JP6452298B2 - 噴射ノズル、ガスタービン燃焼器及びガスタービン - Google Patents

噴射ノズル、ガスタービン燃焼器及びガスタービン Download PDF

Info

Publication number
JP6452298B2
JP6452298B2 JP2014062379A JP2014062379A JP6452298B2 JP 6452298 B2 JP6452298 B2 JP 6452298B2 JP 2014062379 A JP2014062379 A JP 2014062379A JP 2014062379 A JP2014062379 A JP 2014062379A JP 6452298 B2 JP6452298 B2 JP 6452298B2
Authority
JP
Japan
Prior art keywords
passage
internal flow
nozzle
flow paths
nozzle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014062379A
Other languages
English (en)
Other versions
JP2015183960A (ja
Inventor
周平 梶村
周平 梶村
智志 瀧口
智志 瀧口
赤松 真児
真児 赤松
直樹 安部
直樹 安部
健太 谷口
健太 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014062379A priority Critical patent/JP6452298B2/ja
Publication of JP2015183960A publication Critical patent/JP2015183960A/ja
Application granted granted Critical
Publication of JP6452298B2 publication Critical patent/JP6452298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

本発明は、噴射ノズル、ガスタービン燃焼器及びガスタービンに関するものである。
一般的なガスタービンは、圧縮機と燃焼器とタービンとにより構成されている。そして、空気取入口から取り込まれた空気が圧縮機によって圧縮されることで高温・高圧の圧縮空気となり、燃焼器にて、この圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガス(作動流体)を得て、この燃焼ガスによりタービンを駆動し、このタービンに連結された発電機を駆動する。
従来のガスタービンの燃焼器は、パイロット燃焼バーナの周囲を囲むように複数のメイン燃焼バーナが配置されており、パイロット燃焼バーナにはパイロットノズルが組み込まれ、メイン燃焼バーナにはメインノズルが組み込まれており、パイロット燃焼バーナ及び複数のメイン燃焼バーナがガスタービンの内筒の内部に配置されている。
このようなパイロットノズル及びメインノズル等の噴射ノズルとしては、下記特許文献1に記載されたものがある。特許文献1に記載された噴射ノズルは、内筒と、内筒を囲むバーナ筒とを備えている。内筒は、その軸中心に形成される空間部と、空間部の周囲に周方向に沿って複数設けられた内部流路とを有している。内筒とバーナ筒との間には、空気流路が形成され、空気流路には、燃焼空気が流通する。この内筒には、空間部に連通する連通部が形成され、空間部には、連通部を介して燃焼空気が流通する。
特開2012−145077号公報
ここで、噴射ノズルとしては、燃料または空気等の流体を、ノズル先端から放射状に拡散して噴射するものがある。このような噴射ノズルを用いる場合、ノズル先端から放射状に噴射される流体は、均一の圧力で噴射されることが望ましく、また、噴射量が安定することが望ましい。さらに、噴射ノズルの内部に複数の内部流路を形成する場合、複数の内部流路に対応する複数の流体を、ノズル先端へ向けて混在しないように流通させる必要がある。
そこで、本発明は、複数の内部流路を流通する流体を混在させることなく、噴射孔から噴射される流体を均一の圧力で噴射し、且つ、流体の噴射量を安定させることができる噴射ノズル、ガスタービン燃焼器及びガスタービンを提供することを課題とする。
本発明の噴射ノズルは、流体を噴射可能な噴射ノズルにおいて、基端側から先端側に亘って内部に形成される、前記流体が流通可能な複数の内部流路と、少なくともいずれかの前記内部流路の一部を絞って形成される絞り部と、前記絞り部の先端側に形成され、前記内部流路に連通するマニホールドと、前記マニホールドに連通する噴射孔と、を備えることを特徴とする。
この構成によれば、複数の内部流路に応じて、流体を流通させることができるため、複数の内部流路を流通する流体を混在させることがない。また、内部流路を流通する流体は、絞り部を流通することで、先端側に向かう流体の流通量が安定的となり、噴射孔から噴射される流体の噴射量を安定させることができる。また、絞り部を流通した流体は、マニホールドを流通して、噴射孔から噴射される。このため、マニホールドを介して噴射孔から噴射された流体は、均一な圧力で噴射される。例えば、マニホールドを周方向に形成し、マニホールドに沿って、噴射孔を周方向に並べて複数形成することで、噴射孔から噴射される流体を、周方向に均一な圧力で噴射することができる。なお、噴射ノズルとしては、パイロットノズルであってもよいし、メインノズルであってもよく、特に限定されない。
この場合、複数の前記内部流路に応じて複数の前記マニホールドが形成される場合、複数の前記マニホールドは、基端側と先端側とを結ぶ方向において、位置を異ならせて形成されることが好ましい。
この構成によれば、複数のマニホールドを位置ずれして形成することができるため、マニホールドを重複して形成することがなく、コンパクトな構成とすることができる。
この場合、複数の前記内部流路に応じて複数の前記マニホールドが形成され、複数の前記マニホールドに応じて複数の前記噴射孔が形成される場合、複数の前記噴射孔は、前記流体の噴射方向を異ならせて形成されることが好ましい。
この構成によれば、異なる噴射方向に複数の流体を噴射させることができるため、流体の噴射形状を所定の形状にすることができる。
この場合、複数の前記内部流路に応じて複数の前記絞り部が形成される場合、複数の前記絞り部は、その一部の複数の前記絞り部が周方向に並べて設けられ、その他の一部の複数の前記絞り部が周方向に並べて設けられると共に、一部の複数の前記絞り部に対して同心円状に設けられることが好ましい。
この構成によれば、複数の絞り部を、周方向に並べると共に、同心円状に配置することができるため、複数の絞り部を交わらせることなく配置することができる。
この場合、複数の前記内部流路は、いずれかの前記内部流路が前記流体として燃料油を流通させ、他のいずれかの前記内部流路が前記流体として空気を流通させることが好ましい。
この構成によれば、少なくとも燃料油及び空気を噴射することができるため、燃料油を燃焼させて燃焼ガスを生成することができる。なお、燃料油及び空気の他、内部流路に燃料ガスまたは水等を流通させてもよい。
この場合、複数の前記内部流路は、いずれかの前記内部流路が前記流体として燃料ガスを流通させ、他のいずれかの前記内部流路が前記流体として空気を流通させることが好ましい。
この構成によれば、少なくとも燃料ガス及び空気を噴射することができるため、燃料ガスを燃焼させて燃焼ガスを生成することができる。なお、燃料ガス及び空気の他、内部流路に燃料油または水等を流通させてもよい。
