JP3030128B2 - Method for producing biaxially oriented polyethylene film - Google Patents
Method for producing biaxially oriented polyethylene filmInfo
- Publication number
- JP3030128B2 JP3030128B2 JP3177586A JP17758691A JP3030128B2 JP 3030128 B2 JP3030128 B2 JP 3030128B2 JP 3177586 A JP3177586 A JP 3177586A JP 17758691 A JP17758691 A JP 17758691A JP 3030128 B2 JP3030128 B2 JP 3030128B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretching
- equation
- heat treatment
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ポリエチレン系二軸延
伸フイルムの製造方法に関するものであり、詳しくは、
線状低密度ポリエチレンを主体とする樹脂を原料とした
ポリエチレン系二軸延伸フイルムの製造方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyethylene biaxially stretched film.
The present invention relates to a method for producing a biaxially stretched polyethylene film using a resin mainly composed of linear low-density polyethylene as a raw material.
【0002】[0002]
【従来の技術】線状低密度ポリエチレン樹脂は、従来の
高圧法低密度ポリエチレン樹脂に比べ、低温低圧下での
イオン重合により製造されるため、設備費および使用エ
ネルギーが少なくて安価に製造できる。しかしながら、
線状低密度ポリエチレン樹脂は、本質的に結晶性ポリマ
ーであるため、従来の高密度ポリエチレンと同様に、二
軸延伸が困難である。2. Description of the Related Art A linear low-density polyethylene resin is produced by ionic polymerization at a low temperature and a low pressure as compared with a conventional high-pressure low-density polyethylene resin. However,
The linear low-density polyethylene resin is essentially a crystalline polymer, so that biaxial stretching is difficult as in the case of conventional high-density polyethylene.
【0003】特開昭58−90924号公報には、線状
低密度ポリエチレン樹脂を原料とした二軸延伸フイルム
の製造方法が提案されている。上記の製造方法は、延伸
温度:線状低密度ポリエチレン樹脂の融点−20℃〜融
点−5℃、延伸速度:25〜400%/sec、延伸倍
率:少なくとも一方向が3倍以上8倍未満であって二方
向の延伸倍率の積が9倍以上50倍未満の条件で二軸延
伸することを特徴としたものである。JP-A-58-90924 proposes a method for producing a biaxially stretched film using a linear low-density polyethylene resin as a raw material. The above-mentioned production method comprises: a stretching temperature: the melting point of the linear low-density polyethylene resin −20 ° C. to −5 ° C., a stretching speed: 25 to 400% / sec, a stretching ratio: at least one direction is 3 times or more and less than 8 times. In addition, biaxial stretching is performed under the condition that the product of the stretching ratios in two directions is 9 times or more and less than 50 times.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
製造方法によっても、フイルムに延伸斑が生じたり、フ
イルム破断が発生するなどして満足する延伸状態は得ら
れず、更なる改良検討が必要である。本発明は、上記実
情に鑑みなされたものであり、その目的は、線状低密度
ポリエチレンを主体とする樹脂を原料とし、良好な延伸
状態を確立し、延伸斑がなく、厚み精度の優れた二軸延
伸フイルムの製造方法を提供することにある。更に、本
発明の他の目的は、フイルム耳部の未延伸残部幅が小さ
く、しかも、フイルム延伸倍率と設定機械倍率とが掛け
離れることがなく、従って、運転管理の容易な二軸延伸
フイルムの製造方法を提供することにある。更にまた、
本発明の他の目的は、シーラントフイルムとして好適な
特性を有する二軸延伸フイルムの製造方法を提供するこ
とにある。However, even with the above-mentioned manufacturing method, a satisfactory stretched state cannot be obtained due to unevenness of stretching of the film or breakage of the film, and further improvement studies are required. is there. The present invention has been made in view of the above circumstances, and its object is to use a resin mainly composed of linear low-density polyethylene as a raw material, establish a good stretch state, have no stretch unevenness, and have excellent thickness accuracy. An object of the present invention is to provide a method for producing a biaxially stretched film. Still another object of the present invention is to provide a biaxially stretched film in which the unstretched remaining width of the film ear portion is small, and the film stretching ratio and the set mechanical ratio are not largely different from each other. It is to provide a manufacturing method. Furthermore,
Another object of the present invention is to provide a method for producing a biaxially stretched film having characteristics suitable as a sealant film.
【0005】[0005]
【課題を解決するための手段】本発明の上記の目的は、
本発明に従い、線状低密度ポリエチレンを主体とする原
料樹脂を溶融押出ししつつ冷却固化して実質的に未配向
のシートとなし、次いで、逐次二軸延伸法により、縦お
よび横方向の少なくとも一方向が3倍以上8倍未満であ
って二方向の延伸倍率の積が9倍以上50倍未満に延伸
した後、熱処理し、100℃における熱収縮率が縦およ
び横方向において各々30%以下であるポリエチレン系
二軸延伸フイルムを製造するに当り、延伸温度条件およ
び熱処理温度条件を特許請求の範囲第1項記載の数式
〔数1〕〜〔数3〕の条件を満たす範囲とすることを特
徴とするポリエチレン系二軸延伸フイルムの製造方法に
より容易に達成される。SUMMARY OF THE INVENTION The above objects of the present invention are as follows.
According to the present invention, a raw resin mainly composed of linear low-density polyethylene is cooled and solidified while being melt-extruded to form a substantially unoriented sheet, and then at least one of longitudinal and lateral directions is successively biaxially stretched. The direction is 3 times or more and less than 8 times, and the product of the stretching ratio in two directions is stretched to 9 times or more and less than 50 times, and then heat-treated, and the heat shrinkage at 100 ° C. is 30% or less in each of the longitudinal and transverse directions. In producing a polyethylene-based biaxially stretched film, the stretching temperature condition and the heat treatment temperature condition are set to a range satisfying the conditions of the formulas [Equation 1] to [Equation 3] described in claim 1. Is easily achieved by the method for producing a polyethylene-based biaxially stretched film.
