JP7016704B2 - Rechargeable battery system - Google Patents

Rechargeable battery system Download PDF

Info

Publication number
JP7016704B2
JP7016704B2 JP2018006099A JP2018006099A JP7016704B2 JP 7016704 B2 JP7016704 B2 JP 7016704B2 JP 2018006099 A JP2018006099 A JP 2018006099A JP 2018006099 A JP2018006099 A JP 2018006099A JP 7016704 B2 JP7016704 B2 JP 7016704B2
Authority
JP
Japan
Prior art keywords
secondary battery
soc
temperature
cell
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006099A
Other languages
Japanese (ja)
Other versions
JP2019124612A (en
Inventor
ソクチョル 申
耕平 本蔵
修一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2018006099A priority Critical patent/JP7016704B2/en
Priority to PCT/JP2018/045603 priority patent/WO2019142550A1/en
Publication of JP2019124612A publication Critical patent/JP2019124612A/en
Application granted granted Critical
Publication of JP7016704B2 publication Critical patent/JP7016704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池システムに関する。 The present invention relates to a secondary battery system.

電池等の蓄電手段を用いた電源装置、分散型電力貯蔵装置、電気自動車等においては、蓄電手段を安全に且つ有効に使用するために、蓄電手段の状態を検知する状態検知装置が用いられている。蓄電手段の状態としては、どの程度まで充電されているか、あるいはどの程度放電可能な電荷量が残っているのかを示す充電状態(State of Charge:SOC)や、蓄電装置の温度などがある。 In a power supply device using a power storage means such as a battery, a distributed power storage device, an electric vehicle, etc., a state detection device for detecting the state of the power storage means is used in order to use the power storage means safely and effectively. There is. The state of the power storage means includes a state of charge (State of Charge: SOC) indicating how much the charge is charged or how much charge is left to be discharged, and the temperature of the power storage device.

SOCを推定する方法の一つとしては、電池に出入りした電流値を測定して積分する方法がある。しかしながら、この方法では、電流の測定値に含まれる測定誤差も積分してしまうため、時間の経過と共にSOC誤差が拡大するという課題がある。 As one of the methods for estimating SOC, there is a method of measuring and integrating the current value in and out of the battery. However, this method also integrates the measurement error included in the measured value of the current, so that there is a problem that the SOC error increases with the passage of time.

上記課題を解決する手段として、特許文献1においては、次のような発明が開示されている。 As a means for solving the above problems, Patent Document 1 discloses the following inventions.

二次電池の充放電電流を積算して第1の積算値を求め、二次電池の容量値で除算した結果をSOC初期値に加算することにより、第1のSOC値を継続的に算出する。充電と放電とが切り替わるタイミングで得た二次電池の端子電圧を開放電圧に近づける補正をしてからその時点でのSOCを第2のSOC値として求め、第2のSOC値を求めるたびに、SOC初期値をその第2のSOC値で更新して第1の積算値の積算演算を再開始させる。これにより、電流測定値を積算していくに従って拡大するSOC誤差を、充放電が切り替わるタイミングで更新できるため、最新のSOC値を精度よく推定できる。 The first SOC value is continuously calculated by integrating the charge / discharge currents of the secondary battery to obtain the first integrated value, and adding the result of dividing by the capacity value of the secondary battery to the SOC initial value. .. After correcting the terminal voltage of the secondary battery obtained at the timing of switching between charging and discharging to approach the open circuit voltage, the SOC at that time is calculated as the second SOC value, and each time the second SOC value is calculated, The SOC initial value is updated with the second SOC value, and the integration operation of the first integrated value is restarted. As a result, the SOC error that increases as the current measurement values are integrated can be updated at the timing when charging / discharging is switched, so that the latest SOC value can be estimated accurately.

特許第5051661号公報Japanese Patent No. 5051661

特許文献1に記載の発明においては、充放電が切り替わるタイミングで得た端子電圧を補正するための補正値を算出している。そのため、充電あるいは放電が続く際のSOC算出が困難である。さらに、端子電圧にも誤差が生じるため、SOC誤差を大幅に解消することは期待できない。 In the invention described in Patent Document 1, a correction value for correcting the terminal voltage obtained at the timing of switching between charging and discharging is calculated. Therefore, it is difficult to calculate the SOC when charging or discharging continues. Further, since an error occurs in the terminal voltage, it cannot be expected that the SOC error will be largely eliminated.

本発明の目的は、二次電池システムを構成する複数個の二次電池のうち、温度の測定又は推定をするための手段を設けていない二次電池の充電状態を高い精度で推定することにある。 An object of the present invention is to estimate the charge state of a plurality of secondary batteries constituting a secondary battery system with high accuracy, which is not provided with a means for measuring or estimating the temperature. be.

本発明の二次電池システムは、直列に接続された複数個の二次電池と、電流検知部と、電圧検出部と、二次電池の充電状態の初期値及び電池容量の初期値のデータを含むデータベースを有する記憶部と、複数個の二次電池のうち少なくとも一個の二次電池である第一の二次電池の温度の測定又は推定をする温度検知部と、制御部と、を備え、制御部は、温度検知部により取得された第一の二次電池の温度、並びに電流検知部により取得された電流及び電圧検出部により取得された第一の二次電池の電圧から算出された内部抵抗から、第一の二次電池の充電状態を算出し、複数個の二次電池のうち温度の測定又は推定をしていない二次電池である第二の二次電池の充電状態の初期値及び電池容量の初期値のデータ並びに第一の二次電池の充電状態を用いて、第二の二次電池の充電状態を算出する。 The secondary battery system of the present invention has a plurality of secondary batteries connected in series, a current detection unit, a voltage detection unit, and data on the initial value of the charged state and the initial value of the battery capacity of the secondary battery. A storage unit having a database including the battery, a temperature detection unit for measuring or estimating the temperature of a first secondary battery which is at least one secondary battery among a plurality of secondary batteries, and a control unit are provided. The control unit is internally calculated from the temperature of the first secondary battery acquired by the temperature detection unit, the current acquired by the current detection unit, and the voltage of the first secondary battery acquired by the voltage detection unit. The charge state of the first secondary battery is calculated from the resistance, and the initial value of the charge state of the second secondary battery, which is the secondary battery for which the temperature is not measured or estimated among the plurality of secondary batteries. And the charge state of the second secondary battery is calculated by using the data of the initial value of the battery capacity and the charge state of the first secondary battery.

本発明によれば、二次電池システムを構成する複数個の二次電池のうち、温度の測定又は推定をするための手段を設けていない二次電池の充電状態を高い精度で推定することができる。 According to the present invention, among a plurality of secondary batteries constituting a secondary battery system, it is possible to estimate the charge state of the secondary battery having no means for measuring or estimating the temperature with high accuracy. can.

本発明に係る二次電池システム及びその周辺の構成を示す概略図である。It is a schematic diagram which shows the structure of the secondary battery system which concerns on this invention and its periphery. 図1の単電池制御部とその周辺の回路構成を示す概略図である。It is a schematic diagram which shows the circuit structure of the cell control unit of FIG. 1 and its surroundings. 本発明において用いるSOCテーブルの例を示すグラフである。It is a graph which shows the example of the SOC table used in this invention. 本発明において用いるそれぞれの単電池のSOC及び温度を算出する方法を示すフローチャートである。It is a flowchart which shows the method of calculating the SOC and the temperature of each cell used in this invention.

以下、本発明の実施形態に係る二次電池システムについて説明する。 Hereinafter, the secondary battery system according to the embodiment of the present invention will be described.

<実施形態>
二次電池システムは、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)、電気自動車(EV)等に好適に適用される。
<Embodiment>
The secondary battery system is suitably applied to a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), an electric vehicle (EV) and the like.

図1は、本発明の二次電池システム及びこれに接続された機器を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a secondary battery system of the present invention and a device connected to the secondary battery system.

本図において、二次電池システム100は、モータジェネレータ410をPWM制御するインバータ400に、リレー300、310を介して接続されている。また、二次電池システム100は、リレー320、330を介して充電器420に接続されている。 In this figure, the secondary battery system 100 is connected to the inverter 400 that PWM-controls the motor generator 410 via relays 300 and 310. Further, the secondary battery system 100 is connected to the charger 420 via the relays 320 and 330.

二次電池システム100は、組電池110、単電池管理部120、電流検知部130、電圧検知部140、組電池制御部150、記憶部180、及びフォトカプラに代表される絶縁素子170を備えている。 The secondary battery system 100 includes an assembled battery 110, a cell management unit 120, a current detection unit 130, a voltage detection unit 140, an assembled battery control unit 150, a storage unit 180, and an insulating element 170 typified by a photocoupler. There is.

車両制御部200は、組電池制御部150、充電器420及びインバータ400と通信できるようになっている。 The vehicle control unit 200 can communicate with the battery assembly control unit 150, the charger 420, and the inverter 400.

組電池110は、複数の単電池群から構成されている。ここでは、2つの単電池群112a、112bを示しているが、3つ以上であってもよい。単電池群112a、112bはそれぞれ、複数の単電池111から構成されている。 The assembled battery 110 is composed of a plurality of cell cell groups. Here, two cell groups 112a and 112b are shown, but there may be three or more. The cell group 112a and 112b are each composed of a plurality of cell cells 111.

電流検知部130は、組電池110に流れる電流を検知する。電圧検知部140は、組電池110の電圧を検知する。 The current detection unit 130 detects the current flowing through the assembled battery 110. The voltage detection unit 140 detects the voltage of the assembled battery 110.

記憶部180には、組電池110、単電池111、単電池群112a、112bの満充電時の容量(電池容量)、SOCと開回路電圧(OCV:Open Circuit Voltage)との対応関係、SOCを推定する際に必要な各種設定値などの情報が格納される。さらに、単電池管理部120、単電池制御部121a、121b、組電池制御部150などの特性情報についても、記憶部180にあらかじめ記憶することができる。二次電池システム100や組電池制御部150等の動作が停止しても、記憶部180に記憶した各種情報は保持される。なお、記憶部180は、SOCと開回路電圧との対応関係を示すものとして、SOCテーブルを格納している。記憶部180は、単電池111(二次電池)のSOCの初期値及び電池容量の初期値のデータを含むデータベースを有する。データベースは、複数の温度条件を含む環境条件における単電池111のSOC、内部抵抗及び電池容量のデータ、言い換えると、単電池111のSOC、内部抵抗及び温度の関係を示すマップのデータ、並びにこれに対応する電池容量のデータを含むことが望ましい。更に詳しくは、図3の説明箇所で述べる。 In the storage unit 180, the assembled battery 110, the cell 111, the cell groups 112a, 112b have a fully charged capacity (battery capacity), the correspondence between the SOC and the open circuit voltage (OCV: Open Circuit Voltage), and the SOC. Information such as various setting values required for estimation is stored. Further, characteristic information of the cell management unit 120, the cell control units 121a, 121b, the assembled battery control unit 150, and the like can also be stored in the storage unit 180 in advance. Even if the operation of the secondary battery system 100, the assembled battery control unit 150, or the like is stopped, various information stored in the storage unit 180 is retained. The storage unit 180 stores the SOC table as an indicator of the correspondence between the SOC and the open circuit voltage. The storage unit 180 has a database including data of the initial value of SOC of the cell 111 (secondary battery) and the initial value of the battery capacity. The database contains data on the SOC, internal resistance and battery capacity of the cell 111 under environmental conditions including multiple temperature conditions, in other words, data on a map showing the relationship between the SOC of the cell 111, internal resistance and temperature, and the data thereof. It is desirable to include data on the corresponding battery capacity. More details will be described in the description section of FIG.

単電池管理部120は、単電池群112aに対応する単電池制御部121aと、単電池群112bに対応する単電池制御部121bと、を含む。単電池制御部121a、121bはそれぞれ、単電池群112a、112bを構成する単電池111の電池電圧や温度などの測定や、異常が生じていないかの監視等を行う。 The cell management unit 120 includes a cell control unit 121a corresponding to the cell group 112a and a cell control unit 121b corresponding to the cell group 112b. The unit cell control units 121a and 121b measure the battery voltage and temperature of the cell cells 111 constituting the cell cell groups 112a and 112b, respectively, and monitor whether or not an abnormality has occurred.

単電池管理部120は、単電池制御部121a、121bを管理することで、間接的に単電池111を管理する。 The cell management unit 120 indirectly manages the cell 111 by managing the cell control units 121a and 121b.

組電池制御部150は、単電池管理部120が絶縁素子170を介して送信する単電池111の電池電圧や温度、電流検知部130が送信する組電池110に流れる電流値、電圧検知部140が送信する組電池110の電圧値、車両制御部200が適宜送信する指令等を信号として受信する。 The assembled battery control unit 150 includes the battery voltage and temperature of the single battery 111 transmitted by the single battery management unit 120 via the insulating element 170, the current value flowing through the assembled battery 110 transmitted by the current detection unit 130, and the voltage detection unit 140. The voltage value of the assembled battery 110 to be transmitted, the command to be appropriately transmitted by the vehicle control unit 200, and the like are received as signals.

組電池制御部150は、単電池管理部120、電流検知部130、電圧検知部140、車両制御部200から受信した上述の信号、および、記憶部180に格納されているSOCテーブルなどを用いて、組電池110のSOC、SOH、充電・放電可能な電流や電力、異常状態、充放電量などを検知するための演算などを実行する。組電池制御部150は、上述の演算結果に基づいて、単電池制御部121a、121bが単電池111や単電池群112a、112bを管理するための指令を単電池管理部120に送信する。また、組電池制御部150は、上述の演算結果や演算結果に基づく指令などを車両制御部200に送信する他、必要に応じて記憶部180に上述の演算結果を記憶させる。 The assembled battery control unit 150 uses the above-mentioned signals received from the cell management unit 120, the current detection unit 130, the voltage detection unit 140, the vehicle control unit 200, the SOC table stored in the storage unit 180, and the like. , SOC, SOH of the assembled battery 110, current and power that can be charged / discharged, abnormal state, calculation for detecting charge / discharge amount, and the like are executed. Based on the above calculation result, the assembled battery control unit 150 transmits a command for the cell cell control units 121a and 121b to manage the cell cell 111 and the cell cell groups 112a and 112b to the cell cell management unit 120. Further, the assembled battery control unit 150 transmits the above-mentioned calculation result, a command based on the calculation result, and the like to the vehicle control unit 200, and stores the above-mentioned calculation result in the storage unit 180 as needed.

車両制御部200は、組電池制御部150から受信した情報を用いて、インバータ400および充電器420を制御する。車両走行中には、二次電池システム100は、インバータ400と接続され、組電池110が蓄えているエネルギーを用いて、モータジェネレータ410を駆動する。充電の際には、二次電池システム100は、充電器420と接続され、家庭用の電源または充電スタンドからの電力供給によって充電される。この際、充電器420からの電力は、組電池110に蓄えられる。 The vehicle control unit 200 controls the inverter 400 and the charger 420 using the information received from the assembled battery control unit 150. While the vehicle is running, the secondary battery system 100 is connected to the inverter 400 and uses the energy stored in the assembled battery 110 to drive the motor generator 410. Upon charging, the secondary battery system 100 is connected to the charger 420 and is charged by a household power source or power supply from a charging stand. At this time, the electric power from the charger 420 is stored in the assembled battery 110.

本実施形態では、充電器420は、車両制御部200からの指令に基づき、充電電圧や充電電流などを制御する構成としているが、組電池制御部150からの指令に基づき、制御を実施してもよい。また、充電器420は、車両の構成、充電器420の性能、使用目的、外部の電源の設置条件などに応じて、車両内部に設置してもよいし、車両の外部に設置することもできる。 In the present embodiment, the charger 420 is configured to control the charging voltage, charging current, and the like based on the command from the vehicle control unit 200, but the control is performed based on the command from the assembled battery control unit 150. May be good. Further, the charger 420 may be installed inside the vehicle or outside the vehicle depending on the configuration of the vehicle, the performance of the charger 420, the purpose of use, the installation conditions of the external power source, and the like. ..

二次電池システム100を有する車両システムが始動して走行する場合には、車両制御部200の管理のもと、二次電池システム100は、インバータ400に接続され、組電池110が蓄えているエネルギーを用いてモータジェネレータ410を駆動する。回生時には、モータジェネレータ410の発電電力により、組電池110が充電される。 When the vehicle system having the secondary battery system 100 starts and runs, the secondary battery system 100 is connected to the inverter 400 under the control of the vehicle control unit 200, and the energy stored in the assembled battery 110 is stored. Is used to drive the motor generator 410. At the time of regeneration, the assembled battery 110 is charged by the generated power of the motor generator 410.

二次電池システム100を備えた車両が家庭用の電源または充電スタンドに代表される外部の電源と接続された際には、車両制御部200が発信する情報に基づき、二次電池システム100と充電器420とが接続され、組電池110が所定の条件になるまで充電される。充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されるか、車両内外の電装品等を動作させるためにも利用される。さらに、必要に応じて、家庭用の電源に代表される外部電源へも放出する場合がある。 When a vehicle equipped with the secondary battery system 100 is connected to a household power source or an external power source represented by a charging stand, the vehicle is charged with the secondary battery system 100 based on the information transmitted by the vehicle control unit 200. The device 420 is connected, and the assembled battery 110 is charged until a predetermined condition is met. The energy stored in the assembled battery 110 by charging is used at the next vehicle running, or is also used to operate electrical components inside and outside the vehicle. Further, if necessary, it may be discharged to an external power source represented by a household power source.

図2は、1つの単電池制御部を示す概略構成図である。 FIG. 2 is a schematic configuration diagram showing one cell cell control unit.

本図において、単電池制御部121iは、電圧検出回路122(電圧検出部)、制御回路123、信号入出力回路124及び温度検知部125を備えている。 In this figure, the cell control unit 121i includes a voltage detection circuit 122 (voltage detection unit), a control circuit 123, a signal input / output circuit 124, and a temperature detection unit 125.

電圧検出回路122は、各単電池111の端子間電圧を測定する。 The voltage detection circuit 122 measures the voltage between the terminals of each cell 111.

温度検知部125は、単電池群112iの一部又は全ての電池の温度について測定あるいは推定をし、単電池群112iを構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112i、または組電池110の状態を検知するための各種演算に用いられる。ここで、温度検知部125による温度の測定又は推定の対象となっている単電池111を「第一の二次電池」と呼ぶ。一方、温度検知部125による温度の測定又は推定の対象となっていない単電池111を「第二の二次電池」と呼ぶ。 The temperature detection unit 125 measures or estimates the temperature of a part or all of the batteries of the cell group 112i, and handles the temperature as a representative temperature value of the cell 111 constituting the cell group 112i. The temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the cell 111, the cell group 112i, or the assembled battery 110. Here, the cell 111, which is the target of temperature measurement or estimation by the temperature detection unit 125, is referred to as a "first secondary battery". On the other hand, the cell 111 that is not the target of temperature measurement or estimation by the temperature detection unit 125 is called a "second secondary battery".

制御回路123は、電圧検出回路122および温度検知部125から測定結果を受け取り、信号入出力回路124を介して組電池制御部150(図1)に送信する。また、信号入出力回路124からの情報に基づいて、電圧検出回路122および温度検知部125に情報を発信することも可能である。なお、単電池制御部121iやその周辺に一般的に実装されるバランシング回路、すなわち、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCばらつきを均等化する回路については、記載を省略した。 The control circuit 123 receives the measurement result from the voltage detection circuit 122 and the temperature detection unit 125, and transmits the measurement result to the assembled battery control unit 150 (FIG. 1) via the signal input / output circuit 124. It is also possible to transmit information to the voltage detection circuit 122 and the temperature detection unit 125 based on the information from the signal input / output circuit 124. The balancing circuit generally mounted in and around the cell control unit 121i, that is, the circuit for equalizing the voltage and SOC variation between the cell 111 generated due to self-discharge and variation in current consumption, etc. The description is omitted.

なお、上述の説明においては、実施形態に係る二次電池システムは、単電池制御部121i、これに含まれる制御回路123、組電池制御部150等の制御部を有するが、本発明における演算や制御を行う制御部は、これらのいずれであってもよい。よって、本明細書において「制御部」と総称する場合は、上記の制御部のいずれかを指すものとする。 In the above description, the secondary battery system according to the embodiment has a control unit such as a cell control unit 121i, a control circuit 123 included therein, and an assembled battery control unit 150. The control unit that performs control may be any of these. Therefore, when the term "control unit" is used generically in the present specification, it means any of the above-mentioned control units.

図3は、図1の記憶部180に格納されているSOCテーブル(データベース)の一例をグラフ化したものである。横軸に図1に示す単電池111のSOC、縦軸に単電池111のOCVをとっている。 FIG. 3 is a graph showing an example of the SOC table (database) stored in the storage unit 180 of FIG. The horizontal axis represents the SOC of the cell 111 shown in FIG. 1, and the vertical axis represents the OCV of the cell 111.

データ形式は任意であるが、ここでは、説明の便宜上、グラフ形式で示している。なお、本実施形態では、データテーブルを用いているが、数式などを用いることでOCVとSOCとの対応関係を表現することもできる。OCVからSOC、またはSOCからOCVへと変換できる方法であれば他の方法を用いてもよい。 The data format is arbitrary, but here, for convenience of explanation, it is shown in a graph format. Although the data table is used in this embodiment, the correspondence between OCV and SOC can be expressed by using a mathematical formula or the like. Other methods may be used as long as they can convert OCV to SOC or SOC to OCV.

ここで、本発明におけるSOCの算出法を述べる前提として、一般的なSOCの算出方法について述べる。 Here, a general SOC calculation method will be described as a premise for describing the SOC calculation method in the present invention.

単電池111のOCVを取得して、図3に示すSOCテーブルからOCVを取得した時刻tにおけるSOCを取得する。SOCテーブルから取得されたSOCを「SOC」を呼ぶ。時刻tにおけるSOCは、下記式(1)のように表される。 The OCV of the cell 111 is acquired, and the SOC at the time tn when the OCV is acquired is acquired from the SOC table shown in FIG. The SOC obtained from the SOC table is called "SOC v ". SOC v at time t n is expressed by the following equation (1).

Figure 0007016704000001
Figure 0007016704000001

式中、Mapは、図3の曲線に対応する関数を表す。 In the equation, Map represents the function corresponding to the curve in FIG.

上記式(1)だけでは、時刻tにおけるSOCしか得られない。そこで、下記式(2)に示すように、充放電電流の積算値を用いて、時刻tから時刻tまでの時間におけるSOCの変化分ΔSOC(t)を算出する。そして、ΔSOC(t)をSOC(t)に加算することにより、下記式(3)に示すように、時刻t以降の時々刻々とした時刻tにおけるSOC(以下「SOC」と呼ぶ。)を得る。 Only the SOC at time t n can be obtained only by the above equation (1). Therefore, as shown in the following equation (2), the change amount ΔSOC (t) of the SOC in the time from the time t n to the time t is calculated by using the integrated value of the charge / discharge current. Then, by adding ΔSOC (t) to SOC v (t n ), as shown in the following equation (3), the SOC (hereinafter referred to as “SOC i ”) at the time t that is momentarily after the time t n is called. .) Is obtained.

Figure 0007016704000002
Figure 0007016704000002

Figure 0007016704000003
Figure 0007016704000003

ここで、Qは、単電池111(図1)の満充電容量である。また、以下では、上記式(2)に記載されている積分値(式中の分子の積分の値であり、時刻tから時刻tまでの時間における電荷の変化分)を「ΔS」又は「電流積算値」と呼ぶ。 Here, Qi is the full charge capacity of the cell 111 (FIG. 1). Further, in the following, the integral value described in the above equation (2) (the integral value of the molecule in the equation, which is the change in charge in the time from time t n to time t) is referred to as " ΔSI " or. It is called "current integrated value".

以上が、一般的なSOCの算出方法であり、電流積算法と呼ばれるものである。 The above is a general SOC calculation method, which is called a current integration method.

上述の一般的なSOCの算出方法によって得られるSOCには、以下に述べる第一のSOC誤差および第二のSOC誤差が含まれる。 The SOC i obtained by the above-mentioned general SOC calculation method includes the first SOC error and the second SOC error described below.

<第一のSOC誤差について>
電流検知部130は、測定誤差を含む形で充放電電流I(t)を検知する。これは、上記式(2)に示す充放電電流の時間積算値ΔSOC(t)が誤差を含むことを意味する。充放電電流I(t)としては小さい誤差であっても、充放電電流の時間積算値ΔSOC(t)としては、積算時間が長いほど誤差が累積され、大きな誤差となりうる。本明細書では、ΔSOC(t)に含まれる誤差を「第一のSOC誤差」と呼ぶ。後述するように、本発明では、第一のSOC誤差を除去する。
<About the first SOC error>
The current detection unit 130 detects the charge / discharge current I (t) including a measurement error. This means that the time-integrated value ΔSOC (t) of the charge / discharge current represented by the above equation (2) includes an error. Even if the charge / discharge current I (t) has a small error, the time-integrated value ΔSOC (t) of the charge / discharge current accumulates an error as the integrated time becomes longer, and may become a large error. In the present specification, the error included in ΔSOC (t) is referred to as “first SOC error”. As will be described later, the present invention eliminates the first SOC error.

<第二のSOC誤差について>
OCVは、充放電電流が生じておらず、かつ、時間変動がない端子間電圧と定義される。図1に示すリレー300、310、320、330が開いている時で、かつ、単電池111の電圧が時間変動しない時において測定した単電池111の端子間電圧がOCVである。また、リレー300、310、320、330が閉じているが組電池110の充放電が開始されていないか、開始された後でも充放電を停止後に長時間放置して、単電池111の電圧が時間変動しない時において測定した単電池111の端子間電圧がOCVと見なせる。
<About the second SOC error>
OCV is defined as a terminal-to-terminal voltage in which no charge / discharge current is generated and there is no time variation. The voltage between terminals of the cell 111 measured when the relays 300, 310, 320, and 330 shown in FIG. 1 are open and the voltage of the cell 111 does not fluctuate with time is OCV. Further, although the relays 300, 310, 320, and 330 are closed, the charging / discharging of the assembled battery 110 has not started, or even after the charging / discharging has been started, the charging / discharging is stopped and then left for a long time, and the voltage of the cell 111 becomes high. The voltage between the terminals of the cell 111 measured when the time does not fluctuate can be regarded as OCV.

しかし、組電池110を利用している時は、リレー300、310、320、330が閉じている。また、上述した充放電が全く行われないことは頻繁には起こらない。すなわち、組電池110の利用中に、結果としてOCVを取得できる機会はほとんどない。 However, when the assembled battery 110 is used, the relays 300, 310, 320, and 330 are closed. In addition, it does not occur frequently that the above-mentioned charging / discharging is not performed at all. That is, there is almost no opportunity to acquire OCV as a result while using the assembled battery 110.

本発明では、ΔSOC(t)に含まれる第一のSOC誤差を除去することを目的としている。このためには、組電池110の利用中(リレー300、310、320、330を閉としている状態である。)に、電池電圧からSOCを検知し直す必要がある。しかしながら、上述したように、リレー300、310、320、330が閉じた状態でOCVを取得できる機会はほとんどない。 An object of the present invention is to remove the first SOC error included in ΔSOC (t). For this purpose, it is necessary to re-detect the SOC from the battery voltage while the assembled battery 110 is in use (the relays 300, 310, 320, and 330 are closed). However, as described above, there is little opportunity to acquire OCV with the relays 300, 310, 320, 330 closed.

そこで、組電池(二次電池モジュール)を構成する少なくとも一つの二次電池の温度を当該二次電池に設置した温度センサにより又は推定により取得し、全ての二次電池(単電池)のSOCをより正確に取得することを考える。 Therefore, the temperature of at least one secondary battery constituting the assembled battery (secondary battery module) is acquired by a temperature sensor installed in the secondary battery or by estimation, and the SOC of all the secondary batteries (cells) is obtained. Think about getting it more accurately.

以下、電流、単電池の電圧及び単電池の温度を入力し、全ての単電池のSOC、温度、直流抵抗等を取得する例について説明する。 Hereinafter, an example in which the current, the voltage of the cell, and the temperature of the cell are input to acquire the SOC, temperature, DC resistance, etc. of all the cells will be described.

図4は、直列に接続された複数の二次電池(単電池)で構成された組電池におけるそれぞれの単電池のSOC及び温度を算出する方法を示すフローチャートである。 FIG. 4 is a flowchart showing a method of calculating the SOC and temperature of each of the assembled batteries composed of a plurality of secondary batteries (cells) connected in series.

先ず、二次電池のSOC、直流抵抗R及び温度Tの関係を示すマップ(データベース)を用意する(S100)。このマップは、電池の劣化に対応するものが好ましい。ここでは、二次電池は、単電池とする。なお、一般には、二次電池が直列又は並列に接続された単電池群に相当するものであっても、本図に示す考え方を同様に適用することができる。 First, a map (database) showing the relationship between the SOC of the secondary battery, the DC resistance R, and the temperature T is prepared (S100). This map preferably corresponds to the deterioration of the battery. Here, the secondary battery is a single battery. In general, even if the secondary batteries correspond to a group of single batteries connected in series or in parallel, the concept shown in this figure can be similarly applied.

また、マップは、製品試験の際に、例えば、抽出した単電池について試験を行い、詳細なデータを収集し、データベースとしてまとめたものであってもよい。この場合は、抽出した単電池と、実際に組電池に用いた複数の単電池のそれぞれとは、厳密には異なる。このため、データベースに含まれる値を用いて算出されたSOC、抵抗、温度等の値は、実際の単電池の値とは異なり、厳密には誤差を含むものである。この誤差は、上記の第一のSOC誤差とは異なるものである。このようなマップと実際の単電池の値との誤差は、「第二のSOC誤差」と呼ぶことにする。 Further, the map may be a map obtained by, for example, testing an extracted cell cell at the time of product testing, collecting detailed data, and compiling it as a database. In this case, the extracted cell and the plurality of cells actually used for the assembled battery are strictly different from each other. Therefore, the values of SOC, resistance, temperature, etc. calculated using the values included in the database are different from the actual values of the cell, and strictly include errors. This error is different from the first SOC error described above. The error between such a map and the actual cell cell value will be referred to as the "second SOC error".

二次電池に流れた電流I及びその際の電圧Vから、それぞれの二次電池の直流抵抗Rを求める(S110)。ここで、下付き文字のiは、直列のi番目の二次電池を表している。また、電流I及び電圧Vは、図1及び2に示すようにして実測した値を用いることが望ましい。電圧Vは、通電中の値であってもよく、マップを用いて内部抵抗を取得し、これを直流抵抗Rとしてもよい。 The DC resistance R i of each secondary battery is obtained from the current I flowing through the secondary battery and the voltage Vi at that time (S110). Here, the subscript i represents the i-th secondary battery in series. Further, it is desirable to use the measured values for the current I and the voltage Vi as shown in FIGS. 1 and 2. The voltage V i may be a value during energization, or an internal resistance may be acquired using a map and this may be used as a DC resistance R i .

次に、直流抵抗Rと、実測又は推定により得られた一部又は全部の二次電池の温度Tsensor,iと、をマップに入力し、SOCsensor,iを出力する(S120)。このSOCsensor,iは、誤差が蓄積される充放電電流の積算から求めたSOCではなく、実際の二次電池を用いて事前に測定した結果に基づいて作成したマップから出力されたSOCであり、誤差の蓄積が生じない値である。なお、二次電池の温度Tsensor,iは、温度センサを用いて測定することが望ましい。また、「マップに入力すること」又は「マップから出力すること」は、「マップ(データベース)を用いて計算を行うこと」と同じ意味である。 Next, the DC resistance R i and the temperature T sensor, i of a part or all of the secondary batteries obtained by actual measurement or estimation are input to the map, and the SOC sensor, i is output (S120). This SOC sensor, i is not an SOC obtained from the integration of charge / discharge currents in which errors are accumulated, but an SOC output from a map created based on the results measured in advance using an actual secondary battery. , It is a value that does not cause accumulation of error. It is desirable to measure the temperature T sensor, i of the secondary battery using a temperature sensor. Further, "input to the map" or "output from the map" has the same meaning as "calculation using the map (database)".

一方、S120で対象としたものと同じ二次電池のSOCについて、別途、上記式(2)及び(3)の電流積算法により算出する(S130)。以下では、電流積算法により算出したSOCを「SOCint」と呼ぶ。また、直列のi番目の二次電池のSOCは、「SOCint,i」と呼ぶ。 On the other hand, the SOC of the same secondary battery as that targeted in S120 is separately calculated by the current integration methods of the above equations (2) and (3) (S130). Hereinafter, the SOC calculated by the current integration method is referred to as “SOC int ”. The SOC of the i-th secondary battery in series is called "SOC int, i ".

そして、SOCsensor,iとSOCint,iとを比較する(S140)。これらの値が等しくない場合(これらの値の差が所定の値を超える場合)は、この差が所定の値以下になるように、上記式(2)の電流積算値ΔSを補正する(S150)。言い換えると、電流検知部(電流センサ)の誤差によるΔSの誤差を低減する。補正方法は、電流積算法によるSOC算出(S130)の結果であるSOCint,iをSOCsensor,iに置き換えて、電流積算値を逆算すればよい。 Then, the SOC sensor, i and the SOC int, i are compared (S140). When these values are not equal (when the difference between these values exceeds a predetermined value), the current integrated value ΔSI of the above equation (2) is corrected so that this difference is equal to or less than the predetermined value (2). S150). In other words, the error of ΔSI due to the error of the current detection unit (current sensor) is reduced. As the correction method, the SOC int, i , which is the result of the SOC calculation (S130) by the current integration method, may be replaced with the SOC sensor, i , and the current integration value may be calculated back.

二次電池モジュールを構成するそれぞれの二次電池は直列でつながっているため、それぞれの二次電池におけるΔSの値は共通であり、全電池に補正したΔSを適用することが可能である。よって、高い精度でそれぞれの二次電池のSOCint,i(i=1,2,3,…)を求めることができる(S160)。言い換えると、すべての二次電池のSOCint,iは、補正されたΔSの値を用いて、電流積算法により求めることができる。 Since each secondary battery constituting the secondary battery module is connected in series, the value of ΔSI in each secondary battery is common, and it is possible to apply the corrected ΔSI to all the batteries. .. Therefore, the SOC int, i (i = 1, 2, 3, ...) Of each secondary battery can be obtained with high accuracy (S160). In other words, the SOC int, i of all secondary batteries can be determined by the current integration method using the corrected values of ΔSI .

その次に、それぞれの二次電池のSOCint,i及び直流抵抗Rをマップに入力し、それぞれの二次電池の温度Tを出力する(S170)。言い換えると、SOCint,i及びRに対応するマップの値(温度T)を取得することにより、温度センサを設けていない二次電池の温度を高精度で推定することができる。この場合に、実測した電圧Vを演算に用いてもよい。 Next, the SOC int, i and DC resistance R i of each secondary battery are input to the map, and the temperature Ti of each secondary battery is output (S170). In other words, by acquiring the map values (temperature Ti ) corresponding to SOC int, i and Ri, the temperature of the secondary battery without the temperature sensor can be estimated with high accuracy. In this case, the measured voltage Vi may be used for the calculation.

これにより、全電池に温度センサを設置しなくても全電池の温度を把握することができ、温度センサ削減によるコスト低減が可能となる。また、それらの温度に応じて電流を制限することができるため、高安全かつ長寿命の二次電池システムを実現することが可能となる。さらに、それぞれの電池温度を把握することにより、効率よく電池を冷却し、長寿命かつ低コストの二次電池システムを実現することが可能となる。 As a result, the temperature of all the batteries can be grasped without installing the temperature sensor on all the batteries, and the cost can be reduced by reducing the temperature sensors. Further, since the current can be limited according to those temperatures, it is possible to realize a highly safe and long-life secondary battery system. Furthermore, by grasping the temperature of each battery, it is possible to efficiently cool the battery and realize a secondary battery system having a long life and low cost.

なお、本発明においては、図4に示すS130、S140、S150及びS160の工程を省略し、S120の工程で得られたSOCsensor,iのデータをSOCint,iの代わりに用いて、S170の工程でマップを用いて温度Tを取得してもよい。ただし、この場合は、S150等の補正の工程を経ていないため、S140の工程で比較するSOCsensor,iとSOCint,iとの差についての許容値を大きくすることが考えられる。当該補正をしていない分、温度Tの誤差は大きくなる傾向はあるが、本発明の方法を適用することができる。 In the present invention, the steps of S130, S140, S150 and S160 shown in FIG. 4 are omitted, and the SOC sensor, i data obtained in the step of S120 is used instead of SOC int, i of S170. The temperature Ti may be obtained using a map in the process. However, in this case, since the correction step of S150 or the like has not been performed, it is conceivable to increase the permissible value for the difference between the SOC sensor, i and the SOC int, i to be compared in the step of S140. The error of the temperature Ti tends to be large because the correction is not made, but the method of the present invention can be applied.

以上、本発明について、実施形態に基づき具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the present invention has been specifically described above based on the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist thereof.

また、上記各構成、機能、処理部などは、それらの全部または一部を、例えば集積回路で設計することによりハードウェアとして実現することもできるし、プロセッサがそれぞれの機能を実現するプログラムを実行することによりソフトウェアとして実現することもできる。各機能を実現するプログラム、テーブルなどの情報は、メモリやハードディスクなどの記憶装置、ICカード、DVDなどの記憶媒体に格納することができる。 In addition, each of the above configurations, functions, processing units, etc. can be realized as hardware by designing all or part of them, for example, by an integrated circuit, and the processor executes a program that realizes each function. It can also be realized as software by doing so. Information such as programs and tables that realize each function can be stored in a storage device such as a memory or a hard disk, or a storage medium such as an IC card or a DVD.

以上に示す実施形態では、一個のリチウムイオン二次電池(二次電池)を単電池とし、これを直列に接続して組電池を構成したが、単電池を並列接続したものを一個の二次電池とみなして、これを直列接続して組電池を構成してもよいし、直列接続した単電池を並列接続して組電池を構成してもよい。並列接続を含むと、単電池に流れる充放電電流に個体差が生じる可能性が出てくるが、その際は、電流検知部の設置の数を変更して単電池毎に流れる充放電電流値を検知するか、単電池に流れる平均的な電流を求めるかして、これに基づいてSOC計算を実行すればよい。 In the embodiment shown above, one lithium ion secondary battery (secondary battery) is used as a single battery, and the batteries are connected in series to form an assembled battery. However, one secondary battery in which the single batteries are connected in parallel is used. It may be regarded as a battery and connected in series to form an assembled battery, or a single battery connected in series may be connected in parallel to form an assembled battery. Including parallel connection, there is a possibility that the charge / discharge current flowing through the cell may vary from individual to individual. In that case, change the number of current detectors installed and the charge / discharge current value flowing for each cell. Is detected, or the average current flowing through the cell is obtained, and the SOC calculation may be performed based on this.

したがって、本明細書においては、組電池を構成する二次電池とみなされるものは、単電池であっても、単電池群であってもよく、「二次電池」と総称した場合には、一個の二次電池とみなされる単電池群を含むものとする。 Therefore, in the present specification, what is regarded as a secondary battery constituting an assembled battery may be a cell or a cell group, and when collectively referred to as a "secondary battery", the term "secondary battery" is used. It shall include a group of cells considered to be one secondary battery.

また、以上に示す実施形態では、組電池のSOCを検知することについて本発明を考えたが、単電池や単電池群で本発明を考えることもできる。 Further, in the above-described embodiment, the present invention has been considered for detecting the SOC of the assembled battery, but the present invention can also be considered for a cell or a cell group.

なお、電流積算法により算出されたSOCint,i(図4)に基づいて、複数個の二次電池のすべての充電状態が所定の値に達するように、言い換えると、複数個の二次電池の充電状態をそろえるように、複数個の二次電池のそれぞれに対して充電をすることが望ましい。これにより、二次電池システム全体として充放電可能な容量を増加させることができる。 In other words, the plurality of secondary batteries so that all the charge states of the plurality of secondary batteries reach a predetermined value based on the SOC int, i (FIG. 4) calculated by the current integration method. It is desirable to charge each of the plurality of secondary batteries so that the charging states of the batteries are the same. As a result, the capacity that can be charged and discharged as the entire secondary battery system can be increased.

また、本発明によれば、電流積算法により算出された第一の二次電池の充電状態の変化に基づいて、二次電池の寿命を判定することができる。 Further, according to the present invention, the life of the secondary battery can be determined based on the change in the charge state of the first secondary battery calculated by the current integration method.

さらに、二次電池の寿命の判定結果に基づいて、二次電池(単電池)を個別に交換することが可能となる。 Further, the secondary battery (cell) can be replaced individually based on the determination result of the life of the secondary battery.

100:二次電池システム、110:組電池、111:単電池、112a、112b、112i:単電池群、120:単電池管理部、121a、121b、121i:単電池制御部、122:電圧検出回路、123:制御回路、124:信号入出力回路、125:温度検知部、130:電流検知部、140:電圧検知部、150:組電池制御部、170:絶縁素子、180:記憶部、200:車両制御部、300、310、320、330:リレー、400:インバータ、410:モータジェネレータ、420:充電器。 100: Secondary battery system, 110: Assembly battery, 111: Single battery, 112a, 112b, 112i: Single battery group, 120: Single battery management unit, 121a, 121b, 121i: Single battery control unit, 122: Voltage detection circuit , 123: Control circuit, 124: Signal input / output circuit, 125: Temperature detection unit, 130: Current detection unit, 140: Voltage detection unit, 150: Battery control unit, 170: Insulation element, 180: Storage unit, 200: Vehicle control unit, 300, 310, 320, 330: relay, 400: inverter, 410: motor generator, 420: charger.

Claims (7)

直列に接続された複数個の二次電池と、
電流検知部と、
電圧検出部と、
前記二次電池の充電状態の初期値及び電池容量の初期値のデータを含むデータベースを有する記憶部と、
前記複数個の二次電池のうち少なくとも一個の二次電池である第一の二次電池の温度の測定又は推定をする温度検知部と、
制御部と、を備え、
前記制御部は、前記温度検知部により取得された前記第一の二次電池の前記温度、並びに前記電流検知部により取得された電流及び前記電圧検出部により取得された前記第一の二次電池の電圧から算出された内部抵抗から、前記第一の二次電池の充電状態を算出し、前記複数個の二次電池のうち前記温度の測定又は推定をしていない二次電池である第二の二次電池の前記充電状態の前記初期値及び前記電池容量の前記初期値の前記データ並びに前記第一の二次電池の前記充電状態を用いて、前記第二の二次電池の充電状態を算出する、二次電池システム。
With multiple secondary batteries connected in series,
Current detector and
Voltage detector and
A storage unit having a database containing data of the initial value of the charge state of the secondary battery and the initial value of the battery capacity, and the storage unit.
A temperature detection unit that measures or estimates the temperature of the first secondary battery, which is at least one of the plurality of secondary batteries.
With a control unit,
The control unit includes the temperature of the first secondary battery acquired by the temperature detection unit, the current acquired by the current detection unit, and the first secondary battery acquired by the voltage detection unit. The charge state of the first secondary battery is calculated from the internal resistance calculated from the voltage of the above, and the second of the plurality of secondary batteries is the secondary battery for which the temperature is not measured or estimated. Using the data of the initial value of the charged state of the secondary battery and the initial value of the battery capacity and the charged state of the first secondary battery, the charged state of the second secondary battery can be determined. Secondary battery system to calculate.
前記制御部は、前記第一の二次電池の前記充電状態を電流積算法により算出し、前記電流積算法により算出された前記第一の二次電池の前記充電状態と、前記温度及び前記内部抵抗から算出された前記第一の二次電池の前記充電状態との差が所定の値以下になるように電流積算値を補正し、前記電流積算値を用いて前記第二の二次電池の前記充電状態を算出する、請求項1記載の二次電池システム。 The control unit calculates the charging state of the first secondary battery by the current integration method, and the charging state of the first secondary battery calculated by the current integration method, the temperature, and the inside thereof. The integrated current value is corrected so that the difference from the charged state of the first secondary battery calculated from the resistance is equal to or less than a predetermined value, and the integrated current value is used to obtain the second secondary battery. The secondary battery system according to claim 1, wherein the charging state is calculated. 前記電流積算法により算出された前記第一の二次電池の前記充電状態に基づいて、前記複数個の二次電池のすべてについて前記充電状態が所定の値に達するように、前記第一の二次電池及び前記第二の二次電池のそれぞれに対して充電をする、請求項2記載の二次電池システム。 Based on the charging state of the first secondary battery calculated by the current integration method, the first two so that the charging state of all of the plurality of secondary batteries reaches a predetermined value. The secondary battery system according to claim 2, wherein each of the secondary battery and the second secondary battery is charged. 前記電流積算法により算出された前記第一の二次電池の前記充電状態の変化に基づいて、前記二次電池の寿命を判定する、請求項2記載の二次電池システム。 The secondary battery system according to claim 2, wherein the life of the secondary battery is determined based on the change in the state of charge of the first secondary battery calculated by the current integration method. 前記寿命の判定結果に基づいて、前記二次電池を個別に交換する、請求項4記載の二次電池システム。 The secondary battery system according to claim 4, wherein the secondary batteries are individually replaced based on the determination result of the life. 前記データベースは、前記二次電池の充電状態、内部抵抗及び温度のデータを含み、
前記制御部は、該データを用いて前記第一の二次電池の前記充電状態を算出する、請求項2記載の二次電池システム。
The database contains data on the state of charge, internal resistance and temperature of the secondary battery.
The secondary battery system according to claim 2, wherein the control unit calculates the charge state of the first secondary battery using the data.
前記制御部は、前記第二の二次電池の前記充電状態から前記第二の二次電池の温度を算出する、請求項6記載の二次電池システム。 The secondary battery system according to claim 6, wherein the control unit calculates the temperature of the second secondary battery from the state of charge of the second secondary battery.
JP2018006099A 2018-01-18 2018-01-18 Rechargeable battery system Active JP7016704B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018006099A JP7016704B2 (en) 2018-01-18 2018-01-18 Rechargeable battery system
PCT/JP2018/045603 WO2019142550A1 (en) 2018-01-18 2018-12-12 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006099A JP7016704B2 (en) 2018-01-18 2018-01-18 Rechargeable battery system

Publications (2)

Publication Number Publication Date
JP2019124612A JP2019124612A (en) 2019-07-25
JP7016704B2 true JP7016704B2 (en) 2022-02-07

Family

ID=67302176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006099A Active JP7016704B2 (en) 2018-01-18 2018-01-18 Rechargeable battery system

Country Status (2)

Country Link
JP (1) JP7016704B2 (en)
WO (1) WO2019142550A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132696A (en) * 2018-01-31 2019-08-08 トヨタ自動車株式会社 Control device of all-solid-state battery
JP7097336B2 (en) * 2019-08-29 2022-07-07 株式会社日立製作所 Secondary battery module temperature estimation method, deterioration state estimation method and life prediction method, secondary battery module temperature estimation device, deterioration state estimation device and life prediction device, and charging device
EP4123319B1 (en) 2021-07-23 2024-02-14 Siemens Aktiengesellschaft Method, device and a computer program for assessing the service life of batteries
EP4123321A1 (en) * 2021-07-23 2023-01-25 Siemens Aktiengesellschaft Method, device and a computer program for identifying the residual value of battery storage devices
EP4123320B1 (en) * 2021-07-23 2024-03-13 Siemens Aktiengesellschaft Method for determining a capacity loss of a battery, device and computer program product
KR20230130238A (en) * 2022-03-03 2023-09-12 주식회사 민테크 Battery state estimation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331482A (en) 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Remaining capacity operational equipment for electricity accumulation device
JP2008532050A (en) 2005-03-09 2008-08-14 エルジー・ケム・リミテッド Setting method of initial value of remaining battery capacity using open circuit voltage hysteresis according to temperature
WO2014115294A1 (en) 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 Battery control device, battery system
US20140316728A1 (en) 2013-06-20 2014-10-23 University Of Electronic Science And Technology Of China System and method for soc estimation of a battery
US20150276881A1 (en) 2014-03-25 2015-10-01 The Boeing Company Model-independent battery life and performance forecaster
JP2016514255A (en) 2013-02-21 2016-05-19 ルノー エス.ア.エス. Evaluation of the energy that can be extracted from the battery of a motor vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495116B2 (en) * 2005-06-30 2010-06-30 エルジー・ケム・リミテッド Battery remaining capacity estimation method and battery management system using the same
JP6164503B2 (en) * 2015-06-25 2017-07-19 トヨタ自動車株式会社 Secondary battery internal resistance estimation method and output control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331482A (en) 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Remaining capacity operational equipment for electricity accumulation device
JP2008532050A (en) 2005-03-09 2008-08-14 エルジー・ケム・リミテッド Setting method of initial value of remaining battery capacity using open circuit voltage hysteresis according to temperature
WO2014115294A1 (en) 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 Battery control device, battery system
JP2016514255A (en) 2013-02-21 2016-05-19 ルノー エス.ア.エス. Evaluation of the energy that can be extracted from the battery of a motor vehicle
US20140316728A1 (en) 2013-06-20 2014-10-23 University Of Electronic Science And Technology Of China System and method for soc estimation of a battery
US20150276881A1 (en) 2014-03-25 2015-10-01 The Boeing Company Model-independent battery life and performance forecaster

Also Published As

Publication number Publication date
JP2019124612A (en) 2019-07-25
WO2019142550A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP7016704B2 (en) Rechargeable battery system
JP6588632B2 (en) Battery control device
US9927492B2 (en) Cell monitoring apparatus, battery monitoring apparatus, integrated circuit and method of monitoring a rechargeable cell
US9770997B2 (en) Detection of imbalance across multiple battery cells measured by the same voltage sensor
US10147983B2 (en) Secondary battery system
US10725111B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP6033155B2 (en) Battery control device
JP6111275B2 (en) Battery control device
EP3002597B1 (en) Battery control device
US10838013B2 (en) Management apparatus and power storage system
US10686229B2 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
US20150251555A1 (en) Parameter identification offloading using cloud computing resources
JP6101714B2 (en) Battery control device, battery system
US20140184236A1 (en) Battery control apparatus and battery system
WO2017056732A1 (en) Battery control device and battery system
US20130314042A1 (en) Method for Ascertaining the Open Circuit Voltage of a Battery, Battery with a Module for Ascertaining the Open Circuit Voltage and a Motor Vehicle Having a Corresponding Battery
JP6171128B2 (en) Battery control system, vehicle control system
JP5851514B2 (en) Battery control device, secondary battery system
CN115372848A (en) Method, device, equipment and medium for detecting self-discharge performance of battery
US9065278B2 (en) Systems and methods for evaluating and controlling a battery system
JPWO2012169061A1 (en) Battery control device, battery system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126