JP6461009B2 - 少なくとも1つの囲いを有する超伝導デバイス - Google Patents

少なくとも1つの囲いを有する超伝導デバイス Download PDF

Info

Publication number
JP6461009B2
JP6461009B2 JP2015553853A JP2015553853A JP6461009B2 JP 6461009 B2 JP6461009 B2 JP 6461009B2 JP 2015553853 A JP2015553853 A JP 2015553853A JP 2015553853 A JP2015553853 A JP 2015553853A JP 6461009 B2 JP6461009 B2 JP 6461009B2
Authority
JP
Japan
Prior art keywords
superconducting
substrate
enclosure
dimensional cavity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015553853A
Other languages
English (en)
Other versions
JP2016509800A (ja
JP2016509800A5 (ja
Inventor
ザ サード,ロバート,ジョン シェールコプフ
ザ サード,ロバート,ジョン シェールコプフ
ブレヒト,テレサ
フルンジオ,ルイージ
デボレット,マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yale University
Original Assignee
Yale University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yale University filed Critical Yale University
Publication of JP2016509800A publication Critical patent/JP2016509800A/ja
Publication of JP2016509800A5 publication Critical patent/JP2016509800A5/ja
Application granted granted Critical
Publication of JP6461009B2 publication Critical patent/JP6461009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/805Constructional details for Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • H10N60/815Containers; Mountings for Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/83Element shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Waveguides (AREA)

