JP6451585B2 - Plug-in vehicle battery management system - Google Patents

Plug-in vehicle battery management system Download PDF

Info

Publication number
JP6451585B2
JP6451585B2 JP2015201781A JP2015201781A JP6451585B2 JP 6451585 B2 JP6451585 B2 JP 6451585B2 JP 2015201781 A JP2015201781 A JP 2015201781A JP 2015201781 A JP2015201781 A JP 2015201781A JP 6451585 B2 JP6451585 B2 JP 6451585B2
Authority
JP
Japan
Prior art keywords
battery
time
charging
polarization
open circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015201781A
Other languages
Japanese (ja)
Other versions
JP2017075784A (en
Inventor
純太 泉
純太 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015201781A priority Critical patent/JP6451585B2/en
Publication of JP2017075784A publication Critical patent/JP2017075784A/en
Application granted granted Critical
Publication of JP6451585B2 publication Critical patent/JP6451585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、プラグイン車両用バッテリの管理システムに関し、特に、バッテリのSOC(State Of Charge)を求める管理システムに関する。   The present invention relates to a battery management system for a plug-in vehicle, and more particularly to a management system for obtaining a battery SOC (State Of Charge).

駆動源として回転電機を備える電気自動車やハイブリッド車両には、バッテリ(直流電源)が搭載される。外部の充電源からバッテリの充電が可能ないわゆるプラグイン車両では、充電に際してバッテリの満充電容量FCC(Full Charge Capacity)[Ah]が算出される。満充電容量FCCは、充電前と充電後のバッテリのSOC(State Of Charge)[%]を用いて求められる。   A battery (DC power supply) is mounted on an electric vehicle or a hybrid vehicle including a rotating electrical machine as a drive source. In a so-called plug-in vehicle that can charge a battery from an external charging source, a full charge capacity FCC (Full Charge Capacity) [Ah] of the battery is calculated upon charging. The full charge capacity FCC is obtained by using SOC (State Of Charge) [%] of the battery before and after charging.

SOCの取得に当たり、例えば特許文献1では、SOCとバッテリの開路電圧OCV(Open Circuit Voltage)[V]との対応関係を利用している。開路電圧OCVとは、負荷とバッテリとの接続が切断され、バッテリに電流が流れていない状態のバッテリの両端電圧を指している。SOCと開路電圧OCVとは対応関係(例えば直線相関)にあることが知られており、予め両者の対応関係をマップ(SOC−OCVマップ)等に記憶しておくことで、充電前後の開路電圧OCVに応じたSOCを求めることができる。   In acquiring the SOC, for example, in Patent Document 1, a correspondence relationship between the SOC and the open circuit voltage OCV (Open Circuit Voltage) [V] is used. The open circuit voltage OCV refers to the voltage across the battery in a state where the connection between the load and the battery is disconnected and no current flows through the battery. It is known that the SOC and the open circuit voltage OCV are in a correspondence relationship (for example, linear correlation), and the correspondence relationship between the SOC and the open circuit voltage OCV is stored in advance in a map (SOC-OCV map) or the like, so that the open circuit voltage before and after the charging is stored. The SOC corresponding to the OCV can be obtained.

特開2013−101072号公報JP 2013-101072 A

ところで、一般的にSOC−OCVマップでは、開路電圧OCVとしてバッテリの分極が解消された時点(平衡時点)における電圧値が記憶されている。すなわち、バッテリを負荷に接続してバッテリに電流が流れると、バッテリ内の反応物質の移動や活性化エネルギー等によって損失が生じてバッテリの両端電圧が降下する分極が生じる。SOC−OCVマップには、分極が解消された(電圧降下が解消された)平衡時点における開路電圧OCV_E(=平衡電位Eeq)が記憶されている。この意味で、バッテリを負荷から切り離した(バッテリに電流が流れなくなった)ときのバッテリ両端電圧(広義の開路電圧)のうち、平衡時点における開路電圧OCV_Eを、開路電圧OCV(狭義の開路電圧)と呼ぶこともある。以下では、開路電圧の定義として、便宜上、前者の定義(広義の開路電圧)を用いる。   By the way, in the SOC-OCV map, generally, the voltage value at the time (polarization time) when the polarization of the battery is eliminated is stored as the open circuit voltage OCV. That is, when a battery is connected to a load and a current flows through the battery, a loss occurs due to movement of a reactive substance in the battery, activation energy, or the like, and polarization in which the voltage across the battery drops occurs. In the SOC-OCV map, an open circuit voltage OCV_E (= equilibrium potential Eeq) at the equilibrium time when polarization is eliminated (voltage drop is eliminated) is stored. In this sense, among the voltage across the battery (open circuit voltage in a broad sense) when the battery is disconnected from the load (current stops flowing to the battery), the open circuit voltage OCV_E at the equilibrium time is expressed as the open circuit voltage OCV (open circuit voltage in the narrow sense). Sometimes called. Hereinafter, as the definition of the open circuit voltage, the former definition (open circuit voltage in a broad sense) is used for convenience.

分極は、負荷の接続が切断されても(バッテリに電流が流れない状態となっても)直ちに解消されるものではなく、平衡状態に至るまでにはある程度時間が掛かることが知られている。したがって負荷との接続を切断した直後に開路電圧OCVを測定しても、その値は分極電圧ΔV分、分極解消時の開路電圧OCV_Eよりも低い値となる。分極解消時の開路電圧OCV_Eよりも低い値がSOC−OCVマップにプロットされることで、実際の値とは異なるSOCが抽出されてしまう。   It is known that polarization does not immediately disappear even when the load is disconnected (even when no current flows through the battery), and it takes a certain amount of time to reach an equilibrium state. Therefore, even if the open circuit voltage OCV is measured immediately after the connection with the load is disconnected, the value is lower than the open circuit voltage OCV_E when the polarization is canceled by the polarization voltage ΔV. By plotting a value lower than the open circuit voltage OCV_E at the time of depolarization in the SOC-OCV map, an SOC different from the actual value is extracted.

分極解消時の開路電圧OCV_Eを求めるために、負荷との接続切断後、所定の待ち時間(例えば30分)経過後に開路電圧OCVを測定することが考えられる。しかしながら、例えばプラグイン車両の場合、上述のような待ち時間を設けると、ユーザの利便性の観点から問題が生じる。例えば、充電スタンドまで車両を走らせた直後にユーザが充電プラグを車両の充電インレットに差し込み、このときに充電が開始されないと、ユーザは充電システムが故障したものと誤って認識するおそれがある。そこで本発明は、バッテリの分極が解消される前であっても精度良くバッテリの分極解消時の開路電圧を求めることの可能な、プラグイン車両用バッテリの管理システムを提供することを目的とする。   In order to obtain the open circuit voltage OCV_E when the polarization is eliminated, it is conceivable to measure the open circuit voltage OCV after a predetermined waiting time (for example, 30 minutes) has elapsed after disconnection from the load. However, for example, in the case of a plug-in vehicle, if the waiting time as described above is provided, a problem arises from the viewpoint of user convenience. For example, if the user inserts the charging plug into the charging inlet of the vehicle immediately after running the vehicle to the charging stand and charging is not started at this time, the user may erroneously recognize that the charging system has failed. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a plug-in vehicle battery management system capable of accurately obtaining an open circuit voltage at the time of battery polarization elimination even before the battery polarization is eliminated. .

本発明は、バッテリに流れる電流を検出する電流センサと、演算部と、を備えるプラグイン車両用バッテリの管理システムに関する。演算部は、負荷との接続時に前記バッテリに流れる電流に応じて前記バッテリに生じる分極電圧を求める。また、負荷との接続切断時点における分極電圧と、前記接続切断時点から充電開始時点までの経過時間に応じた忘却係数とから、前記充電開始時点における前記バッテリの分極電圧を求める。   The present invention relates to a plug-in vehicle battery management system including a current sensor that detects a current flowing through a battery and a calculation unit. The calculation unit obtains a polarization voltage generated in the battery according to a current flowing through the battery when connected to a load. In addition, the polarization voltage of the battery at the charging start time is obtained from the polarization voltage at the time of disconnection from the load and the forgetting factor according to the elapsed time from the connection disconnection time to the charging start time.

本発明では、充電開始時点におけるバッテリの分極電圧を求める。求められた分極電圧と充電開始時点におけるバッテリの両端電圧に基づけば、充電開始時点における、分極解消時の開路電圧を求めることができる。このように、本発明によれば、バッテリの分極が解消される前であっても精度良く分極解消時の開路電圧を求めることができる。   In the present invention, the polarization voltage of the battery at the start of charging is obtained. Based on the obtained polarization voltage and the voltage across the battery at the start of charging, the open circuit voltage at the time of depolarization at the start of charging can be obtained. Thus, according to the present invention, the open circuit voltage at the time of depolarization can be obtained with high accuracy even before the polarization of the battery is eliminated.

本実施形態に係るバッテリの管理システムを含む、プラグイン車両の構成を例示する図である。It is a figure which illustrates the structure of a plug-in vehicle including the battery management system which concerns on this embodiment. バッテリの電圧変化を説明する図である。It is a figure explaining the voltage change of a battery. バッテリに生じた分極電圧の計算値と実測値とを対比させたグラフである。It is the graph which contrasted the calculated value and measured value of the polarization voltage which arose in the battery. 忘却係数について説明するグラフである。It is a graph explaining a forgetting factor.

<全体構成>
図1には、本実施形態に係るバッテリの管理システムを含む、プラグイン車両10の電気系統が示されている。後述するように、本実施形態に係るバッテリの管理システムは、電圧センサ34、電流センサ36、温度センサ30、及び演算部40を含んで構成される。なお、本実施形態に関連のない(または少ない)機器については図示を省略している。また、図1中の一点鎖線は信号線を表している。
<Overall configuration>
FIG. 1 shows an electrical system of a plug-in vehicle 10 including a battery management system according to the present embodiment. As will be described later, the battery management system according to the present embodiment includes a voltage sensor 34, a current sensor 36, a temperature sensor 30, and a calculation unit 40. In addition, illustration is abbreviate | omitted about the apparatus which is not related to this embodiment (or few). In addition, a one-dot chain line in FIG. 1 represents a signal line.

プラグイン車両10は、駆動源として回転電機12を備える電気自動車やプラグインハイブリッド車両である。回転電機12の電源となるバッテリ14は、システムメインリレー16を介して回転電機12に接続される。バッテリ14は、例えば、ニッケル水素電池、リチウムイオン電池等の充放電可能な二次電池である。   The plug-in vehicle 10 is an electric vehicle or a plug-in hybrid vehicle that includes a rotating electrical machine 12 as a drive source. A battery 14 serving as a power source for the rotating electrical machine 12 is connected to the rotating electrical machine 12 via a system main relay 16. The battery 14 is a rechargeable secondary battery such as a nickel metal hydride battery or a lithium ion battery.

システムメインリレー16が接続状態(オン)になると、バッテリ14の直流電力は昇降圧コンバータ18によって昇圧され、さらにインバータ20によって直交変換される。変換後の交流電力が供給されることで回転電機12が駆動する。この駆動力は図示しない車輪に伝達される。   When the system main relay 16 is connected (ON), the DC power of the battery 14 is boosted by the step-up / down converter 18 and further orthogonally converted by the inverter 20. The rotating electrical machine 12 is driven by supplying the converted AC power. This driving force is transmitted to a wheel (not shown).

バッテリ14とシステムメインリレー16の間には電力の分岐路21(充電路)が設けられる。この分岐路21及び充電リレー22を介して、バッテリ14とコネクタ26(インレット)とが接続される。   A power branch path 21 (charging path) is provided between the battery 14 and the system main relay 16. The battery 14 and the connector 26 (inlet) are connected via the branch path 21 and the charging relay 22.

外部のAC電源27(例えば、商用電源)のコネクタ28(充電プラグ)がコネクタ26(インレット)に接続され、充電リレー22が接続状態(オン)になると、AC電源27の交流電力は充電器24によって力率改善、昇圧及び交直変換される。変換後の直流電力がバッテリ14に供給される。なお、充電器24やコネクタ26の他に、外部のDC電源と接続可能なコネクタを追加してもよい。   When the connector 28 (charging plug) of an external AC power supply 27 (for example, commercial power supply) is connected to the connector 26 (inlet) and the charging relay 22 is connected (ON), the AC power of the AC power supply 27 is converted into the charger 24. To improve power factor, boost and AC / DC conversion. The converted DC power is supplied to the battery 14. In addition to the charger 24 and the connector 26, a connector that can be connected to an external DC power source may be added.

また、バッテリ14に関する計器類として、プラグイン車両10にはバッテリ14の温度を検出する温度センサ30が取り付けられている。さらに、バッテリ14に接続されたバスバー32a,32bの間には、バッテリ14の両端電圧を検出する電圧センサ34が接続されている。また、バッテリ14とシステムメインリレー16との間のプラス側バスバー32aにはバッテリ14に流れる充放電電流Iを検出する電流センサ36が取り付けられている。   Further, as an instrument related to the battery 14, a temperature sensor 30 that detects the temperature of the battery 14 is attached to the plug-in vehicle 10. Furthermore, a voltage sensor 34 that detects the voltage across the battery 14 is connected between the bus bars 32 a and 32 b connected to the battery 14. Further, a current sensor 36 for detecting a charge / discharge current I flowing through the battery 14 is attached to the plus bus bar 32 a between the battery 14 and the system main relay 16.

制御部38は、演算処理や信号処理を行う演算部40とメモリ42とを内部に備えるコンピュータである。メモリ42には後述するSOC‐OCVマップや満充電容量算出プログラムが記憶されている。   The control unit 38 is a computer that includes an arithmetic unit 40 that performs arithmetic processing and signal processing and a memory 42 therein. The memory 42 stores an SOC-OCV map and a full charge capacity calculation program which will be described later.

