JPH04357017A - Manufacture of polyethylene-based biaxially oriented film - Google Patents

Manufacture of polyethylene-based biaxially oriented film

Info

Publication number
JPH04357017A
JPH04357017A JP3177586A JP17758691A JPH04357017A JP H04357017 A JPH04357017 A JP H04357017A JP 3177586 A JP3177586 A JP 3177586A JP 17758691 A JP17758691 A JP 17758691A JP H04357017 A JPH04357017 A JP H04357017A
Authority
JP
Japan
Prior art keywords
stretching
film
less
temperature
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177586A
Other languages
Japanese (ja)
Other versions
JP3030128B2 (en
Inventor
Gunji Hayashi
林 軍治
Mitsukazu Yui
油井 光和
Tetsuya Kubota
哲哉 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Kasei Polytec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Polytec Co filed Critical Mitsubishi Kasei Polytec Co
Priority to JP3177586A priority Critical patent/JP3030128B2/en
Publication of JPH04357017A publication Critical patent/JPH04357017A/en
Application granted granted Critical
Publication of JP3030128B2 publication Critical patent/JP3030128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the manufacture method of low shrink biaxially oriented film, which has no uneven orientation and is excellent in thickness accuracy, out of resin mainly of linear low density polyethylene. CONSTITUTION:Un-oriented linear low density polyethylene sheet is stretched under the condition that the draw ratio at least either in machine direction or in transverse direction is not less than 300% and less than 800% and the product of the draw ratios in both the directions is not less than 900% and less than 5.000%, and, after that, heat-treated so as to produce low shrink polyethylene-based biaxially oriented film. In this case, its orienting temperature conditions are set to stisfy the following numerical formula (n1) and (n2) and its heat treating temperature condition is set to satisfy the following numerical formula (n3):(n1)...Tm-30 deg.C<=T1<= Tm-10 deg.C, (n2)...Tm-50 deg.C<=T2<=Tn-25 deg.C, (n3)...Tm-40 deg.C<=T3<=Tm, in which T1 represents the lengthwise orienting temperature, T2 represents the crosswise orienting temperature and T3 represents the heat treating temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ポリエチレン系二軸延
伸フイルムの製造方法に関するものであり、詳しくは、
線状低密度ポリエチレンを主体とする樹脂を原料とした
ポリエチレン系二軸延伸フイルムの製造方法に関するも
のである。
[Field of Industrial Application] The present invention relates to a method for producing a polyethylene biaxially stretched film.
The present invention relates to a method for producing a biaxially stretched polyethylene film using a resin mainly composed of linear low-density polyethylene.

【0002】0002

【従来の技術】線状低密度ポリエチレン樹脂は、従来の
高圧法低密度ポリエチレン樹脂に比べ、低温低圧下での
イオン重合により製造されるため、設備費および使用エ
ネルギーが少なくて安価に製造できる。しかしながら、
線状低密度ポリエチレン樹脂は、本質的に結晶性ポリマ
ーであるため、従来の高密度ポリエチレンと同様に、二
軸延伸が困難である。
BACKGROUND OF THE INVENTION Linear low-density polyethylene resins are produced by ionic polymerization at low temperatures and low pressures, compared to conventional high-pressure low-density polyethylene resins, and therefore can be produced at low cost with less equipment costs and less energy. however,
Linear low-density polyethylene resin is essentially a crystalline polymer and, like conventional high-density polyethylene, is difficult to biaxially stretch.

【0003】特開昭58−90924号公報には、線状
低密度ポリエチレン樹脂を原料とした二軸延伸フイルム
の製造方法が提案されている。上記の製造方法は、延伸
温度:線状低密度ポリエチレン樹脂の融点−20℃〜融
点−5℃、延伸速度:25〜400%/sec、延伸倍
率:少なくとも一方向が3倍以上8倍未満であって二方
向の延伸倍率の積が9倍以上50倍未満の条件で二軸延
伸することを特徴としたものである。
[0003] JP-A-58-90924 proposes a method for producing a biaxially stretched film using a linear low-density polyethylene resin as a raw material. The above manufacturing method includes a stretching temperature: -20°C to melting point -5°C of linear low-density polyethylene resin, a stretching speed: 25 to 400%/sec, and a stretching ratio: 3 times or more and less than 8 times in at least one direction. The film is characterized in that it is biaxially stretched under conditions where the product of stretching ratios in two directions is 9 times or more and less than 50 times.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記の
製造方法によっても、フイルムに延伸斑が生じたり、フ
イルム破断が発生するなどして満足する延伸状態は得ら
れず、更なる改良検討が必要である。本発明は、上記実
情に鑑みなされたものであり、その目的は、線状低密度
ポリエチレンを主体とする樹脂を原料とし、良好な延伸
状態を確立し、延伸斑がなく、厚み精度の優れた二軸延
伸フイルムの製造方法を提供することにある。更に、本
発明の他の目的は、フイルム耳部の未延伸残部幅が小さ
く、しかも、フイルム延伸倍率と設定機械倍率とが掛け
離れることがなく、従って、運転管理の容易な二軸延伸
フイルムの製造方法を提供することにある。更にまた、
本発明の他の目的は、シーラントフイルムとして好適な
特性を有する二軸延伸フイルムの製造方法を提供するこ
とにある。
[Problems to be Solved by the Invention] However, even with the above manufacturing method, a satisfactory stretching condition cannot be obtained due to the occurrence of stretching unevenness and film breakage in the film, and further improvement studies are required. be. The present invention has been made in view of the above-mentioned circumstances, and its purpose is to establish a good stretching state using a resin mainly composed of linear low-density polyethylene, to have no stretching unevenness, and to have excellent thickness accuracy. An object of the present invention is to provide a method for manufacturing a biaxially stretched film. Furthermore, another object of the present invention is to provide a biaxially stretched film in which the width of the unstretched portion of the film edge portion is small, and the film stretching ratio and the set machine ratio do not deviate from each other. The purpose is to provide a manufacturing method. Furthermore,
Another object of the present invention is to provide a method for producing a biaxially stretched film having properties suitable as a sealant film.

