressure of 1 Kgf / cm 2 , and a seal time of 1 second, and the sealed test piece was converted into a test piece with a width of 15 mm. Cut out and measured for vertical peel strength using Tensilon RT1225 manufactured by Orientec.

(8)ヒートシール外観
(ラミネート品)
15μm厚のNy(銘柄;ユニチカ株式会社製ONBC−15)とドライラミネートしたフィルムをフロログラスシートに挟み込み、東洋精機製ヒートシールテスターの10mm幅のシールバーを用いて、ヒーター温度を130℃、シール圧力を1Kgf/cm、シール時間を1秒でシールをした。シール外観にシワが発生しないものを○、シワが発生するものを×として評価した。
(単体)
フィルムを12μmのPET(銘柄;ユニチカ株式会社製EMBLET)に挟み込み、東洋精機製ヒートシールテスターの10mm幅のシールバーを用いて、ヒーター温度を130℃、シール圧力を1Kgf/cm、シール時間を0.5秒でシールをした。シール外観にシワ、気泡が発生しないものを○、シワ、気泡が発生するものを×として評価した。
(総合評価)
表中のシール外観は、以下の総合評価の結果を示す。
総合評価 ◎;ラミネート品の評価 ○、かつ単体の評価 ○
総合評価 ○;ラミネート品の評価 ○、かつ単体の評価 ×
総合評価 ○;ラミネート品の評価 ×、かつ単体の評価 ○
総合評価 ×;ラミネート品の評価 ×、かつ単体の評価 ×
(8) Heat seal appearance (laminated product)
A 15 μm thick Ny (brand: ONBC-15 manufactured by Unitika Co., Ltd.) and a dry-laminated film are sandwiched between fluoroglass sheets, and a heater temperature of 130 ° C. is sealed using a Toyo Seiki heat seal tester 10 mm wide seal bar. Sealing was performed at a pressure of 1 kgf / cm 2 and a sealing time of 1 second. The case where no wrinkle was generated on the appearance of the seal was evaluated as ○, and the case where wrinkles were generated was evaluated as ×.
(Non-consolidated)
The film is sandwiched between 12 μm PET (brand: EMBLET manufactured by Unitika Co., Ltd.), a 10 mm wide seal bar of Toyo Seiki's heat seal tester is used, the heater temperature is 130 ° C., the seal pressure is 1 Kgf / cm 2 , and the seal time is Sealed in 0.5 seconds. The seal appearance was evaluated as “◯” when no wrinkles or bubbles were generated, and “X” when wrinkles or bubbles were generated.
(Comprehensive evaluation)
The seal appearance in the table shows the results of the following comprehensive evaluation.
Comprehensive evaluation ◎; Evaluation of laminate products ○ and single unit evaluation ○
Comprehensive evaluation ○: Evaluation of laminate products ○ and single unit evaluation ×
Comprehensive evaluation ○: Evaluation of laminate product × and evaluation of single unit ○
Comprehensive evaluation ×: Evaluation of laminate product × and evaluation of single unit ×

本発明の実施例及び比較例で用いた重合体及び組成物は次の通りである。
(1)エチレン・α−オレフィンランダム共重合体(a1)
エチレン・1−ヘキセンランダム共重合体(a1−1):メタロセン触媒を用いた重合体、密度;905Kg/m、MFR;0.5g/10分。
The polymers and compositions used in the examples and comparative examples of the present invention are as follows.
(1) Ethylene / α-olefin random copolymer (a1)
Ethylene / 1-hexene random copolymer (a1-1): polymer using metallocene catalyst, density: 905 Kg / m 3 , MFR: 0.5 g / 10 min.

(2)エチレン系重合体(a2)
(i)エチレン・1−ヘキセンランダム共重合体(a2−1):メタロセン触媒を用いた重合体、密度;930Kg/m、MFR;60g/10分。
(ii)エチレン・プロピレン・1−ブテンランダム共重合体(a2−2):チーグラー触媒を用いた重合体、密度;958Kg/m、MFR;0.9g/10分。
(2) Ethylene polymer (a2)
(I) Ethylene / 1-hexene random copolymer (a2-1): polymer using metallocene catalyst, density: 930 Kg / m 3 , MFR: 60 g / 10 min.
(Ii) Ethylene / propylene / 1-butene random copolymer (a2-2): polymer using Ziegler catalyst, density: 958 Kg / m 3 , MFR: 0.9 g / 10 min.