制御部38には、温度センサ30からバッテリ温度値が、電圧センサ34からバッテリ14の両端電圧値が、電流センサ36からバッテリ14の充放電電流値が、それぞれ送信される。また制御部38には、イグニッションスイッチ41から、車両システムの起動指令やシャットダウン指令が送信される。さらに制御部38には、コネクタ26(インレット)または充電器24から、コネクタ28(充電プラグ)の接続有無を示す信号が送信される。演算部40は、メモリ42に記憶された満充電容量算出のためのプログラムを起動させて、制御部38が受信した各種信号を演算処理する。このような構成において、本実施形態に係るバッテリの管理システムは、電圧センサ34、電流センサ36、温度センサ30、及び演算部40を含んで構成される。   The temperature sensor 30 transmits the battery temperature value, the voltage sensor 34 transmits the voltage across the battery 14, and the current sensor 36 transmits the charge / discharge current value of the battery 14 to the control unit 38. In addition, a start command and a shutdown command for the vehicle system are transmitted from the ignition switch 41 to the control unit 38. Further, a signal indicating whether or not the connector 28 (charging plug) is connected is transmitted from the connector 26 (inlet) or the charger 24 to the control unit 38. The arithmetic unit 40 activates a program for calculating the full charge capacity stored in the memory 42 and performs arithmetic processing on various signals received by the control unit 38. In such a configuration, the battery management system according to the present embodiment includes the voltage sensor 34, the current sensor 36, the temperature sensor 30, and the calculation unit 40.

<満充電容量の算出>
満充電容量FCC[Ah]は、バッテリ14の充電開始時点のSOCC0[%]、充電終了時点のSOCC1、及びその間の電流積算値Iitg[Ah]を用いて、下記数式(1)により求められる。
<Calculation of full charge capacity>
The full charge capacity FCC [Ah] is calculated by the following formula (1) using the SOC C0 [%] at the start of charging of the battery 14, the SOC C1 at the end of charging, and the current integrated value I itg [Ah] therebetween . Desired.

上記数式(1)のうち、電流積算値Iitgは電流センサ36が検出する電流Iの値を積算することで取得できる。充電前後のSOCC0、SOCC1については、メモリ42に記憶されたSOC‐OCVマップを用いて取得する。上述したように、SOCと、分極解消時(平衡時)のバッテリ開路電圧OCV_E(以下分極解消時開路電圧と呼ぶ)とは対応関係があることが知られている。演算部40は、充電前と充電後に、下記のように分極解消時開路電圧OCV_Eを算出した後、SOC−OCVマップを参照して分極解消時開路電圧OCV_Eに対応するSOC(SOCC0及びSOCC1)を取得する。 In the above formula (1), the current integrated value I itg can be obtained by integrating the value of the current I detected by the current sensor 36. The SOC C0 and SOC C1 before and after charging are acquired using the SOC-OCV map stored in the memory 42. As described above, it is known that there is a correspondence between the SOC and the battery open circuit voltage OCV_E at the time of depolarization (at equilibrium) (hereinafter referred to as the open circuit voltage at the time of depolarization). The calculation unit 40 calculates the open circuit voltage OCV_E at the time of depolarization before charging and after charging as described below, and then refers to the SOC (SOC C0 and SOC C1 corresponding to the open circuit voltage OCV_E at the time of depolarization with reference to the SOC-OCV map. ) To get.

分極解消時開路電圧OCV_Eの算出について、図2を用いて説明する。図2には、プラグイン車両の走行や充電に伴うバッテリ14の電圧変化が時系列に例示されている。まず時刻t0から時刻t1までの間はイグニッションスイッチ41が押されておらず、システムメインリレー16は切断(オフ)状態になっている。また充電リレー22も切断状態となっている。このとき、バッテリ14は負荷やAC電源27に接続されておらず、電流Iが流れない状態となっている。またバッテリ14の分極は解消されており、このときのバッテリ14の両端電圧(開路電圧)は分極解消時開路電圧OCV_Eに等しい。   Calculation of the open circuit voltage OCV_E at the time of depolarization will be described with reference to FIG. FIG. 2 illustrates time-series changes in the voltage of the battery 14 associated with travel and charging of the plug-in vehicle. First, from time t0 to time t1, the ignition switch 41 is not pressed, and the system main relay 16 is in a disconnected (off) state. The charging relay 22 is also disconnected. At this time, the battery 14 is not connected to the load or the AC power source 27 and the current I does not flow. Further, the polarization of the battery 14 is eliminated, and the voltage across the battery 14 (open circuit voltage) at this time is equal to the open circuit voltage OCV_E when the polarization is eliminated.

時刻t1になりイグニッションスイッチ41が押されON操作されると、制御部38はシステムメインリレー16を切断状態から接続(オン)状態に切り替える。このとき、バッテリ14と回転電機12等の負荷が接続され、バッテリ14から回転電機12に電流Iが供給される。電流供給に伴ってバッテリ14内では分極が生じて両端電圧は分極解消時開路電圧OCV_Eよりも低減する。このとき、演算部40は下記数式(2)(3)を用いて負荷接続時の分極電圧ΔVrun(n)を求める。 When the ignition switch 41 is pressed and turned on at time t1, the control unit 38 switches the system main relay 16 from the disconnected state to the connected (on) state. At this time, a load such as the battery 14 and the rotating electrical machine 12 is connected, and the current I is supplied from the battery 14 to the rotating electrical machine 12. As the current is supplied, polarization occurs in the battery 14, and the voltage across the both ends becomes lower than the open circuit voltage OCV_E when the polarization is eliminated. At this time, the calculation unit 40 obtains the polarization voltage ΔV run (n) at the time of load connection using the following mathematical formulas (2) and (3).

数式(2)中、Iitg(n)は時刻nにおける電流積算値を表し、I(n)は時刻nにおけるバッテリ14の充放電電流値(瞬時値)を表す。また、充放電電流値I(n)について、本実施形態では放電電流は正、充電電流は負の値を取る。また、カウンタnのインクリメントのインターバルは、例えば0.1[sec]である。 In Equation (2), I itg (n) represents the current integrated value at time n, and I (n) represents the charge / discharge current value (instantaneous value) of the battery 14 at time n. In the present embodiment, the charge / discharge current value I (n) is positive and the charge current is negative. Further, the increment interval of the counter n is, for example, 0.1 [sec].

数式(2)では、時刻nにおいて分極電圧ΔVrunを引き起こす電流積算値を求めている。右辺第1項は時刻n−1における電流積算値Iitg(n−1)に時間経過分の忘却係数(重み係数)0.9を掛けたものである。また、初期値Iitg(0)はイグニッション−オン時の電流値を表し、例えば0[A]である。 In Formula (2), the current integrated value that causes the polarization voltage ΔV run at time n is obtained. The first term on the right side is obtained by multiplying the current integrated value I itg (n-1) at time n-1 by a forgetting factor (weighting factor) 0.9 corresponding to the passage of time. The initial value I itg (0) represents the current value when the ignition is on, and is 0 [A], for example.

初期値Iitg(0)=0であり、放電電流が正の値を取る事から、例えばI(1)=a(>0)であるとすると、Iitg(1)=0−aとなり、Iitg(1)は負の値を取る。以降、車両の駆動時は力行(放電)が回生(充電)を上回るから、電流積算値Iitg(n)はおおむね負の値を取る。 Since the initial value I itg (0) = 0 and the discharge current takes a positive value, if I (1) = a (> 0), for example, I itg (1) = 0−a, I itg (1) takes a negative value. Thereafter, since the power running (discharge) exceeds the regeneration (charge) during driving of the vehicle, the current integrated value I itg (n) generally takes a negative value.

数式(3)では、時刻nにおける電流積算値に内部抵抗を示す係数0.001を掛けて時刻nにおける分極電圧ΔVrun(n)を求めている。上述したように、車両の駆動時は電流積算値Iitg(n)はおおむね負の値を取るので、分極電圧ΔVrun(n)もおおむね負の値となる。 In Equation (3), seeking polarization voltage [Delta] V the run (n) at time n is multiplied by the coefficient 0.001 indicating the internal resistance on the current integrated value at time n. As described above, when the vehicle is driven, the integrated current value I itg (n) is generally a negative value, so the polarization voltage ΔV run (n) is also generally a negative value.

図3には、実測による分極電圧ΔVrun(n)(CCV−OCV差)と、数式(2),(3)によって求めたΔVrun(n)とを比較したグラフが示されている。横軸は時間を表し、縦軸は電圧を表す。実測値は閉路電圧CCV(Closed Circuit Voltage)、つまり負荷接続時(電流通流時)のバッテリ14の両端電圧から分極解消時開路電圧OCV_Eを引いた差分値をプロットしている。この図に示されているように、実測値と数式(2),(3)による計算値とがよい一致を示していることが理解される。 FIG. 3 shows a graph comparing the actually measured polarization voltage ΔV run (n) (CCV−OCV difference) with ΔV run (n) obtained by Equations (2) and (3). The horizontal axis represents time, and the vertical axis represents voltage. The actual measurement value is a closed circuit voltage CCV (Closed Circuit Voltage), that is, the difference value obtained by subtracting the open circuit voltage OCV_E at the time of depolarization from the voltage across the battery 14 at the time of load connection (at the time of current flow). As shown in this figure, it is understood that the actually measured values and the calculated values by the formulas (2) and (3) are in good agreement.

図2に戻り、時刻t2になりイグニッションスイッチ41が再び押されOFF操作されると、制御部38はシステムメインリレー16を接続状態から切断状態に切り替える。上述したように、分極の解消には時間がかかるため、バッテリ14と回転電機12の接続が切断された時刻t2(接続切断時点)以降も分極電圧ΔVが残存する。   Returning to FIG. 2, when the ignition switch 41 is pushed again and turned off at time t2, the control unit 38 switches the system main relay 16 from the connected state to the disconnected state. As described above, since it takes time to eliminate the polarization, the polarization voltage ΔV remains even after time t2 (connection disconnection time) when the connection between the battery 14 and the rotating electrical machine 12 is disconnected.

さらに時刻t3にてコネクタ28(充電プラグ)がコネクタ26(インレット)に差し込まれると、制御部38は充電リレー22を切断状態から接続状態に切り替える前に、バッテリ14の分極解消時開路電圧OCV_Eを算出するように演算部40に指示する。   Further, when connector 28 (charge plug) is inserted into connector 26 (inlet) at time t3, control unit 38 sets open circuit voltage OCV_E at the time of depolarization of battery 14 before switching charge relay 22 from the disconnected state to the connected state. The calculation unit 40 is instructed to calculate.

メモリ42には、システムメインリレー16が接続状態から切断状態に切り替わる時刻(接続切断時点)t2における分極電圧ΔVrun(n)が記憶されている。また、図示しないタイマにより接続切断時点である時刻t2から充電開始時点である時刻t3までの経過時間Tintが計測される。 The memory 42 stores the polarization voltage ΔV run (n) at time t2 when the system main relay 16 switches from the connected state to the disconnected state (connection disconnection time) t2. In addition, an elapsed time T int from time t2 that is the disconnection time point to time t3 that is the charging start time point is measured by a timer (not shown).

演算部40は、図4に示すような忘却係数グラフから、経過時間及びバッテリ14の温度に応じた忘却係数を抽出する。忘却係数グラフは、分極電圧ΔVの解消過程を表すものであり、横軸に経過時間の平方根が示され、縦軸に忘却係数k(0≦k≦1)が示されている。時間が経過するほど分極が解消されていくので、時間経過に伴って忘却係数は小さい値を取るようになる。   The computing unit 40 extracts a forgetting factor corresponding to the elapsed time and the temperature of the battery 14 from the forgetting factor graph as shown in FIG. The forgetting factor graph represents the elimination process of the polarization voltage ΔV. The horizontal axis represents the square root of the elapsed time, and the vertical axis represents the forgetting factor k (0 ≦ k ≦ 1). Since the polarization is eliminated as time passes, the forgetting factor takes a smaller value as time elapses.

また、バッテリ14の温度が高いほど分極の解消が進むことが知られており、忘却係数グラフでは、温度別に忘却係数ラインを設けている。図4に示す例では、アレニウスの定理より10℃上昇すると反応速度は2倍になることから、0℃の忘却係数ラインに対して10℃の忘却係数ラインの傾きを1/2とし、10℃の忘却係数ラインに対して20℃の忘却係数ラインの傾きを1/2としている。このような忘却係数グラフは実測やシミュレーション等によって予め作成され、メモリ42に記憶されている。   In addition, it is known that the higher the temperature of the battery 14 is, the more the polarization is eliminated. In the forgetting coefficient graph, a forgetting coefficient line is provided for each temperature. In the example shown in FIG. 4, since the reaction rate doubles when the temperature rises by 10 ° C. from the Arrhenius theorem, the slope of the 10 ° C. forgetting factor line is halved with respect to the 0 ° C. forgetting factor line. The inclination of the forgetting factor line at 20 ° C. is ½ with respect to the forgetting factor line. Such a forgetting coefficient graph is created in advance by actual measurement, simulation, or the like, and stored in the memory 42.

演算部40は、時刻t2から時刻t3までの経過時間tint(=t3−t2)と、時刻t3におけるバッテリ14の温度Tbに対応する忘却係数k(tint,Tb)を、忘却係数グラフから抽出する。さらに演算部40は、下記数式(4)に基づいて、時刻t3における分極電圧ΔV(t3)を算出する。 The computing unit 40 calculates the elapsed time t int (= t3−t2) from time t2 to time t3 and the forgetting factor k (t int , Tb) corresponding to the temperature Tb of the battery 14 at time t3 from the forgetting factor graph. Extract. Further, the calculation unit 40 calculates the polarization voltage ΔV (t3) at time t3 based on the following mathematical formula (4).

さらに演算部40は、電圧センサ34からバッテリ14の両端電圧(開路電圧)OCV(t3)を取得して、下記数式(5)に基づいて、時刻t3、つまり充電開始時点におけるバッテリ14の分極解消時開路電圧OCV_E(t3)を算出する。   Further, the calculation unit 40 obtains the voltage across the battery 14 (open circuit voltage) OCV (t3) from the voltage sensor 34, and based on the following formula (5), eliminates the polarization of the battery 14 at time t3, that is, at the start of charging. The hourly open circuit voltage OCV_E (t3) is calculated.

数式(5)の右辺第2項のΔV(t)は、数式(2)の構成上、放電時には負の値を取る。したがって数式(5)では、実質的にバッテリ14の両端電圧(開路電圧)OCV(t3)に分極電圧ΔV(t3)を足し合わせることになる。   ΔV (t) in the second term on the right side of Equation (5) takes a negative value during discharge due to the configuration of Equation (2). Therefore, in Equation (5), the polarization voltage ΔV (t3) is substantially added to the both-ends voltage (open circuit voltage) OCV (t3) of the battery 14.

演算部40は時刻t3における分極解消時開路電圧OCV_E(t3)を求めた後、メモリ42に記憶されているSOC−OCVマップを参照して、分極解消時開路電圧OCV_E(t3)に対応するSOC(t3)を抽出する。   The calculation unit 40 obtains the polarization elimination open circuit voltage OCV_E (t3) at time t3, and then refers to the SOC-OCV map stored in the memory 42 to correspond to the polarization elimination open circuit voltage OCV_E (t3). Extract (t3).

制御部38は、演算部40によるSOC(t3)の抽出が完了したことを受けて、充電リレー22を切断状態から接続状態に切り替える。これによりAC電源27からバッテリ14に電力が供給される。   In response to the completion of the extraction of the SOC (t3) by the calculation unit 40, the control unit 38 switches the charging relay 22 from the disconnected state to the connected state. As a result, power is supplied from the AC power supply 27 to the battery 14.

演算部40は、電流センサ36から送られる充電電流値及び数式(2)を用いて、充電中の電流積算値Iitg(n)を求める。さらに数式(3)に基づいて分極電圧ΔVrunを求める。 The calculation unit 40 obtains a current integrated value I itg (n) during charging using the charging current value sent from the current sensor 36 and the mathematical expression (2). Further, the polarization voltage ΔV run is obtained based on the formula (3).

時刻t4になり、充電が完了すると、制御部38は充電リレー22を接続状態から切断状態に切り替える。演算部は、数式(4),(5)に基づいて時刻t4つまり充電終了時点における分極解消時開路電圧OCV_E(t4)を求めた後、メモリ42に記憶されているSOC−OCVマップを参照して、分極解消時開路電圧OCV_E(t4)に対応するSOC(t4)を抽出する。   When the charging is completed at time t4, the control unit 38 switches the charging relay 22 from the connected state to the disconnected state. The calculation unit obtains the polarization release open circuit voltage OCV_E (t4) at time t4, that is, at the end of charging based on the equations (4) and (5), and then refers to the SOC-OCV map stored in the memory 42. Thus, the SOC (t4) corresponding to the open circuit voltage OCV_E (t4) at the time of polarization elimination is extracted.

さらに演算部40は、充電前後のSOC(t3),SOC(t4)と、時刻t3からt4までの電流積算値を数式(1)に代入して、バッテリ14の満充電容量FCCを求める。   Further, the calculation unit 40 substitutes the SOC (t3) and SOC (t4) before and after charging and the current integrated value from the time t3 to t4 into the formula (1) to obtain the full charge capacity FCC of the battery 14.

なお、上述した実施形態では、充電終了時点の分極解消時開路電圧OCV_E(t4)を、数式(4),(5)に基づいて求めていたが、この形態に限らない。例えば分極が解消されるような所定の待ち時間(例えば30分)後にバッテリ14の両端電圧を測定し、これを分極解消時開路電圧OCV_E(t4)としてもよい。例えば一日の終わりにプラグイン充電を行って翌日までコネクタ26,28を接続したままにするような場合に、ユーザは充電の開始を確認してそれ以降は翌日まで充電状態を確認しないことが多い。このような場合に、待ち時間経過後に充電終了時点の分極解消時開路電圧OCV_E(t4)を測定するようにしても、ユーザの利便性には大きな影響を与えない。   In the above-described embodiment, the polarization elimination open circuit voltage OCV_E (t4) at the end of charging is obtained based on the formulas (4) and (5), but this is not a limitation. For example, the voltage between both ends of the battery 14 may be measured after a predetermined waiting time (for example, 30 minutes) at which the polarization is eliminated, and this may be used as the polarization elimination open circuit voltage OCV_E (t4). For example, when plug-in charging is performed at the end of the day and the connectors 26 and 28 are left connected until the next day, the user may confirm the start of charging and thereafter not check the charging state until the next day. Many. In such a case, even if the open circuit voltage OCV_E (t4) at the time of termination of charging is measured after the waiting time has elapsed, the convenience for the user is not greatly affected.

10 プラグイン車両、12 回転電機、14 バッテリ、16 システムメインリレー、22 充電リレー、24 充電器、26 コネクタ(インレット)、27 AC電源、28 コネクタ(充電プラグ)、30 温度センサ、34 電圧センサ、36 電流センサ、38 制御部、40 演算部、41 イグニッションスイッチ、42 メモリ。   10 plug-in vehicle, 12 rotating electrical machine, 14 battery, 16 system main relay, 22 charging relay, 24 charger, 26 connector (inlet), 27 AC power supply, 28 connector (charging plug), 30 temperature sensor, 34 voltage sensor, 36 current sensor, 38 control unit, 40 calculation unit, 41 ignition switch, 42 memory.

Claims (1)

バッテリに流れる電流を検出する電流センサと、
負荷との接続時に前記バッテリに流れる電流に応じて前記バッテリに生じる分極電圧を求め、負荷との接続切断時点における分極電圧と、前記接続切断時点から充電開始時点までの経過時間に応じた忘却係数とから、前記充電開始時点における前記バッテリの分極電圧を求める演算部と、
を備えたことを特徴とする、プラグイン車両用バッテリの管理システム。
A current sensor for detecting the current flowing in the battery;
A polarization voltage generated in the battery according to a current flowing through the battery at the time of connection to the load is obtained, and a forgetting factor corresponding to a polarization voltage at the time of disconnection from the load and an elapsed time from the connection disconnection time to the charging start time And a calculation unit for determining the polarization voltage of the battery at the start of charging,
A battery management system for a plug-in vehicle.
JP2015201781A 2015-10-13 2015-10-13 Plug-in vehicle battery management system Active JP6451585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201781A JP6451585B2 (en) 2015-10-13 2015-10-13 Plug-in vehicle battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201781A JP6451585B2 (en) 2015-10-13 2015-10-13 Plug-in vehicle battery management system

Publications (2)

Publication Number Publication Date
JP2017075784A JP2017075784A (en) 2017-04-20
JP6451585B2 true JP6451585B2 (en) 2019-01-16

Family

ID=58551129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201781A Active JP6451585B2 (en) 2015-10-13 2015-10-13 Plug-in vehicle battery management system

Country Status (1)

Country Link
JP (1) JP6451585B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884723B (en) * 2017-12-28 2019-04-30 爱驰汽车(上海)有限公司 The first value-acquiring method of power battery charged state, system, equipment and storage medium
KR102650965B1 (en) * 2018-04-23 2024-03-25 삼성에스디아이 주식회사 Method of estimating battery states
WO2020170924A1 (en) * 2019-02-22 2020-08-27 パナソニックIpマネジメント株式会社 Current detecting device, and relay module system employing current detecting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056903A (en) * 2000-08-07 2002-02-22 Hitachi Ltd Polarization voltage value computing method, battery voltage value compensation method and remainder state estimation method of secondary battery, secondary battery unit and device using same
JP2008191103A (en) * 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk Release voltage prediction method and release voltage prediction device
JP2009137308A (en) * 2007-06-08 2009-06-25 Autonetworks Technologies Ltd Open voltage value estimation method and open voltage value estimation device
JP5129029B2 (en) * 2007-11-14 2013-01-23 株式会社オートネットワーク技術研究所 Open voltage value estimation method and open voltage value estimation apparatus
JP5089510B2 (en) * 2008-07-07 2012-12-05 古河電気工業株式会社 Secondary battery state detection method, state detection device, and secondary battery power supply system
EP2767841A4 (en) * 2011-10-13 2015-02-25 Toyota Motor Co Ltd Secondary battery control device and method
JP5849845B2 (en) * 2012-04-20 2016-02-03 トヨタ自動車株式会社 Non-aqueous secondary battery control device and control method
US9555718B2 (en) * 2013-12-06 2017-01-31 Ford Global Technologies, Llc Estimation and compensation of battery measurement and asynchronization biases
JP6534746B2 (en) * 2015-09-30 2019-06-26 日立オートモティブシステムズ株式会社 Battery control device and battery system

Also Published As

Publication number Publication date
JP2017075784A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
EP2963433B1 (en) Method and apparatus for estimating state of battery
JP5812032B2 (en) Power storage system and method for estimating full charge capacity of power storage device
CN105793097B (en) Accumulating system
JP5419831B2 (en) Battery degradation degree estimation device
JP6101714B2 (en) Battery control device, battery system
US10302706B2 (en) Apparatus for calculating state of charge of storage battery
JP6534746B2 (en) Battery control device and battery system
US10444296B2 (en) Control device, control method, and recording medium
JP2015203593A (en) Battery monitoring device, battery system, and electric vehicle drive device
JP2001021628A (en) Apparatus for measuring capacity of battery with rechargeable capacity calculation function by using temperature sensor
JP2015040832A (en) Power storage system and method of estimating full charge capacity of power storage device
CN104483628A (en) Electric vehicle battery pack state-of-health detection device and method
JP7016704B2 (en) Rechargeable battery system
JP6451585B2 (en) Plug-in vehicle battery management system
JP2018096803A (en) Internal resistance calculation device, method for calculating internal resistance, and internal resistance calculation program
JP2017096851A (en) Full charge capacity calculation device, computer program, and full charge capacity calculation method
JP2013148452A (en) Soh estimation device
JP2000306613A (en) Battery state monitoring device
JP6428545B2 (en) Electric vehicle
EP2916138B1 (en) Battery pack test system and method for testing said battery pack
JP5768772B2 (en) Power storage system and charging rate estimation method
JP2020079764A (en) Secondary-battery state determination method
JP6434245B2 (en) Charging rate estimation device and power supply system
JP5307269B1 (en) Apparatus for estimating cell state of battery pack
JP5929711B2 (en) Charging system and voltage drop calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R151 Written notification of patent or utility model registration

Ref document number: 6451585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151