【0005】[0005]

【課題を解決するための手段】本発明の上記の目的は、
本発明に従い、線状低密度ポリエチレンを主体とする原
料樹脂を溶融押出ししつつ冷却固化して実質的に未配向
のシートとなし、次いで、逐次二軸延伸法により、縦お
よび横方向の少なくとも一方向が3倍以上8倍未満であ
って二方向の延伸倍率の積が9倍以上50倍未満に延伸
した後、熱処理し、100℃における熱収縮率が縦およ
び横方向において各々30%以下であるポリエチレン系
二軸延伸フイルムを製造するに当り、延伸温度条件およ
び熱処理温度条件を特許請求の範囲第1項記載の数式〔
数1〕〜〔数3〕の条件を満たす範囲とすることを特徴
とするポリエチレン系二軸延伸フイルムの製造方法によ
り容易に達成される。
[Means for Solving the Problems] The above objects of the present invention are as follows:
According to the present invention, a raw material resin mainly composed of linear low-density polyethylene is melt-extruded and cooled to solidify to form a substantially unoriented sheet, and then sequentially biaxially stretched in at least one direction in the longitudinal and transverse directions. After stretching in a direction of 3 times or more and less than 8 times and the product of the stretching ratios in the two directions being 9 times or more and less than 50 times, heat treatment is performed so that the heat shrinkage rate at 100 ° C. is 30% or less in each of the longitudinal and transverse directions. When manufacturing a certain polyethylene biaxially stretched film, the stretching temperature conditions and heat treatment temperature conditions are set according to the mathematical formula described in claim 1 [
This can be easily achieved by a method for producing a polyethylene biaxially stretched film, which is characterized in that the range satisfies the conditions of Equations 1 to 3.

【0006】以下、本発明を詳細に説明する。本発明に
使用する原料樹脂は、線状低密度ポリエチレンを主体と
する樹脂である。線状低密度ポリエチレンは、エチレン
とα−オレフィンの共重合体であり、従来の高圧法によ
り製造される低密度ポリエチレンとは異なり、低圧法で
製造される。そして、エチレンと共重合されるα−オレ
フィンとしては、ブテン、ペンテン、ヘキセン、オクテ
ン、4−メチルペンテン等が挙げられる。高圧法低密度
ポリエチレンと線状低密度ポリエチレンとの構造的違い
は、前者は多分岐状の分子構造であり、後者は直鎖状の
分子構造となっている点である。
The present invention will be explained in detail below. The raw material resin used in the present invention is a resin mainly composed of linear low density polyethylene. Linear low-density polyethylene is a copolymer of ethylene and α-olefin, and unlike low-density polyethylene, which is produced by a conventional high-pressure method, it is produced by a low-pressure method. Examples of the α-olefin copolymerized with ethylene include butene, pentene, hexene, octene, 4-methylpentene, and the like. The structural difference between high-pressure low density polyethylene and linear low density polyethylene is that the former has a multi-branched molecular structure, and the latter has a linear molecular structure.

【0007】線状低密度ポリエチレンの製法は、種々有
り、その物性も製法ごとに多少異なる。本発明に使用す
る線状低密度ポリエチレンは、MI(メルトインデック
ス、g/10min)が0.5〜3.0のものが好まし
い。MIが0.5より小さい場合は、押出性が不十分で
あり、後述するような原反の成形に当り、例えば、サー
ジングによるシート成形の不安定が厚み変動を引き起こ
し、更に、これに起因する冷却斑により、透明性あるい
は結晶性のばらつきなどを生じることが多く、従って、
物性および延伸性に優れた原反を得ることが困難である
。また、MIが3.0より大きい場合は、メルトテンシ
ョンが低く、例えば、Tダイ成形での冷却ドラムへの接
触不安定に起因するさざ波現象の発生などの原反成形に
おける不都合がある。更に、分子量が小さいことにより
、分子鎖が短くて分子鎖同士の絡み合が少ないことに起
因すると思われる延伸性および延伸配向度が低下する。 その結果、フイルム物性も低下して所望の延伸フイルム
を得ることが困難である。
[0007] There are various methods of manufacturing linear low density polyethylene, and the physical properties thereof differ somewhat depending on the manufacturing method. The linear low density polyethylene used in the present invention preferably has an MI (melt index, g/10 min) of 0.5 to 3.0. If the MI is less than 0.5, the extrudability is insufficient, and when forming the original fabric as described below, for example, instability in sheet forming due to surging causes thickness fluctuations, and furthermore, Cooling spots often cause variations in transparency or crystallinity, and therefore,
It is difficult to obtain a raw fabric with excellent physical properties and stretchability. Furthermore, if the MI is greater than 3.0, the melt tension is low and there are disadvantages in forming the original fabric, such as the occurrence of ripples due to unstable contact with the cooling drum during T-die forming. Furthermore, due to the low molecular weight, the stretchability and degree of stretch orientation are lowered, which is thought to be due to the shorter molecular chains and less entanglement between the molecular chains. As a result, the physical properties of the film deteriorate, making it difficult to obtain a desired stretched film.

【0008】また、本発明に使用する線状低密度ポリエ
チレンは、密度(ρ)が0.910〜0.940g/c
cのものが好ましい。密度が0.910g/ccより小
さい場合は、得られるフイルムの柔軟性は優れるが、加
工適性に問題を生じ、また、密度が0.940g/cc
より大きい場合は、フイルムの柔軟性が損なわれる。
[0008] Furthermore, the linear low density polyethylene used in the present invention has a density (ρ) of 0.910 to 0.940 g/c.
c is preferred. If the density is less than 0.910 g/cc, the resulting film will have excellent flexibility, but problems will arise in processability, and if the density is less than 0.940 g/cc.
If it is larger, the flexibility of the film will be impaired.

【0009】なお、線状低密度ポリエチレンには、本発
明の目的に支障を来さない範囲であれば、高圧法ポリエ
チレン、エチレン−酢酸ビニル共重合体アイオノマー、
エチレン−プロピレン共重合体等を混合することが出来
る。更に、常法に従い、熱および紫外線安定剤、顔料、
帯電防止剤、蛍光剤、滑剤等を添加しても差支えない。
The linear low density polyethylene may include high pressure polyethylene, ethylene-vinyl acetate copolymer ionomer, as long as it does not interfere with the purpose of the present invention.
Ethylene-propylene copolymer etc. can be mixed. Furthermore, according to conventional methods, heat and ultraviolet stabilizers, pigments,
There is no problem in adding antistatic agents, fluorescent agents, lubricants, etc.

【0010】先ず、本発明においては、線状低密度ポリ
エチレンを主体とする原料樹脂から実質的に未配向のシ
ートを成形する。上記の未配向シートの成形は、通常の
シート成形装置および成形方法に準じて行うことができ
、例えば、TダイによるTダイ成形法を用いることがで
きる。
First, in the present invention, a substantially unoriented sheet is formed from a raw material resin mainly consisting of linear low density polyethylene. The above-mentioned unoriented sheet can be molded according to a conventional sheet molding apparatus and molding method, and for example, a T-die molding method using a T-die can be used.