(3)高圧法低密度ポリエチレン(a3)
(i)高圧法低密度ポリエチレン(a3−2):密度;917Kg/m、MFR;7g/10分。
(3) High pressure method low density polyethylene (a3)
(I) High-pressure method low-density polyethylene (a3-2): density: 917 Kg / m 3 , MFR: 7 g / 10 min.

(4)エチレン重合体組成物(A−2)
(i)エチレン重合体組成物(A−2−1)
前記エチレン・1−ヘキセンランダム共重合体(a1−1)、エチレン・1−ヘキセンランダム共重合体(a2−1)、エチレン・プロピレン・1−ブテンランダム共重合体(a2−2)及び高圧法低密度ポリエチレン(a3−2)を36:24:25:15(重量部)の割合でドライブレンドした後、池貝鉄工社製二軸押出機(46mmφ)を用いて、温度190℃、押出量50Kg/時の条件で溶融混練し、エチレン重合体組成物(A−2−1)を得た。
(4) Ethylene polymer composition (A-2)
(I) Ethylene polymer composition (A-2-1)
The ethylene / 1-hexene random copolymer (a1-1), ethylene / 1-hexene random copolymer (a2-1), ethylene / propylene / 1-butene random copolymer (a2-2) and high pressure method After dry blending low density polyethylene (a3-2) at a ratio of 36: 24: 25: 15 (parts by weight), using a twin screw extruder (46 mmφ) manufactured by Ikekai Tekko Co., Ltd., temperature 190 ° C., extrusion amount 50 kg. The mixture was melt-kneaded under the conditions of / hour to obtain an ethylene polymer composition (A-2-1).

得られたエチレン重合体組成物(A−2−1)は密度;927Kg/m、MFR;2.0g/10分、融解熱量(ΔH);127.1J/g、融解開始温度〜110℃の範囲の融解熱量(ΔH);63.55J/g、110℃〜融解終了温度の範囲の融解熱量(ΔH);63.55J/g及び(ΔH)/(ΔH);1.00であった。The obtained ethylene polymer composition (A-2-1) had a density; 927 Kg / m 3 , MFR; 2.0 g / 10 minutes, heat of fusion (ΔH T ); 127.1 J / g, melting start temperature to 110 Heat of fusion in the range of ° C. (ΔH L ); 63.55 J / g, heat of fusion in the range of 110 ° C. to end of melting temperature (ΔH H ); 63.55 J / g and (ΔH H ) / (ΔH L ); 1 0.00.

(5)エチレン・α−オレフィンランダム共重合体(B)
(i)エチレン・1−ヘキセンランダム共重合体(b−1):メタロセン触媒を用いた重合体、密度;903Kg/m、MFR;3.8g/10分、
(ii)エチレン・1−ヘキセンランダム共重合体(b−2):メタロセン触媒を用いた重合体、密度;913Kg/m、MFR;3.8g/10分、
(iii)エチレン・1−ヘキセンランダム共重合体(b−3):メタロセン触媒を用いた重合体、密度;918Kg/m、MFR;3.8g/10分、
(iv)エチレン・1−ヘキセンランダム共重合体(b−4):メタロセン触媒を用いた重合体、密度;924Kg/m、MFR;3.8g/10分、
(v)エチレン・1−ヘキセンランダム共重合体(b−5):メタロセン触媒を用いた重合体、密度;931Kg/m、MFR;3.1g/10分、
(5) Ethylene / α-olefin random copolymer (B)
(I) ethylene / 1-hexene random copolymer (b-1): polymer using metallocene catalyst, density: 903 Kg / m 3 , MFR: 3.8 g / 10 min,
(Ii) ethylene / 1-hexene random copolymer (b-2): polymer using metallocene catalyst, density: 913 Kg / m 3 , MFR: 3.8 g / 10 min.
(Iii) ethylene / 1-hexene random copolymer (b-3): polymer using metallocene catalyst, density: 918 Kg / m 3 , MFR: 3.8 g / 10 min.
(Iv) Ethylene / 1-hexene random copolymer (b-4): polymer using metallocene catalyst, density: 924 Kg / m 3 , MFR: 3.8 g / 10 min,
(V) ethylene / 1-hexene random copolymer (b-5): polymer using metallocene catalyst, density: 931 Kg / m 3 , MFR: 3.1 g / 10 min.