Description

関連出願
本願は、2013年1月18日に出願された米国特許出願第61/754298号、発明の名称「ERROR-CORRECTED QUANTUM REGISTERS FOR A MODULAR SUPERCONDUCTING QUANTUM COMPUTER」の優先権を主張し、該出願の全内容は参照により本明細書に援用される。
連邦政府によって後援される研究
この発明は、米国陸軍-陸軍研究局に与えられた助成金番号W911NF-09-1-0514の下、政府支援によってなされたものである。米国政府はこの発明において一定の権利を有する。
背景
本願は一般的に、超伝導デバイスおよび超伝導デバイスを製造する方法に関する。より具体的に、本願は、量子力学的現象を発揮するように形作られた複数の基板で形成された超伝導デバイスおよびかかるデバイスを製造するための方法に関する。
量子情報処理は、従来の情報処理では利用されない方法で情報を符号化および処理するために、エネルギー量子化、重ね合わせ(superposition)およびもつれ(entanglement)などの量子力学的現象を使用する。例えば、特定のコンピューター上の問題は、従来の古典的な計算法よりもむしろ量子計算法を使用することでより効率的に解決され得ることが知られている。しかしながら、現実味のあるコンピューターオプションにするために、量子計算法には、多くの量子ビット(「キュービット」として知られる)およびこれらのキュービット間の相互作用を正確に制御する能力が必要である。特に、キュービットは、長いコヒーレンス時間を有し、個々に操作され得、1つ以上の他のキュービットと相互作用して複数キュービットゲート(multi-qubit gates)を実行し得、効率的に初期化および測定され得、かつ多数のキュービットに対して調整可能(scalable)であるべきである。
キュービットは、少なくとも2つの直交する状態を有する任意の物理的量子力学系から形成され得る。情報の符号化に使用される該系の2つの状態は、「計算基底(computational basis)」と称される。例えば、光子偏光、電子スピンおよび核スピンは、情報を符号化し得、そのために量子情報処理のためのキュービットとして使用され得る2レベルシステム(two-level system)である。異なるキュービットの物理的実行(implementation)は異なる利点および欠点を有する。例えば、光子偏光は、長いコヒーレンス時間および単純な単一キュービット操作のために有益であるが、単純な複数キュービットゲートを製造できないという点で不利益を被る。
ジョセフソン接合を使用する異なる形態の超伝導キュービットが提唱されており、計算基底がジョセフソン接合においてクーパー対の量子化されたエネルギー状態である「位相キュービット(phase qubits)」、計算基底が超伝導ループ中の循環電流フローの方向である「磁束キュービット(flux qubits)」、および計算基底が超伝導アイランド(superconducting island)上のクーパー対の存在または非存在である「電荷キュービット(charge qubits)」が挙げられる。超伝導キュービットは、2つのキュービット間の連結が強力で、実行が比較的単純な2キュービットゲートを製造するのでキュービットの有利な選択であり、かつ超伝導キュービットは、従来の電子回路技術を使用して形成され得るメゾスコピック構成要素(mesoscopic component)であるので調整可能である。
概要
発明者らは、従来の小型電子部品製作技術を使用して超伝導デバイスを製造し得ることを認識し、理解した。したがって、態様は、超伝導デバイスおよび超伝導デバイスを製造するための方法に関する。
いくつかの態様は、1つ以上の溝を含む複数の基板を含むデバイスに関する。該基板は、1つ以上の溝が少なくとも1つの囲いを形成するように配置される。少なくとも1つの超伝導層が、少なくとも1つの囲いの少なくとも一部を覆う。いくつかの態様において、複数の基板は、ケイ素などの結晶構造を有する材料を含む。
いくつかの態様において、少なくとも1つの囲いは、少なくとも1つの三次元空洞共振器を形成するように形作られるので、1つ以上の周波数での電磁放射は、少なくとも1つの三次元空洞共振器内で共振する。1つ以上の周波数は、少なくとも1つのマイクロ波周波数を含み得る。少なくとも1つの三次元空洞共振器のQファクターは、10,000,000より大きなものであり得る。いくつかの態様において、少なくとも1つの三次元空洞共振器は、第1の三次元空洞共振器および第2の三次元空洞共振器を含む。第1の三次元空洞共振器のQファクターは、第2の三次元空洞共振器のQファクターよりも大きなものであり得る。
いくつかの態様において、少なくとも1つの超伝導キュービットを、少なくとも1つの三次元空洞共振器に連結する。該少なくとも1つの超伝導キュービットはトランスモン(transmon)キュービットまたはフラクソニウム(fluxonium)キュービットであり得る。いくつかの態様において、複数の基板のうちの第1の基板上および/または第1の基板中に超伝導ワイヤ層が配置される。超伝導ワイヤ層(superconducting wiring layer)は、少なくとも1つの超伝導キュービットを少なくとも1つの三次元空洞共振器に連結するように形作られ得る。いくつかの態様において、少なくとも1つの超伝導内の少なくとも1つの開口は、超伝導ワイヤ層を少なくとも1つの三次元空洞共振器に連結するように形作られる。少なくとも1つの経路(via)が、超伝導ワイヤ層と、複数の基板のうちの第2の基板の少なくとも1つの超伝導構成要素を連結し得る。
いくつかの態様において、少なくとも1つの超伝導キュービットは、少なくとも1つの三次元空洞共振器内に配置されるので、少なくとも1つの超伝導キュービットは、電磁放射を経由して少なくとも1つの三次元空洞共振器に連結されるように形作られる。
いくつかの態様において、該デバイスの複数の基板は、第1の基板および第2の基板を含む。第1の基板は1つ以上の溝のうちの第1の溝を含み得る。少なくとも1つの超伝導層は、第1の溝の少なくとも一部を覆う第1の超伝導層、および第2の基板の表面の少なくとも一部を覆う第2の超伝導層を含み得る。第1の基板および第2の基板は、第1の超伝導層および第2の超伝導層が直接接触して、第1の溝が少なくとも1つの三次元空洞共振器を形成するように配置され得る。
いくつかの態様において、少なくとも1つの囲いは、少なくとも1つの電磁シールドを形成するように形作られるので、外部の電磁放射が少なくとも1つの囲いに侵入することが防がれる。少なくとも1つの超伝導構成要素は、少なくとも1つの電磁シールド内に配置され得る。少なくとも1つの超伝導構成要素は、少なくとも1つの超伝導回路、少なくとも1つのキュービットおよび/または少なくとも1つのストリップライン(stripline)共振器を含み得る。
いくつかの態様において、複数の基板は、第1の基板および第2の基板を含む。第1の基板は、1つ以上の溝のうちの第1の溝を含み得、第2の基板は、1つ以上の溝のうちの第2の溝を含み得る。少なくとも1つの超伝導層は、第1の溝の少なくとも一部を覆う第1の超伝導層および第2の溝の少なくとも一部を覆う第2の超伝導層を含み得る。第1の基板および第2の基板は、第1の溝および第2の溝が少なくとも1つの囲いを形成するように配置され得る。少なくとも1つのストリップライン共振器は、少なくとも1つの電磁シールド内に配置され得る。いくつかの態様において、少なくとも1つの支持層が少なくとも1つの電磁シールド内に掛けられ、ここで少なくとも1つのストリップライン共振器は、少なくとも1つの支持層上および/または支持層内に配置される。少なくとも1つの支持層は、ケイ素、酸化ケイ素および窒化ケイ素からなる群より選択される少なくとも1つの材料を含み得る。いくつかの態様において、少なくとも1つの電磁シールドは、少なくとも1つのストリップライン共振器と結合する回路の一部となるように形作られる。
いくつかの態様において、1つ以上の溝は、第2の溝表面の反対にある第1の溝表面を有する第1の溝を含み、ここで第1の溝表面は、第2の溝表面とは平行でない。1つ以上の溝の少なくとも1つの表面は、原子的に滑らかであり得る。少なくとも1つの囲いは、雰囲気圧未満の圧力まで脱気(evacuated)され得る。
いくつかの態様は、超伝導デバイスを製造するための方法に関する。該方法は、少なくとも第1の基板に少なくとも1つの溝を形成する行為、第1の基板の少なくとも一部を超伝導材料で覆う行為、第2の基板の少なくとも一部を超伝導材料で覆う行為、ならびに第1の基板と第2の基板をつないで、少なくとも1つの溝および超伝導材料を含む少なくとも1つの囲いを形成する行為を含む。
いくつかの態様において、少なくとも1つの溝を形成する行為は、第1の基板の一部を覆うマスク層を形成する行為、およびマスク層で覆われない第1の基板の一部をエッチングする行為を含む。該エッチングする行為は、例えばウエット腐食液を使用して異方性エッチングを行う行為を含み得る。マスク層は窒化ケイ素を含み得る。
いくつかの態様において、第1の基板の少なくとも一部を超伝導材料で覆う行為は、第1の基板の少なくとも一部上にシード層を形成する行為、および該シード層上に超伝導材料を電気めっきする行為を含む。超伝導材料としては、アルミニウム、ニオブ、インジウム、レニウム、タンタル、窒化チタンおよび窒化ニオブの1つ以上が挙げられ得る。
いくつかの態様において、該方法はさらに、少なくとも1つのワイヤ層基板にチャネル(channel)を形成する行為、該チャネルの少なくとも一部を超伝導材料で覆い、ワイヤ層を形成する行為、ならびに少なくとも1つのワイヤ基板と、第1の基板および/または第2の基板をつなぐ行為を含む。少なくとも第1の基板に少なくとも1つの溝を形成する行為は、第1の基板に第1の溝を形成する行為、および第2の基板に第2の溝を形成する行為を含み得、ここで少なくとも1つの囲いは、第1の溝および第2の溝で形成される第1の囲いを含む。いくつかの態様において、少なくとも1つの囲いは、少なくとも1つの電磁シールドを形成するように形作られるので、外部の電磁放射が、少なくとも1つの囲いに侵入することが防がれる。少なくとも1つの超伝導構成要素は、第1の囲い内に形成され得る。少なくとも1つの超伝導構成要素は、少なくとも1つの超伝導回路、少なくとも1つのキュービットおよび/または少なくとも1つのストリップライン共振器を含み得る。いくつかの態様において、前記第2の基板の少なくとも一部は、支持層で覆われ、少なくとも1つのキュービットは、空洞内の支持層上および/または支持層内に配置される。
いくつかの態様において、少なくとも第1の基板に少なくとも1つの溝を形成する行為はさらに、第3の基板に第3の溝を形成することを含み、該方法はさらに、第3の基板の少なくとも一部を超伝導材料で覆うこと、第4の基板の少なくとも一部を超伝導材料で覆うこと、第3の基板と第4の基板をつないで、第3の溝から、第2の囲いを含むメモリー層(memory layer)を形成すること、および該メモリー層と少なくとも1つのワイヤ層をつなぐことを含む。ワイヤ層は、第2の囲いと第1の囲いを連結し得る。第1の囲いは、少なくとも1つの経路を介してワイヤ層と電気的に接続され得る。いくつかの態様において、第2の囲いのQファクターは、第1の囲いのQファクターよりも大きい。
いくつかの態様において、該方法はまた、少なくとも1つのキュービットと少なくとも1つの囲いを連結することを含み得る。少なくとも1つのキュービットと少なくとも1つの囲いを連結することは、少なくとも1つの囲いに少なくとも1つのキュービットを形成することおよび/または少なくとも1つの囲いに少なくとも1つのキュービットを形成することを含み得る。少なくとも1つのキュービットは、トランスモンキュービットまたはフラクソニウムキュービットであり得る。
いくつかの態様において、少なくとも1つの囲いは、少なくとも1つの三次元空洞共振器を形成するように形作られるので、1つ以上の周波数での電磁放射は、少なくとも1つの三次元空洞共振器内で共振する。
添付の図面は、一定の縮尺で描かれることを意図するものではない。図面において、種々の図に示される同一またはほぼ同一のそれぞれの構成要素は、同様の数字で表される。明確性の目的で、全ての構成要素が全ての図に示されるわけではない。