この場合、基端側から先端側へ向かって延びて設けられるノズル本体と、前記ノズル本体の周囲に所定の間隔を空けて並べて設けられる複数の旋回翼と、を備え、複数の前記内部流路は、その一部の前記内部流路が前記ノズル本体の基端側から先端側へ向かって延びて設けられ、その他の一部の前記内部流路が前記ノズル本体の基端側から前記旋回翼へ向かって延びて設けられることが好ましい。
この構成によれば、ノズル本体の先端側から流体を噴射することができ、また、複数の旋回翼から流体を噴射することができる。
この場合、基端側から先端側へ向かって延びて設けられるノズル本体と、前記ノズル本体の周囲に形成され、基端側から先端側へ向かってフィルム空気が流通するフィルム空気流路と、を備えることが好ましい。
この構成によれば、ノズル本体の周囲にフィルム空気流路を形成することができる。
この場合、前記フィルム空気流路は、前記ノズル本体の外部に形成される外部流路に連通していることが好ましい。
この構成によれば、外部流路から取り込んだ空気をフィルム空気として用いることができる。
この場合、複数の前記内部流路は、その一部の前記内部流路が前記ノズル本体の基端側から先端側へ向かって延びて設けられる前記フィルム空気流路であることが好ましい。
この構成によれば、フィルム空気流路を、ノズル本体の内部流路として形成することができる。
この場合、前記ノズル本体と前記フィルム空気流路との間に設けられ、基端側から先端側へ向かって冷却空気を流通させる冷却空気流路を、さらに備えることが好ましい。
この構成によれば、ノズル本体とフィルム空気流路との間に冷却空気流路を形成することができる。
この場合、前記冷却空気流路は、前記ノズル本体の外部に形成される外部流路に連通していることが好ましい。
この構成によれば、外部流路から取り込んだ空気を冷却空気として用いることができる。
この場合、複数の前記内部流路は、その一部の前記内部流路が前記ノズル本体の基端側から先端側へ向かって延びて設けられる前記冷却空気流路であることが好ましい。
この構成によれば、冷却空気流路を、ノズル本体の内部流路として形成することができる。
本発明のガスタービン燃焼器は、パイロットノズルと、前記パイロットノズルの周囲に設けられるメインノズルと、を備え、前記パイロットノズルとして、上記の噴射ノズルが適用されることを特徴とする。
この構成によれば、燃料及び空気等の流体をパイロットノズルから噴射することができる。このとき、パイロットノズルは、複数の内部流路を流通する流体を混在させることなく、流体を均一の圧力で噴射し、且つ、流体の噴射量を安定させた状態で、噴射孔から流体を噴射することができる。このため、パイロットノズルの燃焼を安定的に行うことが可能となる。
本発明のガスタービンは、上記のガスタービン燃焼器と、ガスタービン燃焼器において、燃料を燃焼させることで発生する燃焼ガスにより回転するタービンと、を備えることを特徴とする。
この構成によれば、ガスタービン燃焼器による燃焼を安定して行うことが可能となるため、安定した燃焼によるタービン効率の向上を図ることができる。
図1は、実施例1のガスタービンを表す概略構成図である。 図2は、実施例1のガスタービン燃焼器を表す概略構成図である。 図3は、実施例1のガスタービン燃焼器における要部断面図である。 図4は、実施例1のパイロットノズルの先端部を表す断面図である。 図5は、図4のA−A断面図である。 図6は、図4のB−B断面図である。 図7は、図4のC−C断面図である。 図8は、実施例2のパイロットノズルの先端部を表す断面図である。 図9は、実施例3のパイロットノズルの先端部を表す断面図である。 図10は、実施例4のパイロットノズルの先端部を表す断面図である。 図11は、図10のD−D断面図である。
以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施例が複数ある場合には、各実施例を組み合わせることも可能である。
図1は、実施例1のガスタービンを表す概略構成図である。図2は、実施例1のガスタービン燃焼器を表す概略構成図である。図3は、実施例1のガスタービン燃焼器における要部断面図である。図4は、実施例1のパイロットノズルの先端部を表す断面図である。図5は、図4のA−A断面図である。図6は、図4のB−B断面図である。図7は、図4のC−C断面図である。
実施例1のガスタービン1は、図1に示すように、圧縮機11と、燃焼器(ガスタービン燃焼器)12と、タービン13とにより構成されている。このガスタービン1には、図示しない発電機が連結されており、発電可能となっている。
圧縮機11は、空気を取り込む空気取入口20を有し、圧縮機車室21内に入口案内翼(IGV:Inlet Guide Vane)22が配設されると共に、複数の静翼23と動翼24が前後方向(後述するロータ32の軸方向)に交互に配設されてなり、その外側に抽気室25が設けられている。燃焼器12は、圧縮機11で圧縮された圧縮空気に対して燃料を供給し、点火することで燃焼可能となっている。タービン13は、タービン車室26内に複数の静翼27と動翼28が前後方向(後述するロータ32の軸方向)に交互に配設されている。このタービン車室26の下流側には、排気車室29を介して排気室30が配設されており、排気室30は、タービン13に連続する排気ディフューザ31を有している。
また、圧縮機11、燃焼器12、タービン13、排気室30の中心部を貫通するようにロータ(回転軸)32が位置している。ロータ32は、圧縮機11側の端部が軸受部33により回転自在に支持される一方、排気室30側の端部が軸受部34により回転自在に支持されている。そして、このロータ32は、圧縮機11にて、各動翼24が装着されたディスクが複数重ねられて固定され、タービン13にて、各動翼28が装着されたディスクが複数重ねられて固定されており、圧縮機11側の端部に発電機の駆動軸が連結されている。
そして、このガスタービン1は、圧縮機11の圧縮機車室21が脚部35に支持され、タービン13のタービン車室26が脚部36により支持され、排気室30が脚部37により支持されている。
従って、圧縮機11の空気取入口20から取り込まれた空気が、入口案内翼22、複数の静翼23と動翼24を通過して圧縮されることで高温・高圧の圧縮空気となる。燃焼器12にて、この圧縮空気に対して所定の燃料が供給され、燃焼する。そして、この燃焼器12で生成された作動流体である高温・高圧の燃焼ガスが、タービン13を構成する複数の静翼27と動翼28を通過することでロータ32を駆動回転し、このロータ32に連結された発電機を駆動する。一方、タービン13を駆動した燃焼ガスは、排気ディフューザ31を通って、排気室30から排気ガスとして大気に放出される。
上述した燃焼器12において、図2に示すように、ケーシング41は、内側に所定間隔をあけて燃焼器内筒42が配置され、この燃焼器内筒42の先端部に燃焼器尾筒43が連結されて燃焼器ケーシングが構成されている。燃焼器内筒42は、内部の中心部に位置してパイロット燃焼バーナ44が配置されると共に、燃焼器内筒42の内周面に周方向に沿ってパイロット燃焼バーナ44を取り囲むように複数のメイン燃焼バーナ45が配置されている。また、燃焼器尾筒43はバイパス管46が連結されており、このバイパス管46にバイパス弁47が設けられている。
また、このケーシング41には、トップハット部54が嵌合し、複数の締結ボルト55により締結されている。燃焼器内筒42は、ケーシング41の内側に所定の間隔をあけて配置されており、トップハット部54の内面と燃焼器内筒42の外面との間に円筒形状をなす空気通路56が形成されている。そして、空気通路56は、一端部が圧縮機11で圧縮された圧縮空気の供給通路57に連通し、他端部が燃焼器内筒42のおける基端部側に連通している。この燃焼器内筒42は、基端部側に拡径部42aが形成されることで、空気通路56は、ベルマウス形状をなしている。