(実施例1)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50%、エチレン・1−ヘキセンランダム共重合体(b−3)を50%ドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2.0mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を8%緩和しながら、130℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表1に示す。
Example 1
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) ethylene / 1-hexene random copolymer (b-3), 50% ethylene polymer composition (A-2-1) in the laminate layer, ethylene / 1-hexene random copolymer ( b-3) 50% dry blended, melt extruded using a biaxially stretched film forming machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll to obtain a thickness An approximately 2.0 mm three-layer sheet ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio) was obtained. It was. This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing was performed at 130 ° C. for 7 seconds while relaxing the width between the tenter clips by 8% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 1.

(実施例2)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を用い、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2.0mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、127℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表1に示す。
(Example 2)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) Ethylene / 1-hexene random copolymer (b-3) is used as the laminate layer, and 50% by weight of the ethylene polymer composition (A-2-1) is used for the laminate layer. Ethylene / 1-hexene random copolymer 50% by weight of the blend (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then on a cooling roll. Rapidly cooled three-layer sheet having a thickness of about 2.0 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer Ratio). This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing was performed at 127 ° C. for 7 seconds while relaxing the width between the tenter clips by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 1.

(実施例3)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−1)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2.0mmの三層シート((b−1)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、127℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表1に示す。
(Example 3)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) ethylene / 1-hexene random copolymer (b-1), laminate layer 50% by weight of the ethylene polymer composition (A-2-1), ethylene / 1-hexene random copolymer 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. And a three-layer sheet having a thickness of about 2.0 mm ((b-1) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing was performed at 127 ° C. for 7 seconds while relaxing the width between the tenter clips by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 1.

(実施例4)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2.0mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンター幅を緩和させないで、127℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表1に示す。
Example 4
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. A three-layer sheet having a thickness of about 2.0 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing treatment was performed at 127 ° C. for 7 seconds without relaxing the tenter width with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 1.

Figure 0006470296
Figure 0006470296

(実施例5)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(A−2−1)を用い、ラミネート層には前記エチレン重合体組成物(A−2−1)を、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約1.5mmの三層シート((A−2−1)/(A−2−1)/(A−2−1)=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ30μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、132℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表2に示す。
(Example 5)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) An ethylene / 1-hexene random copolymer (A-2-1) is used as B), and the ethylene polymer composition (A-2-1) is used as the laminate layer in a biaxial structure including three extrusions. It is melt-extruded using a stretched film molding machine, shaped by a T-die, and then rapidly cooled on a cooling roll to obtain a three-layer sheet ((A-2-1) / (A-2) having a thickness of about 1.5 mm. -1) / (A-2-1) = 9/82/9 layer ratio). This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times was heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 30 μm. Annealing treatment was performed at 132 ° C. for 7 seconds while relaxing the inter-clip width of the tenter by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 2.

(実施例6)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−2)を用い、ラミネート層には前記エチレン重合体組成物(A−2−1)を、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約1.5mmの三層シート((b−2)/(A−2−1)/(A−2−1)=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ30μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、132℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表2に示す。
(Example 6)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) An ethylene / 1-hexene random copolymer (b-2) was used as B), and the ethylene polymer composition (A-2-1) was used as the laminate layer for the biaxially stretched film provided with three extrusions. Three-layer sheet ((b-2) / (A-2-1) / having a thickness of about 1.5 mm after being melt-extruded using a molding machine and shaped by a T-die and then rapidly cooled on a cooling roll. (A-2-1) = 9/82/9 layer ratio). This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times was heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 30 μm. Annealing treatment was performed at 132 ° C. for 7 seconds while relaxing the inter-clip width of the tenter by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 2.