【0006】以下、本発明を詳細に説明する。本発明に
使用する原料樹脂は、線状低密度ポリエチレンを主体と
する樹脂である。線状低密度ポリエチレンは、エチレン
とα−オレフィンの共重合体であり、従来の高圧法によ
り製造される低密度ポリエチレンとは異なり、低圧法で
製造される。そして、エチレンと共重合されるα−オレ
フィンとしては、ブテン、ペンテン、ヘキセン、オクテ
ン、4−メチルペンテン等が挙げられる。高圧法低密度
ポリエチレンと線状低密度ポリエチレンとの構造的違い
は、前者は多分岐状の分子構造であり、後者は直鎖状の
分子構造となっている点である。Hereinafter, the present invention will be described in detail. The raw resin used in the present invention is a resin mainly composed of linear low-density polyethylene. Linear low-density polyethylene is a copolymer of ethylene and an α-olefin, and is produced by a low-pressure method unlike low-density polyethylene produced by a conventional high-pressure method. Examples of the α-olefin copolymerized with ethylene include butene, pentene, hexene, octene, and 4-methylpentene. The structural difference between the high-pressure low-density polyethylene and the linear low-density polyethylene is that the former has a hyperbranched molecular structure and the latter has a linear molecular structure.
【0007】線状低密度ポリエチレンの製法は、種々有
り、その物性も製法ごとに多少異なる。本発明に使用す
る線状低密度ポリエチレンは、MI(メルトインデック
ス、g/10min)が0.5〜3.0のものが好まし
い。MIが0.5より小さい場合は、押出性が不十分で
あり、後述するような原反の成形に当り、例えば、サー
ジングによるシート成形の不安定が厚み変動を引き起こ
し、更に、これに起因する冷却斑により、透明性あるい
は結晶性のばらつきなどを生じることが多く、従って、
物性および延伸性に優れた原反を得ることが困難であ
る。また、MIが3.0より大きい場合は、メルトテン
ションが低く、例えば、Tダイ成形での冷却ドラムへの
接触不安定に起因するさざ波現象の発生などの原反成形
における不都合がある。更に、分子量が小さいことによ
り、分子鎖が短くて分子鎖同士の絡み合が少ないことに
起因すると思われる延伸性および延伸配向度が低下す
る。その結果、フイルム物性も低下して所望の延伸フイ
ルムを得ることが困難である。[0007] There are various methods for producing linear low-density polyethylene, and the physical properties thereof are slightly different for each production method. The linear low-density polyethylene used in the present invention preferably has an MI (melt index, g / 10 min) of 0.5 to 3.0. When the MI is smaller than 0.5, the extrudability is insufficient, and in forming a raw sheet as described later, for example, instability of sheet forming due to surging causes a thickness variation, and further, due to this. Cooling spots often cause variations in transparency or crystallinity,
It is difficult to obtain a raw material excellent in physical properties and stretchability. When the MI is larger than 3.0, the melt tension is low, and for example, there is an inconvenience in raw material molding such as occurrence of a ripple phenomenon due to unstable contact with a cooling drum in T-die molding. Furthermore, when the molecular weight is small, the stretchability and the degree of stretch orientation, which are considered to be caused by the short molecular chains and little entanglement between the molecular chains, are reduced. As a result, the physical properties of the film are also reduced, and it is difficult to obtain a desired stretched film.
【0008】また、本発明に使用する線状低密度ポリエ
チレンは、密度(ρ)が0.910〜0.940g/c
cのものが好ましい。密度が0.910g/ccより小
さい場合は、得られるフイルムの柔軟性は優れるが、加
工適性に問題を生じ、また、密度が0.940g/cc
より大きい場合は、フイルムの柔軟性が損なわれる。The linear low-density polyethylene used in the present invention has a density (ρ) of 0.910 to 0.940 g / c.
Those of c are preferred. When the density is less than 0.910 g / cc, the resulting film is excellent in flexibility, but causes a problem in workability, and the density is 0.940 g / cc.
If it is larger, the flexibility of the film is impaired.
【0009】なお、線状低密度ポリエチレンには、本発
明の目的に支障を来さない範囲であれば、高圧法ポリエ
チレン、エチレン−酢酸ビニル共重合体アイオノマー、
エチレン−プロピレン共重合体等を混合することが出来
る。更に、常法に従い、熱および紫外線安定剤、顔料、
帯電防止剤、蛍光剤、滑剤等を添加しても差支えない。The linear low-density polyethylene includes a high-pressure polyethylene, an ethylene-vinyl acetate copolymer ionomer, and the like, as long as the object of the present invention is not hindered.
An ethylene-propylene copolymer or the like can be mixed. Further, according to a conventional method, heat and UV stabilizers, pigments,
An antistatic agent, a fluorescent agent, a lubricant and the like may be added.
【0010】先ず、本発明においては、線状低密度ポリ
エチレンを主体とする原料樹脂から実質的に未配向のシ
ートを成形する。上記の未配向シートの成形は、通常の
シート成形装置および成形方法に準じて行うことがで
き、例えば、TダイによるTダイ成形法を用いることが
できる。First, in the present invention, a substantially unoriented sheet is formed from a raw resin mainly composed of linear low-density polyethylene. The formation of the unoriented sheet can be performed according to a usual sheet forming apparatus and a forming method. For example, a T-die forming method using a T-die can be used.
【0011】次いで、本発明においては、上記の未配向
シートを原反とし、逐次二軸延伸法によって縦および横
方向に二軸の延伸を行う。縦方向(MD)の延伸は、原
反を走行させながら、必要に応じて所定の幅にスリット
した後、流れ方向と直角に設置した数本からなる縦延伸
ロールに通すことにより行う。そして、ロール間の速度
比にて延伸される。数本のロールは、予熱ロール、延伸
ロール、冷却ロールからなる。横方向(TD)の延伸
は、通常、予熱帯、延伸帯、熱処理帯、冷却帯等からな
るテンター(横延伸機)を用いて行われる。そして、加
熱方法として熱風方式、輻射加熱方式等が採用される。Next, in the present invention, the unoriented sheet is used as a raw material, and biaxially stretched in the longitudinal and transverse directions by a sequential biaxial stretching method. Stretching in the machine direction (MD) is performed by slitting the web to a predetermined width as necessary while running the raw fabric, and then passing the web through a plurality of machine-oriented vertical stretching rolls installed at right angles to the flow direction. Then, the film is stretched at a speed ratio between the rolls. Several rolls consist of a preheating roll, a stretching roll, and a cooling roll. The stretching in the transverse direction (TD) is usually performed using a tenter (transverse stretching machine) including a pre-tropical zone, a stretching zone, a heat treatment zone, a cooling zone, and the like. As a heating method, a hot air method, a radiation heating method, or the like is adopted.