燃焼器内筒42は、中心部に位置してパイロット燃焼バーナ44が配置され、その周囲に複数のメイン燃焼バーナ45が配置されている。パイロット燃焼バーナ44は、燃焼器内筒42に支持されたパイロットコーン58と、パイロットコーン58の内部に配置されたパイロットノズル59とから構成され、パイロットノズル59には、外周部に旋回翼(スワラーベーン)60が設けられている。また、メイン燃焼バーナ45は、バーナ筒61と、バーナ筒61の内部に配置されたメインノズル62とから構成され、メインノズル62には、外周部に旋回翼(スワラーベーン)63が設けられている。
そして、トップハット部54は、燃料ポート64,65が設けられ、図示しないパイロット燃料ラインがパイロットノズル59の燃料ポート64に連結され、図示しないメイン燃焼ラインが各メインノズル62の燃料ポート65に連結されている。また、図示は省略するが、トップハット部54は、冷却空気供給ポートが設けられている。冷却空気供給ポートは、圧縮機11からガスタービン燃焼器12へ向かう供給通路57から分岐する分岐通路に連結されている。つまり、供給通路57は、ガスタービン燃焼器12の空気通路56に連通し、供給通路57から分岐する分岐通路は、ガスタービン燃焼器12の冷却空気供給ポートに連結する。
従って、図2及び図3に示すように、高温・高圧の圧縮空気は、供給通路57から空気通路56及び分岐通路に流れ込み、空気通路56から燃焼器内筒42内に流れ込むと共に、分岐通路から冷却空気供給ポートに流れ込む。そして、この燃焼器内筒42内にて、圧縮空気がメイン燃焼バーナ45から噴射された燃料と混合し、予混合気の旋回流となって燃焼器尾筒43内に流れ込む。また、燃焼器内筒42内にて、圧縮空気がパイロット燃焼バーナ44から噴射された燃料と混合し、図示しない種火により着火されて燃焼し、燃焼ガスとなって燃焼器尾筒43内に噴出する。このとき、燃焼ガスの一部が燃焼器尾筒43内に火炎を伴って周囲に拡散するように噴出することで、各メイン燃焼バーナ45から燃焼器尾筒43内に流れ込んだ予混合気に着火されて燃焼する。すなわち、パイロット燃焼バーナ44から噴射されたパイロット燃料によるパイロット火炎により、メイン燃焼バーナ45からの希薄予混合燃料の安定燃焼を行うための保炎を行うことができる。
次に、図4を参照して、実施例1のパイロットノズル59について詳細に説明する。このパイロットノズル59は、燃料として、燃料油F1と燃料ガスF2とを選択的または同時に噴射可能となっている。このため、パイロットノズル59に連通する燃料ポート64は、燃料油を供給するラインと、燃料ガスを供給するラインとを含んで構成され、パイロットノズル59へ向けて燃料油F1及び燃料ガスF2を供給することが可能となっている。
また、パイロットノズル59は、パイロットノズル59を冷却する冷却空気として、冷却空気Aを噴射している。冷却空気Aは、冷却空気供給ポートに流れ込んだ圧縮空気である。
図4に示すように、このパイロットノズル59は、ノズル本体71と、ノズル本体71の先端部側の外周に設けられるスリーブ82とを有し、ノズル本体71の周囲に、上記の旋回翼60が周方向に所定の間隔を空けて複数並べて設けられている。
ノズル本体71は、中空円筒形状をなし、内部に複数の内部流路が形成され、複数の内部流路として、第1燃料ガス通路72、第2燃料ガス通路73、冷却通路74、燃料油通路75及び水通路76が形成されている。
燃料油通路75は、ノズル本体71内部の軸中心に形成され、基端部側から先端部側に亘って形成されている。燃料油通路75は、その基端部側が燃料ポート64に連通しており、燃料ポート64を介して流入した燃料油F3が流通する。燃料油通路75は、その先端部側がノズル本体71の先端部の中心に形成される燃料油噴射部85に連通している。燃料油噴射部85は、ノズル本体71の先端部の中心に形成されており、ノズル本体71の前方へ向かって、燃料油F3を噴射する。
水通路76は、ノズル本体71内部の燃料油通路75の外周に沿って円筒状に形成され、基端部側から先端部側に亘って形成されている。水通路76は、その基端部側が図示しない水供給源に接続されており、水供給源から供給された水Wが流通する。水通路76は、その先端部側が、ノズル本体71の先端部に形成される水噴射孔86に連通している。水噴射孔86は、ノズル本体71の先端部において、燃料油噴射部85の外周に沿って、周方向に所定の間隔を空けて複数並べて形成されている。複数の水噴射孔86のそれぞれは、ノズル本体71の内側(中心側)に向けられており、ノズル本体71の前方へ向かって、ノズル本体71の内側に向けて水Wを噴射する。
冷却通路74は、ノズル本体71内部の水通路76の外周側に形成され、基端部側から先端部側に亘って形成されている。冷却通路74は、その基端部側が冷却空気供給ポートに連通しており、圧縮機11から冷却空気供給ポートを介して流入した圧縮空気が、冷却空気Aとして流通する。冷却通路74は、その先端部側が、ノズル本体71の先端部に形成される空気噴射孔87に連通している。空気噴射孔87は、ノズル本体71の先端部において、水噴射孔86の外周に沿って、周方向に所定の間隔を空けて複数並べて形成されている。複数の空気噴射孔87のそれぞれは、ノズル本体71の内側に向けられており、ノズル本体71の前方へ向かって、ノズル本体71の内側に向けて冷却空気Aを噴射する。
第1燃料ガス通路73は、ノズル本体71内部の水通路76の外周側に形成され、冷却通路74と周方向に沿って平行に並んで設けられており、基端部側から先端部側に亘って形成されている。第1燃料ガス通路73は、基端部側が燃料ポート64に連通しており、燃料ポート64を介して流入した燃料ガスF1が流通する。第1燃料ガス通路73は、その先端部側が、ノズル本体71の先端部に形成される第1燃料ガス噴射孔88に連通している。第1燃料ガス噴射孔88は、ノズル本体71の先端部において、空気噴射孔87の外周に沿って、周方向に所定の間隔を空けて複数並べて形成されている。複数の第1燃料ガス噴射孔88のそれぞれは、ノズル本体71の外側に向けられており、ノズル本体71の前方へ向かって、ノズル本体71の外側に向けて燃料ガスF1を噴射する。
第2燃料ガス通路72は、ノズル本体71内部の冷却通路74及び第1燃料ガス通路73の外周側に形成され、ノズル本体71の基端部側から旋回翼60の内部に亘って形成されている。第2燃料ガス通路72は、基端部側が燃料ポート64に連通しており、燃料ポート64を介して流入した燃料ガスF2が流通する。第2燃料ガス通路72は、その先端部側が、複数の旋回翼60に形成された複数の第2燃料ガス噴射孔89に連通している。複数の第2燃料ガス噴射孔89は、複数の旋回翼60の前方へ向かって、燃料ガスF2を噴射する。
このように、各噴射孔(噴射部)85,86,87,88,89は、燃料ガスF1、燃料ガスF2、燃料油F3、冷却空気A及び水W等の流体の噴射方向を異ならせて形成されている。
スリーブ82は、ノズル本体71の外周に沿う円筒形状に形成され、ノズル本体71に対して所定の隙間を空けて同心円状に配置されている。つまり、ノズル本体71とスリーブ82とは、その間に周方向に所定の間隔をあけて複数のスペーサ91が介装されることで、所定の隙間が確保されている。そして、ノズル本体71とスリーブ82との隙間が、フィルム空気が流通するフィルム空気通路(フィルム空気流路)92となっている。
