JP6465827B2 - Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner - Google Patents

Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner Download PDF

Info

Publication number
JP6465827B2
JP6465827B2 JP2016058189A JP2016058189A JP6465827B2 JP 6465827 B2 JP6465827 B2 JP 6465827B2 JP 2016058189 A JP2016058189 A JP 2016058189A JP 2016058189 A JP2016058189 A JP 2016058189A JP 6465827 B2 JP6465827 B2 JP 6465827B2
Authority
JP
Japan
Prior art keywords
signal
respiration
biological state
state acquisition
velocity vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058189A
Other languages
Japanese (ja)
Other versions
JP2017169745A (en
Inventor
淳二 堀
淳二 堀
美寿見 奈穂
奈穂 美寿見
志賀 彰
彰 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016058189A priority Critical patent/JP6465827B2/en
Publication of JP2017169745A publication Critical patent/JP2017169745A/en
Application granted granted Critical
Publication of JP6465827B2 publication Critical patent/JP6465827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば人間などの生体の状態(以下、生体状態という。)を取得する生体状態取得装置、生体状態取得プログラム、生体状態取得装置を備えた機器及び空調機器に関する。   The present invention relates to a biological state acquisition device, a biological state acquisition program, a device including the biological state acquisition device, and an air conditioner that acquire a state of a living body such as a human (hereinafter referred to as a biological state).

従来、非接触でかつ非拘束で睡眠中の人の生体信号を取得し、状態判定を行う技術が提案されている。例えば特許文献1に開示された生体状態取得装置は、睡眠中の生体の体表面に電磁波を送信し反射波を受信する送受信部と、反射波の直交検波を行ってI信号とQ信号とからなるIQ信号を生成する検波部と、IQ平面上での信号の軌跡から生体の状態を判定する信号処理部とを備えて構成される。ここで、信号処理部はIQ平面上においてIQ信号の速度ベクトルのノルムを算出することで呼吸信号を得て、この増減を、しきい値を設定してカウントすることで、呼吸頻度を算出する。   2. Description of the Related Art Conventionally, a technique has been proposed in which a biological signal of a sleeping person is acquired in a non-contact and non-restraint manner and a state is determined. For example, the living body state acquisition device disclosed in Patent Document 1 includes a transmission / reception unit that transmits electromagnetic waves to the body surface of a living body during sleep and receives reflected waves, and performs quadrature detection of the reflected waves to obtain I signals and Q signals. And a signal processing unit that determines the state of the living body from the locus of the signal on the IQ plane. Here, the signal processing unit obtains a respiration signal by calculating the norm of the velocity vector of the IQ signal on the IQ plane, and calculates the respiration frequency by setting the threshold value and counting this increase / decrease. .

このような方法は、受信信号をアナログ処理する際に生じる信号の劣化(IQ平面上での原点ずれなど)がある場合でも、周波数解析を用いずに簡易に呼吸頻度を検出することを特徴としている。   Such a method is characterized in that even if there is signal degradation (origin deviation on the IQ plane, etc.) that occurs when analog processing of the received signal, the respiratory frequency is easily detected without using frequency analysis. Yes.

特開2011−15887号公報JP 2011-15887 A

しかしながら、IQ平面上で得られるIQ信号の速度ベクトルのノルムは、電磁波の送受信部と反射面の距離及び反射強度などに影響を受ける。このため、この従来例では、速度ベクトルのノルム増減をカウントするためにしきい値を調整する必要があった。   However, the norm of the velocity vector of the IQ signal obtained on the IQ plane is affected by the distance between the electromagnetic wave transmitting / receiving unit and the reflecting surface, the reflection intensity, and the like. Therefore, in this conventional example, it is necessary to adjust the threshold value in order to count the increase / decrease of the norm of the velocity vector.

本発明の目的は以上の問題点を解決し、従来技術に比較して簡単な方法で呼吸信号を得ることができる生体状態取得装置を提供することにある。   An object of the present invention is to solve the above-described problems and to provide a biological state acquisition apparatus that can obtain a respiratory signal by a simpler method compared to the prior art.

本発明の一態様に係る生体状態取得装置は、
生体の体表面に電磁波を送信し、上記生体の体表面で反射される反射波を受信信号として受信する信号受送信手段と、
上記受信信号を直交検波して、I信号とQ信号を生成する直交検波手段と、
上記生成されたI信号とQ信号とを時系列に順次取得するIQ信号取得手段と、
所定の時点において取得したI信号とQ信号のIQ平面上の速度ベクトルの一定期間での方向変化に基づいて、上記生体の呼吸の変化を示す呼吸信号を生体情報として生成する信号処理手段とを備え
上記信号処理手段は、上記取得したIQ平面上の速度ベクトルの一定期間での方向変化を、所定の時点でのIQ平面上の速度ベクトルと、一定期間過去において取得したI信号とQ信号のIQ平面上の速度ベクトルのなす角の余弦として算出することを特徴とする。

The biological state acquisition device according to one aspect of the present invention includes:
Signal receiving and transmitting means for transmitting electromagnetic waves to the body surface of the living body and receiving reflected waves reflected by the body surface of the living body as received signals;
Quadrature detection means for quadrature detection of the received signal to generate an I signal and a Q signal;
IQ signal acquisition means for sequentially acquiring the generated I signal and Q signal in time series;
Signal processing means for generating, as biological information, a respiration signal indicating a change in respiration of the living body based on a direction change of the I signal acquired at a predetermined time point and a velocity vector of the Q signal on the IQ plane over a certain period of time. Prepared ,
The signal processing means changes the direction change of the acquired velocity vector on the IQ plane in a certain period, the velocity vector on the IQ plane at a predetermined time point, the IQ signal acquired in a certain period in the past and the IQ of the Q signal. It is calculated as a cosine of an angle formed by a velocity vector on a plane .

本発明によれば、呼吸信号として固定された範囲内で変動する時系列信号を得ることができる。これによりしきい値の設定が容易になり呼吸頻度を精度よく算出することができる。   According to the present invention, it is possible to obtain a time series signal that fluctuates within a fixed range as a respiratory signal. As a result, the threshold value can be easily set and the respiration frequency can be calculated with high accuracy.