【0012】延伸倍率は、二軸延伸性(延伸しやすさ)
及び得られた二軸延伸フイルムの物性の観点から、前記
の特開昭58−90924号公報に記載の方法と同様
に、縦および横方向の少なくとも一方向が3倍以上8倍
未満であって二方向の延伸倍率の積が9倍以上50倍未
満とする。そして、縦方向および横方向ともに3倍以上
8倍未満とするのがよい。The stretching ratio is biaxial stretching (easiness of stretching).
From the viewpoint of the physical properties of the obtained biaxially stretched film, at least one of the longitudinal and transverse directions is 3 times or more and less than 8 times, as in the method described in JP-A-58-90924. The product of the stretching ratios in the two directions is 9 times or more and less than 50 times. In addition, it is preferable that the height be 3 times or more and less than 8 times in both the vertical and horizontal directions.
【0013】縦延伸温度T1は、下記の数式〔数5〕
(〔数1〕に同じ)の条件を満たす範囲とする必要があ
る。The longitudinal stretching temperature T1 is calculated by the following equation (Equation 5).
(Same as [Equation 1]).
【数5】Tm−30℃≦T1≦Tm−10℃ (上記において、Tmは、原料樹脂の融点を表し、示差
走査熱量計(DSC)を用いた測定による融解曲線上の
吸熱メインピ−ク温度として定義される。以下同じ)Tm−30 ° C. ≦ T1 ≦ Tm−10 ° C. (In the above, Tm represents the melting point of the raw material resin, and is an endothermic main peak temperature on a melting curve measured by a differential scanning calorimeter (DSC). (The same applies hereinafter.)
【0014】縦延伸温度T1がTm−30℃より低い場
合は、分子鎖の運動性が乏しいため、横延伸時に破断し
易く、たとえ延伸できたとしても延伸倍率が上がらず、
物性の優れた延伸フイルムを得ることが出来ない。逆
に、Tm−10℃より高い場合は、延伸による配向効果
が得られず、更に、延伸原反がロールに粘着し始めて原
反に粘着跡が残り、このことが原因となり、延伸時にロ
ール間でフイルム破断が発生する。また、破断なく延伸
されたとしても、延伸斑がひどく、延伸フイルムに粘着
跡が残り、透明性、厚み精度も悪くなり、商品価値のあ
るフイルムとはならない。When the longitudinal stretching temperature T1 is lower than Tm-30 ° C., the molecular chains have poor motility, so that they are easily broken at the time of transverse stretching, and even if the stretching can be performed, the stretching ratio does not increase.
A stretched film having excellent physical properties cannot be obtained. On the other hand, when the temperature is higher than Tm-10 ° C., the orientation effect by stretching cannot be obtained, and the stretched raw material starts to adhere to the rolls, leaving sticky marks on the raw fabrics. Causes film breakage. Further, even if the film is stretched without breaking, the stretch unevenness is severe, sticky marks remain on the stretched film, the transparency and thickness accuracy are deteriorated, and the film is not of commercial value.
【0015】横延伸温度T2は、下記の数式〔数6〕
(〔数2〕に同じ)の条件を満たす範囲とする必要があ
る。The transverse stretching temperature T2 is calculated by the following equation (Equation 6).
(Same as [Equation 2]).
【数6】Tm−50℃≦T2≦Tm−25℃Tm-50 ° C ≦ T2 ≦ Tm-25 ° C
【0016】そして、好ましい横延伸温度T2は、下記
の数式〔数7〕の条件を満たす温度範囲である。The preferred transverse stretching temperature T2 is a temperature range that satisfies the following equation (Equation 7).
【数7】Tm−40℃≦T2≦Tm−25℃[Equation 7] Tm-40 ° C ≦ T2 ≦ Tm-25 ° C
【0017】横延伸温度T2がTm−50℃より低い場
合は、所定の延伸倍率を得ることが難しく、フイルム破
断が発生する。また、破断なく延伸されたとしても、延
伸斑が残り厚み精度が悪く、透明性も損こなわれてしま
う。逆に、Tm−25℃より高い場合は、所望の延伸倍
率まで延伸可能であるが、見かけ上均一に延伸されてい
ても、延伸倍率と設定機械倍率が異なり所望の延伸倍率
を得ることが困難で且つ倍率管理も困難となり、延伸斑
もひどくなる。そして、このことにより、フイルム幅方
向の物性が異なり、更には、透明性も損なわれてしま
い、商品価値のあるフイルムとはならない。しかも、延
伸終了後のフイルム両端に残る未延伸残部の幅が広くな
り、経済性、生産効率が悪くなる。When the transverse stretching temperature T2 is lower than Tm-50 ° C., it is difficult to obtain a predetermined stretching ratio, and film breakage occurs. Further, even if the film is stretched without breaking, the stretch unevenness remains, the thickness accuracy is poor, and the transparency is impaired. Conversely, if the temperature is higher than Tm-25 ° C., the film can be stretched to a desired stretching ratio, but even if it is apparently uniformly stretched, the stretching ratio differs from the set mechanical ratio, making it difficult to obtain the desired stretching ratio. In addition, magnification control becomes difficult, and stretching unevenness becomes severe. As a result, the physical properties in the film width direction are different, and the transparency is impaired, so that the film does not have commercial value. In addition, the width of the unstretched residue remaining at both ends of the film after the stretching is completed is widened, resulting in poor economic efficiency and production efficiency.
【0018】次いで、本発明においては、二軸延伸フイ
ルムに熱処理を施す。そして、この熱処理は、テンター
を用いた場合は、該テンターの熱処理帯にて行うことが
できる。Next, in the present invention, the biaxially stretched film is subjected to a heat treatment. When a tenter is used, this heat treatment can be performed in a heat treatment zone of the tenter.
【0019】熱処理温度T3は、下記の数式〔数8〕
(〔数3〕に同じ)の条件を満たす範囲とする必要があ
る。The heat treatment temperature T3 is calculated by the following equation (Equation 8).
(Same as [Equation 3]).