【0011】次いで、本発明においては、上記の未配向
シートを原反とし、逐次二軸延伸法によって縦および横
方向に二軸の延伸を行う。縦方向(MD)の延伸は、原
反を走行させながら、必要に応じて所定の幅にスリット
した後、流れ方向と直角に設置した数本からなる縦延伸
ロールに通すことにより行う。そして、ロール間の速度
比にて延伸される。数本のロールは、予熱ロール、延伸
ロール、冷却ロールからなる。横方向(TD)の延伸は
、通常、予熱帯、延伸帯、熱処理帯、冷却帯等からなる
テンター(横延伸機)を用いて行われる。そして、加熱
方法として熱風方式、輻射加熱方式等が採用される。
Next, in the present invention, the above-mentioned unoriented sheet is used as a raw material and biaxially stretched in the longitudinal and transverse directions by a sequential biaxial stretching method. Stretching in the machine direction (MD) is carried out by running the original fabric, slitting it to a predetermined width as necessary, and then passing it through several longitudinal stretching rolls installed perpendicular to the machine direction. Then, it is stretched at the speed ratio between the rolls. The several rolls consist of a preheating roll, a stretching roll, and a cooling roll. Stretching in the transverse direction (TD) is usually performed using a tenter (transverse stretching machine) that includes a preheating zone, a stretching zone, a heat treatment zone, a cooling zone, and the like. As a heating method, a hot air method, a radiant heating method, etc. are adopted.

【0012】延伸倍率は、二軸延伸性(延伸しやすさ)
及び得られた二軸延伸フイルムの物性の観点から、前記
の特開昭58−90924号公報に記載の方法と同様に
、縦および横方向の少なくとも一方向が3倍以上8倍未
満であって二方向の延伸倍率の積が9倍以上50倍未満
とする。そして、縦方向および横方向ともに3倍以上8
倍未満とするのがよい。
[0012] The stretching ratio is determined by biaxial stretching property (ease of stretching)
And from the viewpoint of the physical properties of the obtained biaxially stretched film, as in the method described in JP-A-58-90924, at least one of the longitudinal and transverse directions is 3 times or more and less than 8 times The product of the stretching ratios in two directions is 9 times or more and less than 50 times. And more than 3 times 8 in both vertical and horizontal directions.
It is better to make it less than double.

【0013】縦延伸温度T1は、下記の数式〔数5〕(
〔数1〕に同じ)の条件を満たす範囲とする必要がある
[0013] The longitudinal stretching temperature T1 is determined by the following formula [Equation 5] (
It is necessary to set the range to satisfy the condition (same as [Equation 1]).

【数5】Tm−30℃≦T1≦Tm−10℃(上記にお
いて、Tmは、原料樹脂の融点を表し、示差走査熱量計
(DSC)を用いた測定による融解曲線上の吸熱メイン
ピ−ク温度として定義される。以下同じ)
[Equation 5] Tm-30℃≦T1≦Tm-10℃ (In the above, Tm represents the melting point of the raw resin, and is the endothermic main peak temperature on the melting curve measured using a differential scanning calorimeter (DSC). (hereinafter the same)

【0014】
縦延伸温度T1がTm−30℃より低い場合は、分子鎖
の運動性が乏しいため、横延伸時に破断し易く、たとえ
延伸できたとしても延伸倍率が上がらず、物性の優れた
延伸フイルムを得ることが出来ない。逆に、Tm−10
℃より高い場合は、延伸による配向効果が得られず、更
に、延伸原反がロールに粘着し始めて原反に粘着跡が残
り、このことが原因となり、延伸時にロール間でフイル
ム破断が発生する。また、破断なく延伸されたとしても
、延伸斑がひどく、延伸フイルムに粘着跡が残り、透明
性、厚み精度も悪くなり、商品価値のあるフイルムとは
ならない。
[0014]
If the longitudinal stretching temperature T1 is lower than Tm - 30°C, the molecular chains have poor mobility and are likely to break during transverse stretching, and even if stretching is possible, the stretching ratio will not increase, resulting in a stretched film with excellent physical properties. I can't do that. On the contrary, Tm-10
If the temperature is higher than ℃, the orientation effect of stretching cannot be obtained, and furthermore, the stretched original fabric starts to stick to the rolls, leaving adhesive marks on the original fabric, which causes the film to break between the rolls during stretching. . Furthermore, even if the film is stretched without breakage, the stretched film will have severe unevenness, adhesive marks will remain on the stretched film, transparency and thickness accuracy will deteriorate, and the film will not have commercial value.

【0015】横延伸温度T2は、下記の数式〔数6〕(
〔数2〕に同じ)の条件を満たす範囲とする必要がある
[0015] The transverse stretching temperature T2 is determined by the following formula [Equation 6] (
It is necessary to set the range to satisfy the condition (same as [Equation 2]).

【数6】Tm−50℃≦T2≦Tm−25℃[Math 6] Tm-50℃≦T2≦Tm-25℃

【0016
】そして、好ましい横延伸温度T2は、下記の数式〔数
7〕の条件を満たす温度範囲である。
0016
] The preferable transverse stretching temperature T2 is a temperature range that satisfies the condition of the following mathematical formula [Equation 7].

【数7】Tm−40℃≦T2≦Tm−25℃[Math. 7] Tm-40℃≦T2≦Tm-25℃

【0017
】横延伸温度T2がTm−50℃より低い場合は、所定
の延伸倍率を得ることが難しく、フイルム破断が発生す
る。また、破断なく延伸されたとしても、延伸斑が残り
厚み精度が悪く、透明性も損こなわれてしまう。逆に、
Tm−25℃より高い場合は、所望の延伸倍率まで延伸
可能であるが、見かけ上均一に延伸されていても、延伸
倍率と設定機械倍率が異なり所望の延伸倍率を得ること
が困難で且つ倍率管理も困難となり、延伸斑もひどくな
る。そして、このことにより、フイルム幅方向の物性が
異なり、更には、透明性も損なわれてしまい、商品価値
のあるフイルムとはならない。しかも、延伸終了後のフ
イルム両端に残る未延伸残部の幅が広くなり、経済性、
生産効率が悪くなる。
0017
] If the transverse stretching temperature T2 is lower than Tm-50°C, it is difficult to obtain a predetermined stretching ratio, and film breakage occurs. Further, even if the film is stretched without breakage, stretching unevenness remains, resulting in poor thickness accuracy and poor transparency. vice versa,
If Tm is higher than -25°C, it is possible to stretch to the desired stretching ratio, but even if the stretching is apparently uniform, the stretching ratio and the set machine ratio are different and it is difficult to obtain the desired stretching ratio. Management becomes difficult, and stretching spots become severe. As a result, the physical properties in the width direction of the film are different, and furthermore, the transparency is impaired, so that the film does not have commercial value. Moreover, the width of the unstretched parts remaining at both ends of the film after stretching is widened, which improves economic efficiency and
Production efficiency deteriorates.