本発明の実施の形態1に係る生体状態取得装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological condition acquisition apparatus which concerns on Embodiment 1 of this invention. 図1の生体状態取得装置において取得されたIQ信号の挙動を示すグラフである。It is a graph which shows the behavior of IQ signal acquired in the living body state acquisition device of FIG. 図1の生体状態取得装置においてIQ信号のIQ平面上での速度ベクトルの算出方法を説明するIQ信号のグラフである。2 is a graph of an IQ signal for explaining a method of calculating a velocity vector on an IQ plane of the IQ signal in the biological state acquisition device of FIG. 1. 図1の生体状態取得装置において速度ベクトルの変化を算出する方法を示すIQ信号のグラフである。It is a graph of IQ signal which shows the method of calculating the change of a velocity vector in the biological condition acquisition apparatus of FIG. 図1の生体状態取得装置において呼吸曲線の算出及び呼吸状態の判定例を示す呼吸信号の波形図である。FIG. 3 is a waveform diagram of a respiratory signal showing an example of calculating a respiratory curve and determining a respiratory state in the biological state acquisition device of FIG. 1. 図1の生体状態取得装置において呼吸頻度の利用例を示す、呼吸頻度に対する保湿量を示すグラフである。It is a graph which shows the moisture retention amount with respect to respiration frequency which shows the utilization example of respiration frequency in the biological condition acquisition apparatus of FIG. 本発明の実施の形態2に係る生体状態取得装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological condition acquisition apparatus which concerns on Embodiment 2 of this invention. 図7の生体状態取得装置における呼吸曲線の補正例を示す呼吸信号の波形図である。It is a wave form diagram of the respiration signal which shows the example of correction | amendment of the respiration curve in the biological condition acquisition apparatus of FIG. 図7の生体状態取得装置において用いるヒステリシスフィルタ12の入出力電圧特性を示すグラフである。It is a graph which shows the input-output voltage characteristic of the hysteresis filter 12 used in the biological condition acquisition apparatus of FIG. 図7の生体状態取得装置における、ヒステリシスフィルタ12によるフィルタ処理後の呼吸曲線の一例を示す呼吸信号の波形図である。FIG. 8 is a waveform diagram of a respiratory signal showing an example of a respiratory curve after filtering by the hysteresis filter 12 in the biological state acquisition device of FIG. 7. 本発明の実施の形態3に係る生体状態取得装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological condition acquisition apparatus which concerns on Embodiment 3 of this invention. 図11の生体状態取得装置における、速度ベクトルの変化方向の判定方法を示すIQ信号のグラフである。12 is a graph of an IQ signal showing a method for determining a direction of change of a velocity vector in the biological state acquisition device of FIG. 11. 図11の生体状態取得装置において呼吸信号、並びに呼気及び吸気判定曲線を用いた呼気/吸気の判定方法を示すグラフである。12 is a graph showing an expiration / inhalation determination method using a respiratory signal and an expiration / inspiration determination curve in the biological state acquisition device of FIG.

以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.

実施の形態1.
図1は本発明の実施の形態1に係る生体状態取得装置の構成を示すブロック図である。図1において、本実施の形態にかかる生体状態取得装置は例えばヒト又は動物である生体20の生体状態を取得する装置であって、本実施の形態では、生体状態として呼吸頻度を検出し、呼吸頻度は単位時間当たりの呼吸回数を表すものとする。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a biological state acquisition apparatus according to Embodiment 1 of the present invention. In FIG. 1, the biological state acquisition apparatus according to the present embodiment is an apparatus that acquires the biological state of a living body 20 that is, for example, a human or an animal. The frequency represents the number of breaths per unit time.

図1において、生体状態取得装置は、ドップラレーダセンサ1と、直交検波回路2と、バンドパスフィルタ3と、AD変換器4と、演算装置5と、表示装置11とを備えて構成される。ここで、演算装置5は、IQ信号取得回路6と、信号処理回路7と、呼吸判定回路10とを備える。信号処理回路7は、速度ベクトル変化検出回路8と、呼吸信号生成回路9とを備える。   In FIG. 1, the biological state acquisition apparatus includes a Doppler radar sensor 1, a quadrature detection circuit 2, a bandpass filter 3, an AD converter 4, an arithmetic device 5, and a display device 11. Here, the arithmetic device 5 includes an IQ signal acquisition circuit 6, a signal processing circuit 7, and a respiration determination circuit 10. The signal processing circuit 7 includes a velocity vector change detection circuit 8 and a respiratory signal generation circuit 9.

ドップラレーダセンサ1は信号送受信手段として設けられ、ドップラレーダセンサ1のアンテナは生体20の体表面(好ましくは、胸表面)に向けられており、生体20の体表面に向けて電磁波が照射され、当該体表面で反射された電磁波である反射波を受信信号として受信できるように設置されている。直交検波回路2は受信信号を直交検波することでI信号とQ信号からなるIQ信号を生成してバンドパスフィルタ3に出力する。バンドパスフィルタ3は、予め呼吸によるドップラシフト成分以外を除去するように設定された周波数通過特性を有し、フィルタ後のIQ信号をAD変換器4に出力する。AD変換器4は入力されるアナログIQ信号をAD変換値のデジタルIQ信号に変換して演算装置5に出力する。   The Doppler radar sensor 1 is provided as a signal transmission / reception means, and the antenna of the Doppler radar sensor 1 is directed to the body surface (preferably the chest surface) of the living body 20, and electromagnetic waves are irradiated toward the body surface of the living body 20, It is installed so that a reflected wave, which is an electromagnetic wave reflected from the body surface, can be received as a received signal. The quadrature detection circuit 2 performs quadrature detection on the received signal to generate an IQ signal composed of an I signal and a Q signal and outputs the IQ signal to the bandpass filter 3. The band pass filter 3 has a frequency pass characteristic set in advance to remove components other than the Doppler shift component due to respiration, and outputs the filtered IQ signal to the AD converter 4. The AD converter 4 converts the input analog IQ signal into a digital IQ signal having an AD conversion value and outputs it to the arithmetic unit 5.