【数8】Tm−40℃≦T3≦Tm[Equation 8] Tm−40 ° C. ≦ T3 ≦ Tm
【0020】熱処理温度T3がTm−40℃より低い場
合は、熱処理を行ったフイルムは、寸法安定性に欠け、
収縮性を持つようになり、シーラント材として使用した
場合には、ヒートシール時にフイルムが収縮してシール
面にシワが発生し商品価値を損なう。逆に、Tmより高
い場合は、延伸により生じたフイルム内部の分子配向が
流動して崩れ、フイルム物性が著しく低下し、また、フ
イルムの結晶化に伴う白化現象が起こり透明性を損なっ
てしまう。When the heat treatment temperature T3 is lower than Tm-40 ° C., the heat-treated film lacks dimensional stability,
When used as a sealant, the film shrinks during heat sealing, causing wrinkles on the sealing surface and impairing the commercial value. On the other hand, when it is higher than Tm, the molecular orientation inside the film generated by stretching flows and collapses, and the physical properties of the film are remarkably reduced, and a whitening phenomenon accompanying the crystallization of the film occurs to impair the transparency.
【0021】熱処理時間は3秒以上とするのが好まし
い。3秒未満の場合は、充分な熱処理効果が得られず、
フイルムが大きい熱収縮性を持つようになるため、シー
ラントフイルムとして使用した場合、ヒートシール時に
シワが発生することがある。上記の熱処理により、二軸
延伸フイルムは、100℃における熱収縮率が縦および
横方向において各々30%以下に調整される。The heat treatment time is preferably at least 3 seconds. If less than 3 seconds, a sufficient heat treatment effect cannot be obtained,
Since the film has a large heat shrinkage, when used as a sealant film, wrinkles may be generated during heat sealing. By the above heat treatment, the biaxially stretched film is adjusted to have a heat shrinkage at 100 ° C. of 30% or less in each of the longitudinal and transverse directions.
【0022】そして、本発明において、ヒートシール時
のシワの発生を一層確実に防止するために、二軸延伸フ
イルムの上記熱収縮率は、縦および横方向において各々
8%以下、特には5%以下に調製するのが好ましく、そ
のため、前記の熱処理温度T3は、好ましくは、下記の
数式〔数9〕(〔数4〕に同じ)の条件を満たす範囲、
特に好ましくは、下記の数式〔数10〕の条件を満たす
範囲とするのがよい。In the present invention, the biaxially stretched film preferably has a heat shrinkage of 8% or less, particularly 5% in the longitudinal and transverse directions, in order to more reliably prevent wrinkles during heat sealing. The heat treatment temperature T3 is preferably adjusted to the range below which satisfies the condition of the following equation (Equation 9) (same as [Equation 4]):
It is particularly preferable to set the range to satisfy the condition of the following equation (Equation 10).
【0023】[0023]
【数9】Tm−15℃≦T3≦Tm## EQU9 ## Tm−15 ° C. ≦ T3 ≦ Tm
【数10】Tm−5℃≦T3≦Tm[Expression 10] Tm−5 ° C. ≦ T3 ≦ Tm
【0024】本発明の二軸延伸フイルムには、必要に応
じて、公知のコロナ処理、フレーム処理等の表面処理を
施すこともできる。If necessary, the biaxially stretched film of the present invention may be subjected to a known surface treatment such as corona treatment and flame treatment.
【0025】[0025]
【実施例】以下に実施例を示し、本発明を更に詳細に説
明するが、本発明はその要旨を越えない限り、以下の実
施例に限定されるものではない。なお、以下の諸例にお
いては、ロールによる縦延伸装置と熱風オーブン式テン
ターの横延伸装置を用いた逐次二軸延伸法を採用した。
また、本文および以下の諸例中に示した測定項目は次の
方法によった。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which, however, are not intended to limit the scope of the present invention. In the following examples, a sequential biaxial stretching method using a longitudinal stretching apparatus using a roll and a horizontal stretching apparatus using a hot air oven type tenter was adopted.
In addition, the measurement items shown in the text and the following examples were based on the following methods.
【0026】(1)収縮率 縦横共100mmの正方形に切り取ったフイルムを所定
温度のシリコンオイル浴中に10分間浸漬して取り出
し、縦横それぞれの長さを測定し、次式により算出し
た。測定温度は、90℃、100℃、110℃、 12
0℃、150℃で行った。収縮率(%)=100−A
( or B)但し、A及びBは浸漬後の縦横それぞれの長
さ(単位はmm)を示す。(1) Shrinkage A film cut into a square of 100 mm in both length and width was immersed in a silicone oil bath at a predetermined temperature for 10 minutes, taken out, and each length and length was measured and calculated by the following equation. The measurement temperatures were 90 ° C, 100 ° C, 110 ° C, 12
The test was performed at 0 ° C and 150 ° C. Shrinkage (%) = 100-A
(Or B) where A and B indicate the length (unit: mm) after immersion.
【0027】(2)厚み精度 接触型電子マイクロメータを用い、フイルム幅方向につ
いて最大厚み(Tmax)、最小厚み(Tmin )を求め、
次式により算出した(単位:μ)。R=Tmax −Tmin(2) Thickness accuracy Using a contact-type electronic micrometer, a maximum thickness (Tmax) and a minimum thickness (Tmin) are obtained in the film width direction.
It was calculated by the following equation (unit: μ). R = Tmax-Tmin
【0028】(3)ヘイズ(透明性) 東京電色製ヘイズメーター(SHARP PERSONAL COMPUTER
PC-7200, COLOR ANDCOLOR DEFFRENCE MEDEL TC-1500)
を用い、23℃×50%RHの室温中で測定した(単
位:%)。(3) Haze (transparency) Haze meter (SHARP PERSONAL COMPUTER) manufactured by Tokyo Denshoku
(PC-7200, COLOR ANDCOLOR DEFFRENCE MEDEL TC-1500)
Was measured at room temperature of 23 ° C. × 50% RH (unit:%).
【0029】(4)引張強度 JIS K 7113に準拠し、23℃×50%RHの
室温中で引張速度50mm/minで測定した(単位:
kg/cm2 )。(4) Tensile strength Measured at a tensile speed of 50 mm / min at room temperature of 23 ° C. × 50% RH according to JIS K 7113 (unit:
kg / cm 2 ).
【0030】(5)引張伸度 JIS K 7113に準拠し、23℃×50%RHの
室温中で引張速度50mm/minで測定した(単位:
%)。(5) Tensile elongation Measured at a tensile speed of 50 mm / min at room temperature of 23 ° C. × 50% RH in accordance with JIS K 7113 (unit:
%).
【0031】(6)密度(ρ) JIS K 6760に準拠し、密度勾配管を用い23
℃で測定した(単位:g/cc)。(6) Density (ρ) According to JIS K 6760, a density gradient tube is used.