フィルム空気通路92は、ノズル本体71の外周に形成され、基端部側から先端部側に亘って形成されている。フィルム空気通路92は、その基端部側が空気通路(外部流路)56に連通しており、圧縮機11から供給通路57を介して空気通路56に流入した圧縮空気の一部が、フィルム空気として流通する。フィルム空気通路92は、ノズル本体71の外周に沿って、ノズル本体71の前方へ向かって、フィルム空気を噴射する。
ところで、上記したノズル本体71の複数の内部流路のうち、第2燃料ガス通路72、第1燃料ガス通路73及び冷却通路74には、通路面積が小さくなるように絞って形成した絞り部72a,73a,74aがそれぞれ形成されている。
図5に示すように、第2燃料ガス通路72の絞り部72aは、その断面が円形となっており、ノズル本体71の周方向に沿って、所定の間隔を空けて(等間隔で)複数(実施例1では4つ)並べて形成されている。第1燃料ガス通路73の絞り部73a及び冷却通路74の絞り部74aは、第2燃料ガス通路72の絞り部72aと同様に、その断面が円形となっており、ノズル本体71の周方向に沿って、所定の間隔を空けて(等間隔で)複数(実施例1では4つずつ)並べて形成されている。第1燃料ガス通路73の複数の絞り部73aと、冷却通路74の複数の絞り部74aとは、第2燃料ガス通路72の複数の絞り部72aの内周側に形成され、周方向に沿って交互に配置されている。
このように、複数の絞り部72a,73a,74aは、その一部となる第2燃料ガス通路72の複数の絞り部72aが周方向に並べて設けられ、その他の一部となる第1燃料ガス通路73及び冷却通路74の複数の絞り部73a,74aが周方向に並べて設けられる。そして、一部の複数の絞り部72aと、他の一部の複数の絞り部73a,74aとは、同心円状に設けられる。
また、上記したノズル本体71の複数の内部流路のうち、第2燃料ガス通路72、第1燃料ガス通路73及び冷却通路74には、各通路と各噴射孔との間にマニホールド72b,73b,74bがそれぞれ形成されている。第2燃料ガス通路72のマニホールド72bは、絞り部72aの先端側に形成されている。つまり、第2燃料ガス通路72のマニホールド72bは、第2燃料ガス通路72を流通する燃料ガスF2の流れ方向において、絞り部72aの下流側に形成されている。
図6に示すように、第2燃料ガス通路72のマニホールド72bは、ノズル本体71の全周に亘って形成されており、円環状に形成されている。このマニホールド72bは、その上流側(基端部側)において、4つの絞り部72aに連通しており、その下流側(先端部側)において、複数の第2燃料ガス噴射孔89に連通している。
冷却通路74のマニホールド74bは、冷却通路74を流通する冷却空気Aの流れ方向において、絞り部74aの下流側に形成されている。図6に示すように、冷却通路74のマニホールド74bは、ノズル本体71の全周に亘って形成されており、円環状に形成されている。このマニホールド74bは、図6に示すように、マニホールド72bよりも内側に形成されており、また、図4に示すように、マニホールド72bよりも先端側に形成されている。マニホールド74bは、その上流側(基端部側)において、4つの絞り部74aに連通しており、その下流側(先端部側)において、複数の空気噴射孔87に連通している。
第1燃料ガス通路73のマニホールド73bは、第1燃料ガス通路73を流通する燃料ガスF1の流れ方向において、絞り部73aの下流側に形成されている。図示は省略するが、第1燃料ガス通路73のマニホールド73bは、ノズル本体71の全周に亘って形成されており、円環状に形成されている。このマニホールド73bは、図4に示すように、マニホールド74bよりも先端側に形成されている。マニホールド73bは、その上流側(基端部側)において、4つの絞り部73aに連通しており、その下流側(先端部側)において、複数の第1燃料ガス噴射孔88に連通している。
ここで、図7に示すように、マニホールド74bの先端部側の冷却通路74は、周方向に4つ形成され、断面オーバル形状(例えば、長円形)の長穴となっている。また、マニホールド73bの基端部側の第1燃料ガス通路73は、周方向に4つ形成され、断面半円形状の穴となっている。そして、4つの冷却通路74と、4つの第1燃料ガス通路73とは、周方向に沿って交互に配置されている。
このように、複数のマニホールド72b,73b,74bは、ノズル本体71の基端部側から先端部側に向かって順に、第2燃料ガス通路72のマニホールド72b、冷却通路74のマニホールド74b、第1燃料ガス通路73のマニホールド73bが形成されている。このため、複数のマニホールド72b,73b,74bは、ノズル本体71の基端部側と先端部側とを結ぶ方向において、位置が異なるように形成されている。
次に、実施例1のパイロットノズル59において、各通路72,73,74,75,76を流通する、燃料ガスF1、燃料ガスF2、燃料油F3、冷却空気A及び水W等の流体について説明する。
燃料ポート64から燃料油通路75に流入した燃料油F3は、燃料油通路75を流通して、ノズル本体71の中心に形成される燃料油噴射部85から、ノズル本体71の前方へ向かって噴射される。
水供給源から水通路76に流入した水Wは、水通路76を流通して、ノズル本体71の燃料油噴射部85の周囲に形成される複数の水噴射孔86から、ノズル本体71の前方へ向かって、ノズル本体71の内側に向けて噴射される。
冷却空気供給ポートから冷却通路74に流入した冷却空気Aは、冷却通路74を流通する。このとき、冷却空気Aは、冷却通路74の絞り部74aを流通することで、先端側に向かう冷却空気Aの流通量が安定的となる。この後、冷却空気Aは、マニホールド74bを流通することで、ノズル本体71の全周に流通する。そして、マニホールド74bを流通した冷却空気Aは、ノズル本体71の複数の水噴射孔86の周囲に形成される複数の空気噴射孔87から、ノズル本体71の前方へ向かって、ノズル本体71の内側に向けて噴射される。
燃料ポート64から第1燃料ガス通路73に流入した燃料ガスF1は、第1燃料ガス通路73を流通する。このとき、燃料ガスF1は、第1燃料ガス通路73の絞り部73aを流通することで、先端側に向かう燃料ガスF1の流通量が安定的となる。この後、燃料ガスF1は、マニホールド73bを流通することで、ノズル本体71の全周に流通する。そして、マニホールド73bを流通した燃料ガスF1は、ノズル本体71の複数の空気噴射孔87の周囲に形成される複数の第1燃料ガス噴射孔88から、ノズル本体71の前方へ向かって、ノズル本体71の外側に向けて噴射される。
燃料ポート64から第2燃料ガス通路72に流入した燃料ガスF2は、第2燃料ガス通路72を流通する。このとき、燃料ガスF2は、第2燃料ガス通路72の絞り部72aを流通することで、先端側に向かう燃料ガスF2の流通量が安定的となる。この後、燃料ガスF2は、マニホールド72bを流通することで、ノズル本体71の全周に流通する。そして、マニホールド72bを流通した燃料ガスF2は、ノズル本体71の周囲に設けられる複数の旋回翼60の第2燃料ガス噴射孔89から、ノズル本体71の前方へ向かって噴射される。
空気通路56からフィルム空気通路92に流入したフィルム空気は、フィルム空気通路92を流通して、ノズル本体71の外周に沿って、ノズル本体71の前方へ向かって噴射される。
以上のように、実施例1によれば、ノズル本体71の複数の内部流路である第2燃料ガス通路72、第1燃料ガス通路73、冷却通路74、燃料油通路75及び水通路76に応じて、流体である燃料ガスF1、燃料ガスF2、燃料油F3、冷却空気A及び水Wを、混在させることなく、流通させることができる。また、第2燃料ガス通路72、第1燃料ガス通路73及び冷却通路74を流通する燃料ガスF1、燃料ガスF2及び冷却空気Aは、絞り部72a,73a,74aを流通することで、先端側に向かう流通量が安定的となることから、第2燃料ガス噴射孔89、第1燃料ガス噴射孔88及び空気噴射孔87から噴射される噴射量を安定させることができる。