(実施例7)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を用い、ラミネート層には前記エチレン重合体組成物(A−2−1)を、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約1.5mmの三層シート((b−3)/(A−2−1)/(A−2−1)=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ30μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、132℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表2に示す。
(Example 7)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) An ethylene / 1-hexene random copolymer (b-3) is used as B), and the ethylene polymer composition (A-2-1) is used as a laminate layer for a biaxially stretched film provided with three extrusions. Three-layer sheet ((b-3) / (A-2-1) / having a thickness of about 1.5 mm after being melt-extruded using a molding machine and shaped with a T-die and then rapidly cooled on a cooling roll. (A-2-1) = 9/82/9 layer ratio). This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times was heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 30 μm. Annealing treatment was performed at 132 ° C. for 7 seconds while relaxing the inter-clip width of the tenter by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 2.

(実施例8)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−4)を用い、ラミネート層には前記エチレン重合体組成物(A−2−1)を、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約1.5mmの三層シート((b−4)/(A−2−1)/(A−2−1)=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ30μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、132℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表2に示す。
(Example 8)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) An ethylene / 1-hexene random copolymer (b-4) was used as B), and the ethylene polymer composition (A-2-1) was used as the laminate layer for the biaxially stretched film provided with three extrusions. Three-layer sheet ((b-4) / (A-2-1) / having a thickness of about 1.5 mm after being melt-extruded using a molding machine and shaped by a T-die and then rapidly cooled on a cooling roll. (A-2-1) = 9/82/9 layer ratio). This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times was heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 30 μm. Annealing treatment was performed at 132 ° C. for 7 seconds while relaxing the inter-clip width of the tenter by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 2.

Figure 0006470296
Figure 0006470296

(実施例9)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−5)を用い、ラミネート層には前記エチレン重合体組成物(A−2−1)を、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約1.5mmの三層シート((b−5)/(A−2−1)/(A−2−1)=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ30μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を4%緩和しながら、132℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表3示す。
Example 9
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) An ethylene / 1-hexene random copolymer (b-5) is used as B), and the ethylene polymer composition (A-2-1) is used as the laminate layer for the biaxially stretched film provided with three extrusions. Three-layer sheet ((b-5) / (A-2-1) / having a thickness of about 1.5 mm after being melt-extruded using a molding machine and shaped by a T-die and then rapidly cooled on a cooling roll. (A-2-1) = 9/82/9 layer ratio). This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times was heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 30 μm. Annealing treatment was performed at 132 ° C. for 7 seconds while relaxing the inter-clip width of the tenter by 4% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 3.

(実施例10)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約1.5mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ30μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を8%緩和しながら、130℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表3示す。
(Example 10)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. And a three-layer sheet having a thickness of about 1.5 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times was heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 30 μm. Annealing was performed at 130 ° C. for 7 seconds while relaxing the width between the tenter clips by 8% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 3.

(実施例11)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2.0mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を8%緩和しながら、130℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表3示す。
(Example 11)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. A three-layer sheet having a thickness of about 2.0 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing was performed at 130 ° C. for 7 seconds while relaxing the width between the tenter clips by 8% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 3.

(実施例12)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約3.0mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ60μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を8%緩和しながら、130℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表3示す。
(Example 12)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. And a three-layer sheet having a thickness of about 3.0 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction perpendicular to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 60 μm, and then the film Annealing was performed at 130 ° C. for 7 seconds while relaxing the width between the tenter clips by 8% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. The results are shown in Table 3.

Figure 0006470296
Figure 0006470296

(実施例13)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約3.5mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ70μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を8%緩和しながら、130℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表4示す。
(Example 13)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. And a three-layer sheet having a thickness of about 3.5 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 70 μm, and then the film Annealing was performed at 130 ° C. for 7 seconds while relaxing the width between the tenter clips by 8% with respect to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. Table 4 shows the results.

(比較例1)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−1)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2.0mmの三層シート((b−1)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を緩和させないで、110℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表4示す。
(Comparative Example 1)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) ethylene / 1-hexene random copolymer (b-1), laminate layer 50% by weight of the ethylene polymer composition (A-2-1), ethylene / 1-hexene random copolymer 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. And a three-layer sheet having a thickness of about 2.0 mm ((b-1) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio ) This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing was performed at 110 ° C. for 7 seconds without relaxing the width between the tenter clips relative to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. Table 4 shows the results.