C. (unit: g / cc).
【0032】(7)融点 示差走査熱量計(パーキンエルマー社製DSC−II使
用)の測定による融解曲線上の吸熱メインピーク温度を
融点とした。 測定条件:測定試料 10〜30mg 昇温速度 10℃/min(7) Melting point The endothermic main peak temperature on the melting curve measured by a differential scanning calorimeter (using DSC-II manufactured by PerkinElmer) was defined as the melting point. Measurement conditions: Measurement sample 10 to 30 mg Heating rate 10 ° C / min
【0033】(8)MI(メルトインデックス) JIS K 6760に準拠し、190℃で測定した
(単位:g/10分)。(8) MI (Melt Index) Measured at 190 ° C. in accordance with JIS K 6760 (unit: g / 10 minutes).
【0034】(9)延伸倍率測定 未延伸原反の幅方向中央部に円(径既知:A)を描いて
延伸し、延伸後の円径(B)を測定し、次式により求め
た。 延伸実倍率=B/A(9) Measurement of Stretching Ratio The unstretched raw sheet was drawn by drawing a circle (diameter: A) at the center in the width direction, and the circular diameter (B) after the drawing was measured. Actual stretching ratio = B / A
【0035】(10)未延伸残部 フイルム幅方向に於ける端からフイルム目標厚みより1
0μ以上の厚みとなる位置までを未延伸残部とする。(10) Unstretched Residual From the edge in the film width direction, one more than the target film thickness
Until the position where the thickness becomes 0 μ or more, the unstretched residue is used.
【0036】(11)未延伸残部幅 フイルム幅方向の両端に発生した未延伸残部について、
一方をA、他方をBとし、各々の幅を合計してその合計
値を2で割り算出した。(11) Unstretched Residual Width Regarding the unstretched residue generated at both ends in the film width direction,
One was A and the other was B, the widths of each were summed, and the sum was divided by 2 for calculation.
【0037】(I)実施例1〜2及び比較例1〜4(延
伸状態およびヒートシール性評価) 23℃における密度0.922g/cc、メルトインデ
ックス0.9g/10min、流動比21、共重合成分
4−メチルペンテン−1、共重合量10重量%のエチレ
ン−α−オレフィン共重合体であり、DSCによる溶融
曲線についての主ピーク温度が125℃であるエチレン
系重合体を200〜250℃で溶融混練し、250℃に
保ったTダイより押出し、公知のエアーナイフ法によ
り、冷却ロールに密着させて厚さ300μの未延伸シー
トを得た(この未延伸シートを原反とし、他の例におい
ても用いた)。(I) Examples 1-2 and Comparative Examples 1-4 (Evaluation of stretched state and heat sealability) Density at 22 ° C. 0.922 g / cc, melt index 0.9 g / 10 min, flow ratio 21, copolymerization Component 4-methylpentene-1, an ethylene-α-olefin copolymer having a copolymerization amount of 10% by weight, wherein an ethylene-based polymer having a main peak temperature of 125 ° C. on a melting curve by DSC at 200 to 250 ° C. The mixture was melted and kneaded, extruded from a T-die maintained at 250 ° C., and brought into close contact with a cooling roll by a known air knife method to obtain a 300 μm-thick unstretched sheet (this unstretched sheet was used as a raw material, and another example was used. Was also used.)
【0038】上記の原反を逐次二軸延伸装置に導き、表
1〜3に記載の条件下に延伸処理を行い、同表に示す延
伸結果を得た。なお、表中、○はフイルムに延伸斑がな
く安定延伸状態、△はフイルムに延伸斑がある状態、×
はフイルム破断が発生し延伸不可能状態をそれぞれ示
す。The above-mentioned raw material was successively guided to a biaxial stretching apparatus, and stretched under the conditions shown in Tables 1 to 3, and the stretching results shown in the same table were obtained. In the table, ○ indicates that the film has no stretch unevenness and is in a stable stretched state, Δ indicates that the film has stretch unevenness, and ×
Indicates a state in which film breakage occurs and stretching is impossible.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】[0041]
【表3】 [Table 3]
【0042】表1〜3に示したように、実施例1及び2
においては、延伸状態は良好で、不均一延伸状態も観測
されず、未延伸残部幅も狭く、フイルム生産性に影響を
及ぼすものではなかった。これに対して、比較例1〜3
においては、横延伸帯でフイルム破断が発生し、破断せ
ずに得られたフイルムには延伸斑が残り商品価値のない
フイルムしか得ることができなかった。特に、比較例2
における横延伸温度110℃での延伸では、フイルム両
端の未延伸残部の幅が広くなり、生産効率に欠けるもの
であった。また、比較例4においては、縦延伸ロールに
フイルムが粘着し、縦延伸での破断や、縦横延伸後のフ
イルムには粘着跡が残りフイルムの外観が悪く、透明性
も失われ、また、厚み精度も悪いものであった。As shown in Tables 1 to 3, Examples 1 and 2
In, the stretched state was good, no non-uniform stretched state was observed, and the unstretched residual width was narrow, which did not affect the film productivity. On the other hand, Comparative Examples 1 to 3
In (2), the film was broken in the transverse stretching zone, and the film obtained without breaking had a stretch unevenness, and only a film having no commercial value could be obtained. In particular, Comparative Example 2
When the film was stretched at a transverse stretching temperature of 110 ° C., the width of the unstretched residue at both ends of the film became wide, and the production efficiency was lacking. Further, in Comparative Example 4, the film adhered to the longitudinal stretching roll, the film was broken in the longitudinal stretching, and the film after the longitudinal and lateral stretching had a sticky mark, the film had a poor appearance, the transparency was lost, and the thickness was also reduced. The accuracy was also poor.
【0043】また、上記実施例においては、延伸フイル
ムを直ちに熱処理温度120℃において5秒間熱処理し
たのち室温に冷却して巻取った。得られたフイルムにつ
いて厚み精度Rの測定を行ったところ、以下の表4に示
す通りであった。In the above example, the stretched film was immediately heat-treated at a heat treatment temperature of 120 ° C. for 5 seconds, and then cooled to room temperature and wound up. When the thickness accuracy R of the obtained film was measured, it was as shown in Table 4 below.