図1は、いくつかの態様による、複数の囲いを形成するように配置された複数の基板および超伝導層を含む超伝導デバイスの断面図を示す。 図2は、いくつかの態様による、空洞内に配置された複数の超伝導キュービットを封入する三次元空洞共振器を含む超伝導デバイスの断面図を示す。 図3は、いくつかの態様による、電磁シールドおよび複数のキュービットを含むストリップライン共振器を含む超伝導デバイスの断面図を示す。 図4は、いくつかの態様による、電磁シールド内に含まれる、複数の超伝導キュービットを含むストリップライン共振器を含む超伝導デバイスの上面図を示す。 図5は、いくつかの態様による、超伝導デバイスを構築するための方法の複数の行為の断面図を示す。 図6は、いくつかの態様による、基板において溝を形成する断面図を示す。 図7は、いくつかの態様による、超伝導デバイスを構築するための方法のフローチャートである。 図8は、いくつかの態様による、基板において溝を形成するための方法のフローチャートである。 図9は、いくつかの態様による、超伝導デバイスを構築するための方法である。 図10は、いくつかの態様による、超伝導デバイスを構築するための方法である。
詳細な説明
発明者らは、三次元空洞共振器を形成するための小型電子部品(microelectronic)製作技術を使用することにより、超伝導デバイスのコヒーレンス時間が有意に増加し得ることを認識し、理解した。これらのデバイスは、絶縁基板および導体の両方の材料の欠点に対して、従来の平面状の回路よりも影響を受けにくい(less-sensitive)。従来の手段により製造された三次元共振器により有意に改善されたコヒーレンス時間が観察された。かかる三次元共振器は、エッチング技術により生じ得る少しの欠点を伴う高度に平坦な表面を有することにより、いくつかの態様において有益でもあり得る。いくつかの態様において、三次元空洞共振器は、量子情報についての長持ちするメモリーとして使用され得る。該三次元空洞共振器に超伝導キュービットを連結させることで、超伝導キュービットから三次元空洞共振器の光子エネルギー状態へと量子情報を転移し得る。いくつかの態様において、ワイヤ層を介して、1つ以上の超伝導キュービットを三次元空洞共振器に連結し得る。他の態様において、1つ以上の超伝導キュービットを三次元空洞共振器内に配置することで、空洞内の電磁放射が1つ以上の超伝導キュービットに直接連結され得る。
発明者らは、超伝導材料により形成された囲いは、超伝導材料の厚さが小さい場合であっても、外部からの電磁ノイズから空洞内の構成要素を保護し得、量子回路による電磁放射のための消失を抑制することでデコヒーレンスを防ぎ得ることを認識し、理解した。したがって、超伝導層は、正確な、容易に調整される超伝導デバイスを製造するために、基板層を覆うように形成され得る。いくつかの態様において、電磁シールドで1つ以上の超伝導キュービットを封入して外部のノイズからキュービットを保護して、それにより超伝導キュービットの性能を高め得る。例えば、量子バス(quantum bus)として働く複数の超伝導キュービットを含むストリップライン共振器を電磁シールド囲い内に配置し得る。さらに、大きな量子プロセッサーの部品またはサブユニットの間に構築される薄い超伝導シールドは、量子デバイスの性能、信頼性および較正の容易さを向上させる。いくつかの態様において、量子バスを1つ以上の他の超伝導構成要素に連結することで、第1の構成要素からの量子情報を第2の構成要素へと転移し得る。
発明者らはまた、量子情報処理における使用のための少なくとも1つの超伝導囲いを含む超伝導デバイスを製造するために小型電子部品製作技術を使用することで、空洞が嵩高い材料で形成される場合に利用可能でない調整可能性(scalability)が可能になることを認識し、理解した。いくつかの態様において、複数の囲いおよび超伝導キュービットは、複数の基板において溝を形成することおよび基板を一緒につなぐことにより単一のデバイス内に形成され得る。いくつかの態様において、1つ以上のワイヤ層を使用して、構成要素を一緒に接続し得るかまたは構成要素と外部デバイスを接続し得る。いくつかの態様において、1つ以上の経路(via)は、異なる基板層にある構成要素および/またはワイヤ層を相互に接続し得る。この方法において、複数の超伝導キュービットおよび/または囲いは、小さな空間内で相互に連結され得る。
小型電子部品製作技術は、例えば半導体デバイスおよび/または小型電子機械システム(MEMS)のためのマイクロメートルのサイズの構造物の製造に使用されるプロセスである。小型電子部品製作技術の例としては、限定されないが、化学蒸着(CVD)および物理蒸着(PVD)などの堆積技術;フォトリソグラフィー;ドライエッチング、ウエットエッチング、反応性イオンエッチング(RIE)、等方性エッチングおよび異方性エッチングなどのエッチング技術;化学-機械平坦化;イオン注入技術;ならびに熱酸化技術が挙げられる。
本願を通して、用語「囲い(enclosure)」は、空の空間であり得るかまたは1つ以上の種々の形態の超伝導デバイス、例えばワイヤ、キュービット、共振器、空洞または1つ以上の基板における他の能動的なデバイスを含み得る空間の領域を画定する超伝導層の組合せを説明するために使用される。「三次元空洞共振器(three-dimensional cavity resonator)」は、共振性電磁放射を維持するように形作られたある形態の囲いである。「電磁シールド」は、外部の電磁放射が囲いに侵入することを防ぎ、内部の電磁放射が囲いから外部環境に漏れることを防ぐように形造られたある形態の囲いである。
図1は、一態様による超伝導デバイス100を示す。該超伝導デバイスは、任意の適切な方法において一緒につながれた複数の基板101〜105を含む。例えば、少なくとも部分的に金属材料で覆われた2つの基板は、冷間圧接(cold welding)、熱圧縮接着、サーモソニック接着(thermosonic bonding)、共晶接着(eutectic bonding)またははんだ再流し込み(solder reflow)を使用して一緒につながれ得る。任意の適切な数の基板を一緒につないで超伝導デバイス100を形成し得る。図1に示される態様は、5枚の別々の基板101〜105を示すが、態様はこれに限定されない。例えば、いくつかの態様では、2枚の基板のみが一緒につながれ得る。
超伝導デバイス100の異なる基板は、異なる目的で働き得る。例えば、基板101および基板102は、一緒になって、以下の図3〜4においてより詳細に説明されるバス層を形成する。基板104および基板105は一緒になって、図2において下記のようにより詳細に説明される空洞メモリー層を形成する。基板103は、超伝導デバイス100における種々の構成要素を相互連結するために使用される相互連結層として使用される。該相互連結層は、超伝導デバイス100の異なる構成要素を相互連結するために形成される様式で、基板103上および/または内に配置される超伝導材料で形成される少なくとも1つのワイヤ層を含む。
基板101〜105は、任意の適切な材料を含み得る。限定ではなく例示のために、該材料としては、結晶構造を有する任意の材料が挙げられ得る。例えば、ケイ素またはゲルマニウムが使用され得る。しかしながら、いくつかの態様において、超伝導デバイスの挙動を調節するものは、基板の種々の部分および基板において製造されて囲いを形成する溝の種々の部分を被覆する超伝導材料なので、該基板材料は取るに足らないものであってもよい。さらに、基板101〜105は、任意の適切な寸法であり得る。限定ではなく例示のために、基板101〜105は、300μm〜500μmの範囲の厚さを有し得る。
超伝導デバイス100の超伝導層は、任意の適切な方法で形成され得る。いくつかの態様において、該基板の表面は、超伝導材料で覆われる。他の態様において、1つ以上のチャネルおよび/または溝を基板において形成し、その後少なくとも部分的に、超伝導材料で覆い得る。任意の適切な厚さの超伝導層を使用し得る。いくつかの態様において、超伝導デバイス100の超伝導層は、1μm〜10μmの範囲の厚さを有し得る。さらに、任意の適切な超伝導材料を使用し得る。限定ではなく例示のために、該超伝導材料としては、アルミニウム、ニオブ、インジウム、レニウム、タンタル、窒化チタンおよび/または窒化ニオブが挙げられ得る。
いくつかの態様において、超伝導デバイス100は、当該技術分野で公知のように、平面-同軸トランジション構成要素(planer-to-coaxial transition component)150または他の任意の適切な電子接続を経由して外部構成要素と連絡し得る。
図1は、別個の3つの囲い110、120および130を示す、単一のデバイスの断面を示す。図の平面の内側および外側の異なる位置での他の断面が、ワイヤ層140、経路142および144、および/または示されないさらなるワイヤ層および経路を介して囲い110、120および130に連結され得るさらなる囲いを含んでもよいことが当業者には理解されよう。さらに、所定の層または層の間の経路上のワイヤは、同じまたは異なる方法により実現されたさらなる超伝導層(示さず)により別々に封入されてもよい。全ての電磁シグナルは適切に設計されたストリップラインまたは同軸ラインなどの伝達ライン構造上で運搬されるべきであるという考え、およびこれらは超伝導囲いを実現するための我々の方法の態様により実現され得るという考えは、当業者に明らかなはずである。
上述のように、基板104および105で空洞メモリー層が形成され得る。基板105に溝を形成し、少なくとも部分的に超伝導層132で覆う。基板104の少なくとも一部も、超伝導層134で覆われる。溝は、任意の適切な形状またはサイズであり得る。例えば、溝は、約300μmまで基板の表面から伸長し得る。次いで、基板が一緒に接続される場合、三次元空洞共振器130が形成されるように基板を配置する。図2は、空洞メモリー層の態様200をより詳細に示す。三次元空洞共振器130は、互いに対面する少なくとも第1の表面232および第2の表面234を含む。いくつかの態様において、2つの表面は互いに平行である。他の態様において、第1の表面232および第2の表面234は両方、基板104と関連付けられた超伝導層134と共に垂直ではない角度を形成し得る。いくつかの態様において、三次元空洞共振器130の全ての表面は、少なくとも部分的に超伝導材料で覆われる。いくつかの態様において、三次元空洞のそれぞれの表面は、超伝導層134に形成される2つの開口236および238以外の全体が覆われる。開口236および238は、電磁放射を、ワイヤ層140から三次元空洞共振器130に連結するために使用され得る。当業者に公知である空洞に連結する他の方法も使用され得る。
三次元空洞共振器130の幾何学形状は、どのような周波数の電磁放射が空洞と共振するかを決定する。いくつかの態様において、三次元空洞共振器130は、マイクロ波周波数で共振するように形作られ得る。限定ではなく例示のために、三次元空洞共振器130は、1GHz〜20GHzの範囲の少なくとも1つの周波数で共振するように形作られ得る。さらなる例示として、三次元空洞130は、5GHz〜9GHzの範囲の少なくとも1つの周波数で共振するように形作られ得る。
いくつかの態様において、超伝導デバイス200は、三次元空洞共振器130に配置された1つ以上の超伝導キュービット131を含み得る。任意の適切な超伝導キュービットが使用されてもよい。限定ではなく例示のために、超伝導キュービット131のそれぞれはトランスモンキュービットまたはフラクソニウムキュービットであり得る。超伝導キュービット131のそれぞれは、双極子アンテナとして働く2つの超伝導部の間に配置されるジョセフソン接合を含み得る。いくつかの態様において、超伝導キュービット131は垂直に方向づけられるので、それぞれの超伝導キュービットの軸は、(双極子アンテナの方向により決定される場合)開口236および238を形成するために使用される超伝導層134に対して垂直となり、それにより該キュービットは、共振空洞の電磁場に連結される。
他の態様において、三次元空洞共振器130は、超伝導キュービットを含まないが、代わりにワイヤ層140を介して超伝導キュービットに連結される。このようにして、外部の超伝導キュービット(示さず)は、量子情報についてのメモリーとして働き得る量子情報を三次元空洞共振器130へと伝達し得る。