演算装置5のIQ信号取得回路6は信号バッファメモリを有し、デジタルIQ信号を時系列で順次、所定の周期で離散的に受信して所定期間のデジタルIQ信号を当該信号バッファメモリに格納して信号処理回路7における信号処理に用いる。速度ベクトル変化検出回路8は、任意の時点におけるIQ信号のIQ平面上の速度ベクトルと、一定期間過去において取得したIQ信号のIQ平面上の速度ベクトルのなす角の余弦を算出する。また、呼吸信号生成回路9は算出された余弦を呼吸信号として呼吸判定回路10に出力する。呼吸判定回路10は呼吸信号の増減から呼吸を判定して呼吸の頻度(以下、呼吸頻度という。)を算出し、算出結果を表示装置11に表示し、もしくはプリンタなどの出力装置に出力する。   The IQ signal acquisition circuit 6 of the arithmetic unit 5 has a signal buffer memory, and sequentially receives digital IQ signals in a time series, discretely at a predetermined cycle, and stores the digital IQ signals for a predetermined period in the signal buffer memory. Used for signal processing in the signal processing circuit 7. The velocity vector change detection circuit 8 calculates the cosine of the angle formed by the velocity vector on the IQ plane of the IQ signal at an arbitrary time point and the velocity vector on the IQ plane of the IQ signal acquired in the past for a certain period. The respiration signal generation circuit 9 outputs the calculated cosine to the respiration determination circuit 10 as a respiration signal. The respiration determining circuit 10 determines respiration from the increase / decrease of the respiration signal, calculates respiration frequency (hereinafter referred to as respiration frequency), and displays the calculation result on the display device 11 or outputs it to an output device such as a printer.

次いで、速度ベクトル変化検出回路8で行われる速度ベクトルの算出について以下説明する。   Next, the calculation of the velocity vector performed by the velocity vector change detection circuit 8 will be described below.

図2は図1の生体状態取得装置においてヒトに対して取得されたIQ信号の挙動を示すグラフである。図2に示すように、AD変換器4から出力されたI信号及びQ信号の組であるIQ信号の座標をIQ平面上にプロットすると、生体20の一例である例えばヒトが呼吸するときの体表面の動きに応じて図示するような軌跡を描く。ここで、IQ信号の座標は、体表面がドップラレーダセンサ1に近づく場合は反時計回り、体表面がドップラレーダセンサ1ら遠ざかる場合は時計回りに軌跡を描く。なお、ドップラレーダセンサ1は、生体の胸郭の膨張収縮を精度良く捉えられる位置に設置されることが望ましい。   FIG. 2 is a graph showing the behavior of an IQ signal acquired for a human in the biological state acquisition apparatus of FIG. As shown in FIG. 2, when the coordinates of the IQ signal, which is a set of the I signal and the Q signal output from the AD converter 4, are plotted on the IQ plane, for example, a body when a human breathes as an example of the living body 20. A trajectory as illustrated is drawn according to the movement of the surface. Here, the coordinates of the IQ signal draw a locus counterclockwise when the body surface approaches the Doppler radar sensor 1 and clockwise when the body surface moves away from the Doppler radar sensor 1. The Doppler radar sensor 1 is preferably installed at a position where the expansion and contraction of the thorax of the living body can be accurately captured.

呼吸時の体表面の動作は、吸い込み時は、吸い込み開始後、徐々に速度が上昇してピークに達する。そして、呼吸の端点(呼気及び吸気の切り替わり時)に向かって今度は速度が下降し、呼吸の端点で略ゼロとなる。また、呼吸の端点前後では速度ベクトルが逆方向になる。   The movement of the body surface during breathing reaches its peak during inhalation after the inhalation starts and the speed gradually increases. Then, the velocity decreases this time toward the end point of breathing (when exhalation and inspiration are switched), and becomes substantially zero at the end point of breathing. Also, the velocity vector is in the opposite direction before and after the end point of respiration.

図3は図1の生体状態取得装置においてIQ信号のIQ平面上での速度ベクトルの算出方法を説明するIQ信号のグラフである。図3において、時刻tにおけるIQ平面上での座標がP(t)とし、時刻tから一定時間(Δt)過去である時刻t−Δtにおける座標がP(t−Δt)であった場合、時刻tにおける速度ベクトルは次式として算出する。   FIG. 3 is a graph of an IQ signal for explaining a method of calculating a velocity vector on the IQ plane of the IQ signal in the biological state acquisition apparatus of FIG. In FIG. 3, when the coordinate on the IQ plane at time t is P (t), and the coordinate at time t−Δt that is a fixed time (Δt) past from time t is P (t−Δt), The velocity vector at t is calculated as:

V(t)=P(t)−P(t−Δt) V (t) = P (t) −P (t−Δt)

また、時刻tにおける速度ベクトルがV(t)であった場合、V(t)と一定時間(Δtv)過去である時刻t−Δtvにおける速度ベクトルV(t−Δtv)がなす角の余弦を算出することで、速度ベクトルV(t)のV(t−Δtv)からの方向の変化を求めることができる。   If the velocity vector at time t is V (t), the cosine of the angle formed by V (t) and the velocity vector V (t−Δtv) at time t−Δtv in the past is calculated for a certain time (Δtv). By doing so, it is possible to obtain a change in the direction of the velocity vector V (t) from V (t−Δtv).

図4は図1の生体状態取得装置において速度ベクトルの変化を算出する方法を示すIQ信号のグラフである。すなわち、図4はヒトの呼吸動作時のIQ信号のIQ平面上での速度ベクトルの推移を模擬したものである。図4において、V(t1)、V(t1−Δtv)、V(t2−Δtv)は、吸気時の速度ベクトルを表しており、V(t2)、V(t3−Δtv)、V(t3)は、呼気時の速度ベクトルを表している。なお、○は吸気から呼気への切り替えを示し、□は呼気から吸気への切り替えを示す。   FIG. 4 is a graph of an IQ signal showing a method for calculating a change in velocity vector in the biological state acquisition apparatus of FIG. That is, FIG. 4 simulates the transition of the velocity vector on the IQ plane of the IQ signal during the human breathing motion. In FIG. 4, V (t1), V (t1−Δtv), and V (t2−Δtv) represent velocity vectors during intake, and V (t2), V (t3−Δtv), and V (t3). Represents a velocity vector during expiration. “◯” indicates switching from inspiration to expiration, and “□” indicates switching from expiration to inspiration.

図4において、吸気時の速度ベクトルV(t1)が、V(t1−Δtv)となす角はπ/2より小さく、これらの余弦は+1に近い値となる。呼気中の速度ベクトルV(t3)が、V(t3−Δtv)となす角はπ/2よりも小さく、これらの余弦も+1に近い値となる。また、吸気から呼気に切り替わる時点では、速度ベクトルV(t2)は、V(t2−Δtv)とは逆方向になるため、その余弦は−1に近い値となる。   In FIG. 4, the angle formed by the velocity vector V (t1) during intake with V (t1−Δtv) is smaller than π / 2, and these cosines are close to +1. The angle formed by the velocity vector V (t3) during expiration with V (t3−Δtv) is smaller than π / 2, and these cosines are also close to +1. At the time of switching from inspiration to expiration, the velocity vector V (t2) is in the opposite direction to V (t2−Δtv), so the cosine is a value close to −1.