【0018】次いで、本発明においては、二軸延伸フイ
ルムに熱処理を施す。そして、この熱処理は、テンター
を用いた場合は、該テンターの熱処理帯にて行うことが
できる。
Next, in the present invention, the biaxially stretched film is subjected to heat treatment. When a tenter is used, this heat treatment can be performed in the heat treatment zone of the tenter.

【0019】熱処理温度T3は、下記の数式〔数8〕(
〔数3〕に同じ)の条件を満たす範囲とする必要がある
The heat treatment temperature T3 is determined by the following formula [Equation 8] (
It is necessary to set the range to satisfy the condition (same as equation 3).

【数8】Tm−40℃≦T3≦Tm[Math. 8] Tm-40℃≦T3≦Tm

【0020】熱処理温度T3がTm−40℃より低い場
合は、熱処理を行ったフイルムは、寸法安定性に欠け、
収縮性を持つようになり、シーラント材として使用した
場合には、ヒートシール時にフイルムが収縮してシール
面にシワが発生し商品価値を損なう。逆に、Tmより高
い場合は、延伸により生じたフイルム内部の分子配向が
流動して崩れ、フイルム物性が著しく低下し、また、フ
イルムの結晶化に伴う白化現象が起こり透明性を損なっ
てしまう。
[0020] When the heat treatment temperature T3 is lower than Tm - 40°C, the heat treated film lacks dimensional stability and
It becomes shrinkable, and when used as a sealant, the film shrinks during heat sealing, causing wrinkles on the sealing surface and impairing its commercial value. On the other hand, if it is higher than Tm, the molecular orientation inside the film caused by stretching will flow and collapse, the physical properties of the film will be significantly reduced, and a whitening phenomenon will occur due to crystallization of the film, resulting in loss of transparency.

【0021】熱処理時間は3秒以上とするのが好ましい
。3秒未満の場合は、充分な熱処理効果が得られず、フ
イルムが大きい熱収縮性を持つようになるため、シーラ
ントフイルムとして使用した場合、ヒートシール時にシ
ワが発生することがある。上記の熱処理により、二軸延
伸フイルムは、100℃における熱収縮率が縦および横
方向において各々30%以下に調整される。
[0021] The heat treatment time is preferably 3 seconds or more. If the time is less than 3 seconds, a sufficient heat treatment effect will not be obtained and the film will have a large heat shrinkage, so when used as a sealant film, wrinkles may occur during heat sealing. By the above heat treatment, the biaxially stretched film has a heat shrinkage rate at 100° C. adjusted to 30% or less in both the longitudinal and transverse directions.

【0022】そして、本発明において、ヒートシール時
のシワの発生を一層確実に防止するために、二軸延伸フ
イルムの上記熱収縮率は、縦および横方向において各々
8%以下、特には5%以下に調製するのが好ましく、そ
のため、前記の熱処理温度T3は、好ましくは、下記の
数式〔数9〕(〔数4〕に同じ)の条件を満たす範囲、
特に好ましくは、下記の数式〔数10〕の条件を満たす
範囲とするのがよい。
In the present invention, in order to more reliably prevent the occurrence of wrinkles during heat sealing, the heat shrinkage rate of the biaxially stretched film is set to 8% or less in each of the longitudinal and lateral directions, particularly 5%. Therefore, the heat treatment temperature T3 is preferably within a range that satisfies the following formula [Equation 9] (same as [Equation 4]):
Particularly preferably, it is within a range that satisfies the following formula [Equation 10].

【0023】[0023]

【数9】Tm−15℃≦T3≦Tm[Equation 9] Tm-15℃≦T3≦Tm

【数10】Tm−5℃≦T3≦Tm[Formula 10] Tm-5℃≦T3≦Tm

【0024】本発明の二軸延伸フイルムには、必要に応
じて、公知のコロナ処理、フレーム処理等の表面処理を
施すこともできる。
The biaxially stretched film of the present invention may be subjected to known surface treatments such as corona treatment and flame treatment, if necessary.

【0025】[0025]

【実施例】以下に実施例を示し、本発明を更に詳細に説
明するが、本発明はその要旨を越えない限り、以下の実
施例に限定されるものではない。なお、以下の諸例にお
いては、ロールによる縦延伸装置と熱風オーブン式テン
ターの横延伸装置を用いた逐次二軸延伸法を採用した。 また、本文および以下の諸例中に示した測定項目は次の
方法によった。
EXAMPLES The present invention will be explained in more detail by way of examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof. In the following examples, a sequential biaxial stretching method using a longitudinal stretching device using rolls and a horizontal stretching device using a hot air oven type tenter was adopted. In addition, the measurement items shown in the main text and the following examples were carried out by the following method.

【0026】(1)収縮率 縦横共100mmの正方形に切り取ったフイルムを所定
温度のシリコンオイル浴中に10分間浸漬して取り出し
、縦横それぞれの長さを測定し、次式により算出した。 測定温度は、90℃、100℃、110℃、  120
℃、150℃で行った。収縮率(%)=100−A( 
or B)但し、A及びBは浸漬後の縦横それぞれの長
さ(単位はmm)を示す。
(1) Shrinkage rate A film cut into a square of 100 mm in length and width was immersed in a silicone oil bath at a predetermined temperature for 10 minutes and taken out.The length and width of each were measured and calculated using the following formula. Measurement temperatures are 90℃, 100℃, 110℃, 120℃
The temperature was 150°C. Shrinkage rate (%) = 100-A (
or B) However, A and B indicate the vertical and horizontal lengths (unit: mm) after immersion.

【0027】(2)厚み精度 接触型電子マイクロメータを用い、フイルム幅方向につ
いて最大厚み(Tmax)、最小厚み(Tmin )を
求め、次式により算出した(単位:μ)。R=Tmax
 −Tmin
(2) Thickness Accuracy Using a contact type electronic micrometer, the maximum thickness (Tmax) and minimum thickness (Tmin) in the width direction of the film were determined and calculated using the following formula (unit: μ). R=Tmax
-Tmin

【0028】(3)ヘイズ(透明性) 東京電色製ヘイズメーター(SHARP PERSON
AL  COMPUTER PC−7200, COL
OR ANDCOLOR DEFFRENCE MED
EL TC−1500)を用い、23℃×50%RHの
室温中で測定した(単位:%)。
(3) Haze (transparency) Tokyo Denshoku haze meter (SHARP PERSON)
AL COMPUTER PC-7200, COL
OR AND COLOR DEFFRENCE MED
EL TC-1500) at room temperature of 23° C. and 50% RH (unit: %).