(比較例2)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ2.0mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を緩和させないで、110℃で7秒間アニール処理を行った。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表4示す。
(Comparative Example 2)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. And a three-layer sheet having a thickness of 2.0 mm ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio) Got. This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing was performed at 110 ° C. for 7 seconds without relaxing the width between the tenter clips relative to the width. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. Table 4 shows the results.

(比較例3)
二軸延伸エチレン重合体フィルム基材層用のエチレン系重合体として、前記エチレン重合体組成物(A−2−1)を、及び熱融着層用のエチレン・α―オレフィンランダム共重合体(B)としてエチレン・1−ヘキセンランダム共重合体(b−3)を、ラミネート層には前記エチレン重合体組成物(A−2−1)を50重量%、エチレン・1−ヘキセンランダム共重合体(b−3)を50重量%をドライブレンドして、3台の押出を備えた二軸延伸フィルム成形機を用いて溶融押出しし、T−ダイで賦形した後、冷却ロール上にて急冷し厚さ約2mmの三層シート((b−3)/(A−2−1)/((A−2−1)+(b−3))=9/82/9の層比)を得た。このシートを100℃に加熱しフィルムの流れ方向(縦方向)に5倍延伸した。この5倍延伸したシートを115℃に加熱し流れ方向に対して直交する方向(横方向)に10.0倍延伸して厚さ40μmの二軸延伸エチレン重合体多層フィルムを得た後、フィルム幅に対してテンターのクリップ間幅を8%緩和しながら、130℃で7秒間アニール処理を行い、さらにオーブンを使い125℃で2分間アニールした。かかる二軸延伸エチレン重合体多層フィルムの物性等を前記記載の方法で測定した。結果を表4示す。
(Comparative Example 3)
As the ethylene polymer for the biaxially stretched ethylene polymer film substrate layer, the ethylene polymer composition (A-2-1) and the ethylene / α-olefin random copolymer ( B) is ethylene / 1-hexene random copolymer (b-3), the laminate layer is 50% by weight of the ethylene polymer composition (A-2-1), and ethylene / 1-hexene random copolymer. 50% by weight of (b-3) was dry blended, melt extruded using a biaxially stretched film molding machine equipped with three extrusions, shaped with a T-die, and then rapidly cooled on a cooling roll. A three-layer sheet ((b-3) / (A-2-1) / ((A-2-1) + (b-3)) = 9/82/9 layer ratio) having a thickness of about 2 mm. Obtained. This sheet was heated to 100 ° C. and stretched 5 times in the film flow direction (longitudinal direction). The sheet stretched 5 times is heated to 115 ° C. and stretched 10.0 times in the direction orthogonal to the flow direction (transverse direction) to obtain a biaxially stretched ethylene polymer multilayer film having a thickness of 40 μm. Annealing treatment was performed at 130 ° C. for 7 seconds while relaxing the inter-clip width of the tenter with respect to the width, and further annealed at 125 ° C. for 2 minutes using an oven. The physical properties of the biaxially stretched ethylene polymer multilayer film were measured by the method described above. Table 4 shows the results.

Figure 0006470296
Figure 0006470296

本発明の二軸延伸エチレン重合体フィルムは、フィルム強度や耐ピンホール性、易引裂き性などの機械的強度に優れ、且つヒートシール可能であり、ヒートシール時のフィルム外観が優れることから、食品、産業材、その他包装材分野などの軟包装材料として広く利用される。中でも、鋭利な突起を有する電子部品や、エビやカニなどの甲殻類、珍味や串に刺さった焼き鳥、氷ブロックなどの冷凍食品や、トレー入りの珍味など、鋭利な突起を持つ物品の包装に適している。また、耐屈曲性に優れることから、スタンディングパウチ袋やスパウト袋などの用途にも適している。   The biaxially stretched ethylene polymer film of the present invention is excellent in mechanical strength such as film strength, pinhole resistance, and easy tearability, heat sealable, and excellent in film appearance during heat sealing. It is widely used as a flexible packaging material for industrial materials and other packaging materials. Above all, for packaging electronic parts with sharp protrusions, shells such as shrimp and crab, delicacy and skewered yakitori, frozen foods such as ice blocks, and dishes with sharp protrusions. Is suitable. Moreover, since it is excellent in bending resistance, it is also suitable for applications such as standing pouch bags and spout bags.