量子情報は、任意の適切な方法で三次元空洞共振器130内に保存され得る。例えば、電磁場のエネルギー固有状態は、量子情報を符号化するための計算基底として使用され得る。代替的に、異なるコヒーレンス状態および/またはコヒーレンス状態の重ね合わせ(しばしば「猫状態(cat state)」と称する)は、計算基底として使用され得る。態様は、三次元空洞共振器130内で量子情報を符号化するための任意の特定の技術に限定されない。
上述のように、図1の基板101および基板102はバス層を形成する。バス層は、電磁シールドとなるように形作られる囲い110および囲い120を含む。電磁シールド110は、電磁シールド110内に掛けられる支持層118上および/または支持層118内に形成される複数のキュービット116を含む。電磁シールド110は、キュービット116を封入するための超伝導層112および超伝導層114を含み、それにより外部の電磁ノイズからキュービット116を保護し、好ましくない電磁放射が囲いに侵入することを防ぐ。電磁シールド110はまた、電磁放射が囲い内から外部環境へ漏れることを防ぐ。同様に、電磁シールド120は、空洞120内に掛けられる支持層128上および/または支持層128内に形成される複数のキュービット126を含む。電磁シールド120は、キュービット126を封入するための超伝導層122および超伝導層124を含み、それにより外部の電磁ノイズからキュービット126を保護し、好ましくない電磁放射または該デバイスの他の要素へのクロスカップリング(cross-coupling)を防ぐ。
図3は、いくつかの態様による電磁シールド110のより詳細な断面図300を示す。基板102は、電磁シールド110を形成する溝を含む。溝の少なくとも一部は、超伝導層114で覆われる。超伝導層114は、溝の一部である基板102の一部も覆い得る。支持層118内および/または支持層118上に複数のキュービット116が形成される。いくつかの態様において、支持層は、基板102における溝を渡して掛けられる誘電性の膜である。該支持層を形成するために任意の適切な材料が使用され得る。限定ではなく例示のために、支持層は、ケイ素、酸化ケイ素または窒化ケイ素を含み得る。複数のキュービット116は、トランスモンキュービットまたはフラクソニウムキュービットなどの任意の適切な超伝導キュービットであり得る。複数のキュービット116のそれぞれ個々のキュービットは、支持層118内および/または支持層118上に形成される供給ライン(feed line)312を使用して個々に調節および/または検出され得る。ストリップライン共振器310を第1の複数のキュービットと第2の複数のキュービットの間に配置する。いくつかの態様において、ストリップライン共振器310は、約20μmの幅であり得る。供給ライン312およびストリップライン共振器310は、任意の適切な超伝導材料で形成され得る。
基板101もまた、基板102におけるほぼ同じ寸法および凹みを有する溝を含む。基板101における溝の少なくとも一部は、超伝導層112で覆われる。基板101を基板102の近位に配置するので、供給ライン312と超伝導層112の間に隙間が生じる。いくつかの態様において、該隙間は約10μmであり得る。基板101および基板102は、電磁シールド110から離れた場所で互いに接触され得、一緒につながれ得る。ストリップライン共振器310および複数のキュービット116を電磁シールド内に封入することにより、封入された構成要素は外部の電磁ノイズから隔離され、好ましくない電磁放射によるデコヒーレンスおよびクロスカップリングが防がれる。
図4は、支持層118およびそこに含まれる構成要素の上面図400を示す。「A」で示す矢印は、図3の断面図300の位置を示す平面を示す。膜118は、複数の超伝導キュービット116を含む。いくつかの態様において、それぞれの超伝導キュービットは、トランスモンキュービットまたはフラクソニウムキュービットなどの超伝導キュービットである。図4は、第1の超伝導部414と第2の超伝導部416の間にジョセフソン接合412を含むトランスモンキュービット116を示す。それぞれのキュービット116は、個々に調節され得るかおよび/または励振供給(drive feed)ライン314を使用して読み出され得る。支持層118の表面の大部分は、ストリップライン共振器430の接地平面として超伝導層により覆われる。ストリップライン共振器430は、供給ライン420を経由して駆動される(driven)。供給ライン420とストリップライン共振器の間には隙間があるので、この2つの構成要素は弱く、容量的に連結される。任意に、支持層118には、支持層が配置される囲い内に存在する誘電体の量を減少させ、囲い内に存在する真空の量を増加させ、性能を高め得る複数の孔410がある。
特定の態様の超伝導デバイスは、任意の適切な方法で製造され得る。例えば、小型電子部品製作技術が使用され得る。代替的に、基板は、所望の場合、三次元印刷技術を使用して溝およびチャネルにより形成され得、超伝導層は、例えば電気めっき技術を使用して形成され得る。いくつかの態様により、図2に示されるように1つの基板において溝を形成することで囲いが製造され得る。代替的に、または付加的に、囲いは、第1の基板において第1の溝および第2の基板において第2の溝を形成すること、ならびに2つの溝により2つの基板を互いに隣接して配置することにより製造され得る。いくつかの態様による超伝導デバイスを形成するための方法を、図5〜10を参照して以下に記載する。
図5は、いくつかの態様による超伝導デバイスを構築するための方法の複数の行為の断面図を示す。いくつかの態様による方法700の行為のフローチャートを図7に示す。行為702によって、第1の基板に第1の溝が形成される。該溝は任意の適切な方法で形成され得る。いくつかの態様において、基板および溝は、三次元印刷技術を使用して印刷され得る。他の態様において、小型電子部品製作技術を使用されてもよい。ここで、かかる一態様の詳細を図5、図6および図8に関して説明する。
図5Aは、提供される第1の基板500を示す。任意の適切な基板が使用され得る。いくつかの態様において、基板は、結晶構造を有する材料で形成され得る。例えば、該基板は、ケイ素またはゲルマニウムを含み得る。基板500は、任意の適切な厚さであり得る。示される態様において、基板は約500μmの厚さである。
行為802によって、窒化ケイ素層502は基板500の第1の表面上に堆積させられる(図5B参照)。図5の例示的な態様において窒化ケイ素が使用されるが、マスクとして働き得る任意の適切な材料が使用されてもよい。
行為804によって、フォトレジスト層504は窒化ケイ素層502の上部に堆積させられる(図5C参照)。基板500において形成される溝の寸法に基づいた模様でフォトレジスト層504が形成される。したがって、フォトレジスト層は、その後の行為において基板に溝が形成される領域の上には存在しない。限定ではなく例示のために、フォトレジスト層504は、18mm×38mmの寸法を有する窒化ケイ素層502の領域が露出したまま残るように形成され得る。
行為806によって、窒化ケイ素層502の露出した部分は取り除かれる(図5D参照)。これは、任意の適切な方法によりなされ得る。いくつかの態様において、窒化ケイ素層502は、窒化ケイ素層を除去するがフォトレジストは除去しない腐食液を使用してエッチングされる。例えば、反応性イオンエッチング(RIE)を使用して、窒化ケイ素層をエッチングし得る。RIEの行為は、腐食液として、例えばCHF3/O2を使用し得る。次いで行為808によってフォトレジスト層504が除去される。得られる構造は、溝の寸法を画定するためのマスクとして働く窒化ケイ素層502で部分的に覆われる基板500である(図5E参照)。
行為810によって、溝506を形成するために、基板500の露出した部分がエッチングされる。任意の適切なエッチングを行い得る。いくつかの態様において、基板500は、得られる溝506の反対の表面が互いに平行になるようにエッチングされ得る。図5Fに示す態様において、30% KOHを85℃で使用して、異方性ウエットエッチングにより溝がエッチングされる。異方性エッチングの詳細を図6により詳細に示す。
図6は、異方性ウエットエッチングにより得られる溝506を示す。ケイ素基板500の結晶構造により、エッチング行為の結果として(100)面612および(111)614面は54.7°の角度になる。いくつかの態様において、異方性ウエットエッチングにより原子的に滑らかな表面612および614が得られる。したがって、超伝導層で覆われる場合、得られる囲いの表面は実質的に欠けがない。囲いが三次元空洞共振器としての使用のために形作られる場合、滑らかな表面は高いQファクターの空洞を生じる。
行為812によって、窒化ケイ素層が除去され、その結果、溝506を含む基板500が得られる(図5G参照)。図8に基板に溝を製造する方法の一態様を示すが、任意の適切な方法を使用してもよい。例えば、レーザー機械加工または三次元印刷を使用して溝を有する基板を形成し得る。
図7に戻ると、行為702で基板に溝を形成した後、方法700は行為704に続き、第1の基板の少なくとも一部が超伝導材料で覆われる。いくつかの態様において、基板の溝の全ての表面が覆われ得る。他の態様において、表面の一部だけが覆われてもよい。この場合、例えば開口が形成され得る。いくつかの態様において、溝に結合される領域の外側の基板の一部も超伝導層で覆われ得る。
任意の適切な方法において超伝導層を形成し得る。例えば、図5H〜Iに、基板の少なくとも一部を覆う超伝導層を形成するための1つの特定の方法を示す。図5Hに、基板500の表面上に堆積される薄いシード層508を示す。これは任意の適切な方法でなされ得る。いくつかの態様において、蒸着技術により銅を堆積させ、シード層508を形成する。任意の適切な厚さのシード層を使用し得る。例えば、シード層508は、約200nmの厚さであり得る。シード層508の例示材料として銅を使用するが、任意の適切な材料を使用してもよい。
図5Iに、シード層508上に形成される超伝導層510を示す。これは、任意の適切な方法でなされ得る。例えば、超伝導材料をシード層上に電気めっきし得る。超伝導層510は任意の適切な厚さを有して形成され得る。例えば、超伝導層510は約10μmの厚さであり得る。任意の適切な超伝導材料を使用し得る。例えば、超伝導層は、アルミニウム、ニオブ、インジウム、レニウム、タンタル、窒化チタンまたは窒化ニオブを含み得る。
行為706によって、第2の基板に第2の溝が形成される。第2の溝を形成する行為は、行為702、図5および図8に関連して記載したものと同じ技術を使用してなされ得る。しかしながら、第2の溝の形成は任意である。第2の基板に第2の溝を形成することなく、第1の基板の1つの溝から囲いが形成され得る。
行為708によって、第2の基板の少なくとも一部が超伝導材料で覆われる。この行為は、行為704に関連して記載した技術を使用してなされ得る。第2の基板に第2の溝を形成される態様において、溝の全表面の少なくとも一部が超伝導層で覆われ得る。いくつかの態様において、溝領域の外側の第2の基板の一部が、少なくとも部分的に超伝導層で覆われ得る。
行為710によって、少なくとも1つの超伝導キュービットが支持層上に形成される。いくつかの態様において、支持層は、任意の適切な誘電性膜であり得る。例えば、支持層は、ケイ素、酸化ケイ素または窒化ケイ素を含み得る。いくつかの態様において、囲い内に超伝導キュービットを封入することなく超伝導デバイスを形成し得る場合、行為710は省略されてもよい。
行為712によって、囲いを形成するために、第1の基板および第2の基板が一緒につながれる。第1の基板に第1の溝が形成され、第2の基板に第2の溝が形成された態様において、2つの溝は、互いに隣接するように配置されるので、囲いは、両方の溝が一緒になって形成される。少なくとも1つの超伝導キュービットが囲いに封入される予定のいくつかの態様において、2つの基板を一緒につなぐ前に、第1の溝を渡して支持層が掛けられる。したがって、支持層内および/または支持層上の少なくとも1つのキュービットが囲い内に配置される。
方法700は、図9および図10に示すさらなる任意の行為も含み得る。例えば、方法700を行った結果は、図1のバス層における囲い110の形成であり得る。図9に、ワイヤ層140およびメモリー層囲い(memory layer enclosure)130を形成するためのさらなる行為を示す。図10に、バス層において第2の囲い120を形成するためのさらなる行為を示す。