速度ベクトルV(t)と一定時間過去である時刻t−Δtvにおける速度ベクトルV(t−Δtv)がなす角の余弦を算出し、この時系列変化を呼吸信号と定義すると、呼吸動作を繰り返す時の呼吸信号は図5のように推移する。   When the cosine of the angle formed by the velocity vector V (t) and the velocity vector V (t−Δtv) at time t−Δtv, which is a certain time in the past, is calculated and this time series change is defined as a respiratory signal, The respiratory signal changes as shown in FIG.

図5は図1の生体状態取得装置において呼吸曲線の算出及び呼吸状態の判定例を示す呼吸信号の波形図である。なお、本実施の形態では呼吸信号生成回路9は速度ベクトル変化検出回路8が出力した値を、そのまま呼吸信号として出力している。なお、AD変換器4におけるIQ信号のサンプリング周期は、例えば50サンプル/秒であり、差分時間Δt、Δtvは両方とも例えば1秒程度であるが、必要な計測精度や、要求されるコストなどを勘案して、適宜設定することができる。以上の方法による算出を行えば、一回の呼吸動作が長く、IQ平面上で数周回転するような場合であっても、変動が±1の間に収まる呼吸信号を得ることができる。   FIG. 5 is a waveform diagram of a respiratory signal showing an example of calculating a respiratory curve and determining a respiratory state in the biological state acquisition apparatus of FIG. In this embodiment, the respiration signal generation circuit 9 outputs the value output from the velocity vector change detection circuit 8 as it is as a respiration signal. Note that the sampling period of the IQ signal in the AD converter 4 is, for example, 50 samples / second, and the difference times Δt and Δtv are both about 1 second, for example, but the required measurement accuracy, required cost, etc. In consideration, it can be set appropriately. If calculation by the above method is performed, it is possible to obtain a respiration signal in which the fluctuation is within ± 1 even when one respiration operation is long and rotates several times on the IQ plane.

なお、得られた呼吸信号から単位時間当たりの呼吸頻度を算出する場合は、しきい値の調整は不要で、しきい値をゼロとして交点をカウントすればよい。具体的には一回の呼吸につき4回ゼロを通過するので、単位時間当たりにカウントした交点の数を4で割った数を呼吸頻度とすればよい。   When calculating the respiration frequency per unit time from the obtained respiration signal, it is not necessary to adjust the threshold value, and the intersection point may be counted with the threshold value set to zero. Specifically, since zero passes four times for each breath, the number obtained by dividing the number of intersections counted per unit time by four may be used as the breathing frequency.

以上の実施の形態によれば、呼吸信号として固定された範囲内で変動する時系列信号を得ることができる。これによりしきい値の設定が容易になり呼吸頻度を精度よく算出することができる。また、呼吸信号の変動範囲を既知の限定した範囲内に収めることができ、呼気及び吸気の切り替えを検出するためのしきい値調整が不要となる。すなわち、しきい値を角度とした場合は必ずπ/2を通過するのでこれをしきい値とすればよい。   According to the above embodiment, it is possible to obtain a time series signal that fluctuates within a fixed range as a respiratory signal. As a result, the threshold value can be easily set and the respiration frequency can be calculated with high accuracy. Moreover, the fluctuation range of the respiratory signal can be kept within a known limited range, and the threshold value adjustment for detecting the switching between the expiration and the inspiration becomes unnecessary. That is, if the threshold value is an angle, it always passes through π / 2, and this may be used as the threshold value.

さらに、方向変化を任意の時点でのIQ平面上の速度ベクトルと、一定期間過去において取得したIQ平面上の速度ベクトルのなす角の余弦として算出しているので、呼吸信号の変動範囲を±1の範囲内に収めることができ、呼気及び吸気の切り替えを検出するためのしきい値調整が不要となる。   Furthermore, since the direction change is calculated as the cosine of the angle formed by the velocity vector on the IQ plane at an arbitrary point in time and the velocity vector on the IQ plane acquired in the past for a certain period, the fluctuation range of the respiratory signal is set to ± 1. Thus, it is not necessary to adjust the threshold value for detecting switching between expiration and inspiration.

なお、演算装置5から出力された呼吸頻度は別の演算装置に入力され、機器制御などに用いてもよい。   The respiration frequency output from the arithmetic device 5 may be input to another arithmetic device and used for device control.

図6は図1の生体状態取得装置において呼吸頻度の利用例を示す、呼吸頻度に対する保湿量を示すグラフである。例えば、睡眠中の呼吸を補助するための加湿器において、図6に示すように加湿空気放出量(保湿量)を呼吸頻度に応じて逐次調整する制御が考えられる。この制御により、吸頻度が高く鼻腔の粘膜が乾燥しやすい場合に重点的に水分を供給することで、空気に対する過剰な水分供給を抑制することができる。図6では、呼吸頻度と保湿量を比例関係で表わしているが、この限りではなく、呼吸頻度が増加した場合に保湿量も増加する関係であればよい。従って、結果として、加湿器の設置された部屋における結露発生を防ぐことができ、また加湿器に組み込まれる給水タンクの容量を低減できる。   FIG. 6 is a graph showing the moisturizing amount with respect to the respiration frequency, showing an example of use of the respiration frequency in the biological state acquisition apparatus of FIG. For example, in a humidifier for assisting breathing during sleep, a control of sequentially adjusting the amount of humidified air released (moisturizing amount) according to the breathing frequency as shown in FIG. 6 can be considered. By this control, excessive water supply to the air can be suppressed by supplying water mainly when the absorption frequency is high and the mucous membrane of the nasal cavity is easy to dry. In FIG. 6, the respiration frequency and the moisturizing amount are represented by a proportional relationship. However, the present invention is not limited to this, and any relationship may be used as long as the respiration frequency increases. Therefore, as a result, the occurrence of dew condensation in the room where the humidifier is installed can be prevented, and the capacity of the water supply tank incorporated in the humidifier can be reduced.