この出願は、2014年9月10日に出願された日本出願特願2014−184239号を基礎とする優先権及び2015年4月13日に出願された日本出願特願2015−081431号を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application is based on the priority based on Japanese Patent Application No. 2014-184239 filed on September 10, 2014 and the Japanese Patent Application No. 2015-081431 filed on April 13, 2015. All the disclosures of which are hereby incorporated by reference.

Claims (9)

密度が915〜938Kg/m、示差走査熱量計(DSC)により得られる融解熱量(ΔH)が100〜200J/g、融解開始温度〜110℃の範囲の融解熱量(ΔH)が50〜80J/g、110℃〜融解終了温度の範囲の融解熱量(ΔH)が35〜100J/gの範囲にあり、(ΔH)/(ΔH)が0.5〜1.5の範囲にあるエチレン系重合体組成物(A)からなる基材層を含む二軸延伸エチレン重合体フィルムであって、
当該二軸延伸エチレン重合体フィルムの熱収縮率が、120℃の熱収縮率における縦方向(MD方向)の熱収縮率(%)と横方向(TD方向)の熱収縮率(%)の和を〔MD+TD〕としたとき、15%<〔MD+TD〕<85%の範囲にあることを特徴とする二軸延伸エチレン重合体フィルム。
The density is 915 to 938 Kg / m 3 , the heat of fusion (ΔH T ) obtained by a differential scanning calorimeter (DSC) is 100 to 200 J / g, and the heat of fusion (ΔH L ) in the range of the melting start temperature to 110 ° C. is 50 to 50 The heat of fusion (ΔH H ) in the range of 80 J / g, 110 ° C. to the melting end temperature is in the range of 35 to 100 J / g, and (ΔH H ) / (ΔH L ) is in the range of 0.5 to 1.5. A biaxially stretched ethylene polymer film including a base material layer made of an ethylene polymer composition (A),
The heat shrinkage of the biaxially stretched ethylene polymer film is the sum of the heat shrinkage (%) in the machine direction (MD direction) and the heat shrinkage (%) in the transverse direction (TD direction) at a heat shrinkage of 120 ° C. Is a range of 15% <[MD + TD] <85%, where [MD + TD] is a biaxially stretched ethylene polymer film.
請求項1に記載の二軸延伸エチレン重合体フィルムであって、
MD方向またはTD方向の少なくともいずれか一方の引裂き強度が60N/cm以上である、二軸延伸エチレン系重合体フィルム。
The biaxially stretched ethylene polymer film according to claim 1,
A biaxially stretched ethylene polymer film having a tear strength of at least one of MD direction and TD direction of 60 N / cm or more.
請求項1または2に記載の二軸延伸エチレン重合体フィルムであって、
当該二軸延伸エチレン重合体フィルムが少なくとも2層以上の層構造を有している、二軸延伸エチレン重合体フィルム。
The biaxially stretched ethylene polymer film according to claim 1 or 2,
A biaxially stretched ethylene polymer film, wherein the biaxially stretched ethylene polymer film has a layer structure of at least two layers.
請求項3に記載の二軸延伸エチレン重合体フィルムであって、
当該二軸延伸エチレン重合体フィルム全体に対する前記基材層の膜厚比が70%以上である、二軸延伸エチレン重合体フィルム。
The biaxially stretched ethylene polymer film according to claim 3,
The biaxially stretched ethylene polymer film, wherein the thickness ratio of the base material layer to the entire biaxially stretched ethylene polymer film is 70% or more.