また、実施例1によれば、絞り部72a,73a,74aを流通した燃料ガスF1、燃料ガスF2及び冷却空気Aは、マニホールド72b,73b,74bを流通して、第2燃料ガス噴射孔89、第1燃料ガス噴射孔88及び空気噴射孔87から噴射される。このため、マニホールド72b,73b,74bを介して第2燃料ガス噴射孔89、第1燃料ガス噴射孔88及び空気噴射孔87から噴射される燃料ガスF1、燃料ガスF2及び冷却空気Aを、周方向に均一な圧力で噴射することができる。
また、実施例1によれば、ノズル本体71の基端部側と先端部側とを結ぶ方向において、複数のマニホールド72b,73b,74bを位置ずれして形成することができるため、複数のマニホールド72b,73b,74bをノズル本体71の径方向に重複して形成することがなく、ノズル本体71をコンパクトな構成とすることができる。
また、実施例1によれば、燃料ガスF1、燃料ガスF2、燃料油F3、冷却空気A及び水W等の流体の噴射方向を異ならせるように、各噴射孔(噴射部)85,86,87,88,89を形成することができるため、流体の噴射形状を、任意の形状にすることができる。
また、実施例1によれば、複数の絞り部72a,73a,74aを、周方向に並べると共に、同心円状に配置することができるため、複数の絞り部72a,73a,74aを交わらせることなく配置することができる。
また、実施例1によれば、燃料ガスF1、燃料ガスF2、燃料油F3、冷却空気A及び水W等の流体を噴射することができるため、燃料油F3を燃焼させて燃焼ガスを生成したり、燃料ガスF1,F2を燃焼させて燃焼ガスを生成したり、水W及び冷却空気Aによりノズル本体71を冷却したりすることができる。このため、汎用性の高いパイロットノズルとすることができる。
また、実施例1によれば、パイロットノズル59は、各通路72,73,74,75,76を流通する流体F1,F2,F3,A,Wを、混在させることなく、均一の圧力で噴射し、且つ、噴射量を安定させた状態で、各噴射孔(噴射部)85,86,87,88,89から噴射することができる。このため、パイロットノズル59の燃焼を安定的に行うことが可能となる。これにより、ガスタービン燃焼器12による燃焼を安定して行うことが可能となるため、安定した燃焼によるタービン効率の向上を図ることができる。
なお、実施例1では、パイロットノズル59に適用して説明したが、噴射ノズルであれば、メインノズル62に適用してもよく、特に限定されない。
また、実施例1では、複数の内部流路として、第2燃料ガス通路72、第1燃料ガス通路73、冷却通路74、燃料油通路75及び水通路76を形成したが、この構成に限定されず、他の流体が流通する通路を形成してもよいし、上記の通路の一部を省いた構成であってもよい。
次に、図8を参照して、実施例2に係るガスタービン燃焼器100について説明する。図8は、実施例2のパイロットノズルの先端部を表す断面図である。なお、実施例2では、重複した記載を避けるべく、実施例1と異なる部分について説明し、実施例1と同様の構成である部分については、同じ符号を付して説明する。実施例1のパイロットノズル59は、燃料油通路75の外周に沿って円筒状に水通路76を形成したが、実施例2のパイロットノズル101は、燃料油通路75の外周側に水通路76を形成している。
図8に示すように、実施例2のパイロットノズル101は、実施例1と同様に、そのノズル本体71が、中空円筒形状をなし、ノズル本体71の周囲には、旋回翼60が設けられている。ノズル本体71は、内側(中心側)から外側へ向かって、燃料油通路75、第1燃料ガス通路73及び水通路76、第2燃料ガス通路72及び冷却通路74が順に形成されている。なお、燃料油通路75は、実施例1とほぼ同様であるため、説明を省略する。
第1燃料ガス通路73は、ノズル本体71内部の燃料油通路75の外周側に形成され、また、水通路76も、ノズル本体71内部の燃料油通路75の外周側に形成されている。そして、第1燃料ガス通路73と水通路76とは、ノズル本体71の周方向に沿って平行に並んで設けられている。
第2燃料ガス通路72は、ノズル本体71内部の第1燃料ガス通路73及び水通路76の外周側に形成され、また、冷却通路74も、ノズル本体71内部の第1燃料ガス通路73及び水通路76の外周側に形成されている。そして、第2燃料ガス通路72と冷却通路74とは、ノズル本体71の周方向に沿って平行に並んで設けられている。
また、図8に示すパイロットノズル101では、実施例1と同様に、第2燃料ガス通路72、第1燃料ガス通路73及び冷却通路74に、絞り部72a,73a,74a及びマニホールド72b,73b,74bがそれぞれ形成されている。なお、絞り部72a,73a,74a及びマニホールド72b,73b,74bは、実施例1と同様であるため、説明は省略する。また、図8に示すように、実施例2のパイロットノズル101には、水通路76に、マニホールド76bが形成されている。水通路76のマニホールド76bは、他のマニホールド72b,73b,74bよりもノズル本体71の先端側に形成されている。また、水通路76のマニホールド76bは、ノズル本体71の全周に亘って形成されており、円環状に形成されている。このマニホールド76bは、図8に示すように、マニホールド74bよりも内側に形成されており、マニホールド74bよりも先端側に形成されている。マニホールド76bは、その下流側(先端部側)において、複数の水噴射孔86に連通している。
以上のように、実施例2によれば、複数の内部流路を、実施例1と異なる配置パターンとすることができる。
次に、図9を参照して、実施例3に係るガスタービン燃焼器110について説明する。図9は、実施例3のパイロットノズルの先端部を表す断面図である。なお、実施例3でも、重複した記載を避けるべく、実施例1及び2と異なる部分について説明し、実施例1及び2と同様の構成である部分については、同じ符号を付して説明する。実施例1のパイロットノズル59では、複数の内部流路の一つとしての冷却通路74が、ノズル本体71の内部に形成されていたが、実施例3のパイロットノズル111では、実施例1の冷却通路72が、ノズル本体71の外側の外部流路である空気通路56に連通するように形成されている。
具体的に、図9に示すように、パイロットノズル111には、ノズル本体71の先端側において、ノズル本体71とスリーブ82との間にノズル先端カバー115が設けられている。このノズル先端カバー115は、ノズル本体71の外周に沿う円筒形状に形成され、ノズル本体71に対して所定の隙間を空けて同心円状に配置されている。また、ノズル先端カバー115は、ノズル本体71の先端の一部を覆って設けられている。そして、ノズル本体71とノズル先端カバー115との隙間が、冷却空気が流通する冷却通路(冷却空気流路)116となっている。
冷却通路116は、ノズル本体71の外周と、フィルム空気通路92との間に形成され、基端部側から先端部側に亘って形成されている。冷却通路116は、その基端部側が空気通路(外部流路)56に連通しており、その先端部側が実施例1の空気噴射孔87に連通している。このため、冷却通路116は、圧縮機11から供給通路57を介して空気通路56に流入した圧縮空気の一部が、冷却空気として流通する。そして、冷却通路116は、ノズル本体71の外周に沿って、ノズル本体71の前方へ向かって、冷却空気を空気噴射孔87から噴射する。なお、実施例1の冷却通路74は、実施例3において、第1燃料ガス通路73として機能している。