【0044】[0044]
【表4】 実施例1−1(厚み20μ) R=1.2μ 実施例1−2(厚み19μ) R=1.0μ 実施例2−1(厚み20μ) R=1.0μ 実施例2−2(厚み20μ) R=1.2μTable 1-1 Example 1-1 (thickness 20μ) R = 1.2μ Example 1-2 (thickness 19μ) R = 1.0μ Example 2-1 (thickness 20μ) R = 1.0μ Example 2- 2 (thickness 20μ) R = 1.2μ
【0045】また、公知のラミネート方法に従って、上
記実施例で得られた延伸フイルムを厚み15μの二軸延
伸ナイロン−6−フイルム(三菱化成ポリテック社製一
般品グレード/サントニールSN)に積層し、ヒートシ
ール温度140℃、シール圧力2kg/cm2 、シール
時間1secでヒートシールし、ヒートシール性の評価
を行った。実施例1及び2で得られた延伸フイルムは、
いずれも、シール面にシワの発生はみられず、シール強
度も5kg/15mmと良好なシール部を得た。Further, according to a known laminating method, the stretched film obtained in the above example was laminated on a biaxially stretched nylon-6-film having a thickness of 15 μm (general product grade, Santo Neil SN, manufactured by Mitsubishi Kasei Polytech Co., Ltd.). Heat sealing was performed at a sealing temperature of 140 ° C., a sealing pressure of 2 kg / cm 2 , and a sealing time of 1 sec, and the heat sealing property was evaluated. The stretched films obtained in Examples 1 and 2 are:
In each case, no wrinkles were observed on the sealing surface, and a good sealing portion having a sealing strength of 5 kg / 15 mm was obtained.
【0046】実施例3 熱処理温度の影響を確認するために、実施例2−2(延
伸倍率5×5)で得られた延伸フイルムについて、延伸
後、直ちに熱処理温度85℃において5秒間熱処理した
のち室温に冷却して巻取り、厚み精度Rの測定を行い、
実施例1と同様にしてヒートシール性評価を行った。そ
の結果、厚み精度Rは0.9μ(厚み20μ)であり、
シール面に僅かなシワが観察されたものの、上記とほぼ
同様のヒートシール性が得られた。Example 3 In order to confirm the influence of the heat treatment temperature, the stretched film obtained in Example 2-2 (drawing ratio 5 × 5) was immediately heat-treated at 85 ° C. for 5 seconds after stretching. Cooling to room temperature, winding, measuring thickness accuracy R,
The heat sealability was evaluated in the same manner as in Example 1. As a result, the thickness accuracy R is 0.9μ (thickness 20μ),
Although slight wrinkles were observed on the sealing surface, substantially the same heat sealability as described above was obtained.
【0047】(II)実施例4及び比較例6〜7(未延
伸残部幅および延伸倍率の変化) 原反を逐次二軸延伸装置(設定機械倍率は、MD4.5
×TD4.5)に導き、表5に記載の条件下に延伸処理
を行い、次いで、直ちに熱処理温度120℃において5
秒間熱処理したのち室温に冷却して巻取った。得られた
各フイルムについて未延伸残部幅を測定し、表5に示す
結果を得た。また、表5に示す結果に基ずいて作成した
グラフを図1に示す。(II) Example 4 and Comparative Examples 6 and 7 (Changes in unstretched remaining width and stretch ratio) Sequential biaxial stretching apparatus for raw material (set mechanical ratio is MD 4.5)
× TD4.5), and subjected to a stretching treatment under the conditions shown in Table 5, and then immediately at a heat treatment temperature of 120 ° C.
After heat treatment for 2 seconds, it was cooled to room temperature and wound up. The unstretched residual width of each of the obtained films was measured, and the results shown in Table 5 were obtained. FIG. 1 shows a graph created based on the results shown in Table 5.
【0048】[0048]
【表5】 延伸温度℃ 未延伸残部幅 延伸倍率 No. MD TD (mm) MD×TD ──────────────────────────────────── 実施例 4−1 100 100 50 4.5×4.5 4−2 112 80 50 4.5×4.4 4−3 112 95 52 4.5×4.5 4−4 112 100 55 4.5×4.5 ──────────────────────────────────── 比較例 6−1 100 110 122 4.5×5.7 6−2 100 120 160 4.5×6.9 7−1 112 112 100 4.5×6.0 7−2 112 120 160 4.5×6.8[Table 5] Stretching temperature ° C Unstretched residual width Stretching ratio No. MD TD (mm) MD × TD ──────────────────────────────────── Example 4-1 100 100 50 4.5 × 4.5 4-2 112 80 50 4.5 × 4.4 4-3 112 95 52 4.5 × 4.5 4-4 112 100 55 4.5 × 4.5} ────────────────────────────────── Comparative example 6-1 100 110 122 4.5 × 5.7 6 -2 100 120 160 4.5 × 6.9 7-1 112 112 100 4.5 × 6.0 7-2 112 120 160 4.5 × 6.8
【0049】上記の結果から明らかなように、実施例4
においては、各々の縦延伸温度および横延伸温度におい
て、延伸フイルムの未延伸残部幅はほぼ一定であり、そ
の幅は生産性に影響を与えるものではなかった。これに
対し、比較例6〜7においては、未延伸残部幅は著しく
増加しフイルム生産性が極めて悪かった。また、得られ
た各フイルムについてフイルム幅方向中央部における延
伸倍率と設定機械倍率を測定したところ、実施例4にお
いては、各設定機械倍率とほぼ同倍率であったが、比較
例6〜7においては、設定機械倍率を著しくかけ離れた
ものとなっていた。As is clear from the above results, Example 4
In the above, at each of the longitudinal stretching temperature and the transverse stretching temperature, the unstretched remaining width of the stretched film was almost constant, and the width did not affect the productivity. On the other hand, in Comparative Examples 6 and 7, the width of the unstretched residual portion was significantly increased, and the film productivity was extremely poor. When the stretching ratio and the set mechanical ratio at the center of the film in the film width direction were measured for each of the obtained films, in Example 4, they were almost the same as the set mechanical ratios, but in Comparative Examples 6 and 7, Was significantly different from the set mechanical magnification.
【0050】(III)比較例5(フイルム物性および
ヒートシール性評価) 原反を逐次二軸延伸装置に導き、縦延伸温度112℃、
横延伸温度100℃の条件において縦横それぞれ5倍に
延伸し、延伸されたフイルムを直ちに熱処理温度82℃
において5秒間熱処理したのち室温に冷却し巻取った。(III) Comparative Example 5 (Evaluation of physical properties of film and heat sealability) The raw material was successively guided to a biaxial stretching apparatus, and was subjected to a longitudinal stretching temperature of 112 ° C.
The film is stretched 5 times vertically and horizontally at a transverse stretching temperature of 100 ° C., and the stretched film is immediately subjected to a heat treatment temperature of 82 ° C.
And then cooled to room temperature and wound up.
【0051】上記の比較例においては、いずれも、延伸
状態の安定性は良好であり、不均一延伸状態も観測され
ず、未延伸残部幅も狭くフイルム生産性に影響を及ぼす
ものではなく、厚み精度Rも1.4μ(厚み20μ)で
あり良好であった。しかしながら、上記のフイルムのフ
イルム物性およびヒートシール状態について、実施例2
−2の延伸フイルム(延伸倍率5.0×5.0)を熱処
理温度110℃において5秒間熱処理したフイルムと比
較して表6に示したが、比較例5のフイルムは、満足の
いくものではなかった。すなわち、比較例5のフイルム
においては、シール面にシワが発生し、良好なシール部
を得ることが困難であった。なお、表6中、○はヒート
シール時にシワが発生しない、×はシワが発生すること
を示す。In each of the above Comparative Examples, the stability of the stretched state was good, the non-uniform stretched state was not observed, the unstretched residual width was narrow, and the film productivity was not affected. The precision R was also 1.4 μ (thickness 20 μ), which was good. However, with respect to the film physical properties and the heat-sealed state of the above-mentioned film, Example 2
The stretched film of No.-2 (stretching ratio 5.0 × 5.0) is shown in Table 6 in comparison with the film heat-treated at 110 ° C. for 5 seconds, but the film of Comparative Example 5 is not satisfactory. Did not. That is, in the film of Comparative Example 5, wrinkles occurred on the sealing surface, and it was difficult to obtain a good sealing portion. In Table 6, ○ indicates that no wrinkles occur during heat sealing, and X indicates that wrinkles occur.
【0052】[0052]
【表6】 特 性 実施例3 比較例5 ──────────────────────────────── 厚 み(μ) 20.1(R=1.2) 20.4(R=1.4) ヘイズ(%) 2.1 2.4 引張強度(MD/TD) ( kg/cm2 ) 1500/1530 1393/1448 引張伸度(MD/TD) (%) 102/90 124/120 ──────────────────────────────── 収縮率(%) 90℃ 5.2/5.3 25.9/27.3 (MD/TD) 100℃ 7.4/7.8 35.1/36.0 110℃ 15.9/18.4 47.6/49.4 120℃ 48.6/50.4 60.3/64.0 150℃ 76.3/72.4 77.0/76.5 ──────────────────────────────── ヒートシール状態 ○ × ────────────────────────────────[Table 6] Characteristics Example 3 Comparative Example 5 厚 Thickness (μ) 20.1 (R = 1.2) 20.4 (R = 1.4) Haze (%) 2.1 2.4 Tensile strength (MD / TD) (kg / cm 2 ) 1500/1530 1393/1448 Tensile elongation (MD / TD) (%) 102/90 124/120 ──────────────────────────────── Shrinkage (%) 90 ℃ 5.2 / 5.3 25.9 / 27.3 (MD / TD) 100 ℃ 7.4 / 7.8 35.1 / 36.0 110 ℃ 15.9 / 18.4 47.6 / 49.4 120 ℃ 48.6 / 50.4 60.3 / 64.0 150 ℃ 76.3 / 72.4 77.0 / 76.5 ℃ ───────────────── Heat seal ○ × ──────────────────────────── ────
【0053】(IV)実施例5及び比較例9(熱収縮率
の評価) 実施例1で得た未延伸シート(300μ)を原反とし、
実施例1と同様の方法により、表7に示す条件下に二軸
延伸と熱処理を行い、厚さ25μのフイルムを得た。熱
処理は、テンター内における横延伸に引続き、7%の弛
緩を与えつつ、表7に記載の各温度において5秒間行な
った。得られた各フイルムの熱収縮率の測定結果を表7
に示す。また、上記の各例においては、12時間の連続
延伸を行い、実施例1と同様の基準で延伸状態を観察し
た。その結果を併せて表7に示す。(IV) Example 5 and Comparative Example 9 (Evaluation of Heat Shrinkage Ratio) The unstretched sheet (300 μm) obtained in Example 1 was used as a raw material.
In the same manner as in Example 1, biaxial stretching and heat treatment were performed under the conditions shown in Table 7 to obtain a film having a thickness of 25 μm. The heat treatment was performed at each temperature shown in Table 7 for 5 seconds while giving a 7% relaxation, following the transverse stretching in the tenter. Table 7 shows the measurement results of the heat shrinkage of each of the obtained films.
Shown in In each of the above examples, continuous stretching was performed for 12 hours, and the stretched state was observed on the same basis as in Example 1. Table 7 also shows the results.
【0054】[0054]
【表7】 [Table 7]
【0055】[0055]
【発明の効果】以上説明した本発明によれば、次の効果
が達成される。 線状低密度ポリエチレンを原料とし
て利用する利点はそのまま享受する。 従来の延伸条
件で延伸されたフイルムに比べ、フイルムに延伸斑がな
く、透明性も良好で、更に強度も良好である。 寸法
安定性に優れる。 フイルム耳部の未延伸残部幅も少
ない。 シーラントフイルムに用いた場合、ヒートシ
ールの際、シール部にシワの発生がない等の優れた性能
を持ち、例えば、シーラント用フイルム、包装用フイル
ムとして好適なフイルムが得られる。According to the present invention described above, the following effects are achieved. The advantage of using linear low-density polyethylene as a raw material is enjoyed as it is. Compared with a film stretched under conventional stretching conditions, the film has no stretch unevenness, has good transparency, and has good strength. Excellent dimensional stability. The unstretched remaining width of the film ear is also small. When used for a sealant film, it has excellent performance such as no wrinkles in the seal portion during heat sealing, and a film suitable as a film for a sealant or a film for packaging can be obtained.
【図1】横延伸温度と未延伸残部幅の関係の一例を示す
グラフである。FIG. 1 is a graph showing an example of a relationship between a transverse stretching temperature and a remaining unstretched width.