図9に、ワイヤ層およびメモリー層を形成するためのさらなる行為900を示す。いくつかの態様において、方法700の後にさらなる行為を行い得る。他の態様において、方法700の前または方法700と同時にさらなる行為を行い得る。
行為902によって、ワイヤ層基板103(図1参照)に少なくとも1つのチャネルが形成される。例えば、行為702において溝を製造するために使用されるものと同じ方法を使用して、少なくとも1つのチャネルを形成し得る。
行為904によって、少なくとも1つのチャネルの少なくとも一部が超伝導材料で覆われる。これは、上述の行為704に関連して使用されるものと同じ方法を使用してなされ得る。いくつかの態様において、チャネルは、超伝導材料で完全に充填され得る。他の態様において、少なくとも1つのチャネルの1つ以上の表面を超伝導材料で覆われ得る。
行為906によって、ワイヤ基板103は基板102につながれる。該基板は、上述のように、任意の適切な方法でつながれ得る。
行為908によって、例えば行為702において溝を製造するために使用したものと同じ方法を使用して、基板105に溝が形成される。
行為910によって、基板105の少なくとも一部が超伝導材料で覆われる。これは、上述の行為704に関連して使用したものと同じ方法を使用してなされ得る。いくつかの態様において、溝のそれぞれの表面は、超伝導材料で完全に覆われる。超伝導材料は、任意の適切な厚さであり得る層において形成される。いくつかの態様において、超伝導層は、約1μmの厚さであり得る。他の態様において、超伝導層は、約10μmの厚さであり得る。
行為912によって、基板104の少なくとも一部は、超伝導材料で覆われる。これは、上述の行為704に関連して使用したものと同じ方法を使用してなされ得る。基板104の表面の特定の部分は露出したままであり得る。例えば、図2における開口236および238に対応する領域は、超伝導材料で覆われなくてもよい。
行為914によって、基板104が基板105につながれて、溝が三次元空洞共振器を形成する。該基板は、上述のように、任意の適切な方法でつながれ得る。
行為916によって、メモリー層はワイヤ層につながれる。層に結合した基板は、上述のように任意の適切な方法でつながれ得る。
図10に、バス層の第2の囲い120を形成するためのさらなる行為を示す。
行為1002によって、囲い120と関連付けられた溝は、例えば行為702において溝を製造するために使用したものと同じ方法を使用して、基板101に形成される。いくつかの態様において、囲い120と関連付けられた溝は、囲い110と関連付けられた溝と同時に形成され得る。
行為1004によって、囲い120と関連付けられた溝は、例えば行為702において溝を製造するために使用したものと同じ方法を使用して、基板102に形成される。いくつかの態様において、囲い120と関連付けられた溝は、囲い110と関連付けられた溝と同時に形成され得る。
行為1006によって、基板102の少なくとも一部は、囲い120と関連付けられた溝を渡して掛けられる支持層で覆われ得る。この支持層は、囲い110と関連付けられた支持層と同じ方法で形成され得る。
行為1008によって、支持層上に少なくとも1つのキュービットが形成される。この少なくとも1つのキュービットは、囲い110と関連付けられた支持層と同じ方法で形成され得る。
超伝導デバイスの少なくとも1つの態様および超伝導デバイスを製造するための少なくとも1つの方法のいくつかの局面をこのように記載することで、種々の変形、改変および改善が当業者に容易になされ得ることが理解されよう。例えば、任意のサイズの超伝導囲いが含まれ得る。ある囲いは、センチメートル、ミリメートルまたはマイクロメートルの等級の寸法を有し得る。かかる変形、改変および改善は、本開示の一部であることを意図し、発明の精神および範囲内にあることを意図する。本教示は、種々の態様および実施例に関連して記載されてきたが、本教示がかかる態様または実施例に限定されることは意図されない。逆に、本教示は、当業者に理解されるように、種々の変形、改変および均等物を包含する。
種々の発明の態様が記載され、示されるが、当業者は、機能を実行するためおよび/または結果および/または記載される利点の1つ以上を得るための他の手段および/または構造の種類を容易に構想し、かかる変形および/または改変のそれぞれは、記載される発明の態様の範囲内にあるものと思われる。より一般的に、記載される全てのパラメーター、寸法、材料および外形が例示を意味すること、ならびに実際のパラメーター、寸法、材料および/または外形が、発明の教示が使用される特定の用途(1つまたは複数)に依存することを当業者は容易に理解しよう。当業者は、記載される具体的な発明の態様に対する多くの均等物を理解するか、または常套的な実験を超えないものを使用して確かめ得る。そのため、前述の態様は、例示のみにより提示されること、および添付の特許請求の範囲およびその均等物の範囲内で、発明の態様は、具体的に記載されかつ特許請求される以外の様式で実施され得ることが理解されよう。本開示の発明の態様は、それぞれ個々の記載される特徴、システム、システムアップグレードおよび/または方法に関し得る。また、2つ以上のかかる特徴、システムおよび/または方法の任意の組み合わせは、かかる特徴、システム、システムアップグレードおよび/または方法が互いに矛盾しない場合は、本開示の発明の範囲内に含まれる。
さらに、記載される態様のいくつかの利点が示され得るが、全ての態様が、記載される全ての利点を含むわけではないことが理解されるべきである。いくつかの態様は、利点として記載される任意の特徴を満たさなくてもよい。したがって、前述の記載および図面は例示のみのためのものである。
使用されるセクションの見出しは、構成上の目的のみのためであり、いかなる方法においても記載される主題の事項を限定するものと解釈されるべきではない。
また、少なくとも1つの例が提供されている記載される技術は、方法として具体化され得る。該方法の一部として実施される行為は、任意の適切な方法で配列される。したがって、示されるものと異なる順序で行為が実施される態様が構成され得、該態様は、例示的な態様において連続した行為として示されたとしても、いくつかの行為を同時に行うことを含み得る。また、該方法の一部として実施される特定の行為は任意であり得る。したがって、特定の行為が全く実行されない態様が構成されてもよい。
全ての定義は、定義され使用される場合、辞書の定義、参照により援用される文書における定義および/または定義される用語の一般的な意味を支配すると理解されるべきである。
用語「約(about)」、「約(approximately)」および「実質的に」は、ある値に言及するために使用され得、参照される値±許容され得る変動を包含することを意図する。変動の量は、いくつかの態様において5%未満、いくつかの態様において10%未満、さらにいくつかの態様において20%未満であり得る。大きい値の範囲、例えば一桁以上を含む範囲で装置が適切に作動し得る態様において、変動の量は2倍であり得る。例えば、20〜350の範囲の値について装置が適切に作動する場合、「約80」は、40〜160の値を包含し得る。
本明細書および特許請求の範囲において使用する場合、不定冠詞「a」および「an」は、反対のことを明確に示さなければ、「少なくとも1つ」を意味すると理解されるべきである。
本明細書および特許請求の範囲において使用する場合、句「および/または」は、そのように接続された因子、すなわちある場合において接続的に存在し、他の場合において離接的に存在する因子の「いずれかまたは両方」を意味すると理解されるべきである。「および/または」と共に列挙される複数の因子は、同じ様式、すなわちそのように接続された「1つ以上」の因子と解釈されるべきである。「および/または」の節で具体的に特定された因子以外の他の因子は、具体的に特定された因子と関連するか関連しないかのいずれにせよ、任意に存在し得る。したがって、非限定的な例として、「Aおよび/またはB」についての参照は、「含む(comprising)」などの開放型の語法を伴って使用される場合、一態様においてAのみ(任意にB以外の因子を含む)、別の態様においてBのみ(任意にA以外の因子を含む)、さらに別の態様においてAとBの両方(任意に他の因子を含む)などのことをいい得る。
本明細書および特許請求の範囲において使用する場合、「または」は、上述に定義されるように「および/または」と同じ意味を有すると理解されるべきである。例えば、リスト内の項目を分離する場合、「または」または「および/または」は、包括的である、すなわちいくつかの因子または因子のリストの少なくとも1つだけではなく1つより多くも含み、任意に列挙されていないさらなる項目を含むと解釈されるであろう。「の1つのみ」または「の厳密に1つ」、または特許請求の範囲において使用される場合は「からなる(consisting of)」などの反対のことを明確に示す用語のみは、いくつかの因子または因子のリストの厳密に1つの因子を含むことをいう。一般的に、「いずれか」、「の1つ」、「の1つのみ」または「の厳密に1つ」などの排他的であることの用語が先にくる場合は、使用される用語「または」は、排他的な選択肢(すなわち、「両方ではなく1つまたは他のもの」)を示すと解釈されるのみであろう。特許請求の範囲において使用される場合、「本質的にからなる」は、特許法の分野で使用される通常の意味を有するであろう。
本明細書および特許請求の範囲において使用する場合、1つ以上の因子のリストに関して、句「少なくとも1つ」は、因子のリスト中のいずれか1つ以上の因子から選択されるが、因子のリスト内に具体的に列挙されるそれぞれの因子および全ての因子の少なくとも1つを必ずしも含むわけではなく、該因子のリストにおける因子の任意の組合せを排除しない少なくとも1つの因子を意味すると理解されるべきである。この定義はまた、具体的に特定されるこれらの因子に関係があるか関係がないかのいずれにしても、句「少なくとも1つ」が指す因子のリスト内に具体的に特定される因子以外の因子が任意に存在し得ることを可能にする。したがって、非限定的な例として、「AおよびBの少なくとも1つ」(または同等に、「AまたはBの少なくとも1つ」、または同等に「Aおよび/またはBの少なくとも1つ)は、一態様において、Bが存在せずに1つより多くのAを任意に含む(およびB以外の因子を任意に含む)少なくとも1つのA;別の態様において、Aが存在せずに1つより多くのBを任意に含む(およびA以外の因子を任意に含む)少なくとも1つのB;さらに別の態様において、1つより多くのAを任意に含む少なくとも1つのAと、1つより多くのBを任意に含む(および他の因子を任意に含む)少なくとも1つのBなどをいい得る。
特許請求の範囲および上述の明細書において、「含む(comprising)」、「含む(including)」、「保有する(carrying)」、「有する(having)」、「含む(containing)」、「含む(involving)」、「保持する(holding)」、「構成される(composed of)」等の全ての変遷的な句は、開放型であると理解され、すなわち含むが限定されないことを意味すると理解されるべきである。変遷的な句「からなる」および「本質的にからなる」のみは、それぞれ閉鎖的または半閉鎖的な変遷的な句であるだろう。
特許請求の範囲は、本質(effect)について記述されなければ、記載される順序または因子に限定されるように読まれるべきではない。形式および詳細における種々の変更は、添付の特許請求の範囲の精神および範囲を逸脱することなく当業者になされ得ることが理解されるべきである。以下の特許請求の範囲の精神および範囲ならびにそれらの均等物の範囲内にある全ての態様が特許請求される。
特許請求の範囲において、方法の行為が実行される他のまたは一時的な順序に対して、請求項因子を変更するために「第1」、「第2」、「第3」などの順序を示す用語を使用することは、それ自体では、1つの請求項因子の先にくるもの(priority)、先行するもの(precedence)または順序をなんら含むものではないが、単に、特定の名称を有する1つの請求項因子を、(順序を示す用語の使用を別にすれば)同じ名称を有する別の因子と区別するための標識として使用され、その結果、請求項因子が区別される。