【0029】(4)引張強度 JIS  K  7113に準拠し、23℃×50%R
Hの室温中で引張速度50mm/minで測定した(単
位:kg/cm2 )。
(4) Tensile strength According to JIS K 7113, 23°C x 50%R
It was measured at a tensile rate of 50 mm/min (unit: kg/cm2) at room temperature.

【0030】(5)引張伸度 JIS  K  7113に準拠し、23℃×50%R
Hの室温中で引張速度50mm/minで測定した(単
位:%)。
(5) Tensile elongation According to JIS K 7113, 23°C x 50% R
It was measured at a tensile speed of 50 mm/min in H at room temperature (unit: %).

【0031】(6)密度(ρ) JIS  K  6760に準拠し、密度勾配管を用い
23℃で測定した(単位:g/cc)。
(6) Density (ρ) Measured at 23°C using a density gradient tube in accordance with JIS K 6760 (unit: g/cc).

【0032】(7)融点 示差走査熱量計(パーキンエルマー社製DSC−II使
用)の測定による融解曲線上の吸熱メインピーク温度を
融点とした。 測定条件:測定試料    10〜30mg昇温速度 
   10℃/min
(7) Melting Point The endothermic main peak temperature on the melting curve measured by a differential scanning calorimeter (using PerkinElmer's DSC-II) was taken as the melting point. Measurement conditions: Measurement sample 10-30mg heating rate
10℃/min

【0033】(8)MI(メルトインデックス)JIS
  K  6760に準拠し、190℃で測定した(単
位:g/10分)。
(8) MI (melt index) JIS
Measured at 190° C. in accordance with K 6760 (unit: g/10 min).

【0034】(9)延伸倍率測定 未延伸原反の幅方向中央部に円(径既知:A)を描いて
延伸し、延伸後の円径(B)を測定し、次式により求め
た。 延伸実倍率=B/A
(9) Stretching ratio measurement A circle (diameter known: A) was drawn at the center of the unstretched original fabric in the width direction and stretched, and the diameter (B) of the circle after stretching was measured and determined by the following formula. Actual stretching ratio = B/A

【0035】(10)未延伸残部 フイルム幅方向に於ける端からフイルム目標厚みより1
0μ以上の厚みとなる位置までを未延伸残部とする。
(10) Unstretched remaining portion 1 from the film target thickness from the edge in the width direction
The unstretched remainder is defined as the unstretched portion up to the position where the thickness is 0μ or more.

【0036】(11)未延伸残部幅 フイルム幅方向の両端に発生した未延伸残部について、
一方をA、他方をBとし、各々の幅を合計してその合計
値を2で割り算出した。
(11) Width of unstretched residue Regarding the unstretched residue generated at both ends of the film in the width direction,
One side was designated as A and the other as B, and the widths of each were summed and the total value was divided by 2.

【0037】(I)実施例1〜2及び比較例1〜4(延
伸状態およびヒートシール性評価) 23℃における密度0.922g/cc、メルトインデ
ックス0.9g/10min、流動比21、共重合成分
4−メチルペンテン−1、共重合量10重量%のエチレ
ン−α−オレフィン共重合体であり、DSCによる溶融
曲線についての主ピーク温度が125℃であるエチレン
系重合体を200〜250℃で溶融混練し、250℃に
保ったTダイより押出し、公知のエアーナイフ法により
、冷却ロールに密着させて厚さ300μの未延伸シート
を得た(この未延伸シートを原反とし、他の例において
も用いた)。
(I) Examples 1 to 2 and Comparative Examples 1 to 4 (stretching state and heat sealability evaluation) Density at 23°C 0.922 g/cc, melt index 0.9 g/10 min, flow ratio 21, copolymerization Component 4 - Methylpentene-1, an ethylene-α-olefin copolymer with a copolymerization amount of 10% by weight, and an ethylene polymer whose main peak temperature on the melting curve by DSC is 125°C is heated at 200 to 250°C. The mixture was melt-kneaded, extruded through a T-die kept at 250°C, and brought into close contact with a cooling roll using the known air knife method to obtain an unstretched sheet with a thickness of 300 μm (this unstretched sheet was used as a raw material, and other examples (also used in ).

【0038】上記の原反を逐次二軸延伸装置に導き、表
1〜3に記載の条件下に延伸処理を行い、同表に示す延
伸結果を得た。なお、表中、○はフイルムに延伸斑がな
く安定延伸状態、△はフイルムに延伸斑がある状態、×
はフイルム破断が発生し延伸不可能状態をそれぞれ示す
[0038] The above-mentioned original fabric was sequentially introduced into a biaxial stretching apparatus, and stretched under the conditions listed in Tables 1 to 3 to obtain the stretching results shown in the same table. In the table, ○ indicates a stable stretched state with no stretching irregularities on the film, △ indicates a state where the film has stretching irregularities, ×
indicates a state in which film breakage occurs and stretching is impossible.

【0039】[0039]

【表1】[Table 1]

【0040】[0040]

【表2】[Table 2]

【0041】[0041]

【表3】[Table 3]

【0042】表1〜3に示したように、実施例1及び2
においては、延伸状態は良好で、不均一延伸状態も観測
されず、未延伸残部幅も狭く、フイルム生産性に影響を
及ぼすものではなかった。これに対して、比較例1〜3
においては、横延伸帯でフイルム破断が発生し、破断せ
ずに得られたフイルムには延伸斑が残り商品価値のない
フイルムしか得ることができなかった。特に、比較例2
における横延伸温度110℃での延伸では、フイルム両
端の未延伸残部の幅が広くなり、生産効率に欠けるもの
であった。また、比較例4においては、縦延伸ロールに
フイルムが粘着し、縦延伸での破断や、縦横延伸後のフ
イルムには粘着跡が残りフイルムの外観が悪く、透明性
も失われ、また、厚み精度も悪いものであった。
As shown in Tables 1 to 3, Examples 1 and 2
In this case, the stretching condition was good, no uneven stretching condition was observed, and the width of the unstretched portion was narrow, so that the film productivity was not affected. On the other hand, Comparative Examples 1 to 3
In this case, film breakage occurred in the transversely stretched zone, and films obtained without breakage had stretching irregularities remaining and could only be obtained with no commercial value. In particular, Comparative Example 2
When the film was stretched at a transverse stretching temperature of 110° C., the width of the unstretched portions at both ends of the film became wide, resulting in a lack of production efficiency. In addition, in Comparative Example 4, the film adhered to the longitudinal stretching rolls, causing breakage during longitudinal stretching, and adhesive marks remained on the film after longitudinal and lateral stretching, resulting in poor appearance, loss of transparency, and poor thickness. The accuracy was also poor.