請求項3または4に記載の二軸延伸エチレン重合体フィルムであって、
密度が890〜945Kg/mの範囲にあるエチレン・α‐オレフィンランダム共重合体(B)からなる層を有する、二軸延伸エチレン重合体フィルム。
The biaxially stretched ethylene polymer film according to claim 3 or 4,
A biaxially stretched ethylene polymer film having a layer made of an ethylene / α-olefin random copolymer (B) having a density in the range of 890 to 945 kg / m 3 .
請求項1から5のいずれか1項に記載の二軸延伸エチレン重合体フィルムであって、
MD方向またはTD方向のいずれか一方の120℃の熱収縮率が−0.5%以上、25%以下であり、他方の120℃における熱収縮率が30%以上、50%以下である、二軸延伸エチレン重合体フィルム。
A biaxially stretched ethylene polymer film according to any one of claims 1 to 5,
The thermal shrinkage rate at 120 ° C. in either the MD direction or the TD direction is −0.5% or more and 25% or less, and the other thermal shrinkage rate at 120 ° C. is 30% or more and 50% or less. Axial stretched ethylene polymer film.
請求項1から6のいずれか1項に記載の二軸延伸エチレン重合体フィルムであって、
120℃の熱収縮率におけるMD方向の熱収縮率とTD方向の熱収縮率の和を〔MD+TD〕120とし、100℃の熱収縮率におけるMD方向の熱収縮率とTD方向の熱収縮率の和を〔MD+TD〕100としたとき、[〔MD+TD〕120−〔MD+TD〕100]が27%以上65%以下である、二軸延伸エチレン重合体フィルム。
The biaxially stretched ethylene polymer film according to any one of claims 1 to 6,
The sum of the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction at 120 ° C. is [MD + TD] 120, and the thermal contraction rate in the MD direction and the thermal contraction rate in the TD direction at 100 ° C. A biaxially stretched ethylene polymer film in which [[MD + TD] 120- [MD + TD] 100 ] is 27% or more and 65% or less when the sum is [MD + TD] 100 .
請求項1から7のいずれか1項に記載の二軸延伸エチレン重合体フィルムであって、
MD方向における120℃の熱収縮率をMD120とし、MD方向における100℃の熱収縮率をMD100としたとき、[MD120−MD100]が−2%以上20%以下を満たす、
二軸延伸エチレン重合体フィルム。
The biaxially stretched ethylene polymer film according to any one of claims 1 to 7,
When the thermal shrinkage rate at 120 ° C. in the MD direction is MD 120 and the thermal shrinkage rate at 100 ° C. in the MD direction is MD 100 , [MD 120 -MD 100 ] satisfies −2% or more and 20% or less.
Biaxially stretched ethylene polymer film.
請求項1から8のいずれか1項に記載の二軸延伸エチレン重合体フィルムを含む包装体。   A package comprising the biaxially stretched ethylene polymer film according to any one of claims 1 to 8.
JP2016547421A 2014-09-10 2015-09-04 Biaxially stretched ethylene polymer film and package Active JP6470296B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014184239 2014-09-10
JP2014184239 2014-09-10
JP2015081431 2015-04-13
JP2015081431 2015-04-13
PCT/JP2015/075256 WO2016039275A1 (en) 2014-09-10 2015-09-04 Biaxially oriented ethylene polymer film and packaging