Claims (25)

  1. 小型電子部品製作技術により製造された1つ以上の溝を含む複数の基板、ここで該複数の基板は、該1つ以上の溝が少なくとも1つの囲いを形成するように配置される;および
    該少なくとも1つの囲いの少なくとも一部を覆う少なくとも1つの超伝導層
    を含むデバイスであって、前記少なくとも1つの囲いが、少なくとも1つの三次元空洞共振器を形成するように形作られて、1つ以上の周波数での電磁放射線が該少なくとも1つの三次元空洞共振器内で共振し、前記少なくとも1つの三次元空洞共振器が、第1の三次元空洞共振器および第2の三次元空洞共振器を含み、該第1の三次元空洞共振器のQファクターが、該第2の三次元空洞共振器のQファクターより大きい、デバイス
  2. 前記少なくとも1つの三次元空洞共振器のQファクターが10,000,000より大きい、請求項記載のデバイス。
  3. 小型電子部品製作技術により製造された1つ以上の溝を含む複数の基板、ここで該複数の基板は、該1つ以上の溝が少なくとも1つの囲いを形成するように配置される;
    該少なくとも1つの囲いの少なくとも一部を覆う少なくとも1つの超伝導層、ここで、前記少なくとも1つの囲いが、少なくとも1つの三次元空洞共振器を形成するように形作られて、1つ以上の周波数での電磁放射線が該少なくとも1つの三次元空洞共振器内で共振する;および
    前記少なくとも1つの三次元空洞共振器に連結された少なくとも1つの超伝導キュービットを含、デバイス。
  4. 前記少なくとも1つの超伝導キュービットが、トランスモン(transmon)キュービットである、請求項記載のデバイス。
  5. 前記少なくとも1つの超伝導キュービットが、フラクソニウム(fluxonium)キュービットである、請求項記載のデバイス。
  6. 前記複数の基板のうちの第1の基板上および/または第1の基板内に配置される超伝導ワイヤ層(superconducting wiring layer)をさらに含み、該超伝導ワイヤ層が、前記少なくとも1つの超伝導キュービットを前記少なくとも1つの三次元空洞共振器に連結するように形作られる、請求項記載のデバイス。
  7. 前記超伝導ワイヤ層を少なくとも1つの三次元空洞共振器に連結するように形作られる少なくとも1つの超伝導内に、少なくとも1つの開口をさらに含む、請求項記載のデバイス。
  8. 前記超伝導ワイヤ層を、前記複数の基板のうちの第2の基板の少なくとも1つの超伝導構成要素に接続する少なくとも1つの経路(via)をさらに含む、請求項記載のデバイス。
  9. 前記少なくとも1つの超伝導キュービットが前記少なくとも1つの三次元空洞共振器内に配置されて、該少なくとも1つの超伝導キュービットが、電磁放射を介して該少なくとも1つの三次元空洞共振器に連結されるように形作られる、請求項記載のデバイス。
  10. 前記1つ以上の周波数が少なくとも1つのマイクロ波周波数を含む、請求項記載のデバイス。
  11. 前記複数の基板が第1の基板および第2の基板を含み;
    該第1の基板が、前記1つ以上の溝のうちの第1の溝を含み;
    前記少なくとも1つの超伝導層が、
    該第1の溝の少なくとも一部を覆う第1の超伝導層、および
    該第2の基板の表面の少なくとも一部を覆う第2の超伝導層
    を含み;
    該第1の超伝導層および該第2の超伝導層が直接接触して、該第1の溝が前記少なくとも1つの三次元空洞共振器を形成するように、該第1の基板および該第2の基板が配置される、
    請求項記載のデバイス。
  12. 前記少なくとも1つの囲いが少なくとも1つの電磁シールドを形成するように形作られて、外部電磁放射線が該少なくとも1つの囲いに侵入することが防がれる、請求項1記載のデバイス。
  13. 前記少なくとも1つの電磁シールド内に配置される少なくとも1つの超伝導構成要素をさらに含む、請求項12記載のデバイス。
  14. 前記少なくとも1つの超伝導構成要素が少なくとも1つの超伝導回路を含む、請求項13記載のデバイス。
  15. 小型電子部品製作技術により製造された1つ以上の溝を含む複数の基板、ここで該複数の基板は、該1つ以上の溝が少なくとも1つの囲いを形成するように配置される;
    該少なくとも1つの囲いの少なくとも一部を覆う少なくとも1つの超伝導層、ここで、前記少なくとも1つの囲いが少なくとも1つの電磁シールドを形成するように形作られて、外部電磁放射線が該少なくとも1つの囲いに侵入することが防がれる;および
    前記少なくとも1つの電磁シールド内に配置される少なくとも1つの超伝導構成要素、ここで、前記少なくとも1つの超伝導構成要素が少なくとも1つのキュービットを含
    を含む、デバイス。
  16. 前記少なくとも1つの超伝導構成要素が少なくとも1つのストリップライン(stripline)共振器を含む、請求項15記載のデバイス。
  17. 該複数の基板が第1の基板および第2の基板を含み;
    該第1の基板が、前記1つ以上の溝のうちの第1の溝を含み;
    該第2の基板が、前記1つ以上の溝のうちの第2の溝を含み;
    前記少なくとも1つの超伝導層が、
    該第1の溝の少なくとも一部を覆う第1の超伝導層、および
    該第2の溝の少なくとも一部を覆う第2の超伝導層
    を含み;
    該第1の溝および該第2の溝が前記少なくとも1つの囲いを形成するように、該第1の基板および該第2の基板が配置され;
    前記少なくとも1つのストリップライン共振器が、前記少なくとも1つの電磁シールド内に配置される、
    請求項16記載のデバイス。
  18. 前記少なくとも1つの電磁シールド内に掛けられた少なくとも1つの支持層(support layer)をさらに含み、前記少なくとも1つのストリップライン共振器が、該少なくとも1つの支持層上および/または該少なくとも1つの支持層内に配置される、請求項17記載のデバイス。
  19. 前記少なくとも1つの支持層が、ケイ素、酸化ケイ素および窒化ケイ素からなる群より選択される少なくとも1つの材料を含む、請求項18記載のデバイス。
  20. 前記少なくとも1つの電磁シールドが、前記少なくとも1つのストリップライン共振器と結合される回路の一部となるように形作られる、請求項16記載のデバイス。
  21. 前記複数の基板が、結晶構造を有する材料を含む、請求項記載のデバイス。
  22. 前記材料がケイ素である、請求項21記載のデバイス。
  23. 前記1つ以上の溝が、第2の溝表面の反対にある第1の溝表面を有する第1の溝を含み、該第1の溝表面が該第2の溝表面に対して平行でない、請求項記載のデバイス。
  24. 前記少なくとも1つの囲いが、大気圧未満の圧力まで空気を抜かれる(evacuated)、請求項記載のデバイス。
  25. 1つ以上の溝を含む複数の基板、ここで該複数の基板は、該1つ以上の溝が少なくとも1つの囲いを形成するように配置される;および
    該少なくとも1つの囲いの少なくとも一部を覆う少なくとも1つの超伝導層
    を含むデバイスであって、該少なくとも1つの囲いが、少なくとも1つの三次元空洞共振器を形成するように形作られて、1つ以上の周波数での電磁放射線が該少なくとも1つの三次元空洞共振器内で共振し、該少なくとも1つの三次元空洞共振器が、第1の三次元空洞共振器および第2の三次元空洞共振器を含み、該第1の三次元空洞共振器のQファクターが、該第2の三次元空洞共振器のQファクターより大きい、デバイス。
JP2015553853A 2013-01-18 2014-01-17 少なくとも1つの囲いを有する超伝導デバイス Active JP6461009B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361754298P 2013-01-18 2013-01-18
US61/754,298 2013-01-18
PCT/US2014/012073 WO2014163728A2 (en) 2013-01-18 2014-01-17 Superconducting device with at least one enclosure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018207501A Division JP6744379B2 (ja) 2013-01-18 2018-11-02 少なくとも1つの囲いを有する超伝導デバイス

Publications (3)

Publication Number Publication Date
JP2016509800A JP2016509800A (ja) 2016-03-31
JP2016509800A5 JP2016509800A5 (ja) 2017-02-16
JP6461009B2 true JP6461009B2 (ja) 2019-01-30

Family

ID=51659290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015553853A Active JP6461009B2 (ja) 2013-01-18 2014-01-17 少なくとも1つの囲いを有する超伝導デバイス
JP2018207501A Active JP6744379B2 (ja) 2013-01-18 2018-11-02 少なくとも1つの囲いを有する超伝導デバイス

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018207501A Active JP6744379B2 (ja) 2013-01-18 2018-11-02 少なくとも1つの囲いを有する超伝導デバイス

Country Status (8)

Country Link
US (1) US10424711B2 (ja)
EP (1) EP2946413B1 (ja)
JP (2) JP6461009B2 (ja)
KR (1) KR102178986B1 (ja)
CA (1) CA2898598C (ja)
HK (1) HK1218022A1 (ja)
SG (1) SG11201505616YA (ja)
WO (1) WO2014163728A2 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168665A2 (en) 2013-01-18 2014-10-16 Yale University Methods for making a superconducting device with at least one enclosure
EP3111381B1 (en) 2014-02-28 2021-01-06 Rigetti & Co., Inc. Operating a multi-dimensional array of qubit devices
KR102684587B1 (ko) 2015-02-27 2024-07-12 예일 유니버시티 평면 큐비트를 비-평면 공진기에 결합하기 위한 기술 및 관련 시스템 및 방법
US9836699B1 (en) 2015-04-27 2017-12-05 Rigetti & Co. Microwave integrated quantum circuits with interposer
US10068181B1 (en) 2015-04-27 2018-09-04 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafer and methods for making the same
EP4086965A1 (en) * 2016-09-13 2022-11-09 Google LLC Reducing loss in stacked quantum devices
US20190194016A1 (en) * 2016-09-29 2019-06-27 Intel Corporation Quantum computing assemblies
US10176432B2 (en) * 2017-03-07 2019-01-08 International Business Machines Corporation Weakly tunable qubit based on two coupled disparate transmons
KR102217205B1 (ko) * 2017-03-13 2021-02-18 구글 엘엘씨 적층된 양자 컴퓨팅 디바이스 내의 집적 회로 소자
US11121301B1 (en) 2017-06-19 2021-09-14 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafers and their methods of manufacture
US11276727B1 (en) 2017-06-19 2022-03-15 Rigetti & Co, Llc Superconducting vias for routing electrical signals through substrates and their methods of manufacture
KR20230175336A (ko) * 2017-09-13 2023-12-29 구글 엘엘씨 초전도 양자 컴퓨팅을 위한 하이브리드 키네틱 인덕턴스 장치
US10256206B2 (en) * 2018-03-16 2019-04-09 Intel Corporation Qubit die attachment using preforms
US10256392B1 (en) 2018-03-23 2019-04-09 International Business Machines Corporation Vertical transmon qubit device
US10243132B1 (en) 2018-03-23 2019-03-26 International Business Machines Corporation Vertical josephson junction superconducting device
US10672971B2 (en) 2018-03-23 2020-06-02 International Business Machines Corporation Vertical transmon qubit device with microstrip waveguides
US10497746B1 (en) 2018-05-25 2019-12-03 International Business Machines Corporation Three-dimensional integration for qubits on crystalline dielectric
US10505096B1 (en) * 2018-05-25 2019-12-10 International Business Machines Corporation Three-dimensional integration for qubits on multiple height crystalline dielectric
TWI809224B (zh) * 2018-11-22 2023-07-21 國立研究開發法人科學技術振興機構 非線性微波濾波器
US11223355B2 (en) 2018-12-12 2022-01-11 Yale University Inductively-shunted transmon qubit for superconducting circuits
WO2021064901A1 (ja) * 2019-10-02 2021-04-08 Mdr株式会社 量子回路システム
CN114631229B (zh) 2019-11-12 2023-04-04 国际商业机器公司 包括粘附层的装置、其制造方法以及制造量子处理器的方法
DE102020201688B3 (de) 2020-02-11 2021-07-29 Forschungszentrum Jülich GmbH Schaltkreis mit gekoppelten Qubits mit unterschiedlich anharmonischem Energiespektrum
JP7515603B2 (ja) 2020-02-21 2024-07-12 アプライド マテリアルズ インコーポレイテッド 高臨界温度金属窒化物層を製造する方法
WO2021168007A1 (en) * 2020-02-21 2021-08-26 Applied Materials, Inc. High critical temperature metal nitride layer with oxide or oxynitride seed layer
FR3114444B1 (fr) * 2020-09-21 2022-09-30 Commissariat Energie Atomique Puce à routage bifonctionnel et procédé de fabrication associé
CN220021573U (zh) * 2020-11-30 2023-11-14 株式会社村田制作所 传输线路以及电子设备
US12033981B2 (en) 2020-12-16 2024-07-09 International Business Machines Corporation Create a protected layer for interconnects and devices in a packaged quantum structure
JP2024526085A (ja) 2021-06-11 2024-07-17 シーク, インコーポレイテッド 超伝導量子回路のための磁束バイアスのシステム及び方法
US11664801B1 (en) 2021-12-08 2023-05-30 International Business Machines Corporation Multi-qubit architectures with mode-selective charge coupling between novel fluxonium-molecule qubits
EP4362651A1 (en) * 2022-10-26 2024-05-01 Infineon Technologies Austria AG Electronic device including a superconducting electronic circuit
CN115697029B (zh) * 2022-12-30 2023-06-20 量子科技长三角产业创新中心 一种超导量子芯片及其制备方法
CN115915907B (zh) * 2023-01-05 2023-09-12 量子科技长三角产业创新中心 一种超导量子芯片制备方法及超导量子芯片