【0043】また、上記実施例においては、延伸フイル
ムを直ちに熱処理温度120℃において5秒間熱処理し
たのち室温に冷却して巻取った。得られたフイルムにつ
いて厚み精度Rの測定を行ったところ、以下の表4に示
す通りであった。
In the above examples, the stretched film was immediately heat treated at a heat treatment temperature of 120° C. for 5 seconds, then cooled to room temperature and wound up. The thickness accuracy R of the obtained film was measured, and the results were as shown in Table 4 below.

【0044】[0044]

【表4】 実施例1−1(厚み20μ)      R=1.2μ
実施例1−2(厚み19μ)      R=1.0μ
実施例2−1(厚み20μ)      R=1.0μ
実施例2−2(厚み20μ)      R=1.2μ
[Table 4] Example 1-1 (thickness 20μ) R=1.2μ
Example 1-2 (thickness 19μ) R=1.0μ
Example 2-1 (thickness 20μ) R=1.0μ
Example 2-2 (thickness 20μ) R=1.2μ

【0045】また、公知のラミネート方法に従って、上
記実施例で得られた延伸フイルムを厚み15μの二軸延
伸ナイロン−6−フイルム(三菱化成ポリテック社製一
般品グレード/サントニールSN)に積層し、ヒートシ
ール温度140℃、シール圧力2kg/cm2 、シー
ル時間1secでヒートシールし、ヒートシール性の評
価を行った。実施例1及び2で得られた延伸フイルムは
、いずれも、シール面にシワの発生はみられず、シール
強度も5kg/15mmと良好なシール部を得た。
Further, according to a known laminating method, the stretched film obtained in the above example was laminated on a biaxially stretched nylon 6-film (general product grade/Santonil SN manufactured by Mitsubishi Kasei Polytech Co., Ltd.) with a thickness of 15 μm, and then heated. Heat sealing was performed at a sealing temperature of 140° C., a sealing pressure of 2 kg/cm 2 , and a sealing time of 1 sec, and the heat sealability was evaluated. In both of the stretched films obtained in Examples 1 and 2, no wrinkles were observed on the sealing surface, and the sealing strength was 5 kg/15mm, which was a good seal.

【0046】実施例3 熱処理温度の影響を確認するために、実施例2−2(延
伸倍率5×5)で得られた延伸フイルムについて、延伸
後、直ちに熱処理温度85℃において5秒間熱処理した
のち室温に冷却して巻取り、厚み精度Rの測定を行い、
実施例1と同様にしてヒートシール性評価を行った。そ
の結果、厚み精度Rは0.9μ(厚み20μ)であり、
シール面に僅かなシワが観察されたものの、上記とほぼ
同様のヒートシール性が得られた。
Example 3 In order to confirm the influence of heat treatment temperature, the stretched film obtained in Example 2-2 (stretching ratio 5×5) was immediately heat treated at a heat treatment temperature of 85° C. for 5 seconds after stretching. Cool it to room temperature, wind it up, measure the thickness accuracy R,
Heat sealability evaluation was performed in the same manner as in Example 1. As a result, the thickness accuracy R is 0.9μ (thickness 20μ),
Although slight wrinkles were observed on the sealing surface, almost the same heat sealability as above was obtained.

【0047】(II)実施例4及び比較例6〜7(未延
伸残部幅および延伸倍率の変化) 原反を逐次二軸延伸装置(設定機械倍率は、MD4.5
×TD4.5)に導き、表5に記載の条件下に延伸処理
を行い、次いで、直ちに熱処理温度120℃において5
秒間熱処理したのち室温に冷却して巻取った。得られた
各フイルムについて未延伸残部幅を測定し、表5に示す
結果を得た。また、表5に示す結果に基ずいて作成した
グラフを図1に示す。
(II) Example 4 and Comparative Examples 6 to 7 (Changes in unstretched remaining width and stretching ratio) The original fabric was sequentially stretched using a biaxial stretching device (setting machine magnification was MD4.5)
× TD4.5), stretched under the conditions listed in Table 5, and then immediately heated at a heat treatment temperature of 120 °C for 5
After being heat treated for a second, it was cooled to room temperature and wound up. The width of the unstretched remaining portion of each film was measured, and the results shown in Table 5 were obtained. Further, a graph created based on the results shown in Table 5 is shown in FIG.

【0048】[0048]

【表5】                         延
伸温度℃        未延伸残部幅      延
伸倍率          No.      MD 
     TD        (mm)      
  MD×TD──────────────────
──────────────────実施例    
4−1    100    100        
  50        4.5×4.5      
    4−2    112      80   
       50        4.5×4.4 
         4−3    112      
95          52        4.5
×4.5          4−4    112 
   100          55       
 4.5×4.5─────────────────
───────────────────比較例   
 6−1    100    110       
 122        4.5×5.7      
    6−2    100    120    
    160        4.5×6.9   
       7−1    112    112 
       100        4.5×6.0
          7−2    112    1
20        160        4.5×
6.8
[Table 5] Stretching temperature °C Unstretched remaining width Stretching ratio No. MD
TD (mm)
MD×TD──────────────────
──────────────────Example
4-1 100 100
50 4.5×4.5
4-2 112 80
50 4.5×4.4
4-3 112
95 52 4.5
×4.5 4-4 112
100 55
4.5×4.5──────────────────
────────────────────Comparative example
6-1 100 110
122 4.5×5.7
6-2 100 120
160 4.5×6.9
7-1 112 112
100 4.5×6.0
7-2 112 1
20 160 4.5×
6.8

【0049】上記の結果から明らかなように、実
施例4においては、各々の縦延伸温度および横延伸温度
において、延伸フイルムの未延伸残部幅はほぼ一定であ
り、その幅は生産性に影響を与えるものではなかった。 これに対し、比較例6〜7においては、未延伸残部幅は
著しく増加しフイルム生産性が極めて悪かった。また、
得られた各フイルムについてフイルム幅方向中央部にお
ける延伸倍率と設定機械倍率を測定したところ、実施例
4においては、各設定機械倍率とほぼ同倍率であったが
、比較例6〜7においては、設定機械倍率を著しくかけ
離れたものとなっていた。
As is clear from the above results, in Example 4, the width of the unstretched portion of the stretched film was almost constant at each longitudinal stretching temperature and transverse stretching temperature, and the width had no effect on productivity. It wasn't something to give. On the other hand, in Comparative Examples 6 and 7, the width of the unstretched portion increased significantly and the film productivity was extremely poor. Also,
When the stretching magnification and set machine magnification at the central part in the width direction of the film were measured for each film obtained, in Example 4, it was almost the same as each set machine magnification, but in Comparative Examples 6 and 7, The machine magnification was significantly different from the set machine magnification.