実施の形態2.
図7は本発明の実施の形態2に係る生体状態取得装置の構成を示すブロック図である。図7において、実施の形態2に係る生体状態取得装置は、図1の生体状態取得装置に比較して、以下の点が異なる。
(1)呼吸判定回路10は、後述するように2個のしきい値A,B(図8)を設定して呼吸の判定を行う。
(2)呼吸信号生成回路9と呼吸判定回路10との間に、ヒステリシスフィルタ12を挿入して設けた。
Embodiment 2. FIG.
FIG. 7 is a block diagram showing a configuration of the biological state acquisition apparatus according to Embodiment 2 of the present invention. 7, the biological state acquisition device according to the second embodiment is different from the biological state acquisition device of FIG. 1 in the following points.
(1) The respiration determining circuit 10 determines respiration by setting two threshold values A and B (FIG. 8) as will be described later.
(2) A hysteresis filter 12 is inserted between the respiration signal generation circuit 9 and the respiration determination circuit 10.

図8は図7の生体状態取得装置における呼吸曲線の補正例を示す呼吸信号の波形図である。また、図9は図7の生体状態取得装置において用いるヒステリシスフィルタ12の入出力電圧特性を示すグラフである。さらに、図10は図7の生体状態取得装置における、ヒステリシスフィルタ12によるフィルタ処理後の呼吸曲線の一例を示す呼吸信号の波形図である。   FIG. 8 is a waveform diagram of a respiration signal showing an example of correction of a respiration curve in the biological state acquisition apparatus of FIG. FIG. 9 is a graph showing input / output voltage characteristics of the hysteresis filter 12 used in the biological state acquisition apparatus of FIG. Further, FIG. 10 is a waveform diagram of a respiration signal showing an example of a respiration curve after the filtering process by the hysteresis filter 12 in the biological state acquisition apparatus of FIG.

図8に示すように、呼吸信号と周波数の近いノイズが重畳した場合、これをバンドパスフィルタ3などで取り除くことは難しく、実施の形態1で示した方法で呼吸頻度を算出すると、実際よりも多く呼吸をカウントしてしまう。このような場合、図8に示すように2個のしきい値A,B(例えば呼吸信号の最大値と0との間のプラスのしきい値A、及び最小値と0との間のマイナスのしきい値B)を設定して、呼吸信号が両方のしきい値A,Bを同じ方向に通過したことを検出することで呼吸頻度を算出してもよい。   As shown in FIG. 8, when noise having a frequency close to that of the respiration signal is superimposed, it is difficult to remove it with the bandpass filter 3 or the like, and when the respiration frequency is calculated by the method shown in the first embodiment, Many breaths are counted. In such a case, as shown in FIG. 8, two threshold values A and B (for example, a positive threshold value A between the maximum value and 0 of the respiratory signal and a negative value between the minimum value and 0) And the respiratory frequency may be calculated by detecting that the respiratory signal has passed both thresholds A and B in the same direction.

図8にはしきい値Aとしきい値Bがあり、呼吸信号がこれらを通過した点を矢印で示してある。しきい値Aを下から上に向かって通過した場合はUA、上から下に向かって通過した場合はDA、しきい値BについてはそれぞれUB、DBとしてそれぞれの矢印近くに示した。UB、UAと連続して検出した場合、DA、DBと連続して検出した場合のみをカウントすると、×で示した部分はカウントされない。   In FIG. 8, there are a threshold value A and a threshold value B, and the point at which the respiratory signal has passed is indicated by an arrow. When the threshold A is passed from the bottom to the top, UA is shown, when the threshold A is passed from the top to the bottom, DA, and the threshold B is shown near the arrows as UB and DB, respectively. When UB and UA are detected consecutively and only DA and DB are detected continuously, the portion indicated by x is not counted.

このような処理は、例えば図9のようなヒステリシス特性を持ったヒステリシスフィルタ12を用いることで実現する。図9のヒステリシス特性を有するヒステリシスフィルタ12を適用することによって、図8で示した呼吸信号は図10に示すような波形になり、しきい値A及びしきい値Bと比較することで、一呼吸を従来技術に比較して高精度で検出することができる。   Such processing is realized by using, for example, a hysteresis filter 12 having hysteresis characteristics as shown in FIG. By applying the hysteresis filter 12 having the hysteresis characteristic of FIG. 9, the respiration signal shown in FIG. 8 becomes a waveform as shown in FIG. Respiration can be detected with higher accuracy than in the prior art.

以上の本実施の形態では、例えば図8に両側矢印線で示した区間を一呼吸として検出することで、呼吸頻度を従来技術に比較して高精度で算出することができる。また、2個のしきい値A,Bを設定して、呼吸信号が両方のしきい値を同じ方向に通過したことを検出することで、呼吸信号と近い周波数をもつノイズが乗じた場合であっても、正確な呼吸数カウントが可能となる。   In the present embodiment described above, for example, by detecting the section indicated by the double-sided arrow line in FIG. 8 as one breath, the respiration frequency can be calculated with higher accuracy than in the prior art. In addition, by setting two thresholds A and B and detecting that the respiratory signal has passed through both thresholds in the same direction, noise with a frequency close to that of the respiratory signal is multiplied. Even if it is, accurate respiration rate count becomes possible.

実施の形態3.
図11は本発明の実施の形態3に係る生体状態取得装置の構成を示すブロック図である。図11において、実施の形態3に係る生体状態取得装置は、図1の呼吸判定回路10に代えて、さらにIQ信号のIQ平面上の速度ベクトルの変化方向を判定する呼吸判定回路10Aを備えたことを特徴としている。
Embodiment 3 FIG.
FIG. 11 is a block diagram showing a configuration of a biological state acquisition apparatus according to Embodiment 3 of the present invention. In FIG. 11, the biological state acquisition apparatus according to Embodiment 3 includes a respiration determination circuit 10 </ b> A that determines the change direction of the velocity vector on the IQ plane of the IQ signal, instead of the respiration determination circuit 10 of FIG. 1. It is characterized by that.

呼気と吸気の判別を行う場合には、IQ信号が呼吸端から離れている時点での速度ベクトルの変化方向(回転角度)を算出することが有効である。速度ベクトルの変化方向は、任意の時点での速度ベクトルと過去の速度ベクトルの外積を算出することで実現できる。   When discriminating between expiration and inspiration, it is effective to calculate the change direction (rotation angle) of the velocity vector when the IQ signal is away from the breathing end. The change direction of the velocity vector can be realized by calculating the outer product of the velocity vector at an arbitrary time and the past velocity vector.

図12は図11の生体状態取得装置における、速度ベクトルの変化方向の判定方法を示すIQ信号のグラフである。   FIG. 12 is a graph of an IQ signal showing a method for determining the direction of change of the velocity vector in the biological state acquisition apparatus of FIG.

図12において吸気時の速度ベクトルはV(t1)と表わされているが、速度ベクトルV(t1−Δtv)から比較して反時計まわりに回転する(回転角度をθ1とする)。逆に呼気時の速度ベクトルはV(t3)と表わされているが、速度ベクトルV(t3−Δtv)から比較して時計まわりに回転する(回転角度をθ3)。例えば、外積V(t1)×V(t1−Δtv)は次式の3次元ベクトルとなる。   In FIG. 12, the speed vector at the time of intake is represented as V (t1), but it rotates counterclockwise as compared with the speed vector V (t1−Δtv) (the rotation angle is θ1). On the contrary, the velocity vector at the time of exhalation is expressed as V (t3), but rotates clockwise compared with the velocity vector V (t3-Δtv) (the rotation angle is θ3). For example, the outer product V (t1) × V (t1−Δtv) is a three-dimensional vector of the following equation.

Figure 0006465827
Figure 0006465827

ここで、呼吸の端点から離れている場合に、式(1)の|V(t1)||V(t1−Δt)|sinθ1は正の値となる。また、呼気時の外積V(t3)×V(t3−Δtv)も同様に計算すると、呼吸の端点から離れている場合は|V(t3)||V(t3−Δt)|sinθ3は負の値となる。これらを呼気及び吸気判定曲線とする。ここで、呼吸の端点から離れていることは、実施の形態1及び2で算出した、呼吸曲線に対して所定のしきい値を設定し、呼吸の端点が上記しきい値よりも大きいことにより判定できる。   Here, when away from the end point of respiration, | V (t1) || V (t1−Δt) | sin θ1 in Expression (1) is a positive value. Similarly, when calculating the outer product V (t3) × V (t3−Δtv) at the time of exhalation, | V (t3) || V (t3−Δt) | sin θ3 is negative when it is away from the end point of respiration. Value. These are defined as expiration and inhalation determination curves. Here, being away from the end point of respiration is that a predetermined threshold is set for the respiration curve calculated in the first and second embodiments, and the end point of respiration is larger than the above threshold. Can be judged.

図13は図11の生体状態取得装置において呼吸信号、並びに呼気及び吸気判定曲線を用いた呼気/吸気の判定方法を示すグラフである。図13では、図5で示した呼吸信号と、当該呼吸信号に対してしきい値Cを設定し、呼吸信号がしきい値Cよりも大きい場合に、上述した呼気及び吸気判定曲線を同じ時間軸で表した。図13のグラフ下には判定結果を示している。この例では、左から呼気、吸気、呼気、吸気と順次判定されている。   FIG. 13 is a graph showing an expiration / inhalation determination method using a breathing signal and an expiration / inspiration determination curve in the biological state acquisition apparatus of FIG. In FIG. 13, when the threshold value C is set for the respiratory signal shown in FIG. 5 and the respiratory signal and the respiratory signal is larger than the threshold value C, the expiration and inhalation determination curves described above are displayed at the same time. Expressed on the axis. The determination result is shown below the graph of FIG. In this example, expiration, inspiration, expiration, and inspiration are sequentially determined from the left.

以上説明したように本実施の形態によれば、IQ信号の速度ベクトルの変化方向を判定することで、呼気又は吸気を従来技術に比較して高精度で判定できる。   As described above, according to the present embodiment, it is possible to determine expiration or inspiration with higher accuracy than in the prior art by determining the change direction of the velocity vector of the IQ signal.

変形例.
以上の実施形態においては、演算装置5内の各回路6〜10を例えばハードウエアで構成しているが、本発明はこれに限らず、演算装置を1つのデジタル計算機などのコンピュータで構成し、各演算をコンピュータにより実行されるソフトウェアプログラムで構成してもよい。なお、IQ信号取得回路6では、IQ信号を一時的に格納するメモリを備える。
Modified example.
In the above embodiment, the circuits 6 to 10 in the arithmetic device 5 are configured by hardware, for example. However, the present invention is not limited to this, and the arithmetic device is configured by a computer such as one digital computer, Each calculation may be configured by a software program executed by a computer. The IQ signal acquisition circuit 6 includes a memory that temporarily stores IQ signals.

以上の実施の形態1〜3の演算装置5から出力された呼吸信号と呼気及び吸気判定結果は、別の制御装置に入力されて、機器制御などに用いることができる。例えば、睡眠中の呼吸を補助するための加湿器において、加湿空気の放出を吸気のタイミングに合わせて行うことが可能である。結果として、空気に対する過剰な水分供給を抑制し、加湿器の設置された部屋における結露を防ぐことができ、また加湿器に組み込まれる給水タンクの容量を低減できる。   The respiration signal and the expiration and inhalation determination results output from the arithmetic device 5 according to the first to third embodiments can be input to another control device and used for device control and the like. For example, in a humidifier for assisting breathing during sleep, it is possible to release humidified air in accordance with the timing of inspiration. As a result, excessive water supply to the air can be suppressed, condensation in the room where the humidifier is installed can be prevented, and the capacity of the water supply tank incorporated in the humidifier can be reduced.

なお、生体状態取得装置を備えた機器としては、生体状態取得装置で取得された生体状態に基づいて機器本体の運転を制御する制御手段を備え、例えば、目覚まし時計や空気調和機の他、例えば照明、芳香機能など5感を刺激する機能を有する機器、もしくは、TVや音楽プレーヤーなどのAV機器、湯たんぽ、加湿器、除湿機、空気清浄機などの空調機器であって、空調機器は、生体状態取得装置と、空間を空調する空調手段と、上記生体状態取得装置で取得された生体情報に基づいて空調手段を制御する制御手段を備えた空調機器であってもよい。   The device provided with the biological state acquisition device includes a control unit that controls the operation of the device main body based on the biological state acquired by the biological state acquisition device. For example, in addition to an alarm clock and an air conditioner, for example, Equipment that stimulates the five senses such as lighting and fragrance functions, or AV equipment such as TVs and music players, hot water bottles, humidifiers, dehumidifiers, air purifiers, and other air conditioning equipment. The air conditioner may include a state acquisition device, an air conditioning unit that air-conditions the space, and a control unit that controls the air conditioning unit based on the biological information acquired by the biological state acquisition device.

以上詳述したように、本発明によれば、呼吸信号として固定された範囲内で変動する時系列信号を得ることができる。これによりしきい値の設定が容易になり呼吸頻度を精度よく算出することができる。   As described above in detail, according to the present invention, it is possible to obtain a time series signal that fluctuates within a fixed range as a respiratory signal. As a result, the threshold value can be easily set and the respiration frequency can be calculated with high accuracy.

1 ドップラレーダセンサ、2 直交検波回路、3 バンドパスフィルタ、4 AD変換器、5 演算装置、6 IQ信号取得回路、7 信号処理回路、8 速度ベクトル変化検出回路、9 呼吸信号生成回路、10,10A 呼吸判定回路、11 表示装置、12 ヒステリシスフィルタ、20 生体。   1 Doppler radar sensor, 2 quadrature detection circuit, 3 band pass filter, 4 AD converter, 5 arithmetic unit, 6 IQ signal acquisition circuit, 7 signal processing circuit, 8 speed vector change detection circuit, 9 respiratory signal generation circuit, 10, 10A Respiration determination circuit, 11 Display device, 12 Hysteresis filter, 20 Living body.

Claims (9)

生体の体表面に電磁波を送信し、上記生体の体表面で反射される反射波を受信信号として受信する信号受送信手段と、
上記受信信号を直交検波して、I信号とQ信号を生成する直交検波手段と、
上記生成されたI信号とQ信号とを時系列に順次取得するIQ信号取得手段と、
所定の時点において取得したI信号とQ信号のIQ平面上の速度ベクトルの一定期間での方向変化に基づいて、上記生体の呼吸の変化を示す呼吸信号を生体情報として生成する信号処理手段とを備え
上記信号処理手段は、上記取得したIQ平面上の速度ベクトルの一定期間での方向変化を、所定の時点でのIQ平面上の速度ベクトルと、一定期間過去において取得したI信号とQ信号のIQ平面上の速度ベクトルのなす角の余弦として算出することを特徴とする生体状態取得装置。
Signal receiving and transmitting means for transmitting electromagnetic waves to the body surface of the living body and receiving reflected waves reflected by the body surface of the living body as received signals;
Quadrature detection means for quadrature detection of the received signal to generate an I signal and a Q signal;
IQ signal acquisition means for sequentially acquiring the generated I signal and Q signal in time series;
Signal processing means for generating, as biological information, a respiration signal indicating a change in respiration of the living body based on a direction change of the I signal acquired at a predetermined time point and a velocity vector of the Q signal on the IQ plane over a certain period of time. Prepared ,
The signal processing means changes the direction change of the acquired velocity vector on the IQ plane in a certain period, the velocity vector on the IQ plane at a predetermined time point, the IQ signal acquired in a certain period in the past and the IQ of the Q signal. A biological state acquisition apparatus that calculates a cosine of an angle formed by a velocity vector on a plane .
上記信号処理手段は、上記IQ平面上の速度ベクトルの一定期間での方向変化を検出するときに、上記呼吸信号に対して互いに異なる第1と第2のしきい値を設定して、上記呼吸信号が上記第1と第2の両方のしきい値を同じ方向で通過したことを検出することを特徴とする請求項記載の生体状態取得装置。 The signal processing means sets a first and a second threshold value different from each other for the respiration signal when detecting a change in direction of the velocity vector on the IQ plane over a certain period of time. It signals the first and second both biological condition acquisition device according to claim 1, wherein the detecting that has passed through the same direction threshold. 上記生成された呼吸信号に対して所定のヒステリシス特性を用いてフィルタするヒステリシスフィルタをさらに備えたことを特徴とする請求項1又は2記載の生体状態取得装置。 The generated respiratory signals biological condition acquisition device according to claim 1, wherein further comprising a hysteresis filter to filter using a predetermined hysteresis characteristic with respect. 生体の体表面に電磁波を送信し、上記生体の体表面で反射される反射波を受信信号として受信する信号受送信手段と、
上記受信信号を直交検波して、I信号とQ信号を生成する直交検波手段と、
上記生成されたI信号とQ信号とを時系列に順次取得するIQ信号取得手段と、
所定の時点において取得したI信号とQ信号のIQ平面上の速度ベクトルの一定期間での方向変化に基づいて、上記生体の呼吸の変化を示す呼吸信号を生体情報として生成する信号処理手段とを備え
上記信号処理手段は、上記IQ平面上の速度ベクトルの一定期間での方向変化を検出するときに、上記呼吸信号に対して互いに異なる第1と第2のしきい値を設定して、上記呼吸信号が上記第1と第2の両方のしきい値を同じ方向で通過したことを検出することを特徴とする生体状態取得装置。
Signal receiving and transmitting means for transmitting electromagnetic waves to the body surface of the living body and receiving reflected waves reflected by the body surface of the living body as received signals;
Quadrature detection means for quadrature detection of the received signal to generate an I signal and a Q signal;
IQ signal acquisition means for sequentially acquiring the generated I signal and Q signal in time series;
Signal processing means for generating, as biological information, a respiration signal indicating a change in respiration of the living body based on a direction change of the I signal acquired at a predetermined time point and a velocity vector of the Q signal on the IQ plane over a certain period of time. Prepared ,
The signal processing means sets a first and a second threshold value different from each other for the respiration signal when detecting a change in direction of the velocity vector on the IQ plane over a certain period of time. A biological state acquisition apparatus, characterized in that it detects that a signal has passed through both the first and second threshold values in the same direction .
生体の体表面に電磁波を送信し、上記生体の体表面で反射される反射波を受信信号として受信する信号受送信手段と、
上記受信信号を直交検波して、I信号とQ信号を生成する直交検波手段と、
上記生成されたI信号とQ信号とを時系列に順次取得するIQ信号取得手段と、
所定の時点において取得したI信号とQ信号のIQ平面上の速度ベクトルの一定期間での方向変化に基づいて、上記生体の呼吸の変化を示す呼吸信号を生体情報として生成する信号処理手段と
上記生成された呼吸信号に対して所定のヒステリシス特性を用いてフィルタするヒステリシスフィルタとを備えたことを特徴とする生体状態取得装置。
Signal receiving and transmitting means for transmitting electromagnetic waves to the body surface of the living body and receiving reflected waves reflected by the body surface of the living body as received signals;
Quadrature detection means for quadrature detection of the received signal to generate an I signal and a Q signal;
IQ signal acquisition means for sequentially acquiring the generated I signal and Q signal in time series;
Signal processing means for generating, as biological information, a respiration signal indicating a change in respiration of the living body based on a direction change of the I signal acquired at a predetermined time point and a velocity vector of the Q signal on the IQ plane over a certain period of time ;
A biological state acquisition apparatus comprising: a hysteresis filter that filters the generated respiratory signal using a predetermined hysteresis characteristic .
上記生成されたI信号とQ信号とに基づいて、速度ベクトルの変化方向を判定することで上記生体の呼気と吸気とを判定する呼吸判定手段をさらに備えたことを特徴とする請求項1〜のうちのいずれか1つに記載の生体状態取得装置。 2. The apparatus according to claim 1, further comprising a breath determination unit that determines the expiration and inhalation of the living body by determining a change direction of a velocity vector based on the generated I signal and Q signal. The biological state acquisition device according to any one of 5 . コンピュータを、
請求項1〜のうちのいずれか1つに記載のIQ信号取得手段と、
請求項1〜のうちのいずれか1つに記載の信号処理手段と、
請求項記載の呼吸判定手段として機能させるための生体状態取得プログラム。
Computer
IQ signal acquisition means according to any one of claims 1 to 6 ,
The signal processing means according to any one of claims 1 to 6 ,
The biological condition acquisition program for functioning as a breath determination means of Claim 6 .
請求項1〜のうちのいずれか1つに記載の生体状態取得装置と、
上記生体状態取得装置で取得された生体状態に基づいて機器本体の運転を制御する制御手段を備えたことを特徴とする機器。
The biological state acquisition device according to any one of claims 1 to 6 ,
A device comprising control means for controlling the operation of the device main body based on the biological state acquired by the biological state acquisition device.
請求項1〜のうちのいずれか1つに記載の生体状態取得装置と、
空間を空調する空調手段と、
上記生体状態取得装置で取得された生体情報に基づいて空調手段を制御する制御手段を備えたことを特徴とする空調機器。
The biological state acquisition device according to any one of claims 1 to 6 ,
Air-conditioning means for air-conditioning the space;
An air conditioning apparatus comprising control means for controlling the air conditioning means based on the biological information acquired by the biological state acquisition device.
JP2016058189A 2016-03-23 2016-03-23 Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner Active JP6465827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058189A JP6465827B2 (en) 2016-03-23 2016-03-23 Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058189A JP6465827B2 (en) 2016-03-23 2016-03-23 Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner

Publications (2)

Publication Number Publication Date
JP2017169745A JP2017169745A (en) 2017-09-28
JP6465827B2 true JP6465827B2 (en) 2019-02-06

Family

ID=59969629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058189A Active JP6465827B2 (en) 2016-03-23 2016-03-23 Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner

Country Status (1)

Country Link
JP (1) JP6465827B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955406B2 (en) * 2017-09-12 2021-10-27 日本無線株式会社 Biomotor measurement method, biomotor measurement program and biomotor measurement device
JP2019069101A (en) * 2017-10-11 2019-05-09 株式会社Z−Works Information processing system, information processing device, information processing server, information processing method, and information processing program
CN108844177B (en) * 2018-03-30 2020-08-04 广东美的制冷设备有限公司 Door plate control method of air conditioner and air conditioner
CN108844176A (en) * 2018-03-30 2018-11-20 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner
JP7090350B2 (en) * 2020-03-30 2022-06-24 株式会社シェアメディカル Biological monitoring system and its program
JP7296671B2 (en) 2020-03-30 2023-06-23 株式会社シェアメディカル Biological monitoring system and its program
CN112254276A (en) * 2020-09-02 2021-01-22 海信(山东)空调有限公司 Air conditioner and control method
CN112466471A (en) * 2020-12-16 2021-03-09 丁贤根 Method for monitoring and adjusting wisdom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946729A (en) * 1974-10-17 1976-03-30 Hewlett-Packard Company Ventilator patient monitor
JP4902517B2 (en) * 2007-12-19 2012-03-21 三菱電機株式会社 Air conditioner
JP5974512B2 (en) * 2012-02-01 2016-08-23 沖電気工業株式会社 Information processing apparatus, information processing method, and program
JP2015217143A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Heartbeat measuring device

Also Published As

Publication number Publication date
JP2017169745A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6465827B2 (en) Biological state acquisition device, biological state acquisition program, device provided with biological state acquisition device, and air conditioner
US8652065B2 (en) Breathing transition detection
US20140290656A1 (en) Method and device for carrying out a signal-processing viewing of a measurement signal that is correlated to the respiratory activity of an individual
WO2016170005A1 (en) Detection and identification of a human from characteristic signals
US10905838B2 (en) Ventilator with error detection for flow sensors
CN103974736B (en) Automatic patient&#39;s synchronization control for invasive ventilation
JP2015119961A (en) Distinguishing closed and open respiratory airway apnea by complex admittance values
EP3099227B1 (en) System and method for analysis of the upper airway and a respiratory pressure support system
CN102596028A (en) System and method for quantifying lung compliance in a self-ventilating subject
CN108348718B (en) Breath-by-breath re-assessment of patient lung parameters for improved estimation performance
CN102481119A (en) System and method for quantifying lung compliance in a self-ventilating subject
CN105662417B (en) A kind of control method and device based on the pressure signal feature recognition sound of snoring
CN106308801A (en) Method for detecting human breathing rate by utilizing smart phone
Mansy et al. Pneumothorax detection using computerised analysis of breath sounds
CN111657948A (en) Method, device and equipment for detecting sleep breathing state
US20170361041A1 (en) Respirator for apap respiration using oscillatory pressure
EP3322336B1 (en) System and method for analysis of the upper airway and a respiratory pressure support system
US8157743B2 (en) Device and method for evaluating a signal indicative of the respiration of a person
JP6389391B2 (en) Respiratory disorder determination device, respiratory disorder determination method and program
US20210205561A1 (en) Process and signal processing unit for determining a pneumatic parameter with the use of a lung-mechanical model and of a gradient model
CN114340488A (en) Method and signal processing unit for determining a respiratory activity of a patient
JP6944402B2 (en) Absence determination method, program, sensor processing system, and sensor system
CN114224320B (en) Snore detection method, equipment and system for self-adaptive multi-channel signal fusion
US9649051B2 (en) Method and system for analyzing a patients respiratory activity and corresponding uses
Dai et al. Real-Time Visual Respiration Tracking with Radar Sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190108

R150 Certificate of patent or registration of utility model

Ref document number: 6465827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250