フロントページの続き (56)参考文献 特開 昭58−90924(JP,A) 特開 平4−93225(JP,A) 特開 昭59−215828(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 55/02 - 55/28 C08J 5/18 CES B29C 71/02 Continuation of the front page (56) References JP-A-58-90924 (JP, A) JP-A-4-93225 (JP, A) JP-A-59-215828 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) B29C 55/02-55/28 C08J 5/18 CES B29C 71/02
Claims (2)
料樹脂を溶融押出ししつつ冷却固化して実質的に未配向
のシートとなし、次いで、逐次二軸延伸法により、縦お
よび横方向の少なくとも一方向が3倍以上8倍未満であ
って二方向の延伸倍率の積が9倍以上50倍未満に延伸
した後、熱処理し、100℃における熱収縮率が縦およ
び横方向において各々30%以下であるポリエチレン系
二軸延伸フイルムを製造するに当り、延伸温度条件を下
記の数式[数1]及び[数2]の条件を満たす範囲と
し、熱処理温度条件を下記の数式[数3]の条件を満た
す範囲とすることを特徴とするポリエチレン系二軸延伸
フイルムの製造方法。 【数1】Tm−30℃≦T1≦Tm−10℃ 【数2】Tm−50℃≦T2≦Tm−25℃ 【数3】Tm−40℃≦T3≦Tm (上記式中、Tmは原料樹脂の融点、T1は縦延伸温
度、T2は横延伸温度、T3は熱処理温度を表す)1. A raw resin mainly composed of linear low-density polyethylene is melt-extruded and solidified by cooling to form a substantially unoriented sheet. Then, at least a longitudinally and horizontally oriented sheet is formed by a sequential biaxial stretching method. After stretching in one direction is 3 times or more and less than 8 times and the product of the stretching ratios in two directions is 9 times or more and less than 50 times, heat treatment is performed, and the heat shrinkage at 100 ° C. is 30% or less in each of the longitudinal and transverse directions. In producing the polyethylene-based biaxially stretched film, the stretching temperature condition is set to a range that satisfies the following formulas [Equation 1] and [Equation 2], and the heat treatment temperature condition is the condition of the following formula [Equation 3]. A method for producing a polyethylene-based biaxially stretched film, characterized by satisfying the following conditions. Tm−30 ° C. ≦ T1 ≦ Tm−10 ° C. Tm−50 ° C. ≦ T2 ≦ Tm−25 ° C. Tm−40 ° C. ≦ T3 ≦ Tm (where Tm is a raw material (The melting point of the resin, T1 is the longitudinal stretching temperature, T2 is the transverse stretching temperature, and T3 is the heat treatment temperature.)
件を満たす範囲であることを特徴とする、100℃にお
ける熱収縮率が縦および横方向において各々8%以下で
ある請求項1記載のポリエチレン系二軸延伸フイルムの
製造方法。 【数4】Tm−15℃≦T3≦Tm2. The heat shrinkage rate at 100 ° C. in each of the longitudinal and transverse directions is 8% or less, wherein the heat treatment temperature condition is within a range satisfying the following equation (Equation 4). A method for producing a biaxially stretched polyethylene film as described in the above. ## EQU4 ## Tm−15 ° C. ≦ T3 ≦ Tm
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3177586A JP3030128B2 (en) | 1990-08-09 | 1991-06-21 | Method for producing biaxially oriented polyethylene film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21123590 | 1990-08-09 | ||
JP2-211235 | 1990-08-09 | ||
JP3177586A JP3030128B2 (en) | 1990-08-09 | 1991-06-21 | Method for producing biaxially oriented polyethylene film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04357017A JPH04357017A (en) | 1992-12-10 |
JP3030128B2 true JP3030128B2 (en) | 2000-04-10 |
Family
ID=26498098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3177586A Expired - Fee Related JP3030128B2 (en) | 1990-08-09 | 1991-06-21 | Method for producing biaxially oriented polyethylene film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3030128B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170044157A (en) | 2014-09-10 | 2017-04-24 | 미쓰이 가가쿠 토세로 가부시키가이샤 | Biaxially oriented ethylene polymer film and packaging |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005126680A (en) * | 2003-10-03 | 2005-05-19 | Toyobo Co Ltd | Heat-sealable linear low-density polyethylene film and process for producing the same |
CN113637252B (en) * | 2021-08-23 | 2023-07-04 | 中国科学技术大学先进技术研究院 | Strong crossed film, preparation method and application thereof |
-
1991
- 1991-06-21 JP JP3177586A patent/JP3030128B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170044157A (en) | 2014-09-10 | 2017-04-24 | 미쓰이 가가쿠 토세로 가부시키가이샤 | Biaxially oriented ethylene polymer film and packaging |
Also Published As
Publication number | Publication date |
---|---|
JPH04357017A (en) | 1992-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI711539B (en) | Biaxially stretched laminated polypropylene film | |
DE60007789T2 (en) | Polylactic acid film | |
US5534209A (en) | Method for manufacturing a liquid crystal polymer film and a liquid crystal polymer film made thereby | |
EP0450088B1 (en) | Biaxially oriented polyethylene film | |
KR20140035390A (en) | Biaxially stretched nylon film for cold molding, laminate film, and molded body | |
JP2011173658A (en) | Polypropylene laminated film and package using the same | |
US5306549A (en) | Biaxially stretched polyethylene film | |
DE112004001741B4 (en) | Stretched film | |
US20230212362A1 (en) | Biaxially oriented polypropylene film | |
US20230212361A1 (en) | Biaxially oriented polypropylene film | |
JP4889478B2 (en) | Method for heat treatment of vinylidene chloride-methyl acrylate copolymer biaxially stretched film | |
JP2005297544A (en) | Polypropylene type laminated film and package using it | |
JP3030128B2 (en) | Method for producing biaxially oriented polyethylene film | |
JP5009768B2 (en) | Polypropylene-based laminated film and package using the same | |
JPH0899393A (en) | Polyolefinic heat-shrinkable laminated film | |
TW201436995A (en) | Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film | |
US5635286A (en) | Heat shrinkable polyethylene laminate film | |
US6635701B2 (en) | Oriented high density polyethylene film, compositions and process suitable for preparation thereof | |
JPS59215826A (en) | Manufacture of super high molecular weight polyethylene film | |
JP3004314B2 (en) | Polyethylene heat-shrinkable laminated film | |
JPH054276A (en) | Manufacture of polyethylene biaxially oriented film | |
JP2821252B2 (en) | Sealant film | |
JPS59215833A (en) | Manufacture of super-high molecule weight polyethylene porous film | |
JP2002337285A (en) | Laminated polyester film | |
JP2957660B2 (en) | Heat shrinkable laminated film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |