JP5089510B2 - Secondary battery state detection method, state detection device, and secondary battery power supply system - Google Patents

Secondary battery state detection method, state detection device, and secondary battery power supply system Download PDF

Info

Publication number
JP5089510B2
JP5089510B2 JP2008176464A JP2008176464A JP5089510B2 JP 5089510 B2 JP5089510 B2 JP 5089510B2 JP 2008176464 A JP2008176464 A JP 2008176464A JP 2008176464 A JP2008176464 A JP 2008176464A JP 5089510 B2 JP5089510 B2 JP 5089510B2
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
state detection
time
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008176464A
Other languages
Japanese (ja)
Other versions
JP2010014636A (en
Inventor
悦藏 佐藤
竹三 杉村
真道 露木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Automotive Systems Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008176464A priority Critical patent/JP5089510B2/en
Publication of JP2010014636A publication Critical patent/JP2010014636A/en
Application granted granted Critical
Publication of JP5089510B2 publication Critical patent/JP5089510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、二次電池の状態検知を行う状態検知方法等に関し、特に二次電池の充電状態を検知する二次電池の状態検知方法、状態検知装置及び二次電池電源システムの技術分野に関するものである。   The present invention relates to a state detection method for detecting a state of a secondary battery, and more particularly to a technical field of a state detection method, a state detection device, and a secondary battery power supply system for detecting a state of charge of a secondary battery. It is.

近年、自動車の安全性、快適性の一層の向上のために多くの電気デバイスが用いられており、これに対応して搭載される二次電池電源の重要性がますます高まっている。一例として、電動ブレーキに代表される安全系の部品が電気で制御されるようになってきており、また省エネや二酸化炭素の排出規制等に対応して、交差点などでアイドリングストップが行われるようになっている。このように、二次電池電源の重要性が高まるのに伴って、二次電池の充電率を高精度に推定する技術が強く望まれている。   In recent years, many electrical devices have been used to further improve the safety and comfort of automobiles, and the importance of secondary battery power sources mounted in response thereto is increasing. As an example, safety-related parts such as electric brakes are being controlled by electricity, and idling stops are made at intersections in response to energy saving and carbon dioxide emission regulations. It has become. Thus, as the importance of the secondary battery power source increases, a technique for estimating the charging rate of the secondary battery with high accuracy is strongly desired.

二次電池の充電率(SOC)を推定する方法として、二次電池の安定時の開放端電圧(OCV)を用いる方法が知られている。ここで、開放端電圧とは、二次電池の両端子が開放されて通電されていないときの電圧である。この安定OCVとSOCとの間には略線形の関係があることが知られており、この関係を用いることによりOCVの測定値からSOCを推定する方法が開示されている。   As a method for estimating the charging rate (SOC) of the secondary battery, a method using the open-circuit voltage (OCV) when the secondary battery is stable is known. Here, the open end voltage is a voltage when both terminals of the secondary battery are opened and not energized. It is known that there is a substantially linear relationship between the stable OCV and the SOC, and a method for estimating the SOC from the measured value of the OCV by using this relationship is disclosed.

一例として、安定OCVを推定して充電率を求める方法が、特許文献1に開示されている。ここでは、二次電池のOCVの時間特性を近似する4次以上の指数減衰関数の係数を決定し、少なくとも決定した係数に基づき二次電池のOCVの収束値を求め、OCVの収束値に基づき充電率を推定している。   As an example, Patent Document 1 discloses a method for obtaining a charging rate by estimating a stable OCV. Here, a coefficient of an exponential decay function of the fourth or higher order that approximates the OCV time characteristic of the secondary battery is determined, and the OCV convergence value of the secondary battery is obtained based on at least the determined coefficient, and based on the OCV convergence value. Estimating the charging rate.

特開2005−43339JP 2005-43339 A

二次電池は充放電の際、分極により電圧が安定OCVからずれてしまう。また、分極は充放電終了とともに直ちに解消するわけではなく、時間をかけて徐々に緩和していく。そのため、充放電終了後のOCVを測定し、安定OCVとSOCとの関係からSOCを推定すると、分極の影響でSOCを精度よく推定することはできない。分極による影響は、液式の二次電池に限らず、シール式の二次電池、一次電池(放電のみ)でも発生する。   During charging and discharging, the voltage of the secondary battery deviates from the stable OCV due to polarization. Moreover, polarization does not immediately disappear with the end of charge / discharge, but gradually relaxes over time. Therefore, if the OCV after charge / discharge is measured and the SOC is estimated from the relationship between the stable OCV and the SOC, the SOC cannot be accurately estimated due to the influence of polarization. The influence of polarization occurs not only in liquid secondary batteries but also in sealed secondary batteries and primary batteries (only discharge).

特許文献1では、充放電終了後の所定時間測定した電池電圧を用いて安定電圧(電圧の収束値)を推定する方法が提案されている。しかしながら、特許文献1に記載の検出方法では、充放電終了後、電圧を測定する所定時間内で検出できる電圧変化(電池内の状態変化)については電池電圧の時間特性である指数減衰関数に反映できるが、例えば電池内反応物質の移動などによる、所定時間よりもはるかに長い時間をかけて変化する現象については指数減衰関数に反映させることが困難である。このため、安定電圧の推定精度が低下し、結果としてSOCの推定誤差が増大するといった問題がある。   Patent Document 1 proposes a method of estimating a stable voltage (voltage convergence value) using a battery voltage measured for a predetermined time after the end of charge / discharge. However, in the detection method described in Patent Document 1, a voltage change (state change in the battery) that can be detected within a predetermined time for measuring the voltage after charging / discharging is reflected in an exponential decay function that is a time characteristic of the battery voltage. However, it is difficult to reflect the phenomenon that changes over a much longer time than the predetermined time due to, for example, the movement of the reactant in the battery, in the exponential decay function. For this reason, there exists a problem that the estimation precision of stable voltage falls and the estimation error of SOC increases as a result.

そこで、本発明はこれらの問題を解決するためになされたものであり、短時間では検出しにくい変化も含めた分極による電圧変化を補正して二次電池の状態検知を高精度に行う二次電池の状態検知方法、状態検知装置及び二次電池電源システムを提供することを目的とする。   Therefore, the present invention has been made to solve these problems, and a secondary battery that corrects voltage changes due to polarization, including changes that are difficult to detect in a short time, and performs secondary battery state detection with high accuracy. It aims at providing the state detection method of a battery, a state detection apparatus, and a secondary battery power supply system.

この発明の二次電池の状態検知方法の第1の態様は、二次電池の分極による電圧変化を補正する電圧補正値を推定して状態検知を行う二次電池の状態検知方法であって、前記二次電池の充放電を終了してから所定の電圧測定時間を経過するまでの期間に前記二次電池の電圧測定値を複数取得し、充放電終了からの経過時間を変数として前記二次電池の電圧を算出する電圧近似式の係数を前記複数の電圧測定値を用いて決定し、前記電圧近似式から前記二次電池の電圧変化率を算出する電圧変化率算出式を導出して前記電圧測定時間経過時点の前記二次電池の電圧変化率を算出し、予め作成された電圧変化率と電圧補正値との相関を表す第1の相関式に前記電圧変化率を代入して前記電圧補正値を算出することを特徴とする。   A first aspect of a state detection method for a secondary battery according to the present invention is a state detection method for a secondary battery that performs state detection by estimating a voltage correction value for correcting a voltage change due to polarization of the secondary battery, A plurality of voltage measurement values of the secondary battery are acquired in a period from the end of charging / discharging of the secondary battery until a predetermined voltage measurement time elapses, and the secondary battery with the elapsed time from the end of charging / discharging as a variable. A coefficient of a voltage approximation formula for calculating a voltage of the battery is determined using the plurality of voltage measurement values, and a voltage change rate calculation formula for calculating a voltage change rate of the secondary battery is derived from the voltage approximation formula, The voltage change rate of the secondary battery at the time of voltage measurement time is calculated, and the voltage change rate is substituted into a first correlation equation representing the correlation between the voltage change rate and the voltage correction value created in advance. A correction value is calculated.

この発明の二次電池の状態検知方法の他の態様は、前記電圧近似式の係数は、前記電圧測定値を取得する度に逐次計算して決定することを特徴とする。   In another aspect of the method for detecting a state of a secondary battery according to the present invention, the coefficient of the voltage approximation formula is determined by sequentially calculating each time the voltage measurement value is acquired.

この発明の二次電池の状態検知方法の他の態様は、前記電圧変化率算出式は、前記電圧近似式の1次導関数であることを特徴とする。   In another aspect of the method for detecting a state of a secondary battery according to the present invention, the voltage change rate calculation formula is a first derivative of the voltage approximation formula.

この発明の二次電池の状態検知方法の他の態様は、前記電圧測定時間は、予め定められた第1の電圧測定時間TM1か、または予め定められた第2の測定時間TM2(<TM1)以上で再び充放電が開始されるまでの経過時間かのいずれか短い時間であることを特徴とする。   In another aspect of the method for detecting a state of the secondary battery according to the present invention, the voltage measurement time is a predetermined first voltage measurement time TM1 or a predetermined second measurement time TM2 (<TM1). Thus, the elapsed time until charging / discharging is started again is any shorter time.

この発明の二次電池の状態検知方法の他の態様は、前記第1の相関式は、前記二次電池の温度及び充電率SOCの少なくともいずれか1つを変数として含んでいることを特徴とする。   Another aspect of the secondary battery state detection method of the present invention is characterized in that the first correlation equation includes at least one of the temperature of the secondary battery and the charge rate SOC as a variable. To do.

この発明の二次電池の状態検知方法の他の態様は、前記第1の相関式の演算には、直前に算出された充電率SOCを用いることを特徴とする。   Another aspect of the secondary battery state detection method of the present invention is characterized in that the charge rate SOC calculated immediately before is used for the calculation of the first correlation equation.

この発明の二次電池の状態検知方法の他の態様は、前記電圧測定時間経過後も前記二次電池の電流測定値の絶対値が所定の電流閾値以下の場合には、前記電圧補正値を前回算出してからの経過時間の関数である所定の減衰演算式を用いて更新することを特徴とする。   According to another aspect of the method for detecting the state of the secondary battery of the present invention, the absolute value of the current measurement value of the secondary battery is not more than a predetermined current threshold even after the voltage measurement time has elapsed. The update is performed using a predetermined attenuation calculation expression that is a function of an elapsed time since the previous calculation.

この発明の二次電池の状態検知方法の他の態様は、前記減衰演算式は、さらに前記二次電池の温度の関数であることを特徴とする。   In another aspect of the secondary battery state detection method of the present invention, the attenuation calculation expression is further a function of the temperature of the secondary battery.

この発明の二次電池の状態検知方法の他の態様は、前記電圧補正値を、少なくとも1つの補正量として前記二次電池の安定電圧を推定することを特徴とする。
ここでの安定電圧とは、安定開放端電圧(安定OCV)とは異なり、バッテリの端子に負荷が接続された状態において、実質的に充放電を長時間停止したときの電圧であり、分極の影響がない電圧である。
Another aspect of the secondary battery state detection method of the present invention is characterized in that the stable voltage of the secondary battery is estimated using the voltage correction value as at least one correction amount.
The stable voltage here is different from the stable open-circuit voltage (stable OCV), and is a voltage when charging / discharging is substantially stopped for a long time in a state where a load is connected to the battery terminal. The voltage has no effect.

この発明の二次電池の状態検知方法の他の態様は、前記二次電池の充電率SOCと安定電圧とを予め第2の相関式で表現し、前記第2の相関式に前記算出された安定電圧を代入して前記充電率SOCを推定することを特徴とする。   According to another aspect of the method for detecting a state of the secondary battery of the present invention, the charge rate SOC and the stable voltage of the secondary battery are expressed in advance by a second correlation formula, and the calculation is performed in the second correlation formula. The charging rate SOC is estimated by substituting a stable voltage.

この発明の二次電池状態検知装置の第1の態様は、二次電池の電圧、電流、及び温度を測定する状態検知センサと、前記二次電池の電圧変化率と電圧補正値との相関を表す第1の相関式を事前に記憶する記憶部と、前記二次電池の充放電を終了してから所定の電圧測定時間を経過するまでの期間に前記状態検知センサから電圧測定値を複数取得し、充放電終了からの経過時間を変数として前記二次電池の電圧を算出する電圧近似式の係数を前記複数の電圧測定値を用いて決定し、前記電圧近似式から前記二次電池の電圧変化率を算出する電圧変化率算出式を導出して前記電圧測定時間経過時点の前記二次電池の電圧変化率を算出し、前記第1の相関式に前記電圧変化率を代入して前記電圧補正値を算出する演算処理部と、を備えることを特徴とする。   The first aspect of the secondary battery state detection device of the present invention is a state detection sensor that measures the voltage, current, and temperature of the secondary battery, and the correlation between the voltage change rate of the secondary battery and the voltage correction value. A storage unit that stores in advance a first correlation equation to be expressed, and a plurality of voltage measurement values are acquired from the state detection sensor in a period from when charging / discharging of the secondary battery is completed until a predetermined voltage measurement time elapses And determining a coefficient of a voltage approximation formula for calculating the voltage of the secondary battery using the elapsed time from the end of charge / discharge as a variable, using the plurality of voltage measurement values, and calculating the voltage of the secondary battery from the voltage approximation formula. A voltage change rate calculation formula for calculating a change rate is derived to calculate a voltage change rate of the secondary battery at the time when the voltage measurement time has elapsed, and the voltage change rate is substituted into the first correlation equation to calculate the voltage An arithmetic processing unit for calculating a correction value. To.

この発明の二次電池電源システムの第1の態様は、前記二次電池と、上記に記載の二次電池状態検知装置と、を備えることを特徴とする。   A first aspect of the secondary battery power supply system according to the present invention includes the secondary battery and the secondary battery state detection device described above.

本発明の二次電池の状態検知方法、状態検知装置及び二次電池電源システムによれば、充放電終了後の電圧変化率から電圧補正値を高精度に推定することにより、分極による電圧変化を補正して二次電池の状態検知を高精度に行う二次電池の状態検知方法、状態検知装置及び二次電池電源システムを提供することが可能となる。   According to the state detection method, the state detection device, and the secondary battery power supply system of the present invention, the voltage change due to polarization is estimated by accurately estimating the voltage correction value from the voltage change rate after the end of charge / discharge. It is possible to provide a secondary battery state detection method, a state detection device, and a secondary battery power supply system that perform correction and detect the state of the secondary battery with high accuracy.

図面を参照して本発明の好ましい実施の形態における二次電池の状態検知方法、状態検知装置及び二次電池電源システムの構成について詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   Configurations of a secondary battery state detection method, a state detection device, and a secondary battery power supply system in a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each component which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

本発明の第1の実施の形態に係る二次電池の状態検知方法を以下に説明する。二次電池は、充放電終了後もしばらくは分極の影響が残って電圧が安定していない。本実施形態の状態検知方法では、このような分極の影響による電圧変化を補正する電圧補正値を推定し、この電圧補正値で電圧測定値を補正して安定電圧を推定することで状態検知を行っている。さらに、安定電圧と充電率との相関を用いて充電率を推定し、これより二次電池の充電率等の状態検知を行うことができる。   A method for detecting the state of the secondary battery according to the first embodiment of the present invention will be described below. The secondary battery remains polarized for a while after charging and discharging, and the voltage is not stable. In the state detection method of this embodiment, a voltage correction value for correcting a voltage change due to the influence of such polarization is estimated, and the state detection is performed by correcting the voltage measurement value with this voltage correction value and estimating a stable voltage. Is going. Furthermore, it is possible to estimate the charging rate using the correlation between the stable voltage and the charging rate, and to detect the state such as the charging rate of the secondary battery.

発明者は、分極の影響を補正するための電圧補正値が電圧変化率との間に図1に示すような相関があることを見出した。図1は、縦軸を分極に対する電圧補正値ΔV[V]とし、横軸を電圧変化率m[mV/秒]としたときの両者の相関を示している。本実施形態では、このような相関を利用して分極に対する電圧補正値を高精度に推定している。   The inventor has found that there is a correlation as shown in FIG. 1 between the voltage correction value for correcting the influence of polarization and the voltage change rate. FIG. 1 shows the correlation between the vertical axis with voltage correction value ΔV [V] for polarization and the horizontal axis with voltage change rate m [mV / sec]. In the present embodiment, such a correlation is used to estimate the voltage correction value for polarization with high accuracy.

充放電終了後の分極による二次電池の電圧変化は、直前の充放電の履歴によって大きく異なる。充放電終了後の電圧変化の一例を図2に示す。同図では、縦軸を二次電池の電池電圧とし、横軸を充放電終了からの経過時間としたときの分極緩和による電圧変化を示している。ここでは、二次電池の温度が25℃で充放電終了前の充放電履歴が異なる5つのケースについて、充放電終了後の電圧変化をそれぞれ符号21〜25で示している。また、比較のために二次電池の安定電圧を符号20で示している。充放電履歴については、自動車に搭載された二次電池を想定し、走行中(発電機動作中)はほぼ充電状態が続き、エンジン停止後(発電機停止後)は放電、あるいは実質的に充放電のない状態となるケースとしている。   The voltage change of the secondary battery due to the polarization after the end of charging / discharging varies greatly depending on the previous charging / discharging history. An example of the voltage change after completion | finish of charging / discharging is shown in FIG. In the figure, the vertical axis represents the battery voltage of the secondary battery, and the horizontal axis represents the voltage change due to polarization relaxation when the elapsed time from the end of charge / discharge. Here, the voltage change after completion | finish of charging / discharging is each shown by the codes | symbols 21-25 about five cases from which the temperature of a secondary battery differs in the charging / discharging log | history before completion | finish of charging / discharging. For comparison, the stable voltage of the secondary battery is denoted by reference numeral 20. As for the charge / discharge history, assuming a secondary battery installed in a car, the battery is almost fully charged while driving (during generator operation), discharged or substantially charged after the engine is stopped (after generator stopped). In this case, there is no discharge.

電圧変化21は、充電を終了した後はほとんど放電することなく充放電を終了したときの電圧の経時変化を示している。電圧変化22の場合は、充電を終了した後放電を少し行ってから充放電を終了している。さらに、電圧変化23、24、25の順に充電終了後の放電容量が大きくなっており、特に電圧変化25の場合には、放電容量が大きく放電終了時の電圧が安定電圧20より低下している。
さらに放電が続くと、いずれ安定電圧20に下から漸近する電圧変化となるが、この場合は、図1について電圧変化率mを正の値まで拡張すれば同様の補正が可能となる。
The voltage change 21 indicates a change with time in voltage when charging / discharging is completed with almost no discharge after charging is completed. In the case of the voltage change 22, the charging / discharging is finished after a little discharging after the charging is finished. Further, the discharge capacity after completion of charging increases in the order of voltage changes 23, 24, and 25. In particular, in the case of voltage change 25, the discharge capacity is large and the voltage at the end of discharge is lower than the stable voltage 20. .
If the discharge continues, the voltage change gradually approaches the stable voltage 20 from below. In this case, the same correction can be made by extending the voltage change rate m to a positive value in FIG.

充放電終了後の電圧変化は、直前の放電容量が大きいほど充放電終了直後の電圧が低くなり、その後の電圧上昇が大きくかつ上昇期間も長くなっている。このように、充放電終了直前の充放電履歴によって、充放電終了後の電圧変化が大きく異なっており、安定電圧20との差、すなわち分極の影響を有する電圧21〜25から安定電圧20を推定するための電圧補正値は、それぞれで大きく異なっている。充放電終了前の二次電池は、極めて多様な充放電を行っていると考えられることから、このような充放電終了前の履歴に応じて電圧補正値を決定することは極めて困難である。   As for the voltage change after the end of charging / discharging, the voltage immediately after the end of charging / discharging decreases as the immediately preceding discharge capacity increases, and the subsequent voltage increase increases and the increase period also increases. Thus, the voltage change after the end of charge / discharge is greatly different depending on the charge / discharge history immediately before the end of charge / discharge, and the stable voltage 20 is estimated from the difference from the stable voltage 20, that is, the voltages 21 to 25 having the influence of polarization. The voltage correction values for doing so differ greatly. Since the secondary battery before the end of charging / discharging is considered to perform extremely various charging / discharging, it is extremely difficult to determine the voltage correction value according to the history before the end of charging / discharging.

しかしながら、図2より、充放電終了からある程度の時間(TM2)が経過すると、いずれのケースも電圧がほぼ一様に減少する方向に変化していることがわかる。そして、安定電圧20との差が大きいほど電圧の減少率が大きくなっている。そこで、充放電終了後の所定時間(TM1)経過したときの電圧変化21〜25の変化率mと、そのときの安定電圧20との差である電圧補正値ΔVとの相関を、図1の符号10で示している。図1より、電圧補正値ΔVが電圧変化率mとともに一意的に変化することが分かった。   However, it can be seen from FIG. 2 that when a certain amount of time (TM2) has elapsed since the end of charging / discharging, the voltage changes in a direction in which the voltage decreases almost uniformly. The voltage decrease rate increases as the difference from the stable voltage 20 increases. Therefore, the correlation between the change rate m of the voltage changes 21 to 25 when a predetermined time (TM1) after the end of charge / discharge has elapsed and the voltage correction value ΔV which is the difference between the stable voltage 20 at that time is shown in FIG. Reference numeral 10 indicates. FIG. 1 shows that the voltage correction value ΔV changes uniquely with the voltage change rate m.

そこで、本実施形態の状態検知方法では、上記のような二次電池の電圧特性を用いて電圧補正値ΔVを算出または推定するようにしている。すなわち、充放電終了後の電圧測定値から所定の経過時間における電圧変化率mを算出し、図1に示す相関を用いて算出した電圧変化率mから電圧補正値ΔVを求めている。電圧変化率mを算出する所定の経過時間は、図2に示したように、少なくとも電圧がほぼ一様に減少する経過時間TM2より長くする必要がある。この所定経過時間を長くするほど充放電終了前の充放電履歴の影響が小さくなるが、電圧変化率mも小さくなって却って精度が低下するおそれがあり、また電圧補正値ΔVの算出までに時間がかかりすぎるといった問題もある。   Therefore, in the state detection method of the present embodiment, the voltage correction value ΔV is calculated or estimated using the voltage characteristics of the secondary battery as described above. That is, the voltage change rate m at a predetermined elapsed time is calculated from the voltage measurement value after the end of charge / discharge, and the voltage correction value ΔV is obtained from the voltage change rate m calculated using the correlation shown in FIG. As shown in FIG. 2, the predetermined elapsed time for calculating the voltage change rate m needs to be longer than at least the elapsed time TM2 at which the voltage decreases almost uniformly. The longer the predetermined elapsed time is, the smaller the influence of the charging / discharging history before the end of charging / discharging is, but the voltage change rate m is also decreased, and there is a possibility that the accuracy is lowered, and it takes time until the voltage correction value ΔV is calculated. There is also a problem that it takes too much.

そこで本実施形態では、電圧が一様に減少しかつ電圧変化率mの精度もある程度確保できる(図1の相関を適用するのに好適となる)ような経過時間を予め決定し、これを第1の測定時間TM1として用いている。充放電終了後、第1の測定時間TM1が経過するまでの期間電圧測定値を複数取得し、第1の測定時間TM1に達した時点でそのときの電圧変化率mを算出し、算出した電圧変化率mから図1に示した相関を用いて電圧補正値ΔVを算出する。   Therefore, in the present embodiment, an elapsed time is determined in advance so that the voltage can be reduced uniformly and the accuracy of the voltage change rate m can be secured to some extent (suitable for applying the correlation of FIG. 1). 1 measurement time TM1. After charge / discharge is completed, a plurality of voltage measurements are acquired for a period until the first measurement time TM1 elapses. When the first measurement time TM1 is reached, the voltage change rate m is calculated at that time, and the calculated voltage The voltage correction value ΔV is calculated from the change rate m using the correlation shown in FIG.

あるいは、充放電終了後電圧がほぼ一様に減少する経過時間TM2を第2の測定時間としてあらかじめ設定し、第2の測定時間TM2を経過してから第1の測定時間TM1までの期間、電圧測定値を取得する度に測定時間TM1経過時点での電圧変化率mを推定して更新し、推定した電圧変化率mから図1に示した相関を用いて電圧補正値ΔVを推定する。これにより、第1の測定時間TM1が経過する前の第2の測定時間TM2の時点から電圧補正値ΔVの推定値を得ることができる。   Alternatively, an elapsed time TM2 in which the voltage decreases substantially uniformly after the end of charge / discharge is set in advance as the second measurement time, and the voltage from the second measurement time TM2 to the first measurement time TM1 Every time the measurement value is acquired, the voltage change rate m at the time when the measurement time TM1 has elapsed is estimated and updated, and the voltage correction value ΔV is estimated from the estimated voltage change rate m using the correlation shown in FIG. Thereby, the estimated value of voltage correction value (DELTA) V can be obtained from the time of 2nd measurement time TM2 before 1st measurement time TM1 passes.

また、第2の測定時間TM2を経過してから第1の測定時間TM1に達するまでの途中で充放電が再開された場合でも、充放電再開直前に更新された電圧変化率mを用いて電圧補正値ΔVを推定することができる。上記のようにして電圧補正値ΔVが推定されると、これを用いて測定時間TM1経過時点での電圧推定値を補正して安定電圧を推定することができる。   Further, even when charging / discharging is resumed in the middle of reaching the first measurement time TM1 after the second measurement time TM2 has elapsed, the voltage change rate m updated immediately before the resumption of charge / discharge is used. The correction value ΔV can be estimated. When the voltage correction value ΔV is estimated as described above, the stable voltage can be estimated by correcting the voltage estimation value when the measurement time TM1 has elapsed.

図2に示すような充放電終了後の電圧の経時変化から電圧変化率mを求めるために、本実施形態では電圧の経時変化を所定の関数を用いた電圧近似式で近似する。そして、電圧変化率mを算出する電圧変化率算出式を電圧近似式から導出しており、具体的には電圧近似式の1次導関数を電圧変化率算出式に用いることができる。充放電終了からの経過時間をtとし、電圧近似式をFV(t)とするとき、電圧近似式FV(t)は例えば指数関数を用いて下記のように表すことができる。   In this embodiment, the voltage change rate m is approximated by a voltage approximation expression using a predetermined function in order to obtain the voltage change rate m from the voltage change with time after the end of charging and discharging as shown in FIG. A voltage change rate calculation formula for calculating the voltage change rate m is derived from the voltage approximation formula. Specifically, the first derivative of the voltage approximation formula can be used as the voltage change rate calculation formula. When the elapsed time from the end of charge / discharge is t and the voltage approximation formula is FV (t), the voltage approximation formula FV (t) can be expressed as follows using an exponential function, for example.

FV(t)=A1*exp(A5*t)+A2*exp(A6*t)
+A3*exp(A7*t)+A4*exp(A8*t)+A9 (1)
ここで、A1〜A9はフィッティングパラメータである。
FV (t) = A1 * exp (A5 * t) + A2 * exp (A6 * t)
+ A3 * exp (A7 * t) + A4 * exp (A8 * t) + A9 (1)
Here, A1 to A9 are fitting parameters.

電圧近似式を上記のように定義した場合、電圧変化率算出式は下記に示す電圧近似式FV(t)の1次導関数とすることができる。
FV’(t)=A1*A5*exp(A5*t)
+A2*A6*exp(A6*t)
+A3*A7*exp(A7*t)
+A4*A8*exp(A8*t) (2)
これより、第1の測定時間TM1における電圧変化率mは、次式により算出される。
m=FV’(TM1) (3)
When the voltage approximation formula is defined as described above, the voltage change rate calculation formula can be the first derivative of the voltage approximation formula FV (t) shown below.
FV ′ (t) = A1 * A5 * exp (A5 * t)
+ A2 * A6 * exp (A6 * t)
+ A3 * A7 * exp (A7 * t)
+ A4 * A8 * exp (A8 * t) (2)
Accordingly, the voltage change rate m in the first measurement time TM1 is calculated by the following equation.
m = FV ′ (TM1) (3)

図2に示す電圧変化21〜25を、それぞれ電圧近似式FV(t)を用いてフィッティングし、それぞれで決定された係数A1〜A8を用いて1次導関数FV’(t)の時間tに第1の測定時間TM1を代入してそれぞれの電圧変化率mを算出する。図1の符号10で示す点は、第1の測定時間TM1=1770秒としたときの電圧変化率mと電圧補正値ΔVとの相関を示している。   The voltage changes 21 to 25 shown in FIG. 2 are fitted using the voltage approximation formulas FV (t), respectively, and the coefficients A1 to A8 determined respectively are used at the time t of the first derivative FV ′ (t). Each voltage change rate m is calculated by substituting the first measurement time TM1. The point indicated by reference numeral 10 in FIG. 1 indicates the correlation between the voltage change rate m and the voltage correction value ΔV when the first measurement time TM1 = 1770 seconds.

また、図1に示した電圧補正値ΔVと電圧変化率mとの相関についても、所定の関数を用いて第1の相関式で表すことができる。第1の相関式をFD(m)としたとき、FD(m)は所定の関数を用いて図1に示す実測データ10をフィッティングして決定することができる。図1では、フィッティングで決定された第1の相関式FD(m)を、符号11で示している。第1の相関式FD(m)を形成する関数として、指数関数や多項式等を用いることができる。   The correlation between the voltage correction value ΔV and the voltage change rate m shown in FIG. 1 can also be expressed by the first correlation equation using a predetermined function. When the first correlation equation is FD (m), FD (m) can be determined by fitting the actual measurement data 10 shown in FIG. 1 using a predetermined function. In FIG. 1, the first correlation equation FD (m) determined by fitting is indicated by reference numeral 11. An exponential function, a polynomial, or the like can be used as a function that forms the first correlation equation FD (m).

第1の相関式FD(m)は、二次電池の温度Temp及び充電率SOCの少なくともいずれか一つを変数として含むように形成するのがよい。特に、図2に示した電圧変化は、二次電池の温度Tempが高い場合には速くなり、温度Tempが低い場合には遅くなる。その結果、図1に示した電圧変化率mと電圧補正値ΔVとの相関も異なってくる。図1に示した例は、二次電池の温度Tempが25℃のときのものである。温度Tempによって電圧変化の速さが異なることから、電圧変化率mを算出する第1の測定時間TM1(および第2の測定時間TM2)も温度Tempによって変更するのが好ましい。   The first correlation equation FD (m) is preferably formed so as to include at least one of the temperature Temp and the charging rate SOC of the secondary battery as a variable. In particular, the voltage change shown in FIG. 2 is faster when the temperature Temp of the secondary battery is high, and is slower when the temperature Temp is low. As a result, the correlation between the voltage change rate m shown in FIG. 1 and the voltage correction value ΔV also differs. The example shown in FIG. 1 is when the temperature Temp of the secondary battery is 25 ° C. Since the voltage change speed varies depending on the temperature Temp, the first measurement time TM1 (and the second measurement time TM2) for calculating the voltage change rate m is also preferably changed depending on the temperature Temp.

また、第1の相関式FD(m)が二次電池の充電率SOCを変数として含む場合は、第1の相関式FD(m)の算出に用いる充電率SOCとして、充放電終了時点でのSOCを用いることができる。   When the first correlation equation FD (m) includes the charging rate SOC of the secondary battery as a variable, the charging rate SOC used for calculating the first correlation equation FD (m) SOC can be used.

電圧近似式FV(t)のフィッティングは、充放電終了後第1の測定時間TM1に達した時点でそれまでに取得した電圧測定値をすべて用いて行うことができ、あるいは第2の測定時間TM2経過後に電圧測定値を取得する度にそれまでに取得した電圧測定値を用いて逐次フィッティングを行うようにしてもよい。電圧測定値を取得する度に逐次フィッティングを行う場合には、第1の測定時間TM1に達する前でも測定時間TM1経過時点の電圧変化率mを推定し、推定した電圧変化率mから第1の相関式を用いて測定時間TM1経過時点での電圧補正値を推定することができる。   The fitting of the voltage approximate expression FV (t) can be performed using all the voltage measurement values acquired so far when the first measurement time TM1 is reached after the end of charge / discharge, or the second measurement time TM2 Each time a voltage measurement value is acquired after the elapse of time, the voltage measurement value acquired so far may be used for sequential fitting. When sequential fitting is performed each time a voltage measurement value is acquired, the voltage change rate m at the time when the measurement time TM1 has elapsed is estimated even before the first measurement time TM1 is reached, and the first voltage change rate m is estimated from the estimated voltage change rate m. The voltage correction value at the time when the measurement time TM1 has elapsed can be estimated using the correlation equation.

第1の測定時間TM1における電圧変化率mは、たとえば第1の測定時間TM1及びその前後の複数の電圧測定値から算出することも可能である。しかしながら、第1の測定時間TM1の時点では電圧の変化が小さく、電圧の測定誤差が電圧変化率の算出結果に大きく影響する。これに対し、第1の測定時間TM1の間に取得した測定データを用いて電圧近似式を高精度にフィッティングし、これを用いて電圧変化率を算出する場合には、電圧の測定誤差の影響を低減して電圧変化率を高精度に算出することができる。また、上記説明のように、電圧近似式のフィッティングを逐次計算して行う場合には、第1の測定時間TM1に達する前でも電圧補正値ΔVを推定することが可能となる。   The voltage change rate m in the first measurement time TM1 can be calculated from, for example, the first measurement time TM1 and a plurality of voltage measurement values before and after the first measurement time TM1. However, the voltage change is small at the time of the first measurement time TM1, and the voltage measurement error greatly affects the calculation result of the voltage change rate. On the other hand, when fitting the voltage approximation equation with high accuracy using the measurement data acquired during the first measurement time TM1 and calculating the voltage change rate using this, the influence of the voltage measurement error And the voltage change rate can be calculated with high accuracy. Further, as described above, when the fitting of the voltage approximation formula is sequentially performed, the voltage correction value ΔV can be estimated even before the first measurement time TM1 is reached.

上記説明のように、充放電終了前の充放電履歴にかかわらず、図2に示した電圧変化21〜25のいずれの場合も、少なくとも第2の測定時間TM2が経過した後は電圧が単調に減少して安定電圧20に接近している。そして、第1の測定時間TM1に達した時点以降の電圧補正値ΔVの経時変化を、同時点の電圧補正値ΔVで規格化して示すと、いずれのケースも図3に示すような減衰曲線を描く。   As described above, regardless of the charge / discharge history before the end of charge / discharge, in any case of the voltage changes 21 to 25 shown in FIG. 2, the voltage monotonously after at least the second measurement time TM2 has elapsed. It decreases and approaches the stable voltage 20. Then, when the time-dependent change of the voltage correction value ΔV after the time when the first measurement time TM1 is reached is normalized by the voltage correction value ΔV at the same point, the attenuation curve as shown in FIG. Draw.

本実施形態では、図3に示す減衰曲線を減衰演算式G(t)(符号30)で表し、第1の測定時間TM1経過時に電圧補正値ΔVが算出されると、それ以降の電圧補正値ΔVは減衰演算式G(t)を用いて算出する。図3は、横軸を第1の測定時間TM1以降の経過時間とし、縦軸を第1の測定時間TM1経過時の規格化した電圧補正値ΔVとした場合の電圧補正値の経時変化を示している。   In the present embodiment, the attenuation curve shown in FIG. 3 is represented by an attenuation calculation expression G (t) (reference numeral 30), and when the voltage correction value ΔV is calculated when the first measurement time TM1 has elapsed, the subsequent voltage correction values are calculated. ΔV is calculated using the attenuation calculation formula G (t). FIG. 3 shows the change over time of the voltage correction value when the horizontal axis is the elapsed time after the first measurement time TM1 and the vertical axis is the normalized voltage correction value ΔV when the first measurement time TM1 has elapsed. ing.

第1の測定時間TM1経過以降の電圧補正値ΔVは、第1の測定時間TM1経過時に算出された電圧補正値ΔVの大きさによらず同じ減衰演算式G(t)を用いて算出することができるが、二次電池の温度Tempが変化すると電圧補正値ΔVの減衰の速さが異なってくるため、同一の減衰演算式G(t)を用いることはできない。そこで、本実施形態では、減衰演算式G(t)が二次電池温度Tempを変数として含み、第1の測定時間TM1経過時の電圧補正値ΔVから、それ以降の経過時間tにおける電圧補正値ΔV’を次式で算出する。
ΔV’=ΔV*G(t) (4)
The voltage correction value ΔV after the first measurement time TM1 has elapsed is calculated using the same attenuation calculation formula G (t) regardless of the magnitude of the voltage correction value ΔV calculated when the first measurement time TM1 has elapsed. However, when the temperature Temp of the secondary battery changes, the speed of attenuation of the voltage correction value ΔV changes, so the same attenuation calculation expression G (t) cannot be used. Therefore, in the present embodiment, the attenuation calculation equation G (t) includes the secondary battery temperature Temp as a variable, and the voltage correction value ΔV at the subsequent elapsed time t from the voltage correction value ΔV when the first measurement time TM1 has elapsed. ΔV ′ is calculated by the following equation.
ΔV ′ = ΔV * G (t) (4)

図3に示した減衰演算式G(t)は、例えば指数関数を用いて次式のように形成することができる。
G(t)=exp(B*t) (5)
この場合、時間tは必ずしも第1の測定時間TM1経過時からの経過時間にする必要はなく、例えば第1の測定時間TM1から時間t1だけ経過した時点で上記の式(4)にt1を代入して電圧補正値ΔV’を算出した場合、さらに時間t2だけ経過したときの電圧補正値ΔV’’は、式(4)のΔVをΔV’、tをt2として算出することができる。
The attenuation calculation expression G (t) shown in FIG. 3 can be formed as the following expression using an exponential function, for example.
G (t) = exp (B * t) (5)
In this case, the time t does not necessarily have to be an elapsed time from the time when the first measurement time TM1 has elapsed. Then, when the voltage correction value ΔV ′ is calculated, the voltage correction value ΔV ″ when the time t2 further elapses can be calculated with ΔV in Expression (4) as ΔV ′ and t as t2.

上記のようにして算出された電圧補正値ΔVは、二次電池の安定電圧を求めるのに用いることができる。安定電圧は、電圧補正値ΔVを算出した時点の電圧測定値からこの電圧補正値ΔVを減算することで得られる。また、安定電圧は二次電池の充電率SOCと所定の相関があることから、所定の相関式を用いて安定電圧から二次電池の充電率SOCを推定することができる。このSOCを用いた二次電池の状態検知方法として、充電率が適切に維持されているか、あるいは充電を行う必要があるかを判定することができる   The voltage correction value ΔV calculated as described above can be used to obtain the stable voltage of the secondary battery. The stable voltage is obtained by subtracting the voltage correction value ΔV from the voltage measurement value at the time when the voltage correction value ΔV is calculated. Moreover, since the stable voltage has a predetermined correlation with the charging rate SOC of the secondary battery, the charging rate SOC of the secondary battery can be estimated from the stable voltage using a predetermined correlation equation. As a method for detecting the state of the secondary battery using this SOC, it is possible to determine whether the charging rate is properly maintained or whether charging is required.

安定電圧(Vtとする)と充電率SOCとの間には、図4に示すような相関がある。この相関を第2の相関式FS(Vt)を用いて表現し、第2の相関式FS(Vt)に上記で求めた安定電圧Vtを代入することにより充電率SOCを算出する。そして、算出されたSOCを所定の閾値SOCthと比較し、SOCがSOCth以上の場合には適切な充電率が維持されていると判定し、SOCth未満の場合には充電が必要と判定することができる。   There is a correlation as shown in FIG. 4 between the stable voltage (Vt) and the charging rate SOC. This correlation is expressed using the second correlation equation FS (Vt), and the charging rate SOC is calculated by substituting the stable voltage Vt obtained above into the second correlation equation FS (Vt). Then, the calculated SOC is compared with a predetermined threshold SOCth. When the SOC is equal to or higher than the SOCth, it is determined that an appropriate charging rate is maintained. When the SOC is lower than the SOCth, it is determined that charging is necessary. it can.

本実施形態の二次電池の状態検知方法の処理の流れを、図5に示す流れ図を用いて説明する。本実施形態の二次電池の状態検知方法は、充放電終了から第1の測定時間TM1が経過した時点において、その時点の測定電圧と安定電圧との差である電圧補正値ΔVを算出する。また、第1の測定時間TM1以降の電圧補正値ΔVは、前回算出した電圧補正値ΔVにそれ以降の経過時間tを用いた減衰演算式G(t)を乗算して算出することができる。   The process flow of the secondary battery state detection method of the present embodiment will be described with reference to the flowchart shown in FIG. The secondary battery state detection method of the present embodiment calculates a voltage correction value ΔV that is the difference between the measured voltage and the stable voltage at the time when the first measurement time TM1 has elapsed since the end of charge / discharge. The voltage correction value ΔV after the first measurement time TM1 can be calculated by multiplying the previously calculated voltage correction value ΔV by an attenuation calculation expression G (t) using the subsequent elapsed time t.

図5に示す処理の流れでは、時間間隔ΔTで周期的に処理を行うものとしている。まず、ステップS1では、充放電終了からの経過時間Tを0に初期化している。つぎのステップS2において、所定の状態検知センサから二次電池の電圧測定値Vm及び電流測定値Imを取得する。   In the processing flow shown in FIG. 5, processing is performed periodically at time intervals ΔT. First, in step S1, an elapsed time T from the end of charge / discharge is initialized to zero. In the next step S2, a voltage measurement value Vm and a current measurement value Im of the secondary battery are obtained from a predetermined state detection sensor.

ステップS3では、電流測定値の絶対値|Im|が所定の閾値Ithより大きいか否かを判定しており、絶対値|Im|が所定の閾値Ithより大きい場合は、充放電が再開されたと判定してステップS1の初期化に戻る。また、絶対値|Im|が所定の閾値Ith以下の場合は、充放電が休止状態(充放電が実質的に行われていない状態)にあると判定してステップS4に進む。   In step S3, it is determined whether or not the absolute value | Im | of the current measurement value is larger than a predetermined threshold value Ith. If the absolute value | Im | is larger than the predetermined threshold value Ith, charging / discharging is resumed. Determine and return to the initialization of step S1. On the other hand, if the absolute value | Im | is equal to or smaller than the predetermined threshold value Ith, it is determined that charging / discharging is in a resting state (a state where charging / discharging is substantially not performed), and the process proceeds to step S4.

ステップS4では、経過時間Tに時間間隔ΔTを加算して充放電終了からの経過時間Tを算出する。続くステップS5では、経過時間Tが第1の測定時間TM1に達しているかを判定し、経過時間Tが第1の測定時間TM1に達していない場合はステップS6に進む。また、経過時間Tが第1の測定時間TM1に一致する場合はステップS7に進み、経過時間Tが第1の測定時間TM1を超えている場合はステップS9に進む。   In step S4, the time interval ΔT is added to the elapsed time T to calculate the elapsed time T from the end of charge / discharge. In subsequent step S5, it is determined whether or not the elapsed time T has reached the first measurement time TM1, and if the elapsed time T has not reached the first measurement time TM1, the process proceeds to step S6. When the elapsed time T matches the first measurement time TM1, the process proceeds to step S7, and when the elapsed time T exceeds the first measurement time TM1, the process proceeds to step S9.

ステップS5の判定でステップS6に進んだ場合は、電圧測定値Vmを保存して次の周期に進む。また、ステップS7に進んだ場合は、ステップS7で充放電終了後に保存した複数の電圧測定値を用いて電圧近似式FV(T)をフィッティングする。続くステップS8では、フィッティングされた電圧近似式FV(T)の一次導関数FV’(T)に第1の測定時間TM1を代入して電圧変化率mを算出する。さらに、算出した電圧変化率mを第1の相関式FD(m)に代入して電圧補正値ΔVを算出する。   When the process proceeds to step S6 in the determination of step S5, the voltage measurement value Vm is stored and the process proceeds to the next cycle. When the process proceeds to step S7, the voltage approximate expression FV (T) is fitted using the plurality of voltage measurement values stored after the completion of charge / discharge in step S7. In the subsequent step S8, the voltage change rate m is calculated by substituting the first measurement time TM1 into the first derivative FV ′ (T) of the fitted voltage approximate expression FV (T). Furthermore, the voltage correction value ΔV is calculated by substituting the calculated voltage change rate m into the first correlation equation FD (m).

ステップS5の判定でステップS9に進んだ場合には、前回の周期で算出された電圧補正値ΔVに減衰演算式G(ΔT)を乗算することで、時間間隔ΔTの間に減衰した電圧補正値ΔVを算出する。   When the process proceeds to step S9 in the determination of step S5, the voltage correction value attenuated during the time interval ΔT by multiplying the voltage correction value ΔV calculated in the previous cycle by the attenuation calculation formula G (ΔT). ΔV is calculated.

ステップS8またはステップS9で電圧補正値ΔVが算出されると、ステップS10において、電圧測定値Vmから電圧補正値ΔVを減算することで、安定電圧Vtを算出する。さらに、この安定電圧Vtを第2の相関式FS(Vt)に代入することで、充電率SOCを推定する。ステップS11では、推定された充電率SOCを所定の閾値SOCthと比較し、SOCがSOCthより大きいときには二次電池の充電状態が良好であると判定する(ステップS12)一方、SOCがSOCth以下のときには充電が必要と判定する(ステップS13)。以下、次の周期に進む。   When the voltage correction value ΔV is calculated in step S8 or step S9, the stable voltage Vt is calculated by subtracting the voltage correction value ΔV from the voltage measurement value Vm in step S10. Further, the charging rate SOC is estimated by substituting this stable voltage Vt into the second correlation equation FS (Vt). In step S11, the estimated charging rate SOC is compared with a predetermined threshold SOCth, and when the SOC is greater than SOCth, it is determined that the secondary battery is in a good state of charge (step S12). It is determined that charging is necessary (step S13). Thereafter, the process proceeds to the next cycle.

なお、ここでは時間間隔ΔTを一定としているが、処理の流れによって最適な時間間隔は異なるため、流れに応じて適宜ΔTを変更するのが好ましい。一例として、ステップS3の休止状態か否かの判定を行う時間間隔を1秒以下とし、フィッティングのための電圧測定値Vmの保存(ステップS6)を行う時間間隔を数十秒〜1分程度とし、電圧補正値ΔVの更新(ステップS9)を行う時間間隔を1時間程度とすることができる。   Although the time interval ΔT is constant here, it is preferable that ΔT is appropriately changed according to the flow because the optimal time interval differs depending on the flow of processing. As an example, the time interval for determining whether or not it is in a resting state in step S3 is set to 1 second or less, and the time interval for storing the voltage measurement value Vm for fitting (step S6) is set to about several tens of seconds to 1 minute. The time interval for updating the voltage correction value ΔV (step S9) can be about 1 hour.

本発明の実施形態に係るバッテリ状態検知装置及びバッテリ電源システムを、図6を用いて以下に説明する。本実施形態のバッテリ電源システム100は、バッテリ101と本実施形態のバッテリ状態検知装置110とを有している。また、本実施形態のバッテリ状態検知装置110は、状態検知センサ111と演算処理部112と記憶部113とを有している。   A battery state detection device and a battery power supply system according to an embodiment of the present invention will be described below with reference to FIG. The battery power supply system 100 of the present embodiment includes a battery 101 and a battery state detection device 110 of the present embodiment. Further, the battery state detection device 110 according to the present embodiment includes a state detection sensor 111, an arithmetic processing unit 112, and a storage unit 113.

状態検知センサ111は、バッテリ101の電圧、電流、温度を測定するそれぞれ電圧センサ111a、電流センサ111b、温度センサ111cを備えている。記憶部113は、演算処理部112での演算に必要な第1の相関式FD(m)、第2の相関式FS(Vt)、減衰関数G(t)等を事前に記憶する。   The state detection sensor 111 includes a voltage sensor 111a, a current sensor 111b, and a temperature sensor 111c that measure the voltage, current, and temperature of the battery 101, respectively. The storage unit 113 stores in advance the first correlation equation FD (m), the second correlation equation FS (Vt), the attenuation function G (t), and the like necessary for the calculation in the calculation processing unit 112.

演算処理部112は、記憶部113から第1の相関式FD(m)、第2の相関式FS(Vt)、減衰関数G(t)等を読み込んだ後、単位時間ΔTを周期として上記実施形態のバッテリ状態検知方法による処理を行う。すなわち、単位時間ΔT毎に、状態検知センサ111からバッテリ101の電圧、電流等を読み込み、例えば図5に示した処理手順に従ってバッテリ101の充電率SOCを推定して状態検知を行う。これにより、バッテリ101の充電不足を早期に検出することが可能となる。   The arithmetic processing unit 112 reads the first correlation equation FD (m), the second correlation equation FS (Vt), the attenuation function G (t), and the like from the storage unit 113, and then executes the above-described operation with the unit time ΔT as a cycle. The process by the battery state detection method of a form is performed. That is, for each unit time ΔT, the voltage, current, and the like of the battery 101 are read from the state detection sensor 111, and the state of charge is detected by estimating the charge rate SOC of the battery 101 according to the processing procedure shown in FIG. Thereby, it becomes possible to detect the shortage of charging of the battery 101 at an early stage.

なお、本実施の形態における記述は、本発明に係る二次電池の状態検知方法、状態検知装置及び二次電池電源システムの一例を示すものであり、これに限定されるものではない。本実施の形態における二次電池の状態検知方法等の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the description in this Embodiment shows an example of the state detection method of the secondary battery which concerns on this invention, a state detection apparatus, and a secondary battery power supply system, It is not limited to this. The detailed configuration and detailed operation of the secondary battery state detection method and the like in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

本発明の実施の形態に係る二次電池の状態検知方法で用いる電圧変化率と電圧補正値との相関を示すグラフである。It is a graph which shows the correlation with the voltage change rate used with the state detection method of the secondary battery which concerns on embodiment of this invention, and a voltage correction value. 充放電終了後の二次電池の電圧変化の一例を示すグラフである。It is a graph which shows an example of the voltage change of the secondary battery after completion | finish of charging / discharging. 充放電終了から所定時間経過した時点以降の電圧補正値の変化の一例を示すグラフである。It is a graph which shows an example of the change of the voltage correction value after the time of predetermined time having passed since the end of charging / discharging. 二次電池の安定電圧と充電率との相関の一例を示すグラフである。It is a graph which shows an example of the correlation of the stable voltage and charging rate of a secondary battery. 実施形態に係る二次電池の状態検知方法の処理の流れを示す流れ図である。It is a flowchart which shows the flow of a process of the state detection method of the secondary battery which concerns on embodiment. 本発明の実施形態に係る二次電池状態検知装置及び二次電池電源システムの概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the secondary battery state detection apparatus and secondary battery power supply system which concern on embodiment of this invention.

符号の説明Explanation of symbols

100 二次電池電源システム
101 二次電池
110 二次電池状態検知装置
111 状態検知センサ
111a 電圧センサ
111b 電流センサ
111c 温度センサ
112 演算処理部
113 記憶部
DESCRIPTION OF SYMBOLS 100 Secondary battery power supply system 101 Secondary battery 110 Secondary battery state detection apparatus 111 State detection sensor 111a Voltage sensor 111b Current sensor 111c Temperature sensor 112 Operation processing part 113 Storage part

Claims (12)

二次電池の分極による電圧変化を補正する電圧補正値を推定して状態検知を行う二次電池の状態検知方法であって、
前記二次電池の充放電を終了してから所定の電圧測定時間を経過するまでの期間に前記二次電池の電圧測定値を複数取得し、
充放電終了からの経過時間を変数として前記二次電池の電圧を算出する電圧近似式の係数を前記複数の電圧測定値を用いて決定し、
前記電圧近似式から前記二次電池の電圧変化率を算出する電圧変化率算出式を導出して前記電圧測定時間経過時点の前記二次電池の電圧変化率を算出し、
予め作成された電圧変化率と電圧補正値との相関を表す第1の相関式に前記電圧変化率を代入して前記電圧補正値を算出する
ことを特徴とする二次電池の状態検知方法。
A state detection method for a secondary battery that performs state detection by estimating a voltage correction value for correcting a voltage change due to polarization of the secondary battery,
Obtaining a plurality of measured voltage values of the secondary battery in a period from the end of charging / discharging of the secondary battery until a predetermined voltage measurement time elapses;
A coefficient of a voltage approximation formula for calculating the voltage of the secondary battery with the elapsed time from the end of charge / discharge as a variable is determined using the plurality of voltage measurement values,
Deriving a voltage change rate calculation formula for calculating the voltage change rate of the secondary battery from the voltage approximation formula to calculate the voltage change rate of the secondary battery at the time when the voltage measurement time has elapsed,
A method for detecting a state of a secondary battery, wherein the voltage correction value is calculated by substituting the voltage change rate into a first correlation equation representing a correlation between a voltage change rate and a voltage correction value created in advance.
前記電圧近似式の係数は、前記電圧測定値を取得する度に逐次計算して決定する
ことを特徴とする請求項1に記載の二次電池の状態検知方法。
The method for detecting a state of a secondary battery according to claim 1, wherein the coefficient of the voltage approximation formula is sequentially calculated and determined each time the voltage measurement value is acquired.
前記電圧変化率算出式は、前記電圧近似式の1次導関数である
ことを特徴とする請求項1または2に記載の二次電池の状態検知方法。
The secondary battery state detection method according to claim 1, wherein the voltage change rate calculation formula is a first derivative of the voltage approximation formula.
前記電圧測定時間は、予め定められた第1の電圧測定時間TM1か、または予め定められた第2の測定時間TM2(<TM1)以上で再び充放電が開始されるまでの経過時間かのいずれか短い時間である
ことを特徴とする請求項1乃至3のいずれか1項に記載の二次電池の状態検知方法。
The voltage measurement time is either a predetermined first voltage measurement time TM1 or an elapsed time until charging / discharging is started again after a predetermined second measurement time TM2 (<TM1). The method for detecting a state of a secondary battery according to any one of claims 1 to 3, wherein the time is short.
前記第1の相関式は、前記二次電池の温度及び充電率SOCの少なくともいずれか1つを変数として含んでいる
ことを特徴とする請求項1乃至4のいずれか1項に記載の二次電池の状態検知方法。
The secondary correlation according to any one of claims 1 to 4, wherein the first correlation equation includes at least one of a temperature and a charge rate SOC of the secondary battery as a variable. Battery state detection method.
前記第1の相関式の演算には、直前に算出された充電率SOCを用いる
ことを特徴とする請求項5に記載の二次電池の状態検知方法。
The state detection method for a secondary battery according to claim 5, wherein the charge rate SOC calculated immediately before is used for the calculation of the first correlation equation.
前記電圧測定時間経過後も前記二次電池の電流測定値の絶対値が所定の電流閾値以下の場合には、前記電圧補正値を前回算出してからの経過時間の関数である所定の減衰演算式を用いて更新する
ことを特徴とする請求項1乃至6のいずれか1項に記載の二次電池の状態検知方法。
If the absolute value of the current measurement value of the secondary battery is not more than a predetermined current threshold even after the voltage measurement time has elapsed, a predetermined attenuation calculation that is a function of the elapsed time since the previous voltage correction value was calculated It updates using a type | formula. The state detection method of the secondary battery of any one of the Claims 1 thru | or 6 characterized by the above-mentioned.
前記減衰演算式は、さらに前記二次電池の温度の関数である
ことを特徴とする請求項7に記載の二次電池の状態検知方法。
The secondary battery state detection method according to claim 7, wherein the attenuation calculation formula is further a function of the temperature of the secondary battery.
前記電圧補正値を、少なくとも1つの補正量として前記二次電池の安定電圧を推定する
ことを特徴とする請求項1乃至8のいずれか1項に記載の二次電池の状態検知方法。
The secondary battery state detection method according to any one of claims 1 to 8, wherein a stable voltage of the secondary battery is estimated using the voltage correction value as at least one correction amount.
前記二次電池の充電率SOCと安定電圧とを予め第2の相関式で表現し、前記第2の相関式に前記算出された安定電圧を代入して前記充電率SOCを推定する
ことを特徴とする請求項9に記載の二次電池の状態検知方法。
The charging rate SOC and the stable voltage of the secondary battery are expressed in advance by a second correlation equation, and the charging rate SOC is estimated by substituting the calculated stable voltage into the second correlation equation. The method for detecting a state of a secondary battery according to claim 9.
二次電池の電圧、電流、及び温度を測定する状態検知センサと、
前記二次電池の電圧変化率と電圧補正値との相関を表す第1の相関式を事前に記憶する記憶部と、
前記二次電池の充放電を終了してから所定の電圧測定時間を経過するまでの期間に前記状態検知センサから電圧測定値を複数取得し、充放電終了からの経過時間を変数として前記二次電池の電圧を算出する電圧近似式の係数を前記複数の電圧測定値を用いて決定し、前記電圧近似式から前記二次電池の電圧変化率を算出する電圧変化率算出式を導出して前記電圧測定時間経過時点の前記二次電池の電圧変化率を算出し、前記第1の相関式に前記電圧変化率を代入して前記電圧補正値を算出する演算処理部と、を備える
ことを特徴とする二次電池の状態検知装置。
A state detection sensor for measuring the voltage, current, and temperature of the secondary battery;
A storage unit that stores in advance a first correlation equation representing a correlation between a voltage change rate of the secondary battery and a voltage correction value;
A plurality of voltage measurement values are acquired from the state detection sensor in a period from the end of charging / discharging of the secondary battery until a predetermined voltage measurement time elapses, and the secondary time using the elapsed time from the end of charging / discharging as a variable A coefficient of a voltage approximation formula for calculating a voltage of the battery is determined using the plurality of voltage measurement values, and a voltage change rate calculation formula for calculating a voltage change rate of the secondary battery is derived from the voltage approximation formula, An arithmetic processing unit that calculates a voltage change rate of the secondary battery at the time when a voltage measurement time elapses, and calculates the voltage correction value by substituting the voltage change rate into the first correlation equation. Secondary battery state detection device.
前記二次電池と、請求項11に記載の二次電池状態検知装置と、を備える
ことを特徴とする二次電池電源システム。
A secondary battery power supply system comprising: the secondary battery; and the secondary battery state detection device according to claim 11.
JP2008176464A 2008-07-07 2008-07-07 Secondary battery state detection method, state detection device, and secondary battery power supply system Active JP5089510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176464A JP5089510B2 (en) 2008-07-07 2008-07-07 Secondary battery state detection method, state detection device, and secondary battery power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176464A JP5089510B2 (en) 2008-07-07 2008-07-07 Secondary battery state detection method, state detection device, and secondary battery power supply system

Publications (2)

Publication Number Publication Date
JP2010014636A JP2010014636A (en) 2010-01-21
JP5089510B2 true JP5089510B2 (en) 2012-12-05

Family

ID=41700872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176464A Active JP5089510B2 (en) 2008-07-07 2008-07-07 Secondary battery state detection method, state detection device, and secondary battery power supply system

Country Status (1)

Country Link
JP (1) JP5089510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023529733A (en) * 2020-07-31 2023-07-11 エルジー エナジー ソリューション リミテッド Battery diagnostic device and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083612A (en) * 2011-10-12 2013-05-09 Mitsumi Electric Co Ltd Battery state measurement method and battery state measurement apparatus
CN103105588B (en) * 2013-03-07 2015-07-08 上海电气钠硫储能技术有限公司 Method for judging position of failure cell in energy storage type sodium-sulfur cell module
WO2015145616A1 (en) * 2014-03-26 2015-10-01 株式会社日立製作所 Lithium ion secondary battery control device and control method, and lithium ion secondary battery module
JP6451585B2 (en) * 2015-10-13 2019-01-16 トヨタ自動車株式会社 Plug-in vehicle battery management system
KR20210080068A (en) * 2019-12-20 2021-06-30 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing battery
JP7416982B2 (en) * 2020-07-23 2024-01-17 エルジー エナジー ソリューション リミテッド Device and method for diagnosing a battery
CN113064086B (en) * 2021-03-31 2023-06-30 湖北亿纬动力有限公司 Lithium ion battery self-discharge rate testing method, device and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792946B2 (en) * 1999-07-02 2006-07-05 矢崎総業株式会社 Battery chargeable capacity measuring device
JP2002250757A (en) * 2001-02-23 2002-09-06 Yazaki Corp Method and apparatus for estimation of open circuit voltage of battery for vehicle
JP4015128B2 (en) * 2003-07-09 2007-11-28 古河電気工業株式会社 CHARGE RATE ESTIMATION METHOD, CHARGE RATE ESTIMATION DEVICE, BATTERY SYSTEM, AND VEHICLE BATTERY SYSTEM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023529733A (en) * 2020-07-31 2023-07-11 エルジー エナジー ソリューション リミテッド Battery diagnostic device and method
JP7490298B2 (en) 2020-07-31 2024-05-27 エルジー エナジー ソリューション リミテッド Battery diagnostic device and method

Also Published As

Publication number Publication date
JP2010014636A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5089510B2 (en) Secondary battery state detection method, state detection device, and secondary battery power supply system
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
JP6615011B2 (en) Battery management system, battery system and hybrid vehicle control system
JP4865523B2 (en) Battery charge rate estimation method, battery charge rate estimation device, and battery power supply system
US20150355288A1 (en) Secondary battery degradation determination method and secondary battery degradation determination device
JP4823974B2 (en) Storage battery remaining capacity detection method and remaining capacity detection apparatus
US20190137573A1 (en) Power storage apparatus and controlling method for the same
US7990111B2 (en) Method and apparatus for detecting internal electric state of in-vehicle secondary battery
US20090248334A1 (en) Method for estimating the charge of a motor vehicle battery
KR101996974B1 (en) Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation
JP2007292648A (en) Device for estimating charged state of secondary battery
WO2016002398A1 (en) Battery degradation level estimation device and battery degradation level estimation method
JP2015158416A (en) Apparatus for estimating soc of secondary battery, and soc estimation method
JP2019203719A (en) Capacity detection method and capacity monitoring device for storage battery
JP6895786B2 (en) Secondary battery status detection device and secondary battery status detection method
JP5174968B2 (en) Method and controller for determining the state of charge of a battery
JP5158872B2 (en) Battery state detection method, state detection device, and battery power supply system
CN115917341A (en) Battery management device and battery management method
JP5129029B2 (en) Open voltage value estimation method and open voltage value estimation apparatus
JP5367320B2 (en) Secondary battery state detection method, state detection device, and secondary battery power supply system
JP2019160514A (en) Cell diagnosis device and cell diagnostic method
JP4785056B2 (en) CHARGE RATE ESTIMATION METHOD, CHARGE RATE ESTIMATION DEVICE, AND SECONDARY BATTERY POWER SUPPLY SYSTEM
JP2016065844A (en) Battery system control apparatus and control method of battery system
JP5554310B2 (en) Internal resistance measuring device and internal resistance measuring method
CN113711067B (en) Method for initializing the state of charge of a battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5089510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350