以上のように、実施例3によれば、複数の内部流路を、実施例1及び2と異なる配置パターンとすることができる。つまり、フィルム空気通路92及び冷却通路116を、ノズル本体71の外部流路とすることができ、燃料油通路75、水通路76、第1燃料ガス通路73及び第2燃料ガス通路72を、ノズル本体71の複数の内部流路とすることができる。
次に、図10及び図11を参照して、実施例4に係るガスタービン燃焼器120について説明する。図10は、実施例4のパイロットノズルの先端部を表す断面図である。図11は、図10のD−D断面図である。なお、実施例4でも、重複した記載を避けるべく、実施例1から3と異なる部分について説明し、実施例1から3と同様の構成である部分については、同じ符号を付して説明する。実施例3のパイロットノズル111では、フィルム空気通路92及び冷却通路116をノズル本体71の外部流路としたが、実施例4のパイロットノズル121では、フィルム空気通路92及び冷却通路116をノズル本体71の内部流路としている。換言すれば、実施例3では、実施例1のパイロットノズル59において、外部流路となるフィルム空気通路92を内部流路としている。
具体的に、図10に示すように、パイロットノズル121のノズル本体122は、内部に複数の内部流路が形成され、複数の内部流路として、第1燃料ガス通路72、第2燃料ガス通路73、冷却通路(冷却空気流路)74A、フィルム空気通路(フィルム空気流路)74B、燃料油通路75及び水通路76が形成されている。なお、実施例4では、第1燃料ガス通路72、第2燃料ガス通路73、燃料油通路75及び水通路76は、実施例1と同様であるため、説明を省略する。また、実施例4では、実施例1のスリーブ82を省いた(つまり、ノズル本体122と一体となる)構成となっている。
冷却通路74A及びフィルム空気通路74Bは、実施例1の冷却通路74におけるマニホールド74bからそれぞれ分岐する通路となっている。つまり、冷却通路74Aは、冷却空気が、実施例1の冷却通路74における絞り部74a及びマニホールド74bを通過して、空気噴射孔87に向かう流路となっている。一方で、フィルム空気通路74B、冷却空気がフィルム空気として、実施例1の冷却通路74における絞り部74a及びマニホールド74bを通過して、実施例1のフィルム空気通路92へ向かう流路となっている。つまり、実施例1のフィルム空気通路92は、実施例4のフィルム空気通路74Bの一部(先端部)を構成する。
ここで、冷却通路74Aは、マニホールド74bと空気噴射孔87との間に、冷却空気マニホールド74Abが設けられている。冷却空気マニホールド74Abは、ノズル本体71の全周に亘って形成されており、円環状に形成されている。この冷却空気マニホールド74Abは、先端部側のフィルム空気通路92よりも内側で、マニホールド73bよりも外側に形成されており、また後述するフィルム空気マニホールド74Bbよりも先端部側に形成されている。冷却空気マニホールド74Abは、その上流側(基端部側)において、マニホールド74bに連通しており、その下流側(先端部側)において、複数の空気噴射孔87に連通している。
フィルム空気通路74Bは、マニホールド74bと先端部側のフィルム空気通路92との間に、フィルム空気マニホールド74Bbが設けられている。フィルム空気マニホールド74Bbは、ノズル本体71の全周に亘って形成されており、円環状に形成されている。このフィルム空気マニホールド74Bbは、最外側に形成されており、冷却空気マニホールド74Abよりも基端部側に形成されている。フィルム空気マニホールド74Bbは、その上流側(基端部側)において、マニホールド74bに連通しており、その下流側(先端部側)において、先端部側のフィルム空気通路92に連通している。
このように形成される冷却通路74A及びフィルム空気通路74Bは、図11に示す配置となっている。図11に示すように、冷却通路74A及びフィルム空気通路74Bは、第1燃料ガス通路73と同心円状に配置され、冷却通路74A及びフィルム空気通路74Bが断面円形の丸穴となっており、第1燃料ガス通路73が断面オーバル形状(例えば、長円形)の長穴となっている。ここで、マニホールド74bの先端部側の冷却通路74A及びフィルム空気通路74Bは、周方向にそれぞれ2つで合計4つ形成され、マニホールド73bの基端部側の第1燃料ガス通路73は、周方向に4つ形成される。そして、4つの冷却通路74A及びフィルム空気通路74Bと、4つの第1燃料ガス通路73とは、周方向に沿って交互に配置されている。また、2つの冷却通路74Aと、2つのフィルム空気通路74Bとは、周方向に沿って交互に配置されている。
従って、冷却空気供給ポートから冷却通路74に流入した冷却空気Aは、絞り部74aを流通することで、先端側に向かう冷却空気Aの流通量が安定的となる。この後、冷却空気Aは、マニホールド74bを流通することで、ノズル本体71の全周に流通する。そして、マニホールド74bを流通した冷却空気Aは、その一部が冷却通路74Aに流入し、残りの一部がフィルム空気通路74Bに流入する。冷却通路74Aに流入した冷却空気Aは、冷却空気マニホールド74Abを流通することで、ノズル本体71の全周に流通する。そして、冷却空気マニホールド74Abを流通した冷却空気Aは、複数の空気噴射孔87から、ノズル本体71の前方へ向かって、ノズル本体71の内側に向けて噴射される。一方で、フィルム空気通路74Bに流入した冷却空気Aは、フィルム空気マニホールド74Bbを流通することで、ノズル本体71の全周に流通する。そして、フィルム空気マニホールド74Bbを流通した冷却空気Aは、先端側のフィルム空気通路92から、ノズル本体71の前方へ向かって、ノズル本体71の前方へ向かって噴射される。
以上のように、実施例4によれば、複数の内部流路を、実施例1から3と異なる配置パターンとすることができる。つまり、燃料油通路75、水通路76、第1燃料ガス通路73、第2燃料ガス通路72、冷却通路74A及びフィルム空気通路74Bを、ノズル本体71の複数の内部流路とすることができる。
1 ガスタービン
11 圧縮機
12 ガスタービン燃焼器
13 タービン
20 空気取入口
21 圧縮機車室
22 入口案内翼
23 圧縮機の静翼
24 圧縮機の動翼
25 抽気室
26 タービン車室
27 タービンの静翼
28 タービンの動翼
29 排気車室
30 排気室
31 排気ディフューザ
32 ロータ
33,34 軸受部
35,36,37 脚部
41 ケーシング
42 燃焼器内筒
42a 拡径部
43 燃焼器尾筒
44 パイロット燃焼バーナ
45 メイン燃焼バーナ
46 バイパス管
47 バイパス弁
54 トップハット部
55 締結ボルト
56 空気通路
57 供給通路
58 パイロットコーン
59 パイロットノズル
60 旋回翼
61 バーナ筒
62 メインノズル
63 旋回翼
64,65 燃料ポート
71 ノズル本体
72 第2燃料ガス通路
72a 第2燃料ガス通路の絞り部
72b 第2燃料ガス通路のマニホールド
73 第1燃料ガス通路
73a 第1燃料ガス通路の絞り部
73b 第1燃料ガス通路のマニホールド
74 冷却通路
74a 冷却通路の絞り部
74b 冷却通路のマニホールド
75 燃料油通路75
76 水通路
82 スリーブ
85 燃料油噴射部
86 水噴射孔
87 空気噴射孔
88 第1燃料ガス噴射孔
89 第2燃料ガス噴射孔
91 スペーサ
92 フィルム空気通路
100 ガスタービン燃焼器(実施例2)
101 パイロットノズル(実施例2)
110 ガスタービン燃焼器(実施例3)
111 パイロットノズル(実施例3)
115 ノズル先端カバー
116 冷却通路
120 ガスタービン燃焼器(実施例3)
121 パイロットノズル(実施例3)
122 ノズル本体
F1 燃料ガス
F2 燃料ガス
F3 燃料油
A 冷却空気
W 水

Claims (14)

  1. 流体を噴射可能な噴射ノズルにおいて、
    基端側から先端側へ向かって内部に形成される、前記流体が流通可能な複数の内部流路と、
    少なくともいずれかの前記内部流路の一部を絞って形成される絞り部と、
    前記絞り部の先端側に形成され、前記内部流路に連通するマニホールドと、
    前記マニホールドに連通する噴射孔と、を備え、
    前記絞り部は、複数の前記内部流路に応じて複数形成され、
    複数の前記内部流路は、第1の流体が流通する複数の前記内部流路である複数の第1の内部流路と、第2の流体が流通する複数の前記内部流路である複数の第2の内部流路と、を有し、
    複数の前記絞り部は、複数の前記第1の内部流路の複数の前記絞り部と、複数の前記第2の内部流路の複数の前記絞り部と、を有し、
    複数の前記第1の内部流路の複数の前記絞り部と、複数の前記第2の内部流路の複数の前記絞り部とは、同心円上に配置されると共に、同心円上において周方向に交互に配置されることを特徴とする噴射ノズル。
  2. 複数の前記内部流路に応じて複数の前記マニホールドが形成されており、
    複数の前記マニホールドは、基端側と先端側とを結ぶ方向において、位置を異ならせて形成されることを特徴とする請求項1に記載の噴射ノズル。
  3. 複数の前記内部流路に応じて複数の前記マニホールドが形成され、複数の前記マニホールドに応じて複数の前記噴射孔が形成されており、
    複数の前記噴射孔は、前記流体の噴射方向を異ならせて形成されることを特徴とする請求項1または2に記載の噴射ノズル。
  4. 複数の前記内部流路は、複数の前記第1の内部流路が第1の前記流体として燃料油を流通させ、複数の前記第2の内部流路が第2の前記流体として空気を流通させることを特徴とする請求項1からのいずれか1項に記載の噴射ノズル。
  5. 複数の前記内部流路は、複数の前記第1の内部流路が第1の前記流体として燃料ガスを流通させ、複数の前記第2の内部流路が第2の前記流体として空気を流通させることを特徴とする請求項1からのいずれか1項に記載の噴射ノズル。
  6. 基端側から先端側へ向かって延びて設けられるノズル本体と、
    前記ノズル本体の周囲に所定の間隔を空けて並べて設けられる複数の旋回翼と、を備え、
    複数の前記内部流路は、前記ノズル本体の基端側から先端側へ向かって延びて設けられる前記内部流路と、前記ノズル本体の基端側から前記旋回翼へ向かって延びて設けられる前記内部流路と、を有することを特徴とする請求項1からのいずれか1項に記載の噴射ノズル。
  7. 基端側から先端側へ向かって延びて設けられるノズル本体と、
    前記ノズル本体の周囲に形成され、基端側から先端側へ向かってフィルム空気が流通するフィルム空気流路と、を備えることを特徴とする請求項1からのいずれか1項に記載の噴射ノズル。
  8. 前記フィルム空気流路は、前記ノズル本体の外部に形成される外部流路に連通していることを特徴とする請求項に記載の噴射ノズル。
  9. 複数の前記内部流路は、前記ノズル本体の基端側から先端側へ向かって延びて設けられる前記フィルム空気流路を有することを特徴とする請求項に記載の噴射ノズル。
  10. 前記ノズル本体と前記フィルム空気流路との間に設けられ、基端側から先端側へ向かって冷却空気を流通させる冷却空気流路を、さらに備えることを特徴とする請求項からのいずれか1項に記載の噴射ノズル。
  11. 前記冷却空気流路は、前記ノズル本体の外部に形成される外部流路に連通していることを特徴とする請求項10に記載の噴射ノズル。
  12. 複数の前記内部流路は、前記ノズル本体の基端側から先端側へ向かって延びて設けられる前記冷却空気流路を有することを特徴とする請求項10に記載の噴射ノズル。
  13. パイロットノズルと、
    前記パイロットノズルの周囲に設けられるメインノズルと、を備え、
    前記パイロットノズルとして、請求項1から12のいずれか1項に記載の噴射ノズルが適用されることを特徴とするガスタービン燃焼器。
  14. 請求項13に記載のガスタービン燃焼器と、
    前記ガスタービン燃焼器において、燃料を燃焼させることで発生する燃焼ガスにより回転するタービンと、を備えることを特徴とするガスタービン。
JP2014062379A 2014-03-25 2014-03-25 噴射ノズル、ガスタービン燃焼器及びガスタービン Active JP6452298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062379A JP6452298B2 (ja) 2014-03-25 2014-03-25 噴射ノズル、ガスタービン燃焼器及びガスタービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062379A JP6452298B2 (ja) 2014-03-25 2014-03-25 噴射ノズル、ガスタービン燃焼器及びガスタービン

Publications (2)

Publication Number Publication Date
JP2015183960A JP2015183960A (ja) 2015-10-22
JP6452298B2 true JP6452298B2 (ja) 2019-01-16

Family

ID=54350701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062379A Active JP6452298B2 (ja) 2014-03-25 2014-03-25 噴射ノズル、ガスタービン燃焼器及びガスタービン

Country Status (1)

Country Link
JP (1) JP6452298B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430756B2 (ja) 2014-09-19 2018-11-28 三菱日立パワーシステムズ株式会社 燃焼バーナ及び燃焼器、並びにガスタービン
JP5913503B2 (ja) 2014-09-19 2016-04-27 三菱重工業株式会社 燃焼バーナ及び燃焼器、並びにガスタービン
JP7023036B2 (ja) * 2018-06-13 2022-02-21 三菱重工業株式会社 ガスタービンの燃料ノズル及び燃焼器並びにガスタービン
JP2022049136A (ja) * 2020-09-16 2022-03-29 三菱重工業株式会社 燃料ノズルおよびガスタービン燃焼器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066952U (ja) * 1992-06-19 1994-01-28 三菱重工業株式会社 ガスタービン燃焼器
EP0902233B1 (de) * 1997-09-15 2003-03-12 ALSTOM (Switzerland) Ltd Kombinierte Druckzerstäuberdüse
JP2000039148A (ja) * 1998-07-21 2000-02-08 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器ノズル
JP2000039147A (ja) * 1998-07-21 2000-02-08 Mitsubishi Heavy Ind Ltd フレキシブルジョイントを備えた燃焼器パイロットノズル
US7540154B2 (en) * 2005-08-11 2009-06-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
US8322140B2 (en) * 2010-01-04 2012-12-04 General Electric Company Fuel system acoustic feature to mitigate combustion dynamics for multi-nozzle dry low NOx combustion system and method
EP2693123B1 (en) * 2011-03-30 2017-10-11 Mitsubishi Hitachi Power Systems, Ltd. Nozzle, gas turbine combustor and gas turbine

Also Published As

Publication number Publication date
JP2015183960A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6177187B2 (ja) ガスタービン燃焼器、ガスタービン、制御装置及び制御方法
JP5611450B2 (ja) ノズル及びガスタービン燃焼器、ガスタービン
JP7098283B2 (ja) パイロット予混合ノズルおよび燃料ノズル組立体
WO2011055815A1 (ja) ガスタービン用燃焼バーナ
JP6877926B2 (ja) 予混合燃料ノズル組立体カートリッジ
JP2006112776A (ja) 低コスト二元燃料燃焼器及び関連する方法
JP6626743B2 (ja) 燃焼装置及びガスタービン
JP2016098830A (ja) 予混合燃料ノズル組立体
JP6340075B2 (ja) 燃料ノズル用の液体燃料カートリッジ
JP6849306B2 (ja) 予混合燃料ノズル組立体
JP6907035B2 (ja) 予混合パイロットノズルおよび燃料ノズルアセンブリ
JP2011196681A (ja) 予混合一次燃料ノズルアセンブリを有する燃焼器
EP3102877B1 (en) Combustor
JP2014077627A (ja) 燃料ノズルとその組立方法
JP6236149B2 (ja) ガスタービン燃焼器及びガスタービン
JP6452298B2 (ja) 噴射ノズル、ガスタービン燃焼器及びガスタービン
JP6839571B2 (ja) 燃焼器用ノズル、燃焼器、及びガスタービン
JP6595010B2 (ja) 予混合保炎器を有する燃料ノズルアセンブリ
JP2011237167A (ja) ガスターボ機械用の流体冷却噴射ノズル組立体
EP2515041B1 (en) Fuel Nozzle And Method For Operating A Combustor
JP2011141111A (ja) ターボ機械ノズル
JP5502651B2 (ja) 燃焼バーナ
JP2010181108A (ja) 燃焼器及びガスタービン
JP2019049254A (ja) 気体燃料および液体燃料の機能を有する二重燃料燃料ノズル
JP5193088B2 (ja) 燃焼器及びガスタービン

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181211

R150 Certificate of patent or registration of utility model

Ref document number: 6452298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350