【0050】(III)比較例5(フイルム物性および
ヒートシール性評価) 原反を逐次二軸延伸装置に導き、縦延伸温度112℃、
横延伸温度100℃の条件において縦横それぞれ5倍に
延伸し、延伸されたフイルムを直ちに熱処理温度82℃
において5秒間熱処理したのち室温に冷却し巻取った。
(III) Comparative Example 5 (Evaluation of film physical properties and heat sealability) The original film was sequentially introduced into a biaxial stretching device, and the longitudinal stretching temperature was 112°C.
The stretched film was stretched 5 times in both length and width at a transverse stretching temperature of 100°C, and the stretched film was immediately heat-treated at a temperature of 82°C.
After being heat-treated for 5 seconds, it was cooled to room temperature and wound up.

【0051】上記の比較例においては、いずれも、延伸
状態の安定性は良好であり、不均一延伸状態も観測され
ず、未延伸残部幅も狭くフイルム生産性に影響を及ぼす
ものではなく、厚み精度Rも1.4μ(厚み20μ)で
あり良好であった。しかしながら、上記のフイルムのフ
イルム物性およびヒートシール状態について、実施例2
−2の延伸フイルム(延伸倍率5.0×5.0)を熱処
理温度110℃において5秒間熱処理したフイルムと比
較して表6に示したが、比較例5のフイルムは、満足の
いくものではなかった。すなわち、比較例5のフイルム
においては、シール面にシワが発生し、良好なシール部
を得ることが困難であった。なお、表6中、○はヒート
シール時にシワが発生しない、×はシワが発生すること
を示す。
In all of the above comparative examples, the stability of the stretching state was good, no uneven stretching was observed, and the width of the unstretched remaining portion was narrow, which did not affect film productivity, and the thickness The accuracy R was also good, being 1.4 μm (thickness 20 μm). However, regarding the film physical properties and heat sealing state of the above film, Example 2
Table 6 shows a comparison of the stretched film of Comparative Example 5 (stretching ratio 5.0 x 5.0) with a film heat-treated for 5 seconds at a heat treatment temperature of 110°C. There wasn't. That is, in the film of Comparative Example 5, wrinkles occurred on the sealing surface, making it difficult to obtain a good seal. In Table 6, ◯ indicates that wrinkles do not occur during heat sealing, and × indicates that wrinkles occur.

【0052】[0052]

【表6】     特    性               
       実施例3          比較例5
─────────────────────────
───────  厚  み(μ)         
           20.1(R=1.2)   
    20.4(R=1.4)   ヘイズ(%) 
                      2.1
               2.4       
 引張強度(MD/TD) ( kg/cm2 )  
  1500/1530         1393/
1448     引張伸度(MD/TD) (%) 
          102/90         
   124/120    ───────────
─────────────────────  収縮
率(%)        90℃         5
.2/5.3          25.9/27.3
     (MD/TD)            1
00℃         7.4/7.8      
    35.1/36.0            
            110℃        1
5.9/18.4         47.6/49.
4                        
120℃        48.6/50.4    
     60.3/64.0           
             150℃        
76.3/72.4         77.0/76
.5   ────────────────────
────────────  ヒートシール状態   
                 ○       
         ×      ─────────
───────────────────────
[Table 6] Characteristics
Example 3 Comparative example 5
──────────────────────────
──────── Thickness (μ)
20.1 (R=1.2)
20.4 (R=1.4) Haze (%)
2.1
2.4
Tensile strength (MD/TD) (kg/cm2)
1500/1530 1393/
1448 Tensile elongation (MD/TD) (%)
102/90
124/120 ────────────
────────────────────── Shrinkage rate (%) 90℃ 5
.. 2/5.3 25.9/27.3
(MD/TD) 1
00℃ 7.4/7.8
35.1/36.0
110℃ 1
5.9/18.4 47.6/49.
4
120℃ 48.6/50.4
60.3/64.0
150℃
76.3/72.4 77.0/76
.. 5 ────────────────────
──────────── Heat sealed condition

× ──────────
────────────────────────

【0
053】(IV)実施例5及び比較例9(熱収縮率の評
価) 実施例1で得た未延伸シート(300μ)を原反とし、
実施例1と同様の方法により、表7に示す条件下に二軸
延伸と熱処理を行い、厚さ25μのフイルムを得た。熱
処理は、テンター内における横延伸に引続き、7%の弛
緩を与えつつ、表7に記載の各温度において5秒間行な
った。得られた各フイルムの熱収縮率の測定結果を表7
に示す。また、上記の各例においては、12時間の連続
延伸を行い、実施例1と同様の基準で延伸状態を観察し
た。その結果を併せて表7に示す。
0
(IV) Example 5 and Comparative Example 9 (Evaluation of heat shrinkage rate) The unstretched sheet (300μ) obtained in Example 1 was used as a raw material,
Biaxial stretching and heat treatment were performed in the same manner as in Example 1 under the conditions shown in Table 7 to obtain a film with a thickness of 25 μm. The heat treatment was performed for 5 seconds at each temperature listed in Table 7 while giving 7% relaxation following the transverse stretching in a tenter. Table 7 shows the measurement results of the heat shrinkage rate of each film obtained.
Shown below. Further, in each of the above examples, continuous stretching was performed for 12 hours, and the stretching state was observed using the same criteria as in Example 1. The results are also shown in Table 7.

【0054】[0054]

【表7】[Table 7]

【0055】[0055]