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723755A (en) 1970-10-12 1973-03-27 A Morse Parametric amplifier
US4403189A (en) 1980-08-25 1983-09-06 S.H.E. Corporation Superconducting quantum interference device having thin film Josephson junctions
US4344052A (en) 1980-09-29 1982-08-10 International Business Machines Corporation Distributed array of Josephson devices with coherence
US4585999A (en) 1984-04-27 1986-04-29 The United States Of America As Represented By The United States Department Of Energy Radiofrequency amplifier based on a dc superconducting quantum interference device
JPS6182449A (ja) * 1984-09-28 1986-04-26 Mitsubishi Electric Corp プラスチツクモ−ルド型半導体装置
US4780724A (en) 1986-04-18 1988-10-25 General Electric Company Antenna with integral tuning element
US4924234A (en) 1987-03-26 1990-05-08 Hughes Aircraft Company Plural level beam-forming network
GB2219434A (en) 1988-06-06 1989-12-06 Philips Nv A method of forming a contact in a semiconductor device
JPH02194638A (ja) * 1989-01-24 1990-08-01 Fujitsu Ltd 半導体装置
US5105166A (en) 1989-11-30 1992-04-14 Raytheon Company Symmetric bi-directional amplifier
US5075655A (en) * 1989-12-01 1991-12-24 The United States Of America As Represented By The Secretary Of The Navy Ultra-low-loss strip-type transmission lines, formed of bonded substrate layers
US5326986A (en) 1991-03-05 1994-07-05 University Of Houston - University Park Parallel N-junction superconducting interferometer with enhanced flux-to-voltage transfer function
US5186379A (en) 1991-06-17 1993-02-16 Hughes Aircraft Company Indium alloy cold weld bumps
US5254950A (en) 1991-09-13 1993-10-19 The Regents, University Of California DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers
US5296457A (en) * 1992-03-23 1994-03-22 The Regents Of The University Of California Clamshell microwave cavities having a superconductive coating
US5635834A (en) 1993-09-15 1997-06-03 The Broken Hill Proprietary Company Limited SQUID detector with flux feedback coil sized and located to produce uniform feedback flux
US5493719A (en) 1994-07-01 1996-02-20 The United States Of America As Represented By The Secretary Of The Air Force Integrated superconductive heterodyne receiver
JP3421184B2 (ja) 1995-12-19 2003-06-30 理化学研究所 波長可変レーザーにおける波長選択方法および波長可変レーザーにおける波長選択可能なレーザー発振装置
RU2106717C1 (ru) 1996-08-07 1998-03-10 Научно-исследовательский институт измерительных систем Способ анизотропного травления кристаллов кремния
US6578018B1 (en) 1999-07-27 2003-06-10 Yamaha Hatsudoki Kabushiki Kaisha System and method for control using quantum soft computing
US6486756B2 (en) 2000-03-27 2002-11-26 Hitachi, Ltd. Superconductor signal amplifier
US6627915B1 (en) 2000-08-11 2003-09-30 D-Wave Systems, Inc. Shaped Josephson junction qubits
JP2004523907A (ja) 2000-12-22 2004-08-05 ディー−ウェイヴ システムズ インコーポレイテッド 超伝導体ロジックの移相装置
US6549059B1 (en) 2001-02-23 2003-04-15 Trw Inc. Underdamped Josephson transmission line
JP3704336B2 (ja) 2001-05-15 2005-10-12 しんくろ株式会社 波形検出装置とそれを使用した状態監視システム
EP1262911A1 (en) 2001-05-30 2002-12-04 Hitachi Europe Limited Quantum computer
US6803599B2 (en) 2001-06-01 2004-10-12 D-Wave Systems, Inc. Quantum processing system for a superconducting phase qubit
US6621374B2 (en) 2001-07-19 2003-09-16 Lockheed Martin Corporation Splitter/combiner using artificial transmission lines, and paralleled amplifier using same
RU2212671C1 (ru) 2001-10-11 2003-09-20 Алексенко Андрей Геннадьевич Туннельный нанодатчик механических колебаний и способ его изготовления
US6614047B2 (en) * 2001-12-17 2003-09-02 D-Wave Systems, Inc. Finger squid qubit device
US6908779B2 (en) 2002-01-16 2005-06-21 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US7307275B2 (en) 2002-04-04 2007-12-11 D-Wave Systems Inc. Encoding and error suppression for superconducting quantum computers
US6911664B2 (en) 2002-04-15 2005-06-28 D-Wave Systems, Inc. Extra-substrate control system
US6900454B2 (en) 2002-04-20 2005-05-31 D-Wave Systems, Inc. Resonant controlled qubit system
FR2839389B1 (fr) 2002-05-03 2005-08-05 Commissariat Energie Atomique Dispositif de bit quantique supraconducteur a jonctions josephson
US6943368B2 (en) 2002-11-25 2005-09-13 D-Wave Systems, Inc. Quantum logic using three energy levels
US7364923B2 (en) 2003-03-03 2008-04-29 The Governing Council Of The University Of Toronto Dressed qubits
US7529717B2 (en) 2003-03-18 2009-05-05 Magiq Technologies, Inc. Universal quantum computing
CA2527911C (en) 2003-06-13 2010-09-14 Qest Quantenelektronische Systeme Tuebingen Gmbh Sitz Boeblingen Superconducting quantum antenna
JP4113076B2 (ja) 2003-08-28 2008-07-02 株式会社日立製作所 超電導半導体集積回路
WO2005050555A2 (en) 2003-10-22 2005-06-02 The Johns Hopkins University Photon quantum processing and the zeno effect
US20050134377A1 (en) 2003-12-23 2005-06-23 Dent Paul W. Doherty amplifier
US7135701B2 (en) 2004-03-29 2006-11-14 D-Wave Systems Inc. Adiabatic quantum computation with superconducting qubits
US7225674B2 (en) 2004-04-30 2007-06-05 The Regents Of The University Of California Self-stabilizing, floating microelectromechanical device
JP4609733B2 (ja) 2004-07-27 2011-01-12 独立行政法人科学技術振興機構 ジョセフソン量子計算素子及びそれを用いた集積回路
US7253654B2 (en) 2004-11-08 2007-08-07 D-Wave Systems Inc. Superconducting qubits having a plurality of capacitive couplings
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
US7375802B2 (en) 2005-08-04 2008-05-20 Lockheed Martin Corporation Radar systems and methods using entangled quantum particles
US8164082B2 (en) 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
US7836007B2 (en) 2006-01-30 2010-11-16 Hewlett-Packard Development Company, L.P. Methods for preparing entangled quantum states
US7870087B2 (en) 2006-11-02 2011-01-11 D-Wave Systems Inc. Processing relational database problems using analog processors
CA2669816C (en) 2006-12-05 2017-03-07 D-Wave Systems, Inc. Systems, methods and apparatus for local programming of quantum processor elements
US7724020B2 (en) 2007-12-13 2010-05-25 Northrop Grumman Systems Corporation Single flux quantum circuits
US7800395B2 (en) 2007-05-02 2010-09-21 D-Wave Systems Inc. Systems, devices, and methods for controllably coupling qubits
US7899092B2 (en) 2007-05-22 2011-03-01 Magiq Technologies, Inc. Fast quantum gates with ultrafast chirped pulses
US7859744B2 (en) 2007-07-27 2010-12-28 Magiq Technologies, Inc. Tunable compact entangled-photon source and QKD system using same
US7498832B2 (en) 2007-08-03 2009-03-03 Northrop Grumman Systems Corporation Arbitrary quantum operations with a common coupled resonator
US8149494B1 (en) 2007-09-07 2012-04-03 The United States Of America As Represented By The Secretary Of The Navy Two-photon absorption switch having which-path exclusion and monolithic mach-zehnder interferometer
US20090074355A1 (en) 2007-09-17 2009-03-19 Beausoleil Raymond G Photonically-coupled nanoparticle quantum systems and methods for fabricating the same
US7932515B2 (en) 2008-01-03 2011-04-26 D-Wave Systems Inc. Quantum processor
US8260145B2 (en) 2008-03-12 2012-09-04 Deepnarayan Gupta Digital radio frequency tranceiver system and method
KR20100133994A (ko) * 2008-03-30 2010-12-22 힐스 인크. 초전도 와이어 및 케이블, 초전도 와이어 및 케이블을 제조하기 위한 방법
US7932514B2 (en) 2008-05-23 2011-04-26 International Business Machines Corporation Microwave readout for flux-biased qubits
US7969178B2 (en) 2008-05-29 2011-06-28 Northrop Grumman Systems Corporation Method and apparatus for controlling qubits with single flux quantum logic
WO2009152180A2 (en) 2008-06-10 2009-12-17 D-Wave Systems Inc. Parameter learning system for solvers
US7724083B2 (en) 2008-08-05 2010-05-25 Northrop Grumman Systems Corporation Method and apparatus for Josephson distributed output amplifier
JP5091813B2 (ja) 2008-09-17 2012-12-05 株式会社東芝 量子ゲート方法および装置
JP5744002B2 (ja) 2009-03-26 2015-07-01 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) Cmutアレイ
CN105140136B (zh) 2009-03-30 2018-02-13 高通股份有限公司 使用顶部后钝化技术和底部结构技术的集成电路芯片
EP2249173A1 (en) 2009-05-08 2010-11-10 Mbda Uk Limited Radar apparatus with amplifier duplexer
IT1398934B1 (it) * 2009-06-18 2013-03-28 Edison Spa Elemento superconduttivo e relativo procedimento di preparazione
FR2950877B1 (fr) 2009-10-07 2012-01-13 Commissariat Energie Atomique Structure a cavite comportant une interface de collage a base de materiau getter
US8600200B1 (en) 2010-04-01 2013-12-03 Sandia Corporation Nano-optomechanical transducer
US8525619B1 (en) 2010-05-28 2013-09-03 Sandia Corporation Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material
US8111083B1 (en) 2010-12-01 2012-02-07 Northrop Grumman Systems Corporation Quantum processor
US8416109B2 (en) 2010-12-16 2013-04-09 Hypres, Inc. Superconducting analog-to-digital converter with current amplified feedback
US8642998B2 (en) * 2011-06-14 2014-02-04 International Business Machines Corporation Array of quantum systems in a cavity for quantum computing
US8861619B2 (en) 2011-08-16 2014-10-14 Wisconsin Alumni Research Foundation System and method for high-frequency amplifier
US8837544B2 (en) * 2011-10-28 2014-09-16 Hewlett-Packard Development Company, L.P. Quantum optical device
US8841764B2 (en) * 2012-01-31 2014-09-23 International Business Machines Corporation Superconducting quantum circuit having a resonant cavity thermalized with metal components
US9601103B2 (en) 2012-10-19 2017-03-21 The Regents Of The University Of Michigan Methods and devices for generating high-amplitude and high-frequency focused ultrasound with light-absorbing materials
WO2014168665A2 (en) 2013-01-18 2014-10-16 Yale University Methods for making a superconducting device with at least one enclosure
US9350460B2 (en) 2013-04-23 2016-05-24 Raytheon Bbn Technologies Corp. System and method for quantum information transfer between optical photons and superconductive qubits
EP3111381B1 (en) 2014-02-28 2021-01-06 Rigetti & Co., Inc. Operating a multi-dimensional array of qubit devices
KR102344884B1 (ko) 2014-11-25 2021-12-29 삼성전자주식회사 멀티 큐빗 커플링 구조
KR102684587B1 (ko) 2015-02-27 2024-07-12 예일 유니버시티 평면 큐비트를 비-평면 공진기에 결합하기 위한 기술 및 관련 시스템 및 방법
US9836699B1 (en) 2015-04-27 2017-12-05 Rigetti & Co. Microwave integrated quantum circuits with interposer
US9503063B1 (en) 2015-09-16 2016-11-22 International Business Machines Corporation Mechanically tunable superconducting qubit

Also Published As

Publication number Publication date
KR102178986B1 (ko) 2020-11-18
JP2019050399A (ja) 2019-03-28
SG11201505616YA (en) 2015-09-29
EP2946413A2 (en) 2015-11-25
US20150357550A1 (en) 2015-12-10
JP2016509800A (ja) 2016-03-31
WO2014163728A3 (en) 2014-12-31
EP2946413A4 (en) 2016-09-14
WO2014163728A2 (en) 2014-10-09
CA2898598A1 (en) 2014-10-09
HK1218022A1 (zh) 2017-01-27
US10424711B2 (en) 2019-09-24
CA2898598C (en) 2023-01-03
JP6744379B2 (ja) 2020-08-19
KR20150127045A (ko) 2015-11-16
EP2946413B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6461009B2 (ja) 少なくとも1つの囲いを有する超伝導デバイス
JP6360499B2 (ja) 少なくとも1つの囲いを有する超伝導デバイスを製造するための方法
KR102217205B1 (ko) 적층된 양자 컴퓨팅 디바이스 내의 집적 회로 소자
EP3262573B1 (en) Techniques for coupling planar qubits to non-planar resonators and related systems and methods
CA3102773C (en) Signal distribution for a quantum computing system
CN109891591A (zh) 减少堆叠量子器件中的损耗
WO2019032115A1 (en) QUANTIC BIT DEVICES WITH JOSEPHSON JUNCTION CONNECTED BELOW SUPPORT CIRCUITS
US11444238B2 (en) Scalable heat sink and magnetic shielding for high density MRAM arrays

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181225

R150 Certificate of patent or registration of utility model

Ref document number: 6461009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250