Publications (2)

Publication Number Publication Date
JPWO2016039275A1 JPWO2016039275A1 (en) 2017-04-27
JP6470296B2 true JP6470296B2 (en) 2019-02-13

Family

ID=55459023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547421A Active JP6470296B2 (en) 2014-09-10 2015-09-04 Biaxially stretched ethylene polymer film and package

Country Status (4)

Country Link
JP (1) JP6470296B2 (en)
KR (1) KR101994560B1 (en)
TW (1) TWI682845B (en)
WO (1) WO2016039275A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143854B2 (en) * 2017-10-11 2022-09-29 大日本印刷株式会社 Polybutylene terephthalate film, battery packaging material, method for producing battery packaging material, and battery
JP7308640B2 (en) * 2018-12-25 2023-07-14 株式会社プライムポリマー LAMINATED BODY AND FLUID PACKAGING BAG USING THE SAME

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813438B1 (en) 1969-03-04 1973-04-27
CA1174423A (en) 1981-04-23 1984-09-18 Ralph C. Golike Shrink films of ethylene/alpha-olefin copolymers
JPS5890924A (en) 1981-11-26 1983-05-30 Mitsubishi Chem Ind Ltd Manufacture of biaxially oriented film
JP3030128B2 (en) 1990-08-09 2000-04-10 三菱化学株式会社 Method for producing biaxially oriented polyethylene film
JP4601988B2 (en) * 2004-04-09 2010-12-22 株式会社プライムポリマー Biaxially stretched ethylene polymer film
JP4348469B2 (en) * 2004-09-13 2009-10-21 財団法人ひろしま産業振興機構 Compact elastic wave detection device and contact detection method
JP4498913B2 (en) * 2004-12-27 2010-07-07 株式会社プライムポリマー Biaxially stretched ethylene polymer multilayer film
JP2007001102A (en) * 2005-06-23 2007-01-11 Sekisui Film Kk Heat-shrinkable multilayer polyolefin film
JP2008080744A (en) * 2006-09-28 2008-04-10 Mitsubishi Plastics Ind Ltd Stretch/shrink laminated film and its manufacturing method
JP2008149503A (en) * 2006-12-15 2008-07-03 Sekisui Film Kk Heat-shrinkable multilayer polyolefin-based resin film
JP4813438B2 (en) * 2007-09-26 2011-11-09 株式会社プライムポリマー Heat-sealable laminated film
JP2010064369A (en) * 2008-09-11 2010-03-25 Kohjin Co Ltd Polypropylene-based multilayered shrink film
JP5328464B2 (en) * 2008-09-19 2013-10-30 旭化成ケミカルズ株式会社 Heat shrink multilayer film
JP5456419B2 (en) * 2009-08-31 2014-03-26 旭化成ケミカルズ株式会社 Shrink film for cover tape and cover tape
WO2012070373A1 (en) * 2010-11-22 2012-05-31 三井化学東セロ株式会社 Biaxially oriented ethylene-polymer multi-layer film

Also Published As

Publication number Publication date
TW201609354A (en) 2016-03-16
TWI682845B (en) 2020-01-21
KR101994560B1 (en) 2019-06-28
WO2016039275A1 (en) 2016-03-17
JPWO2016039275A1 (en) 2017-04-27
KR20170044157A (en) 2017-04-24

Similar Documents

Publication Publication Date Title
JP5276323B2 (en) Polypropylene resin composition, film or sheet, stretched film obtained from the film or sheet, laminate and stretched film obtained from the laminate
JP6454171B2 (en) Biaxially stretched ethylene polymer multilayer film
JP5755240B2 (en) Polyolefin composite film
KR101200341B1 (en) Resin composition and film obtained therefrom
TW201841764A (en) Polyethylene laminates for use in flexible packaging materials
BRPI0714109A2 (en) film, article, packaging, laminate substrate and method of forming a film
JP2018167867A (en) Food packaging film and food package
JP2023010777A (en) Food product packaging film and food product packaging body
JP5766206B2 (en) Biaxially stretched ethylene polymer multilayer film
JP4813438B2 (en) Heat-sealable laminated film
JP4498913B2 (en) Biaxially stretched ethylene polymer multilayer film
JP2019006461A (en) Food product packaging film and food product packaging body
JP3795264B2 (en) Packaging film and package with excellent heat seal strength in a low temperature atmosphere
JP6470296B2 (en) Biaxially stretched ethylene polymer film and package
JP2019006463A (en) Food product packaging film and food product packaging body
JP7376517B2 (en) Universal thermoplastic adhesive for multilayer films
JP4495602B2 (en) Biaxially oriented polypropylene multilayer film
JP2018167487A (en) Packaging film for food and package for food
JP4345924B2 (en) Easy tear multilayer film or sheet
JPH07314623A (en) Polyolefinic shrink laminated film and production thereof
JP4601988B2 (en) Biaxially stretched ethylene polymer film
WO2022153783A1 (en) Polyolefin resin film and laminate
JP4747538B2 (en) Heat-sealable laminated polypropylene resin film and package
JP4651993B2 (en) Easy-cut laminated film
JP2010270227A (en) Biaxially oriented ethylene-based copolymer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6470296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250