【発明の効果】以上説明した本発明によれば、次の効果
が達成される。■  線状低密度ポリエチレンを原料と
して利用する利点はそのまま享受する。■  従来の延
伸条件で延伸されたフイルムに比べ、フイルムに延伸斑
がなく、透明性も良好で、更に強度も良好である。■ 
 寸法安定性に優れる。■  フイルム耳部の未延伸残
部幅も少ない。■  シーラントフイルムに用いた場合
、ヒートシールの際、シール部にシワの発生がない等の
優れた性能を持ち、例えば、シーラント用フイルム、包
装用フイルムとして好適なフイルムが得られる。
According to the present invention described above, the following effects are achieved. ■ Enjoy the benefits of using linear low-density polyethylene as a raw material. (2) Compared to a film stretched under conventional stretching conditions, the film has no stretching irregularities, has good transparency, and also has good strength. ■
Excellent dimensional stability. ■ The width of the unstretched portion of the film edge is also small. (2) When used in a sealant film, the film has excellent performance such as no wrinkles in the sealed portion during heat sealing, and is suitable for use as a sealant film or a packaging film, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】横延伸温度と未延伸残部幅の関係の一例を示す
グラフである。
FIG. 1 is a graph showing an example of the relationship between lateral stretching temperature and unstretched remaining width.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  線状低密度ポリエチレンを主体とする
原料樹脂を溶融押出ししつつ冷却固化して実質的に未配
向のシートとなし、次いで、逐次二軸延伸法により、縦
および横方向の少なくとも一方向が3倍以上8倍未満で
あって二方向の延伸倍率の積が9倍以上50倍未満に延
伸した後、熱処理し、100℃における熱収縮率が縦お
よび横方向において各々30%以下であるポリエチレン
系二軸延伸フイルムを製造するに当り、延伸温度条件を
下記の数式[数1]及び[数2]の条件を満たす範囲と
し、熱処理温度条件を下記の数式[数3]の条件を満た
す範囲とすることを特徴とするポリエチレン系二軸延伸
フイルムの製造方法。 【数1】Tm−30℃≦T1≦Tm−10℃【数2】T
m−50℃≦T2≦Tm−25℃【数3】Tm−40℃
≦T3≦Tm (上記式中、Tmは原料樹脂の融点、T1は縦延伸温度
、T2は横延伸温度、T3は熱処理温度を表す)【請求
項2】熱処理温度条件が下記の数式[数4]の条件を満
たす範囲であることを特徴とする、100℃における熱
収縮率が縦および横方向において各々8%以下である請
求項1記載のポリエチレン系二軸延伸フイルムの製造方
法。 【数4】Tm−15℃≦T3≦Tm
Claim 1: A raw material resin mainly composed of linear low-density polyethylene is melt-extruded, cooled and solidified to form a substantially unoriented sheet, and then sequentially biaxially stretched to form a sheet with at least 100% orientation in the longitudinal and lateral directions. After stretching to a stretching ratio of 3 times or more and less than 8 times in one direction and a product of the stretching ratios in two directions of 9 times or more and less than 50 times, heat treatment is performed, and the heat shrinkage rate at 100°C is 30% or less in each of the longitudinal and transverse directions. In manufacturing a polyethylene biaxially stretched film, the stretching temperature conditions are set to a range that satisfies the following formulas [Math. 1] and [Math. 2], and the heat treatment temperature conditions are set to the conditions of the following formula [Math. 3]. A method for producing a polyethylene biaxially stretched film, characterized in that the range satisfies the following. [Math. 1] Tm-30℃≦T1≦Tm-10℃ [Math. 2] T
m-50℃≦T2≦Tm-25℃ [Math. 3] Tm-40℃
≦T3≦Tm (In the above formula, Tm is the melting point of the raw resin, T1 is the longitudinal stretching temperature, T2 is the lateral stretching temperature, and T3 is the heat treatment temperature.) [Claim 2] The heat treatment temperature condition is determined by the following formula [Equation 4] 2. The method for producing a biaxially stretched polyethylene film according to claim 1, wherein the heat shrinkage rate at 100° C. is 8% or less in each of the longitudinal and transverse directions. [Math 4] Tm-15℃≦T3≦Tm
JP3177586A 1990-08-09 1991-06-21 Method for producing biaxially oriented polyethylene film Expired - Fee Related JP3030128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177586A JP3030128B2 (en) 1990-08-09 1991-06-21 Method for producing biaxially oriented polyethylene film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21123590 1990-08-09
JP2-211235 1990-08-09
JP3177586A JP3030128B2 (en) 1990-08-09 1991-06-21 Method for producing biaxially oriented polyethylene film

Publications (2)

Publication Number Publication Date
JPH04357017A true JPH04357017A (en) 1992-12-10
JP3030128B2 JP3030128B2 (en) 2000-04-10

Family

ID=26498098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177586A Expired - Fee Related JP3030128B2 (en) 1990-08-09 1991-06-21 Method for producing biaxially oriented polyethylene film

Country Status (1)

Country Link
JP (1) JP3030128B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126680A (en) * 2003-10-03 2005-05-19 Toyobo Co Ltd Heat-sealable linear low-density polyethylene film and process for producing the same
CN113637252A (en) * 2021-08-23 2021-11-12 中国科学技术大学先进技术研究院 Strong cross membrane, preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994560B1 (en) 2014-09-10 2019-06-28 미쓰이 가가쿠 토세로 가부시키가이샤 Biaxially oriented ethylene polymer film and packaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126680A (en) * 2003-10-03 2005-05-19 Toyobo Co Ltd Heat-sealable linear low-density polyethylene film and process for producing the same
CN113637252A (en) * 2021-08-23 2021-11-12 中国科学技术大学先进技术研究院 Strong cross membrane, preparation method and application thereof

Also Published As

Publication number Publication date
JP3030128B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
KR0173114B1 (en) Bioriented blown film
US4532189A (en) Linear polyethylene shrink films
TWI711539B (en) Biaxially stretched laminated polypropylene film
KR100637004B1 (en) Biaxially Oriented Heat Shrinkable Polyolefin Film
JPH0236238A (en) Dimensionally stable orientated film of chlorotrifluoroethylene polymer and manufacture of said film
EP0410792B1 (en) Double bubble process for making strong, thin films
US5306549A (en) Biaxially stretched polyethylene film
JP4650019B2 (en) Polypropylene-based laminated film and package using the same
EP0204843B1 (en) Low temperature heat shrinkable film and process for producing the same
EP0402043A2 (en) Process for producing thermoformable polypropylene films and sheets
US5904964A (en) Process for manufacturing heat-shrinkable polyethylene film
JPH0899393A (en) Polyolefinic heat-shrinkable laminated film
JP3030128B2 (en) Method for producing biaxially oriented polyethylene film
JPH0236239A (en) Dimensionally stable perfluorocarbon copolymer film and its manufacture
JPS59215826A (en) Manufacture of super high molecular weight polyethylene film
JP2821252B2 (en) Sealant film
JP6289261B2 (en) Heat shrinkable laminated film
JP3004314B2 (en) Polyethylene heat-shrinkable laminated film
JPH054276A (en) Manufacture of polyethylene biaxially oriented film
GB2135240A (en) Linear polyethylene shrink films
JP2957660B2 (en) Heat shrinkable laminated film
CA2032272C (en) Improved heat shrinkable polyolefin film
JPH075758B2 (en) High density polyethylene film and method for producing the same
JPH0218219B2 (en)
JPS59215833A (en) Manufacture of super-high molecule weight polyethylene porous film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees