JP2015040832A - Power storage system and method of estimating full charge capacity of power storage device - Google Patents

Power storage system and method of estimating full charge capacity of power storage device Download PDF

Info

Publication number
JP2015040832A
JP2015040832A JP2013173525A JP2013173525A JP2015040832A JP 2015040832 A JP2015040832 A JP 2015040832A JP 2013173525 A JP2013173525 A JP 2013173525A JP 2013173525 A JP2013173525 A JP 2013173525A JP 2015040832 A JP2015040832 A JP 2015040832A
Authority
JP
Japan
Prior art keywords
charge capacity
full charge
period
estimated
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013173525A
Other languages
Japanese (ja)
Other versions
JP6197479B2 (en
Inventor
浩治 有留
Koji Aridome
浩治 有留
純太 泉
Junta Izumi
純太 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013173525A priority Critical patent/JP6197479B2/en
Priority to PCT/IB2014/001575 priority patent/WO2015025212A1/en
Publication of JP2015040832A publication Critical patent/JP2015040832A/en
Application granted granted Critical
Publication of JP6197479B2 publication Critical patent/JP6197479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

PROBLEM TO BE SOLVED: To improve accuracy and frequency of estimating full charge capacity of a battery.SOLUTION: A power storage system includes a power storage device which charges/discharges power. A controller implements estimation processing for calculating current full-charge capacity, on the basis of a reduction rate from a predetermined initial full-charge capacity, according to a lapse time of the power storage device. The controller calculates a reduction rate in a non-estimation period, by use of an average SOC and an average battery temperature in a period (non-estimation period) where the full-charge capacity has not been estimated from the previous full-charge capacity calculation to date, and a reduction rate map with a predetermined reduction rate which changes according to the average SOC and the average battery temperature, and calculates a first lapse time of the power storage device for the previous full-charge capacity calculation, on the basis of the reduction rate in the non-estimation period and the initial full charge capacity. The current full charge capacity is calculated on the basis of a current second lapse time of the power storage device calculated from the first lapse time and the non-estimation period, the reduction rate in the non-estimation period, and the initial full charge capacity.

Description

本発明は、車両に搭載され、走行用モータに電力を供給する蓄電装置の満充電容量を推定する技術に関する。   The present invention relates to a technique for estimating a full charge capacity of a power storage device that is mounted on a vehicle and supplies electric power to a traveling motor.

二次電池は、経年変化により劣化して満充電容量が低下することが知られている。二次電池の満充電容量が低下すると、使用可能な電力量が低くなるので電力を用いた車両走行(EV走行等)の走行距離が短くなる。このため、使用環境下にある二次電池の満充電容量を精度よく把握できないと、例えば、満充電容量を低く見積もってしまい、経年変化による満充電容量の低下に応じた走行距離以上に、電力を用いた車両走行距離が短くなってしまう。   It is known that the secondary battery deteriorates due to aging and the full charge capacity decreases. When the full charge capacity of the secondary battery decreases, the amount of power that can be used decreases, so the travel distance of vehicle travel (such as EV travel) using power is shortened. For this reason, if the full charge capacity of the secondary battery in the usage environment cannot be accurately grasped, for example, the full charge capacity is estimated to be low, and the power consumption exceeds the mileage according to the decrease in full charge capacity due to secular change. The vehicle travel distance using will be shortened.

また、二次電池のSOC(State of Charge)は、満充電容量に対する現在の充電容量の割合を示すものであり、SOCに基づいて二次電池の充放電が制御されるが、満充電容量が変化してしまうとSOCも変化してしまう。このため、二次電池の満充電容量を精度よく把握できないと、使用可能な電力量に対して過度の充放電制御が行われてしまうおそれがある。   The SOC (State of Charge) of the secondary battery indicates the ratio of the current charge capacity to the full charge capacity, and the charge / discharge of the secondary battery is controlled based on the SOC. If it changes, SOC will also change. For this reason, if the full charge capacity of the secondary battery cannot be accurately grasped, there is a possibility that excessive charge / discharge control may be performed on the usable electric energy.

二次電池の満充電容量の精度良く推定する方法として、例えば、特許文献1に記載のようなものがある。特許文献1では、安定した充電電流が供給され、かつSOC変動が少ない外部充電時に、電流積算値、充電開始時及び充電終了時の各SOCを算出することで、満充電容量推定精度を向上させている。   As a method for accurately estimating the full charge capacity of the secondary battery, for example, there is a method described in Patent Document 1. In Patent Document 1, the accuracy of full charge capacity estimation is improved by calculating the current integrated value and each SOC at the start of charge and at the end of charge at the time of external charging where a stable charging current is supplied and the SOC fluctuation is small. ing.

特開2011−7564号公報JP 2011-7564 A

特許文献1のように、外部充電の際に二次電池の満充電容量推定処理を行うことで、満充電容量を精度良く推定できるが、外部充電が行われないと(外部充電という特定のタイミングでないと)、満充電容量を推定できない。このため、外部充電が行われない期間が長くなると、使用環境に応じて経年劣化する二次電池の満充電容量を適切に把握できない。   As in Patent Literature 1, the full charge capacity can be accurately estimated by performing the full charge capacity estimation process of the secondary battery at the time of external charging. However, if external charging is not performed (a specific timing of external charging). Otherwise, the full charge capacity cannot be estimated. For this reason, if the period during which external charging is not performed becomes long, the full charge capacity of the secondary battery that deteriorates over time according to the use environment cannot be properly grasped.

つまり、満充電容量自体の推定精度のみならず、経年変化により低下する満充電容量の推定処理の機会(頻度)が少ないと、使用環境下にある二次電池の満充電容量を適切に把握することができない。   In other words, not only the estimation accuracy of the full charge capacity itself, but also the full charge capacity of the secondary battery in the operating environment is properly grasped when there are few opportunities (frequency) of the estimation process of the full charge capacity that decreases due to secular change. I can't.

そこで、本発明は、蓄電装置の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定できるようにし、満充電容量の推定頻度(機会)を増加させて満充電容量を適切に把握することができる蓄電システム及び蓄電装置の満充電容量推定方法を提供することにある。   Therefore, the present invention makes it possible to accurately estimate the current full charge capacity based on the previous full charge capacity at any timing during the use period of the power storage device, and increase the estimation frequency (opportunity) of the full charge capacity. An object of the present invention is to provide a power storage system and a method for estimating a full charge capacity of a power storage device that can appropriately grasp the full charge capacity.

本願第1の発明は、充放電を行う蓄電装置と、満充電容量推定処理を遂行するコントローラと、を有する車両に搭載される蓄電システムである。コントローラは、蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する。このとき、コントローラは、前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度と、平均SOC及び平均電池温度に応じて変化する低下率が予め規定された低下率マップとを用いて、満充電容量が推定されていない期間中の低下率を算出し、満充電容量が推定されていない期間中の低下率と初期満充電容量とに基づいて前回満充電容量が算出されたときの蓄電装置の第1経過期間を算出する。そして、第1経過期間と満充電容量が推定されていない期間とから算出される蓄電装置の現在の第2経過期間、期間中の低下率、及び初期満充電容量に基づいて、現在の満充電容量を算出する。   1st invention of this application is an electrical storage system mounted in the vehicle which has the electrical storage apparatus which performs charging / discharging, and the controller which performs a full charge capacity estimation process. The controller calculates the current full charge capacity based on a rate of decrease from the initial full charge capacity defined in advance according to the elapsed period of the power storage device. At this time, the controller has an average SOC and average battery temperature during a period when the full charge capacity is not estimated from the time when the full charge capacity was calculated last time, and a decrease rate that changes according to the average SOC and average battery temperature. Calculate the rate of decrease during the period when the full charge capacity is not estimated using a predetermined rate of decrease map, and based on the rate of decrease during the period when the full charge capacity is not estimated and the initial full charge capacity The first elapsed period of the power storage device when the previous full charge capacity was calculated is calculated. Based on the current second elapsed period of the power storage device calculated from the first elapsed period and the period in which the full charge capacity is not estimated, the rate of decrease during the period, and the initial full charge capacity, Calculate capacity.

本願第1の発明によれば、前回満充電容量から変化する現在の満充電容量が、前回満充電容量が推定された後から現在まで満充電容量が推定されなかった期間の使用環境(平均SOC及び平均電池温度)に基づいて推定される。このため、蓄電装置の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定することができ、蓄電装置の使用期間に対して特定のタイミングに限らずに満充電容量を推定することができる。したがって、満充電容量を精度良く推定しつつ、満充電容量の推定頻度を向上させることができる。   According to the first invention of the present application, the current full charge capacity that changes from the previous full charge capacity is the use environment (average SOC) during the period in which the full charge capacity has not been estimated from the previous full charge capacity to the present. And the average battery temperature). For this reason, the current full charge capacity can be accurately estimated based on the previous full charge capacity at any timing during the use period of the power storage device, and not limited to a specific timing with respect to the use period of the power storage device. The full charge capacity can be estimated. Therefore, it is possible to improve the estimation frequency of the full charge capacity while accurately estimating the full charge capacity.

コントローラは、外部電源から供給される電力が蓄電装置に充電される外部充電前後のSOC差と外部充電中の充電電流積算値とに基づいて蓄電装置の満充電容量を算出する第1推定処理を遂行することができる。コントローラは、第1推定処理によって推定された満充電容量を前回満充電容量として、外部充電の際に満充電容量が算出されたときから現在までの満充電容量が推定されていない期間中に推定処理を遂行することができる。このように構成することで、外部充電が行われない期間でも満充電容量を精度良く推定できると共に、満充電容量を推定する機会を増加させて蓄電装置の満充電容量を適切に把握することができる。   The controller performs a first estimation process for calculating a full charge capacity of the power storage device based on an SOC difference before and after external charging in which power supplied from the external power source is charged to the power storage device and a charging current integrated value during external charging. Can be carried out. The controller estimates the full charge capacity estimated by the first estimation process as the previous full charge capacity during the period when the full charge capacity from the time when the full charge capacity is calculated at the time of external charging to the present is not estimated. Processing can be performed. By configuring in this way, it is possible to accurately estimate the full charge capacity even during a period when external charging is not performed, and it is possible to appropriately grasp the full charge capacity of the power storage device by increasing opportunities to estimate the full charge capacity. it can.

コントローラは、車両走行中又は車両停車中にかかわらずに、満充電容量が推定されていない期間中の蓄電装置のSOC及び電池温度を所定のタイミングで複数取得することができる。取得されたSOC及び電池温度は、満充電容量が推定されていない期間の経過時間と共に所定の記憶領域に記憶することができる。このように構成することで、満充電容量が低下する要因となる使用環境を精度良く把握することができ、満充電容量の推定精度が向上する。   The controller can acquire a plurality of SOCs and battery temperatures of the power storage device at a predetermined timing during a period when the full charge capacity is not estimated regardless of whether the vehicle is running or the vehicle is stopped. The acquired SOC and battery temperature can be stored in a predetermined storage area together with the elapsed time of the period when the full charge capacity is not estimated. By comprising in this way, the use environment used as the factor which a full charge capacity falls can be grasped | ascertained accurately, and the estimation precision of a full charge capacity improves.

コントローラは、満充電容量が推定されていない期間が所定期間を超える場合に、推定処理を遂行することができ、前回満充電容量に応じて所定期間を変更することができる。このように構成することで、満充電容量が推定されていない期間がトリガーとなって任意のタイミングで満充電容量を推定することができ、満充電容量が推定されていない期間が長くなること、言い換えれば、経年変化する満充電容量を把握できない期間が長くなることを抑制することができる。また、満充電容量が大きい状態ではその低下量が多くなるので、例えば、満充電容量が大きいほど満充電容量が推定されていない期間の許容期間である所定期間を小さく(短く)し、満充電容量の推定頻度を増やして満充電容量の変化を正確に把握できるようにすることができる。   The controller can perform the estimation process when the period during which the full charge capacity is not estimated exceeds the predetermined period, and can change the predetermined period according to the previous full charge capacity. By configuring in this way, the period when the full charge capacity is not estimated can be a trigger to estimate the full charge capacity at an arbitrary timing, and the period when the full charge capacity is not estimated becomes long. In other words, it is possible to suppress an increase in the period during which the full charge capacity that changes over time cannot be grasped. In addition, since the amount of decrease increases when the full charge capacity is large, for example, the larger the full charge capacity, the smaller the predetermined period that is the allowable period of the period when the full charge capacity is not estimated (short), and the full charge capacity. The estimated frequency of the capacity can be increased so that the change in the full charge capacity can be accurately grasped.

低下率マップは、平均SOC及び平均電池温度が高いほど、低下率が大きくなるように設定することができる。このように構成することで、蓄電装置の満充電容量が低下する要因となる使用環境の因子が高い場合に、満充電容量の低下率も高く設定されるので、蓄電装置の使用環境に応じて精度良く満充電容量を推定できる。   The decrease rate map can be set so that the decrease rate increases as the average SOC and the average battery temperature increase. By configuring in this way, when the factor of use environment that causes a decrease in the full charge capacity of the power storage device is high, the reduction rate of the full charge capacity is also set high, so depending on the use environment of the power storage device The full charge capacity can be estimated accurately.

本願第2の発明は、車両に搭載される蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する満充電容量推定方法である。本満充電容量推定方法は、前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度を算出するステップと、平均SOC及び平均電池温度に応じて変化する低下率が予め規定された低下率マップを用いて、満充電容量が推定されていない期間中の低下率を算出するステップと、満充電容量が推定されていない期間中の低下率と初期満充電容量とに基づいて前回満充電容量が算出されたときの蓄電装置の第1経過期間を算出するステップと、第1経過期間と満充電容量が推定されていない期間とから算出される蓄電装置の現在の第2経過期間、満充電容量が推定されていない期間中の低下率、及び初期満充電容量に基づいて、現在の満充電容量を算出するステップと、を含む。本願第2の発明によれば、上記本願第1の発明と同様の効果を得ることができる。   The second invention of the present application is a full charge capacity estimation method for calculating a current full charge capacity based on a rate of decrease from an initial full charge capacity defined in advance according to an elapsed period of a power storage device mounted on a vehicle. is there. The method for estimating the full charge capacity includes a step of calculating an average SOC and an average battery temperature during a period in which the full charge capacity is not estimated from the time when the full charge capacity was calculated the last time, and according to the average SOC and the average battery temperature. A step of calculating a reduction rate during a period when the full charge capacity is not estimated, using a reduction rate map in which the reduction rate changing in advance is defined in advance, and a reduction rate during a period when the full charge capacity is not estimated, It is calculated from the step of calculating the first elapsed period of the power storage device when the previous full charge capacity is calculated based on the initial full charge capacity, and the first elapsed period and the period when the full charge capacity is not estimated. Calculating the current full charge capacity based on the current second elapsed period of the power storage device, the rate of decrease during the period when the full charge capacity is not estimated, and the initial full charge capacity. According to the second invention of the present application, the same effect as that of the first invention of the present application can be obtained.

電池システムの構成を示す図である。It is a figure which shows the structure of a battery system. 外部充電動作及び外部充電時の満充電容量の演算処理を示すフローチャートである。It is a flowchart which shows the calculation process of the full charge capacity | capacitance at the time of external charging operation and external charging. 二次電池の使用期間と満充電容量の低下との関係を示す図である。It is a figure which shows the relationship between the use period of a secondary battery, and the fall of a full charge capacity. 二次電池の使用環境毎の満充電容量の低下量の変化(低下率)を説明するための図である。It is a figure for demonstrating the change (decrease rate) of the fall amount of the full charge capacity for every use environment of a secondary battery. 使用環境と満充電容量の低下率(傾き)の関係を示す図であり、満充電容量が推定されていない期間の二次電池の平均SOC及び平均電池温度と満充電容量の低下率との関係を示す図である。It is a figure which shows the relationship between a use environment and the reduction rate (slope) of a full charge capacity, and is the relationship between the average SOC of a secondary battery in the period when the full charge capacity is not estimated, the average battery temperature, and the reduction rate of a full charge capacity. FIG. 前回推定された満充電容量に基づいて、その後の満充電容量が推定されていない期間中の二次電池の満充電容量を推定する方法を説明するための図である。It is a figure for demonstrating the method of estimating the full charge capacity of the secondary battery in the period when the subsequent full charge capacity is not estimated based on the full charge capacity estimated last time. 前回満充電容量が推定された後の満充電容量が推定されていない期間の許容日数を示す図である。It is a figure which shows the allowable days of the period when the full charge capacity after the last full charge capacity is estimated is not estimated. 前回満充電容量が推定された後の満充電容量が推定されていない期間に、二次電池の使用環境に基づいて現在(今回)の満充電容量を推定する処理を示すフローチャートである。It is a flowchart which shows the process which estimates the present (full) full charge capacity based on the use environment of a secondary battery in the period when the full charge capacity after the last full charge capacity is estimated is not estimated. 図8に続く、満充電容量の推定処理を示すフローチャートである。FIG. 9 is a flowchart illustrating a full charge capacity estimation process following FIG. 8. FIG.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

図1は、本実施例の電池システムの構成を示す図である。図1に示す電池システムは、例えば、車両に搭載することができる。車両としては、例えば、PHV(Plug-in Hybrid Vehicle)やEV(Electric Vehicle)がある。   FIG. 1 is a diagram showing the configuration of the battery system of this example. The battery system shown in FIG. 1 can be mounted on a vehicle, for example. Examples of vehicles include PHV (Plug-in Hybrid Vehicle) and EV (Electric Vehicle).

PHVでは、車両を走行させるための動力源として、後述する組電池に加えて、エンジン又は燃料電池といった他の動力源を備えている。また、PHVでは、外部電源からの電力を用いて組電池を充電することができる。さらに、エンジンを備えたPHVでは、エンジンによって生成された運動エネルギを電気エネルギに変換することにより、この電気エネルギを用いて、組電池を充電することができる。   In the PHV, in addition to the assembled battery described later, another power source such as an engine or a fuel cell is provided as a power source for running the vehicle. Moreover, in PHV, an assembled battery can be charged using the electric power from an external power supply. Furthermore, in a PHV equipped with an engine, the assembled battery can be charged using this electric energy by converting the kinetic energy generated by the engine into electric energy.

EVは、車両の動力源として、組電池だけを備えており、外部電源からの電力供給を受けて、組電池を充電することができる。外部電源とは、車両の外部において、車両とは別に設置された電源(例えば、商用電源)である。   The EV includes only the assembled battery as a power source of the vehicle, and can receive the power supply from the external power source to charge the assembled battery. An external power source is a power source (for example, a commercial power source) installed separately from the vehicle outside the vehicle.

組電池(蓄電装置に相当する)100は、直列に接続された複数の単電池(蓄電素子に相当する)10を有する。単電池10としては、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、二次電池の代わりに、電気二重層キャパシタを用いることができる。   The assembled battery (corresponding to a power storage device) 100 has a plurality of unit cells (corresponding to power storage elements) 10 connected in series. As the unit cell 10, a secondary battery such as a nickel metal hydride battery or a lithium ion battery can be used. An electric double layer capacitor can be used instead of the secondary battery.

単電池10の数は、組電池100の要求出力などに基づいて、適宜設定することができる。本実施例の組電池100では、すべての単電池10が直列に接続されているが、組電池100には、並列に接続された複数の単電池10が含まれていてもよい。   The number of unit cells 10 can be appropriately set based on the required output of the assembled battery 100 and the like. In the assembled battery 100 of the present embodiment, all the unit cells 10 are connected in series, but the assembled battery 100 may include a plurality of unit cells 10 connected in parallel.

監視ユニット200は、組電池100の端子間電圧を検出したり、各単電池10の端子間電圧を検出したりし、検出結果をECU(Electric Control Unit)300に出力する。   The monitoring unit 200 detects the inter-terminal voltage of the battery pack 100 or detects the inter-terminal voltage of each unit cell 10 and outputs the detection result to an ECU (Electric Control Unit) 300.

温度センサ201は、組電池100(単電池10)の温度を検出し、検出結果をECU300に出力する。ここで、温度センサ201は、組電池100の一箇所に設けることもできるし、組電池100のうち、互いに異なる複数の箇所に設けることもできる。複数の温度センサ201によって検出された温度が互いに異なるときには、例えば、複数の検出温度の中央値を、組電池100の温度として用いることができる。   The temperature sensor 201 detects the temperature of the assembled battery 100 (unit cell 10) and outputs the detection result to the ECU 300. Here, the temperature sensor 201 can be provided at one place of the assembled battery 100, or can be provided at a plurality of different places in the assembled battery 100. When the temperatures detected by the plurality of temperature sensors 201 are different from each other, for example, the median value of the plurality of detected temperatures can be used as the temperature of the assembled battery 100.

電流センサ202は、組電池100に流れる電流を検出し、検出結果をECU300に出力する。本実施例では、組電池100を放電しているときに電流センサ202によって検出された電流値を正の値としている。また、組電池100を充電しているときに電流センサ202によって検出された電流値を負の値としている。   Current sensor 202 detects a current flowing through battery pack 100 and outputs the detection result to ECU 300. In this embodiment, the current value detected by the current sensor 202 when the assembled battery 100 is discharged is a positive value. Further, the current value detected by the current sensor 202 when charging the assembled battery 100 is a negative value.

本実施例では、組電池100の正極端子と接続された正極ラインPLに電流センサ202を設けているが、電流センサ202は、組電池100に流れる電流を検出できればよく、電流センサ202を設ける位置は適宜設定することができる。例えば、組電池100の負極端子と接続された負極ラインNLに電流センサ202を設けることができる。なお、複数の電流センサ202を用いることもできる。   In this embodiment, the current sensor 202 is provided on the positive electrode line PL connected to the positive terminal of the assembled battery 100. However, the current sensor 202 only needs to be able to detect the current flowing through the assembled battery 100, and the position where the current sensor 202 is provided. Can be set as appropriate. For example, the current sensor 202 can be provided on the negative electrode line NL connected to the negative electrode terminal of the assembled battery 100. A plurality of current sensors 202 can also be used.

ECU(コントローラに相当する)300は、メモリ301を有しており、メモリ301は、ECU300が所定の処理(例えば、本実施例で説明する処理)を行うための各種の情報を記憶している。本実施例では、メモリ301が、ECU300に内蔵されているが、メモリ301を、ECU300の外部に設けることもできる。   The ECU (corresponding to a controller) 300 has a memory 301, and the memory 301 stores various information for the ECU 300 to perform predetermined processing (for example, processing described in the present embodiment). . In the present embodiment, the memory 301 is built in the ECU 300, but the memory 301 may be provided outside the ECU 300.

正極ラインPL及び負極ラインNLには、システムメインリレーSMR−B,SMR−Gがそれぞれ設けられている。システムメインリレーSMR−B,SMR−Gは、ECU300からの制御信号を受けることにより、オンおよびオフの間で切り替わる。システムメインリレーSMR−Gには、システムメインリレーSMR−Pおよび電流制限抵抗203が並列に接続され、システムメインリレーSMR−Pおよび電流制限抵抗203は、直列に接続されている。   System main relays SMR-B and SMR-G are provided on the positive line PL and the negative line NL, respectively. System main relays SMR-B and SMR-G are switched between ON and OFF by receiving a control signal from ECU 300. A system main relay SMR-P and a current limiting resistor 203 are connected in parallel to the system main relay SMR-G, and the system main relay SMR-P and the current limiting resistor 203 are connected in series.

組電池100をインバータ204(負荷)と接続するとき、ECU300は、まず、システムメインリレーSMR−Bをオフからオンに切り替えるとともに、システムメインリレーSMR−Pをオフからオンに切り替える。これにより、電流制限抵抗203に電流が流れることになる。つまり、電流制限抵抗203は、組電池100をインバータ204と接続するときに、突入電流が流れることを抑制するために用いられる。   When connecting the assembled battery 100 to the inverter 204 (load), the ECU 300 first switches the system main relay SMR-B from off to on and switches the system main relay SMR-P from off to on. As a result, a current flows through the current limiting resistor 203. That is, the current limiting resistor 203 is used to suppress the inrush current from flowing when the assembled battery 100 is connected to the inverter 204.

次に、ECU300は、システムメインリレーSMR−Gをオフからオンに切り替えた後に、システムメインリレーSMR−Pをオンからオフに切り替える。これにより、組電池100およびインバータ204の接続が完了し、図1に示す電池システムは、起動状態(Ready−On)となる。ECU300には、車両のイグニッションスイッチのオン/オフ(IG−ON/IG−OFF)に関する情報が入力され、ECU300は、イグニッションスイッチがオフからオンに切り替わることに応じて、電池システムを起動する。   Next, ECU 300 switches system main relay SMR-P from on to off after switching system main relay SMR-G from off to on. Thereby, the connection between the assembled battery 100 and the inverter 204 is completed, and the battery system shown in FIG. 1 is in the activated state (Ready-On). Information regarding on / off (IG-ON / IG-OFF) of the ignition switch of the vehicle is input to ECU 300, and ECU 300 activates the battery system in response to the ignition switch switching from OFF to ON.

一方、イグニッションスイッチがオンからオフに切り替わったとき、ECU300は、システムメインリレーSMR−B,SMR−Gをオンからオフに切り替える。これにより、組電池100およびインバータ204の接続が遮断され、電池システムは、停止状態(Ready−Off)となる。   On the other hand, when the ignition switch is switched from on to off, ECU 300 switches system main relays SMR-B and SMR-G from on to off. As a result, the connection between the assembled battery 100 and the inverter 204 is cut off, and the battery system enters a stopped state (Ready-Off).

インバータ204は、組電池100から出力された直流電力を交流電力に変換し、交流電力をモータ・ジェネレータ205に出力する。モータ・ジェネレータ205としては、例えば、三相交流モータを用いることができる。モータ・ジェネレータ205は、インバータ204から出力された交流電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータ205によって生成された運動エネルギを、車輪に伝達することにより、車両を走行させることができる。   The inverter 204 converts the DC power output from the assembled battery 100 into AC power, and outputs the AC power to the motor / generator 205. As the motor generator 205, for example, a three-phase AC motor can be used. Motor generator 205 receives AC power output from inverter 204 and generates kinetic energy for running the vehicle. By transmitting the kinetic energy generated by the motor / generator 205 to the wheels, the vehicle can be driven.

車両を減速させたり、停止させたりするとき、モータ・ジェネレータ205は、車両の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。インバータ204は、モータ・ジェネレータ205が生成した交流電力を直流電力に変換し、直流電力を組電池100に出力する。これにより、組電池100は、回生電力を蓄えることができる。   When the vehicle is decelerated or stopped, the motor generator 205 converts kinetic energy generated during braking of the vehicle into electric energy (AC power). The inverter 204 converts the AC power generated by the motor / generator 205 into DC power and outputs the DC power to the assembled battery 100. Thereby, the assembled battery 100 can store regenerative electric power.

本実施例では、組電池100をインバータ204に接続しているが、これに限るものではない。具体的には、組電池100を昇圧回路に接続するとともに、昇圧回路をインバータ204に接続することができる。昇圧回路を用いることにより、組電池100の出力電圧を昇圧することができる。また、昇圧回路は、インバータ204から組電池100への出力電圧を降圧することができる。   In this embodiment, the assembled battery 100 is connected to the inverter 204, but the present invention is not limited to this. Specifically, the battery pack 100 can be connected to the booster circuit, and the booster circuit can be connected to the inverter 204. By using the booster circuit, the output voltage of the assembled battery 100 can be boosted. The booster circuit can step down the output voltage from the inverter 204 to the assembled battery 100.

正極ラインPLおよび負極ラインNLには、充電器206が接続されている。具体的には、充電器206は、組電池100の正極端子及びシステムメインリレーSMR−Bを接続する正極ラインPLと、組電池100の負極端子及びシステムメインリレーSMR−Gを接続する負極ラインNLとに接続されている。充電器206には、インレット(コネクタ)207が接続されている。   A charger 206 is connected to the positive electrode line PL and the negative electrode line NL. Specifically, the charger 206 includes a positive line PL that connects the positive terminal of the assembled battery 100 and the system main relay SMR-B, and a negative line NL that connects the negative terminal of the assembled battery 100 and the system main relay SMR-G. And connected to. An inlet (connector) 207 is connected to the charger 206.

充電器206およびラインPL,NLを接続するラインには、充電リレーRch1,Rch2が設けられている。充電リレーRch1,Rch2は、ECU300からの制御信号を受けることにより、オンおよびオフの間で切り替わる。   Charging relays Rch1 and Rch2 are provided on the line connecting charger 206 and lines PL and NL. Charging relays Rch1 and Rch2 are switched between on and off in response to a control signal from ECU 300.

インレット207には、外部電源208から延設された充電プラグ(コネクタ)が接続される。充電プラグをインレット207に接続することにより、外部電源208からの電力を、充電器206を介して組電池100に供給することができる。これにより、外部電源208を用いて、組電池100を充電することができる。外部電源208が交流電力を供給するとき、充電器206は、外部電源からの交流電力を直流電力に変換し、直流電力を組電池100に供給する。ECU300は、充電器206の動作を制御することができる。   A charging plug (connector) extending from the external power source 208 is connected to the inlet 207. By connecting the charging plug to the inlet 207, power from the external power source 208 can be supplied to the assembled battery 100 via the charger 206. Thereby, the assembled battery 100 can be charged using the external power supply 208. When the external power source 208 supplies AC power, the charger 206 converts AC power from the external power source into DC power and supplies the DC power to the assembled battery 100. ECU 300 can control the operation of charger 206.

外部電源208の電力を組電池100に供給するとき、充電器206は、電圧を変換することもできる。ここで、車両停止中に外部電源208の電力を組電池100に供給して、組電池100を充電することを外部充電という。本実施例の電池システムでは、充電リレーRch1,Rch2がオンであるときに、外部電源208からの電力が組電池100に供給されるようになっている。外部充電を行うとき、組電池100には一定の電流を供給することができ、定電流の下で、組電池100を充電することができる。なお、外部充電中は、システムメインリレーSMR−B,SMR−Gは、オフとすることができる。   When supplying power from the external power source 208 to the assembled battery 100, the charger 206 can also convert the voltage. Here, charging the assembled battery 100 by supplying power from the external power source 208 to the assembled battery 100 while the vehicle is stopped is referred to as external charging. In the battery system of the present embodiment, power from the external power source 208 is supplied to the assembled battery 100 when the charging relays Rch1 and Rch2 are on. When external charging is performed, a constant current can be supplied to the assembled battery 100, and the assembled battery 100 can be charged under a constant current. During external charging, system main relays SMR-B and SMR-G can be turned off.

外部電源208の電力を組電池100に供給するシステムは、図1に示すシステムに限るものではない。例えば、充電器206は、システムメインリレーSMR−B,SMR−P,SMR−Gを介して、組電池100と接続することができる。具体的には、充電器206は、システムメインリレーSMR−B及びインバータ204を接続する正極ラインPLと、システムメインリレーSMR−G及びインバータ204を接続する負極ラインNLとに対して、充電リレーRch1,Rch2を介して接続することができる。この場合には、充電リレーRch1,Rch2及びステムメインリレーSMR−B,SMR−Gをオフからオンに切り替えることにより、外部充電を行うことができる。   The system for supplying the power from the external power source 208 to the assembled battery 100 is not limited to the system shown in FIG. For example, the charger 206 can be connected to the assembled battery 100 via the system main relays SMR-B, SMR-P, and SMR-G. Specifically, the charger 206 is connected to the positive line PL connecting the system main relay SMR-B and the inverter 204 and the negative line NL connecting the system main relay SMR-G and the inverter 204 to the charging relay Rch1. , Rch2 can be connected. In this case, external charging can be performed by switching charging relays Rch1, Rch2 and stem main relays SMR-B, SMR-G from off to on.

本実施例では、充電プラグをインレット207に接続することにより、外部充電を行うようにしているが、これに限るものではない。具体的には、いわゆる非接触方式の充電システムを用いることにより、外部電源208の電力を組電池100に供給することができる。非接触方式の充電システムでは、電磁誘導や共振現象を利用することにより、ケーブルを介さずに電力を供給することができる。非接触方式の充電システムとしては、公知の構成を適宜採用することができる。   In this embodiment, external charging is performed by connecting a charging plug to the inlet 207, but this is not a limitation. Specifically, the power of the external power source 208 can be supplied to the assembled battery 100 by using a so-called contactless charging system. In a non-contact charging system, electric power can be supplied without using a cable by using electromagnetic induction or a resonance phenomenon. As the non-contact charging system, a known configuration can be adopted as appropriate.

本実施例では、充電器206が車両に搭載されているが、これに限るものではない。すなわち、充電器206は、車両の外部において、車両とは別に設置されていてもよい。この場合には、ECU300および充電器206の間の通信によって、ECU300は、充電器206の動作を制御することができる。   In the present embodiment, the charger 206 is mounted on the vehicle, but is not limited thereto. That is, the charger 206 may be installed separately from the vehicle outside the vehicle. In this case, ECU 300 can control the operation of charger 206 through communication between ECU 300 and charger 206.

ECU300は、監視ユニット200によって検出された電圧値、温度センサ201によって検出された電池温度、電流センサ202によって検出された電流値に基づいて、組電池100のSOCを算出(推定)し、算出されたSOC及び満充電容量推定値に基づいて、組電池100の充放電制御を行うことができる。ECU300は、SOC推定部、満充電容量演算部、及び外部充電制御部としての各機能が含まれるように構成することができる。   The ECU 300 calculates (estimates) the SOC of the battery pack 100 based on the voltage value detected by the monitoring unit 200, the battery temperature detected by the temperature sensor 201, and the current value detected by the current sensor 202. The charge / discharge control of the assembled battery 100 can be performed based on the SOC and the estimated full charge capacity. ECU 300 can be configured to include each function as an SOC estimation unit, a full charge capacity calculation unit, and an external charge control unit.

組電池100のSOCは、組電池10の満充電容量に対して現在の充電容量の割合(充電状態)を示すものであり、満充電容量はSOCの上限値である。SOCは、組電池100の開放電圧(OCV:Open Circuit Voltage)から特定することができる。例えば、組電池100のOCVとSOCとの対応関係をOCV−SOCマップとして予めメモリ301に記憶しておく。ECU300は、監視ユニット200によって検出される電圧(CCV:Closed Circuit Voltage)から組電池100のOCVを算出し、OCV−SOCマップからSOCを算出することができる。   The SOC of the assembled battery 100 indicates the ratio (charged state) of the current charging capacity with respect to the full charging capacity of the assembled battery 10, and the full charge capacity is the upper limit value of the SOC. The SOC can be specified from an open circuit voltage (OCV) of the assembled battery 100. For example, the correspondence relationship between the OCV and the SOC of the assembled battery 100 is stored in advance in the memory 301 as an OCV-SOC map. The ECU 300 can calculate the OCV of the assembled battery 100 from the voltage (CCV: Closed Circuit Voltage) detected by the monitoring unit 200, and can calculate the SOC from the OCV-SOC map.

なお、組電池100のOCVとSOCの対応関係は、電池温度に応じて変化するので、OCV−SOCマップを電池温度毎にメモリ301に記憶させておき、組電池100のOCVからSOCを推定する際の電池温度に応じてSOC−OCVマップを切り換えて(選択して)、組電池100のSOCを推定するようにしてもよい。   Since the correspondence relationship between the OCV and the SOC of the assembled battery 100 changes according to the battery temperature, the OCV-SOC map is stored in the memory 301 for each battery temperature, and the SOC is estimated from the OCV of the assembled battery 100. The SOC of the battery pack 100 may be estimated by switching (selecting) the SOC-OCV map according to the battery temperature at that time.

したがって、ECU300は、充放電中の監視ユニット200によって検出された電圧値(CCV)を監視することにより、組電池100の過充電状態や過放電状態を把握することができる。例えば、算出されたSOCが満充電容量に対する所定の上限SOCよりも高くならないように組電池100の充電を制限したり、下限SOCよりも低くならないように放電を制限する充放電制御を行うことができる。   Therefore, the ECU 300 can grasp the overcharged state and the overdischarged state of the assembled battery 100 by monitoring the voltage value (CCV) detected by the monitoring unit 200 during charging and discharging. For example, charging / discharging control may be performed to limit charging of the battery pack 100 so that the calculated SOC does not become higher than a predetermined upper limit SOC with respect to the full charge capacity, or to limit discharging so as not to become lower than the lower limit SOC. it can.

なお、ECU300は、インバータ204およびモータ・ジェネレータ205毎に設けることも可能であり、SOC推定処理、満充電容量推定処理及び外部充電処理を行うための別途のECUを、車両制御と独立して設けることも可能である。つまり、車両全体の制御を司る中央制御装置が、各部を制御したり、各部の制御毎の個別のECUを設けて中央制御装置が個別の各ECUと接続される構成であってもよい。   ECU 300 can also be provided for each inverter 204 and motor / generator 205, and a separate ECU for performing SOC estimation processing, full charge capacity estimation processing, and external charging processing is provided independently of vehicle control. It is also possible. In other words, the central control device that controls the entire vehicle may control each unit, or may be configured such that an individual ECU is provided for each control of the respective units and the central control device is connected to each individual ECU.

組電池100の満充電容量は、下記式1に基づいて算出することができる。
(式1)
満充電容量=電流積算値(ΣI)÷(SOC_e−SOC_s)×100
The full charge capacity of the assembled battery 100 can be calculated based on Equation 1 below.
(Formula 1)
Full charge capacity = current integrated value (ΣI) ÷ (SOC_e−SOC_s) × 100

上記式1において、満充電容量は、監視ユニット200や電流センサ202等の実測値に基づく組電池100の満充電容量である。SOC_s(充電開始SOC)は、外部充電において電流積算を開始する際の組電池100のSOCであり、SOC_eは、電流積算を終了した際の組電池100のSOCである。電流積算値は、SOC_sを算出してからSOC_eが算出されるまでの間の組電池100の外部充電電流を積算した値である。SOC_eからSOC_sを差し引いた値は、外部充電前後のSOCの変化(SOC差=ΔSOC)を表すものであり、SOCの変化に対する電流量の割合から、組電池100の満充電容量を算出することができる。   In the above formula 1, the full charge capacity is the full charge capacity of the assembled battery 100 based on the actual measurement values of the monitoring unit 200, the current sensor 202, and the like. SOC_s (charging start SOC) is the SOC of the battery pack 100 when current integration is started in external charging, and SOC_e is the SOC of the battery pack 100 when current integration is finished. The current integrated value is a value obtained by integrating the external charging current of the assembled battery 100 from when SOC_s is calculated to when SOC_e is calculated. The value obtained by subtracting SOC_s from SOC_e represents the change in SOC before and after external charging (SOC difference = ΔSOC), and the full charge capacity of the assembled battery 100 can be calculated from the ratio of the current amount with respect to the change in SOC. it can.

なお、外部充電時のSOC推定処理は、負荷や充電器206に接続される直前又は直後の状態において組電池10の端子間電圧を監視ユニット200で検出することで、監視ユニット200で検出された電圧値を、OCVとして用い、OCV−SOCマップからSOCを算出することができる。   In addition, the SOC estimation process at the time of external charging was detected by the monitoring unit 200 by detecting the voltage between the terminals of the assembled battery 10 in the state immediately before or immediately after being connected to the load or the charger 206. Using the voltage value as the OCV, the SOC can be calculated from the OCV-SOC map.

図2は、本実施例の外部充電動作及び満充電容量の演算処理を示すフローチャートである。図2に示すように、ECU300は、外部充電に伴って満充電容量演算処理を行うことができる。ECU300は、外部電源208と接続される充電プラグが、インレット207に接続されたか否かを検出し(S101)、充電プラグの接続が検出された場合に、外部充電を開始することができる(S102)。   FIG. 2 is a flowchart showing an external charging operation and a full charge capacity calculation process according to this embodiment. As shown in FIG. 2, the ECU 300 can perform a full charge capacity calculation process with external charging. The ECU 300 detects whether or not the charging plug connected to the external power source 208 is connected to the inlet 207 (S101), and can start external charging when the connection of the charging plug is detected (S102). ).

ECU300は、まず、組電池100が充電される充電開始時点のSOCを、充電開始時に監視ユニット200で検出された電圧値OCV1から算出し、算出したSOC1をSOC_sとしてメモリ301に記憶する(S103)。その後、ECU300は、充電器208を介して外部電源208の電力を組電池100に供給する充電電力の入力を開始するとともに、組電池100に流れる充電電流の積算処理を開始する(S104)。ECU300は、組電池100の電圧値を監視し、充電終了に応じた所定のSOC上限値に対応する電圧値になったときに、外部電源208から組電池100への電力供給を終了し(S105のYES)、充電電流の積算処理を終了する。   First, the ECU 300 calculates the SOC at the start of charging when the assembled battery 100 is charged from the voltage value OCV1 detected by the monitoring unit 200 at the start of charging, and stores the calculated SOC1 in the memory 301 as SOC_s (S103). . Thereafter, ECU 300 starts input of charging power for supplying electric power from external power supply 208 to assembled battery 100 via charger 208, and also starts integration processing of charging current flowing through assembled battery 100 (S104). The ECU 300 monitors the voltage value of the assembled battery 100, and when the voltage value corresponding to a predetermined SOC upper limit value corresponding to the end of charging is reached, the power supply from the external power source 208 to the assembled battery 100 is terminated (S105). YES), the charging current integration process is terminated.

次に、ECU300は、充電終了時に監視ユニット200で検出された電圧値OCV2から充電終了時点のSOC2を算出し、充電終了後の算出されたSOC2をSOC_eとして、メモリ301に記憶する(S106)。   Next, ECU 300 calculates SOC2 at the end of charging from voltage value OCV2 detected by monitoring unit 200 at the end of charging, and stores calculated SOC2 after the end of charging as SOC_e in memory 301 (S106).

ECU300は、外部充電前後のSOC差(SOC_e−SOC_s)と外部充電中の充電電流積算値とに基づいて、上述した式1に示したように、組電池100の満充電容量を算出する(S107)。ECU300は、外部充電による満充電容量の推定処理終了に伴い、次回外部充電時の満充電容量推定処理が行われるまでに満充電容量が推定されていない期間の計測等を開始し、満充電容量が推定されていない期間中において外部充電時以外で行う満充電容量推定処理のための準備処理を行う(S108)。   Based on the SOC difference before and after external charging (SOC_e-SOC_s) and the charging current integrated value during external charging, ECU 300 calculates the full charge capacity of battery pack 100 as shown in Equation 1 above (S107). ). The ECU 300 starts measurement of a period when the full charge capacity is not estimated until the full charge capacity estimation process at the next external charge is performed along with the completion of the estimation process of the full charge capacity by external charging. In a period during which the charging is not estimated, a preparatory process for a full charge capacity estimation process that is performed at a time other than during external charging is performed (S108).

外部充電時は、一定の充電電流が組電池100に流れるため、電流積算値を精度良く算出できる。また、車両停止中に行われる外部充電では、組電池100の大きなSOC変動が抑制されている状態であるため、充電開始時のSOC1及び充電終了時のSOC2それぞれを精度良く算出できる。したがって、外部充電の際の充放電履歴に基づいて満充電容量を精度良く推定できることになる。   At the time of external charging, since a constant charging current flows through the assembled battery 100, the integrated current value can be calculated with high accuracy. Further, in the external charging performed while the vehicle is stopped, the large SOC fluctuation of the assembled battery 100 is suppressed, so that it is possible to accurately calculate the SOC1 at the start of charging and the SOC2 at the end of charging. Therefore, the full charge capacity can be accurately estimated based on the charge / discharge history during external charging.

しかしながら、上述したように、満充電容量を推定する頻度が少ないと、経年変化によって低下(劣化)する現時点の満充電容量を適切に把握することができない。つまり、満充電容量が推定された後から次回に満充電容量が推定されるまでの期間(満充電容量が推定されていない期間。以下、未推定期間という)が長いと、満充電容量が適切に把握できていない状態で組電池100の充放電が制御されることになる。   However, as described above, if the frequency of estimating the full charge capacity is low, it is not possible to appropriately grasp the current full charge capacity that is reduced (deteriorated) due to secular change. In other words, if the period from when the full charge capacity is estimated until the next time the full charge capacity is estimated (period when the full charge capacity is not estimated; hereinafter referred to as the non-estimated period) is long, the full charge capacity is appropriate. Therefore, charging / discharging of the assembled battery 100 is controlled in a state in which the battery is not grasped.

例えば、現時点の満充電容量が前回推定された満充電容量よりも小さい状態であるにもかかわらず、前回推定された満充電容量を基準に充放電制御が行われると、充電された電力に対してSOCが低く算出され、放電された電力に対してSOCが高く算出される。充電された電力に対してSOCが低く見積もられれば、使用可能な電力が低くなり、組電池100の電力を用いた車両走行(EV走行)の距離が短くなる。また、放電された電力に対してSOCが高く見積もられれば、SOC下限値を超えた過放電となる。   For example, even if the current full charge capacity is smaller than the previously estimated full charge capacity, if charge / discharge control is performed based on the previously estimated full charge capacity, Thus, the SOC is calculated to be low, and the SOC is calculated to be high with respect to the discharged power. If the SOC is estimated to be lower than the charged electric power, the usable electric power is reduced, and the distance of the vehicle traveling (EV traveling) using the electric power of the assembled battery 100 is shortened. Further, if the SOC is estimated to be high with respect to the discharged power, the overdischarge exceeds the SOC lower limit value.

このように、経年変化により低下する満充電容量の推定処理の機会(頻度)が低下すると、使用環境下にある二次電池の現時点の満充電容量を精度良く把握できていない状態となる。特に、満充電容量の推定処理が、外部充電という特定のタイミングを契機に行われる場合、外部充電が行われないと満充電容量を推定できず、満充電容量の推定機会が減少してしまうため、満充電容量を適切に把握した状態で充放電を制御できない。   Thus, when the opportunity (frequency) of the estimation process of the full charge capacity | capacitance which falls with a secular change falls, it will be in the state which cannot fully grasp | ascertain the present full charge capacity | capacitance of the secondary battery in use environment. In particular, when the full charge capacity estimation process is performed at a specific timing of external charging, if the external charge is not performed, the full charge capacity cannot be estimated, and the full charge capacity estimation opportunity decreases. It is impossible to control charging / discharging in a state where the full charge capacity is properly grasped.

そこで、本実際例では、前回満充電容量が推定された後の未推定期間において組電池100の使用環境に応じて低下する満充電容量を推定できるようにし、外部充電が頻繁に行われなくても、言い換えれば、外部充電に伴う充放電履歴による満充電容量の推定処理が頻繁に行われなくても、前回満充電容量を算出した後から次回満充電容量を推定するまでの間に組電池100の使用環境に基づく満充電容量の推定を行い、満充電容量の推定機会を増加させて満充電容量を適切かつ精度良く把握できるようにする。   Therefore, in this actual example, it is possible to estimate the full charge capacity that decreases according to the use environment of the battery pack 100 in the non-estimated period after the previous full charge capacity is estimated, and external charging is not frequently performed. In other words, even if the process of estimating the full charge capacity based on the charge / discharge history associated with external charging is not frequently performed, the assembled battery between the time when the full charge capacity is estimated after the previous full charge capacity is calculated. The full charge capacity is estimated based on 100 usage environments, and the full charge capacity estimation opportunities are increased so that the full charge capacity can be grasped appropriately and accurately.

図3は、組電池100の使用期間と満充電容量の低下との関係を示す図である。図3において、横軸は、組電池100の使用期間(例えば、日数)であり、縦軸は、満充電容量である。C0は、組電池100の製造初期の満充電容量である。   FIG. 3 is a diagram illustrating the relationship between the usage period of the battery pack 100 and the decrease in the full charge capacity. In FIG. 3, the horizontal axis represents the usage period (for example, the number of days) of the assembled battery 100, and the vertical axis represents the full charge capacity. C0 is the full charge capacity of the assembled battery 100 at the initial stage of manufacture.

組電池100の満充電容量低下(電池劣化)に影響を及ぼす要因として、組電池100の使用環境下の電池温度、SOC(電圧)、経過時間がある。したがって、劣化に影響を及ぼす要因に応じた組電池100の使用環境、例えば、使用期間中にどのような電池温度の環境下で使用されていたのか、どのようなSOC状態の環境下で使用されていたのかを把握することで、組電池100の使用期間と満充電容量の低下との把握することができ、現時点の使用期間から満充電容量を把握することができる。   Factors affecting the full charge capacity reduction (battery deterioration) of the assembled battery 100 include the battery temperature, SOC (voltage), and elapsed time in the usage environment of the assembled battery 100. Therefore, the usage environment of the battery pack 100 according to the factors affecting the deterioration, for example, the battery temperature environment used during the usage period, and the SOC environment are used. By grasping whether the battery has been used, it is possible to grasp the usage period of the battery pack 100 and the decrease in the full charge capacity, and it is possible to grasp the full charge capacity from the current use period.

なお、使用期間とは、製造初期の段階から現時点までの期間である。また、使用期間には、充放電動作を行っている状態(例えば、車両のイグニッションスイッチがオン状態)と充放電動作を行っていない状態(例えば、車両のイグニッションスイッチがオフ状態)のそれぞれが含まれる。充放電動作を行っていなくても、例えば、電池温度が高い状態やSOCが高い状態の環境下では、組電池100の劣化が促進されてしまうからである。   The period of use is a period from the initial stage of manufacture to the present time. In addition, the period of use includes a state in which a charge / discharge operation is performed (for example, the ignition switch of the vehicle is on) and a state in which the charge / discharge operation is not performed (for example, the ignition switch of the vehicle is off). It is. This is because even if the charging / discharging operation is not performed, deterioration of the assembled battery 100 is promoted in an environment where the battery temperature is high or the SOC is high.

図3に示すように、組電池100の満充電容量及びその時点の使用期間を複数プロットすると、使用期間が長くなるほど製造初期の満充電容量C0から満充電容量が低下していることが分かる。図3に示す劣化曲線は、現在までの経過時間に対する組電池100の満充電容量の低下量、言い換えれば、製造初期の満充電容量C0に対する現在の満充電容量の低下量(劣化度)を示している。   As shown in FIG. 3, when a plurality of full charge capacities of the assembled battery 100 and the use period at that time are plotted, it can be seen that the full charge capacity decreases from the full charge capacity C0 at the initial stage of manufacture as the use period becomes longer. The deterioration curve shown in FIG. 3 shows the amount of decrease in the full charge capacity of the battery pack 100 with respect to the elapsed time up to the present time, in other words, the amount of decrease in the current full charge capacity (degradation degree) with respect to the full charge capacity C0 in the initial stage of manufacture. ing.

図3において、曲線で示される第1劣化推移と第2劣化推移は、それぞれ使用環境が異なる状態での劣化推移であり、例えば、使用期間中の組電池100の平均電池温度や平均SOCに応じて異なる劣化曲線となっている。これは、上述したように、満充電容量の経年変化は、劣化に影響を及ぼす要因(組電池100の使用環境)毎に異なる劣化推移マップとなるからである。   In FIG. 3, the first deterioration transition and the second deterioration transition indicated by the curves are deterioration transitions when the usage environment is different, for example, depending on the average battery temperature and average SOC of the assembled battery 100 during the usage period. Have different deterioration curves. This is because, as described above, the secular change of the full charge capacity becomes a different deterioration transition map for each factor (use environment of the assembled battery 100) that affects the deterioration.

図4は、組電池100の使用環境毎の使用期間と満充電容量の低下量の変化(低下率)との関係を示す図である。図4において、横軸は、各使用環境での経過時間の平方根(√使用期間)であり、縦軸は、組電池100の満充電容量である。また、各直線は、図3に示した第1劣化推移,第2劣化推移にそれぞれ対応している。   FIG. 4 is a diagram illustrating the relationship between the usage period for each usage environment of the assembled battery 100 and the change (decrease rate) in the amount of decrease in the full charge capacity. In FIG. 4, the horizontal axis is the square root of elapsed time in each use environment (√use period), and the vertical axis is the full charge capacity of the assembled battery 100. Each straight line corresponds to the first deterioration transition and the second deterioration transition shown in FIG.

図4に示すように、組電池100の経過時間に対する満充電容量の低下率は、図3とは異なり、縦軸の経過時間を平方根とすることで、製造初期の満充電容量C0を基準としたマイナスの傾きを有する直線で表すことができる。つまり、組電池100の満充電容量の変化は、経過時間に対して電池温度及びSOC毎に異なる所定の傾き(低下率)を有する推移となる。図4に示した電池温度及びSOC毎に異なる経過時間に対する満充電容量の低下率は、予め実験等によって求めておくことができ、電池温度及びSOC毎に異なる劣化推移マップとしてメモリ301に保持することができる。   As shown in FIG. 4, the rate of decrease of the full charge capacity with respect to the elapsed time of the battery pack 100 is different from that of FIG. It can be represented by a straight line having a negative slope. That is, the change in the full charge capacity of the assembled battery 100 is a transition having a predetermined slope (decrease rate) that differs for each battery temperature and SOC with respect to the elapsed time. The reduction rate of the full charge capacity with respect to the elapsed time different for each battery temperature and SOC shown in FIG. 4 can be obtained in advance by experiments or the like, and is stored in the memory 301 as a deterioration transition map different for each battery temperature and SOC. be able to.

図4において、例えば、前回推定した際の満充電容量をC1とすると、製造初期の満充電容量C0に対し、組電池100の満充電容量は、ΔC(=C0−C1)分低下する。図4に示すような満充電容量の低下率が分かれば、前回満充電容量を推定した時点から現時点までの経過時間に応じた満充電容量の低下量を把握することができ、現時点の満充電容量を算出することができる。   In FIG. 4, for example, when the full charge capacity at the time of the previous estimation is C1, the full charge capacity of the assembled battery 100 is reduced by ΔC (= C0−C1) with respect to the full charge capacity C0 in the initial stage of manufacture. If the rate of decrease of the full charge capacity as shown in FIG. 4 is known, the amount of decrease in the full charge capacity according to the elapsed time from the time when the full charge capacity was estimated to the present time can be grasped, and the current full charge capacity can be grasped. The capacity can be calculated.

しかしながら、上述のように、組電池100の使用環境が異なると、満充電容量C0から満充電容量C1となるまでの低下率が異なる。第1劣化推移よりも第2劣化推移の方が傾き(低下率)が大きいため、組電池100の使用期間に対して第1劣化推移よりも早く満充電容量C1に到達することになる。つまり、図4に示すように、同じ満充電容量C1でもX点から第1劣化推移に沿う低下率(第1の傾き)と、Y点から第2劣化推移に沿う低下率(第2の傾き)とで、現時点までの組電池100の経過時間に対する満充電容量の低下量が異なる。   However, as described above, when the usage environment of the assembled battery 100 is different, the rate of decrease from the full charge capacity C0 to the full charge capacity C1 is different. Since the second deterioration transition has a larger slope (decrease rate) than the first deterioration transition, the full charge capacity C1 is reached earlier than the first deterioration transition with respect to the usage period of the assembled battery 100. That is, as shown in FIG. 4, even with the same full charge capacity C1, the rate of decrease along the first deterioration transition from the point X (first inclination) and the rate of decrease along the second deterioration transition from the point Y (second inclination) ) And the amount of decrease in the full charge capacity with respect to the elapsed time of the assembled battery 100 up to the present time is different.

このように、前回満充電容量を推定した時点からどのような満充電容量の低下率で現在の満充電容量に至っているのか、言い換えれば、どのような傾きで組電池100の満充電容量が低下しているのかが把握できないと、組電池100の使用期間に対する満充電容量の低下量を正確に把握することができない。   In this way, the full charge capacity decrease rate from the time when the full charge capacity was estimated last time, in other words, the full charge capacity of the battery pack 100 is reduced at what inclination. If it is impossible to grasp whether or not the battery pack 100 is being used, it is impossible to accurately grasp the amount of decrease in the full charge capacity with respect to the usage period of the assembled battery 100.

そこで、本実施例では、外部充電時の充放電履歴基づいて満充電容量が推定された後から今回満充電容量を算出するまでの間の組電池100の平均電池温度及び平均SOC、すなわち、組電池100の使用環境に基づいて満充電容量の低下率を把握し、前回算出された満充電容量から今回満充電容量を算出する現時点までに至る低下推移を、組電池100の使用環境を考慮して推定する。   Therefore, in this embodiment, the average battery temperature and average SOC of the assembled battery 100 from when the full charge capacity is estimated based on the charge / discharge history at the time of external charging until the current full charge capacity is calculated, that is, the assembled Based on the usage environment of the battery 100, the rate of decrease of the full charge capacity is grasped, and the decrease trend from the previously calculated full charge capacity to the current full charge capacity is calculated in consideration of the use environment of the battery pack 100. To estimate.

図5は、組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係を示す図(低下率マップに相当する)である。ここで、平均電池温度とは、所定間隔毎に測定される組電池100の電池温度を、電池温度の測定頻度や時間、日数等で平均した値である。例えば、所定間隔毎に測定される各電池温度を加算し、加算した電池温度(Σ電池温度)の時間平均を算出することで、平均電池温度を算出することができる。   FIG. 5 is a diagram (corresponding to a reduction rate map) showing the relationship between the average battery temperature and average SOC of the assembled battery 100 and the reduction rate of the full charge capacity. Here, the average battery temperature is a value obtained by averaging the battery temperature of the assembled battery 100 measured at predetermined intervals based on the measurement frequency, time, number of days, etc. of the battery temperature. For example, the average battery temperature can be calculated by adding the battery temperatures measured at predetermined intervals and calculating the time average of the added battery temperatures (Σ battery temperature).

また、平均SOCは、平均電池温度と同様に、所定間隔毎(電池温度と同じ検出タイミング又は異なるタイミング)で測定される組電池100のSOCを、SOC測定の頻度や時間、日数等で平均した値である。例えば、所定間隔毎に測定される各SOCを加算し、加算したSOC(ΣSOC)の時間平均を算出することで、平均SOCを算出することができる。   In addition, the average SOC is obtained by averaging the SOC of the assembled battery 100 measured at predetermined intervals (same detection timing or different timing as the battery temperature) by the SOC measurement frequency, time, number of days, etc. Value. For example, the average SOC can be calculated by adding the SOCs measured at predetermined intervals and calculating the time average of the added SOC (ΣSOC).

図5に示すように、平均電池温度が高ければ高いほど、満充電容量の低下率が大きくなり、また、平均SOCが高ければ高いほど、満充電容量の低下率が大きくなっている。つまり、上述したように、使用環境下の組電池100の劣化要因(満充電容量の低下要因)が大きく影響していれば、満充電容量の低下率(傾き)が大きく設定される。一方、平均電池温度が低く、かつ平均SOCが低い場合、使用環境下の組電池100の劣化要因が小さい影響していれば、満充電容量の低下率が小さく設定される。このように構成することで、組電池100の使用環境に応じて精度良く満充電容量を推定できる。なお、図5に示した組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係は、予め実験等によって求めておくことができ、メモリ301に保持することができる。   As shown in FIG. 5, the higher the average battery temperature, the greater the rate of decrease in full charge capacity, and the higher the average SOC, the greater the rate of decrease in full charge capacity. That is, as described above, if the deterioration factor (the reduction factor of the full charge capacity) of the assembled battery 100 in the usage environment has a large influence, the reduction rate (slope) of the full charge capacity is set to be large. On the other hand, when the average battery temperature is low and the average SOC is low, if the deterioration factor of the assembled battery 100 under the usage environment has a small influence, the reduction rate of the full charge capacity is set to be small. With this configuration, the full charge capacity can be accurately estimated according to the usage environment of the assembled battery 100. Note that the relationship between the average battery temperature and average SOC of the assembled battery 100 shown in FIG. 5 and the rate of decrease of the full charge capacity can be obtained in advance by experiments or the like, and can be held in the memory 301.

図6は、前回外部充電時に推定された満充電容量に基づいて、その後の未推定期間中の組電池100の満充電容量を推定する方法を説明するための図である。図6において、横軸は、各使用環境での経過時間の平方根(√使用期間)であり、縦軸は、組電池100の満充電容量である。   FIG. 6 is a diagram for explaining a method for estimating the full charge capacity of the assembled battery 100 during the subsequent non-estimated period based on the full charge capacity estimated at the time of the previous external charge. In FIG. 6, the horizontal axis is the square root of elapsed time in each use environment (√use period), and the vertical axis is the full charge capacity of the assembled battery 100.

まず、外部充電の際に推定された前回の満充電容量をC1とする。図6においてX点が前回満充電容量C1を示しているが、満充電容量C1と今回満充電容量を算出する現時点までの満充電容量低下率との関係が分からないため、X点は、満充電容量C1と関連付いているものの、組電池100の√使用期間とは関連付いていない。   First, let C1 be the previous full charge capacity estimated at the time of external charging. In FIG. 6, the X point indicates the previous full charge capacity C1, but since the relationship between the full charge capacity C1 and the full charge capacity reduction rate up to the present time for calculating the current full charge capacity is not known, the X point is the full charge capacity. Although it is associated with the charging capacity C1, it is not associated with the period of use of the assembled battery 100.

このため、前回満充電容量が推定された後、現時点まで満充電容量がどのような推移で低下しているのかを把握するために、組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係を予め規定したマップから(図5参照)、組電池100の使用期間に対して変化する満充電容量の低下率を特定(算出)する。組電池100の平均電池温度及び平均SOCは、上述したように、前回満充電容量が推定された後から現時点までの満充電容量が推定されていない期間中に測定された電池温度及びSOCそれぞれの平均値である。   For this reason, in order to grasp how the full charge capacity has decreased until the present time after the previous full charge capacity was estimated, the average battery temperature and average SOC of the assembled battery 100 and the full charge capacity A reduction rate of the full charge capacity that changes with the use period of the assembled battery 100 is specified (calculated) from a map that preliminarily defines the relationship with the reduction rate (see FIG. 5). As described above, the average battery temperature and the average SOC of the assembled battery 100 are the battery temperature and the SOC measured during the period when the full charge capacity from the previous full charge capacity to the present time is not estimated. Average value.

特定された満充電容量の低下率が特定されると、製造初期の満充電容量C0を基準とした組電池100の使用期間に応じた満充電容量の低下推移を特定することができる。図6に示すように、未推定期間の平均電池温度及び平均SOCに応じた第3劣化推移として、第3の傾きの低下率で表される直線を把握することができる。   When the specified rate of decrease of the full charge capacity is specified, it is possible to specify the transition of decrease in the full charge capacity according to the usage period of the assembled battery 100 based on the full charge capacity C0 at the initial stage of manufacture. As shown in FIG. 6, a straight line represented by the rate of decrease in the third slope can be grasped as the third deterioration transition corresponding to the average battery temperature and average SOC during the non-estimated period.

次に、第3の傾きの劣化推移に前回満充電容量C1を関連付ける。図6に示すように、満充電容量C1とX点の二点間で規定される横軸に平行な直線と、満充電容量C0と第3の傾きで規定される直線との交点Yが、第3の傾きの低下率で満充電容量が低下する満充電容量C1となる。Y点によって、第3の傾きで規定される満充電容量の変化と使用期間の関係において、満充電容量C1に対応する組電池100の「√使用期間T1」を算出することができる。   Next, the previous full charge capacity C1 is associated with the deterioration transition of the third inclination. As shown in FIG. 6, the intersection point Y of the straight line parallel to the horizontal axis defined between the two points of the full charge capacity C1 and the X point and the straight line defined by the full charge capacity C0 and the third inclination is The full charge capacity C1 at which the full charge capacity decreases at the rate of decrease of the third slope. From the point Y, the “√use period T1” of the battery pack 100 corresponding to the full charge capacity C1 can be calculated in the relationship between the change in full charge capacity defined by the third slope and the use period.

つまり、満充電容量C1に対応する組電池100の「√使用期間T1」は、前回満充電容量C1が推定された際の組電池100の経過時間に対応しており、例えば、前回満充電容量は「C1=C0−Q×√使用期間T1」となる。Qは、平均電池温度及び平均SOCから特定される満充電容量の低下率(第3の傾き)である。   That is, the “√use period T1” of the battery pack 100 corresponding to the full charge capacity C1 corresponds to the elapsed time of the battery pack 100 when the previous full charge capacity C1 was estimated. Is “C1 = C0−Q × √use period T1”. Q is a decrease rate (third slope) of the full charge capacity specified from the average battery temperature and the average SOC.

このとき、「C1=C0−Q×√使用期間T1」を「√使用期間T1」で変形すると、「√使用期間T1=(C0−C1)÷Q」となる。製造初期の満充電容量C0、低下率Q、前回満充電容量C1はそれぞれ予め把握できるので、「√使用期間T1」を算出することができる。   At this time, when “C1 = C0−Q × √use period T1” is modified by “√use period T1”, “√use period T1 = (C0−C1) ÷ Q” is obtained. Since the full charge capacity C0, the decrease rate Q, and the previous full charge capacity C1 at the initial stage of production can be grasped in advance, “√use period T1” can be calculated.

そして、算出された前回満充電容量C1に対応する「√使用期間T1」に未推定期間を加算することで、今回満充電容量を算出する現時点での「√使用期間T2」を算出することができる。現時点の「√使用期間T2」が算出されることで、第3の傾きで規定される満充電容量の低下率Qに応じた現時点の満充電容量C2を算出することができる。図6の例で説明すると、「√使用期間T2」が算出されることで第3の傾きを有する満充電容量の直線上の点Zを特定でき、点Zに対応する満充電容量C2を算出することができる。このような関係から、例えば、現在の満充電容量C2は「C2=C0−Q×√使用期間T2」の式で算出することができる。   Then, by adding an unestimated period to “√use period T1” corresponding to the previously calculated full charge capacity C1, it is possible to calculate “√use period T2” at the present time for calculating the current full charge capacity. it can. By calculating the current “√use period T2”, it is possible to calculate the current full charge capacity C2 corresponding to the full charge capacity decrease rate Q defined by the third slope. In the example of FIG. 6, by calculating “√use period T2”, the point Z on the straight line of the full charge capacity having the third slope can be specified, and the full charge capacity C2 corresponding to the point Z is calculated. can do. From such a relationship, for example, the current full charge capacity C2 can be calculated by an expression of “C2 = C0−Q × √use period T2”.

なお、「√使用期間T2」に対応する使用期間は、前回推定された満充電容量C1に対応する「√使用期間T1」の二乗値と未推定期間とを加算することで算出することができる。算出された値の平方根を算出することで、第3の傾きに対応する「√使用期間T2」を算出することができる。   The usage period corresponding to “√use period T2” can be calculated by adding the square value of “√use period T1” corresponding to the previously estimated full charge capacity C1 and the non-estimated period. . By calculating the square root of the calculated value, the “√use period T2” corresponding to the third inclination can be calculated.

図7は、前回満充電容量が推定された後の満充電容量が推定されていない期間の許容日数を示す図である。図7において、縦軸が、満充電容量が推定されていない間の許容期間、横軸が満充電容量である。   FIG. 7 is a diagram showing the allowable number of days in a period in which the full charge capacity is not estimated after the previous full charge capacity is estimated. In FIG. 7, the vertical axis represents the allowable period during which the full charge capacity is not estimated, and the horizontal axis represents the full charge capacity.

許容期間は、前回満充電容量が推定された後からどのくらいの期間で満充電容量を推定すべきかを規定したものである。本実施例では、外部充電の際の満充電容量推定の後に、未推定期間の経過時間をトリガーとして、外部充電が行われなくても満充電容量推定を定期的に行い、満充電容量の推定機会を確保しながら、精度良く満充電容量を把握する。   The permissible period defines how long the full charge capacity should be estimated after the previous full charge capacity is estimated. In this embodiment, after estimating the full charge capacity at the time of external charging, the full charge capacity is periodically estimated even when external charging is not performed using the elapsed time of the non-estimated period as a trigger to estimate the full charge capacity. Accurately grasp the full charge capacity while securing the opportunity.

図7に示すように、許容期間は、製造初期の満充電容量C0を基準に、満充電容量が低下するにつれて許容期間が長くなり、閾値C_th(<C0)よりも満充電容量が小さくなると、一定の許容期間が設定される。これは、満充電容量が大きい状態では低下量が大きくため、許容期間を短く設定して満充電容量の推定処理の間隔を短くし、満充電容量を適切に把握できるようにするためである。図3の例に示すように、製造初期の満充電容量C0から組電池100の使用期間が経過するにつれて、経年変化によって満充電容量が低下するが、満充電容量が大きい状態であればあるほど、使用期間に対する満充電容量の低下量が大きく、満充電容量が小さくなるにつれて、使用期間に対する満充電容量の低下量が小さい。したがって、図7に示すように、許容期間Bが設定される満充電容量の大きさは、許容期間Bよりも長い期間の許容期間Aが設定される満充電容量C2よりも大きい状態であり、組電池100の満充電容量が小さくなるにつれて許容期間を長く設定して満充電容量の推定処理の間隔を大きくしている。   As shown in FIG. 7, the allowable period becomes longer as the full charge capacity is decreased with reference to the full charge capacity C0 in the initial stage of manufacture, and when the full charge capacity becomes smaller than the threshold C_th (<C0), A certain allowable period is set. This is because the amount of decrease is large when the full charge capacity is large, so that the allowable period is set short and the interval of the full charge capacity estimation process is shortened so that the full charge capacity can be properly grasped. As shown in the example of FIG. 3, the full charge capacity decreases due to secular change as the use period of the assembled battery 100 elapses from the full charge capacity C0 in the initial stage of manufacture. The amount of decrease in the full charge capacity with respect to the use period is large, and as the full charge capacity is reduced, the amount of decrease in the full charge capacity with respect to the use period is small. Therefore, as shown in FIG. 7, the full charge capacity at which the allowable period B is set is larger than the full charge capacity C2 at which the allowable period A is set longer than the allowable period B. As the full charge capacity of the battery pack 100 becomes smaller, the allowable period is set longer to increase the interval of the full charge capacity estimation process.

このように、本実施例では、未推定期間の経過時間がトリガーとなって前回満充電容量推定後の任意のタイミングで満充電容量を精度推定することができ、未推定期間が長くなること、言い換えれば、経年変化する満充電容量を把握できない期間が長くなることを抑制することができる。そして、前回満充電容量が大きい状態であればあるほど、未推定期間に対する許容期間を小さくし、満充電容量の推定頻度を増やして満充電容量の変化を正確に把握できるようにしている。   Thus, in this embodiment, the elapsed time of the non-estimated period can be a trigger to accurately estimate the full charge capacity at any timing after the previous full charge capacity estimation, and the non-estimated period becomes longer. In other words, it is possible to suppress an increase in the period during which the full charge capacity that changes over time cannot be grasped. Then, the larger the previous full charge capacity is, the smaller the allowable period for the non-estimated period is, and the full charge capacity estimation frequency is increased so that changes in the full charge capacity can be accurately grasped.

この許容期間は、外部充電時の満充電推定処理後に設定することができる。図2に示した外部充電時の満充電容量推定処理において、ECU300は、ステップS107を遂行する。ステップS107の準備処理において、図7に示したマップを用いて外部充電時に推定された最新の満充電容量から許容期間を算出し、満充電容量推定後の未推定期間に対する許容期間を設定することができる。   This permissible period can be set after the full charge estimation process during external charging. In the full charge capacity estimation process at the time of external charging shown in FIG. 2, ECU 300 performs step S107. In the preparation process of step S107, the allowable period is calculated from the latest full charge capacity estimated at the time of external charging using the map shown in FIG. 7, and the allowable period for the non-estimated period after the full charge capacity is estimated is set. Can do.

なお、準備処理は、外部充電時に限らず、許容期間をトリガーに遂行される満充電容量推定処理後にも遂行される。つまり、外部充電の際の満充電容量が推定される度に又は外部充電に限らず満充電容量が推定される度に、ECU300は、準備処理を遂行し、満充電容量推定後の未推定期間中に所定のタイミングで、満充電容量を推定することができるようにしている。   The preparatory process is not limited to external charging, but is also performed after the full charge capacity estimation process that is performed with an allowable period as a trigger. That is, every time the full charge capacity at the time of external charging is estimated or every time the full charge capacity is estimated without being limited to external charging, the ECU 300 performs the preparation process, and the unestimated period after the full charge capacity is estimated. The full charge capacity can be estimated at a predetermined timing.

図8は、前回満充電容量が推定された後の未推定期間に、組電池100の使用環境に基づいて現在(今回)の満充電容量を推定する処理を示すフローチャートである。図9は、図8に続く、満充電容量の推定処理を示すフローチャートである。   FIG. 8 is a flowchart showing a process of estimating the current (current) full charge capacity based on the usage environment of the assembled battery 100 in the non-estimated period after the previous full charge capacity is estimated. FIG. 9 is a flowchart showing the full charge capacity estimation processing continued from FIG.

図8及び図9に示す処理は、車両のイグニッションスイッチがオン/オフ状態、又は外部充電時に限らず、ECU300によって遂行される。   The processing shown in FIG. 8 and FIG. 9 is performed by the ECU 300 regardless of whether the ignition switch of the vehicle is in an on / off state or external charging.

ECU300は、前回満充電容量が推定された後から未推定期間の計測処理を行い、1時間経過する度に、組電池100の電池温度及びSOCを計測する。ECU300は、1分毎に1時間計時カウンタC_1hをインクリメントする(S301)。ECU300は、1時間が経過したか否か、言い換えれば、1時間計時カウンタC_1hが60を超えたか否かを判定し(S302)、1時間経過していない場合は、ステップS301の1分毎の1時間計時カウンタC_1hのインクリメント処理を遂行する。   The ECU 300 performs measurement processing for the non-estimated period after the previous full charge capacity is estimated, and measures the battery temperature and SOC of the assembled battery 100 every time one hour elapses. The ECU 300 increments the hour counting counter C_1h every minute (S301). The ECU 300 determines whether or not one hour has elapsed, in other words, whether or not the one-hour time counter C_1h has exceeded 60 (S302). If one hour has not elapsed, the ECU 300 determines every minute in step S301. Increment processing of the 1-hour time counter C_1h is performed.

ECU300は、ステップS302において1時間が経過したと判定された場合、未推定時間カウンタC_24hをインクリメントする(S303)。未推定時間カウンタC_24hは、1時間計時カウンタC_1hに対応する1時間単位のカウンタであり、前回満充電容量が推定された後から1時間経過する度にインクリメントされる。   When it is determined in step S302 that one hour has elapsed, the ECU 300 increments the unestimated time counter C_24h (S303). The non-estimated time counter C_24h is a one-hour unit counter corresponding to the one-hour clock counter C_1h, and is incremented every time one hour has elapsed since the previous full charge capacity was estimated.

ECU300は、前回満充電容量が推定された後から1時間経過する度に、組電池100の電圧及び電池温度の各検出値を監視ユニット200,温度センサ201から取得する(S304)。ECU300は、ステップS305において、検出された電圧値に基づいてSOC推定処理を行い、推定されたSOCを用いてΣSOCを算出するSOC積算処理を行う。同様に、ECU300は、ステップS306において、検出された電池温度を用いてΣ電池温度を算出する電池温度積算処理を行う。   The ECU 300 acquires the detected values of the voltage of the assembled battery 100 and the battery temperature from the monitoring unit 200 and the temperature sensor 201 every time one hour has elapsed since the last full charge capacity was estimated (S304). In step S305, ECU 300 performs SOC estimation processing based on the detected voltage value, and performs SOC integration processing for calculating ΣSOC using the estimated SOC. Similarly, in step S306, ECU 300 performs a battery temperature integration process for calculating the Σ battery temperature using the detected battery temperature.

本実施例では、車両走行中又は車両停車中にかかわらずに、未推定期間中の組電池100のSOC及び電池温度を所定のタイミングで複数取得しており、取得されたSOC及び電池温度は、未推定期間の経過時間と共にメモリ301に記憶される。このため、満充電容量が低下する要因となる使用環境を精度良く把握することができ、平均SOC及び平均電池温度に基づく満充電容量の推定精度が向上する。   In the present embodiment, regardless of whether the vehicle is running or the vehicle is stopped, a plurality of SOCs and battery temperatures of the assembled battery 100 during the non-estimated period are acquired at a predetermined timing. It is stored in the memory 301 together with the elapsed time of the unestimated period. For this reason, it is possible to accurately grasp the use environment that causes a decrease in the full charge capacity, and the estimation accuracy of the full charge capacity based on the average SOC and the average battery temperature is improved.

なお、1時間計時カウンタC_1h,未推定時間カウンタC_24h、ΣSOC及びΣ電池温度は、ステップS107の準備処理でそれぞれ初期化(=0)される。つまり、満充電容量が推定された後の時間計測処理及び使用環境の把握処理に用いられ、最新の満充電容量が推定される度に、未推定期間中の満充電容量推定処理のために新たに算出されることになる。   Note that the 1-hour time counter C_1h, the unestimated time counter C_24h, the ΣSOC, and the Σbattery temperature are initialized (= 0) in the preparation process in step S107. In other words, it is used for the time measurement process after the full charge capacity is estimated and the grasping process of the use environment, and every time the latest full charge capacity is estimated, a new charge charge estimation process for the unestimated period is performed. Will be calculated.

ECU300は、ステップS107の準備処理で設定された許容期間Aを取得し(S307)、未推定時間カウンタC_24hのインクリメント処理、SOC積算処理及び電池温度積算処理に伴って、現時点での未推定期間が許容期間を超えているか否かを判別する(S308)。例えば、許容期間Aの単位が「日」である場合、許容期間A×24が、未推定時間カウンタC_24hの値と同じか又は超えているかを判定することができる。   The ECU 300 obtains the allowable period A set in the preparation process in step S107 (S307), and the unestimated period at the present time is determined along with the increment process of the unestimated time counter C_24h, the SOC integration process, and the battery temperature integration process. It is determined whether or not the allowable period is exceeded (S308). For example, when the unit of the allowable period A is “day”, it can be determined whether the allowable period A × 24 is equal to or exceeds the value of the unestimated time counter C_24h.

ECU300は、前回満充電容量を推定した後の経過時間が許容期間を超えていると判別された場合、使用環境に基づく満充電容量の推定処理を開始する。   When it is determined that the elapsed time after estimating the full charge capacity last time exceeds the allowable period, ECU 300 starts the estimation process of the full charge capacity based on the use environment.

ECU300は、前回満充電容量を推定した後の未推定期間(経過時間)中の組電池100の平均SOC及び平均電池温度を算出する(S309)。平均SOC及び平均電池温度は、ステップS305のSOC積算処理で算出されたΣSOC、ステップS306の電池温度積算処理で算出されたΣ電池温度それぞれを、未推定時間カウンタC_24hで除算することで算出することができる。   The ECU 300 calculates the average SOC and average battery temperature of the assembled battery 100 during the non-estimated period (elapsed time) after estimating the previous full charge capacity (S309). The average SOC and the average battery temperature are calculated by dividing the ΣSOC calculated in the SOC integration process in step S305 and the Σ battery temperature calculated in the battery temperature integration process in step S306 by the unestimated time counter C_24h. Can do.

ECU300は、ステップS310において、1時間計時カウンタC_1h,未推定時間カウンタC_24h、ΣSOC及びΣ電池温度を初期化する。ステップS310の初期化処理は、図2のステップS107の準備処理と同様の目的としており、組電池100の使用環境に基づく次回の満充電容量の推定処理の準備処理として、各カウンタ及びパラメータを初期化する。   In step S310, the ECU 300 initializes the 1-hour time counter C_1h, the unestimated time counter C_24h, the ΣSOC, and the Σ battery temperature. The initialization process in step S310 has the same purpose as the preparation process in step S107 in FIG. 2, and each counter and parameter are initialized as a preparation process for the next estimation process of the full charge capacity based on the use environment of the assembled battery 100. Turn into.

ECU300は、前回満充電容量を推定した後の未推定期間(経過時間)中の現在までの組電池100の平均SOC及び平均電池温度を算出すると、図5に示した組電池100の平均電池温度及び平均SOCと満充電容量の低下率との関係を予め規定したマップを参照し、組電池100の経過時間に対して変化する満充電容量の低下率を算出する(S311)。   When ECU 300 calculates the average SOC and average battery temperature of assembled battery 100 up to the present during an unestimated period (elapsed time) after estimating the full charge capacity last time, average battery temperature of assembled battery 100 shown in FIG. Then, referring to a map that predefines the relationship between the average SOC and the rate of decrease of the full charge capacity, the rate of decrease of the full charge capacity that changes with the elapsed time of the assembled battery 100 is calculated (S311).

ECU300は、前回満充電容量を推定した後の未推定期間(経過時間)中における現在までの組電池100の平均電池温度及び平均SOCから満充電容量の低下率が特定されると、前回満充電容量が推定された際の組電池100の経過時間に対応した「√使用期間T1」を算出する(S312)。「√使用期間T1」は、「√使用期間T1=(製造初期の満充電容量(C0)−前回満充電容量(C1)÷低下率(Q)」で算出することができる。   When the reduction rate of the full charge capacity is specified from the average battery temperature and the average SOC of the assembled battery 100 up to the present time during the non-estimated period (elapsed time) after the previous full charge capacity is estimated, the ECU 300 determines the previous full charge. “√Use period T1” corresponding to the elapsed time of the battery pack 100 when the capacity is estimated is calculated (S312). The “√use period T1” can be calculated by “√use period T1 = (full charge capacity (C0) at the initial stage of manufacture−previous full charge capacity (C1)) ÷ decrease rate (Q)”.

そして、ECU300は、今回満充電容量を算出する現時点での組電池100の「√使用期間T2」に対応する使用期間を算出する(S313)。ECU300は、ステップS312で算出された「√使用期間T1」の二乗値と未推定期間Aとを加算し、「√使用期間T2」に対応する使用期間を算出することができる。続いて、ECU300は、算出された「√使用期間T1」の二乗値と未推定期間Aとの和の平方根を算出し、第3の傾きに対応する「√使用期間T2」を算出する(S314)。そして、今回(現在)の満充電容量を、「今回満充電容量(C2)=製造初期の満充電夜用(C0)−低下率(Q)×√使用期間T2」で算出する。   Then, the ECU 300 calculates a use period corresponding to the “√use period T2” of the battery pack 100 at the present time for calculating the full charge capacity this time (S313). The ECU 300 can calculate the use period corresponding to the “√ use period T2” by adding the square value of the “√ use period T1” calculated in step S312 and the unestimated period A. Subsequently, the ECU 300 calculates the square root of the sum of the square value of the calculated “√use period T1” and the non-estimated period A, and calculates “√use period T2” corresponding to the third slope (S314). ). Then, the current (current) full charge capacity is calculated by “current full charge capacity (C2) = full charge night use at the beginning of manufacture (C0) −decrease rate (Q) × √use period T2”.

ECU300は、算出された今回満充電容量(C2)をメモリ301に記憶すると共に、組電池100の使用環境に基づく次回の満充電容量の推定処理の準備処理として、今回満充電容量に対応する許容期間(A)を、前回満充電容量が推定された後の未推定期間の許容日数が規定されたマップから算出し、算出された許容日数を許容期間として設定する。   The ECU 300 stores the calculated current full charge capacity (C2) in the memory 301, and as a preparatory process for the next full charge capacity estimation process based on the usage environment of the assembled battery 100, an allowance corresponding to the current full charge capacity is set. The period (A) is calculated from a map in which the allowable days of the non-estimated period after the previous full charge capacity is estimated, and the calculated allowable days are set as the allowable period.

このように本実際例の満充電容量推定処理は、組電池100の経過期間に応じて予め規定された初期満充電容量(C0)からの低下率に基づいて、現在の満充電容量を算出する。このとき、ECU300は、まず、前回満充電容量が算出されたときから現在までに満充電容量が推定されていない期間の平均SOC及び平均電池温度と、平均SOC及び平均電池温度に応じて変化する低下率が予め規定された低下率マップとを用いて、満充電容量が推定されていない期間中の低下率(Q)を算出する。次に、満充電容量が推定されていない期間中の低下率(Q)と初期満充電容量(C0)とに基づいて前回満充電容量が算出されたときの第1経過期間(√使用期間T1)を算出する。そして、第1経過期間(√使用期間T1)と満充電容量が推定されていない期間(A)とから算出される組電池100の現在の第2経過期間(√使用期間T2)、満充電容量が推定されていない期間中の低下率(Q)、及び初期満充電容量(C0)に基づいて、現在の満充電容量を算出する。   In this way, the full charge capacity estimation process of the actual example calculates the current full charge capacity based on the rate of decrease from the initial full charge capacity (C0) that is defined in advance according to the elapsed time of the assembled battery 100. . At this time, ECU 300 first changes in accordance with the average SOC and average battery temperature during the period when the full charge capacity has not been estimated from when the previous full charge capacity was calculated, and the average SOC and average battery temperature. A reduction rate (Q) during a period when the full charge capacity is not estimated is calculated using a reduction rate map in which the reduction rate is defined in advance. Next, the first elapsed period (√use period T1) when the previous full charge capacity was calculated based on the decrease rate (Q) during the period when the full charge capacity is not estimated and the initial full charge capacity (C0). ) Is calculated. The current second elapsed period (√use period T2) of the battery pack 100 calculated from the first elapsed period (√use period T1) and the period (A) when the full charge capacity is not estimated, the full charge capacity. The current full charge capacity is calculated on the basis of the rate of decrease (Q) during the period in which the value is not estimated and the initial full charge capacity (C0).

このように構成されることで、組電池100の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定することができ、組電池100の使用期間に対して特定のタイミングに限らずに、満充電容量を推定することができる。したがって、満充電容量を精度良く推定しつつ、満充電容量の推定頻度を向上させることができる。   With this configuration, it is possible to accurately estimate the current full charge capacity based on the previous full charge capacity at any timing during the use period of the assembled battery 100, and with respect to the use period of the assembled battery 100. Thus, the full charge capacity can be estimated without being limited to a specific timing. Therefore, it is possible to improve the estimation frequency of the full charge capacity while accurately estimating the full charge capacity.

特に、満充電容量の推定処理が外部充電のときに行われる場合であっても、外部充電が行われない期間に満充電容量を精度良く推定できると共に、満充電容量を推定する機会を増加させることができ、蓄電装置の満充電容量を適切に把握することができる。   In particular, even when the full charge capacity estimation process is performed during external charging, the full charge capacity can be accurately estimated during a period in which external charging is not performed, and the opportunity for estimating the full charge capacity is increased. Therefore, the full charge capacity of the power storage device can be properly grasped.

なお、組電池100の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を精度良く推定する本実施例の満充電容量推定処理は、満充電容量が推定されていない期間中に複数回行うことができる。この場合、前回満充電容量として本実施例の使用環境に基づく満充電容量推定処理によって得られた満充電容量を用い、現在の満充電容量を算出することができる。つまり、前回満充電容量が外部充電の際の充放電履歴に基づいて算出されたものでなくても、組電池100の使用期間中の任意のタイミングで前回満充電容量を基準に現在の満充電容量を、前回満充電容量が算出された後から現在までの平均SOC及び平均電池温度に基づいて、精度良く推定することができる。   In addition, the full charge capacity estimation process of the present embodiment that accurately estimates the current full charge capacity based on the previous full charge capacity at an arbitrary timing during the use period of the assembled battery 100 does not estimate the full charge capacity. Can be done multiple times during the period. In this case, the current full charge capacity can be calculated using the full charge capacity obtained by the full charge capacity estimation process based on the use environment of the present embodiment as the previous full charge capacity. That is, even if the previous full charge capacity is not calculated based on the charge / discharge history at the time of external charging, the current full charge is based on the previous full charge capacity at any timing during the use period of the battery pack 100. The capacity can be accurately estimated based on the average SOC and the average battery temperature from when the full charge capacity was calculated last time to the present.

また、図8及び図9に示す満充電容量推定処理は、外部充電の際の充放電履歴に基づく満充電容量推定処理によって満充電容量が算出される度に初期化されるように構成されている。これは、外部充電の際の充放電履歴に基づく満充電容量推定処理によって算出された満充電容量は、上述したように推定精度が高いので、満充電容量が推定されていない期間中に行われる平均SOC及び平均電池温度に基づく満充電容量の推定精度も向上するからである。   Further, the full charge capacity estimation process shown in FIGS. 8 and 9 is configured to be initialized every time the full charge capacity is calculated by the full charge capacity estimation process based on the charge / discharge history at the time of external charging. Yes. This is performed during a period when the full charge capacity is not estimated because the full charge capacity calculated by the full charge capacity estimation process based on the charge / discharge history during external charging has high estimation accuracy as described above. This is because the estimation accuracy of the full charge capacity based on the average SOC and the average battery temperature is also improved.

また、本実施例では、逐次算出される満充電容量を時系列に学習した満充電容量学習値を用いて、組電池100の充放電制御を行うことができる。例えば、今回算出された満充電容量と前回算出された前回満充電容量学習値とから、「満充電容量学習値=前回満充電容量学習値×(1−K)+満充電容量(実測値)×K」と算出することができる。Kは、今回算出される満充電容量学習値に含まれる実測値の満充電容量と前回満充電容量学習値との比率を決定する反映係数(学習パラメータ)である。Kは、0〜1の範囲の値であり、任意の値を適用して満充電容量学習値を算出することができる。   In the present embodiment, the charge / discharge control of the assembled battery 100 can be performed using the full charge capacity learning value obtained by learning the sequentially calculated full charge capacity in time series. For example, “full charge capacity learned value = previous full charge capacity learned value × (1−K) + full charge capacity (actually measured value)” XK ". K is a reflection coefficient (learning parameter) that determines the ratio between the actual full charge capacity included in the full charge capacity learning value calculated this time and the previous full charge capacity learning value. K is a value in the range of 0 to 1, and a full charge capacity learning value can be calculated by applying an arbitrary value.

この場合、満充電容量が推定されていない期間中の組電池100の使用環境に基づく現在(今回)の満充電容量推定処理では、前回満充電容量に最新の満充電容量学習値を適用すると共に、使用環境に応じて推定された現在の満充電容量を満充電容量実測値として満充電容量学習値に反映するように構成することができる。   In this case, in the current (current) full charge capacity estimation process based on the usage environment of the assembled battery 100 during a period when the full charge capacity is not estimated, the latest full charge capacity learning value is applied to the previous full charge capacity. The current full charge capacity estimated according to the use environment can be reflected in the full charge capacity learning value as a full charge capacity actual measurement value.

10:単電池、100:組電池、200:監視ユニット、201:温度センサ、202:電流センサ、203:電流制限抵抗、204:インバータ、205:モータ・ジェネレータ、206:充電器、207:インレット、208:外部電源、300:ECU、301:メモリ、SMR−B,SMR−P,SMR−G:システムメインリレー、PL:正極ライン、NL:負極ライン 10: single cell, 100: battery pack, 200: monitoring unit, 201: temperature sensor, 202: current sensor, 203: current limiting resistor, 204: inverter, 205: motor generator, 206: charger, 207: inlet, 208: External power supply, 300: ECU, 301: Memory, SMR-B, SMR-P, SMR-G: System main relay, PL: Positive line, NL: Negative line

Claims (6)

車両に搭載される蓄電システムであって、
充放電を行う蓄電装置と、
前記蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する推定処理を遂行するコントローラと、を有し、
前記コントローラは、
前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度と、前記平均SOC及び平均電池温度に応じて変化する前記低下率が予め規定された低下率マップとを用いて、前記満充電容量が推定されていない期間中の低下率を算出し、前記満充電容量が推定されていない期間中の低下率と前記初期満充電容量とに基づいて前回満充電容量が算出されたときの前記蓄電装置の第1経過期間を算出し、
前記第1経過期間と前記満充電容量が推定されていない期間とから算出される前記蓄電装置の現在の第2経過期間、前記満充電容量が推定されていない期間中の低下率、及び前記初期満充電容量に基づいて、現在の満充電容量を算出することを特徴とする蓄電システム。
A power storage system mounted on a vehicle,
A power storage device for charging and discharging; and
A controller that performs an estimation process for calculating a current full charge capacity based on a rate of decrease from an initial full charge capacity defined in advance according to an elapsed period of the power storage device;
The controller is
The average SOC and the average battery temperature during the period when the full charge capacity has not been estimated since the last time the full charge capacity was calculated, and the decreasing rate that changes according to the average SOC and the average battery temperature are defined in advance. A reduction rate map is used to calculate a reduction rate during a period when the full charge capacity is not estimated, and based on the reduction rate during the period when the full charge capacity is not estimated and the initial full charge capacity Calculating a first elapsed period of the power storage device when the previous full charge capacity was calculated;
The current second elapsed period of the power storage device calculated from the first elapsed period and the period in which the full charge capacity is not estimated, the rate of decrease during the period in which the full charge capacity is not estimated, and the initial stage A power storage system that calculates a current full charge capacity based on a full charge capacity.
前記コントローラは、外部電源から供給される電力が前記蓄電装置に充電される外部充電前後のSOC差と外部充電中の充電電流積算値とに基づいて前記蓄電装置の満充電容量を算出する第1推定処理を遂行し、
前記第1推定処理によって推定された満充電容量を前回満充電容量として、外部充電の際に満充電容量が算出されたときから現在までの前記満充電容量が推定されていない期間中に前記推定処理を遂行することを特徴とする請求項1に記載の蓄電システム。
The controller calculates a full charge capacity of the power storage device based on an SOC difference before and after external charging in which power supplied from an external power source is charged to the power storage device and a charging current integrated value during external charging. Perform the estimation process,
The full charge capacity estimated by the first estimation process is set as the previous full charge capacity, and the estimation is performed during a period when the full charge capacity from the time when the full charge capacity is calculated at the time of external charging to the present is not estimated. The power storage system according to claim 1, wherein processing is performed.
前記コントローラは、車両走行中又は車両停車中にかかわらずに、前記満充電容量が推定されていない期間中の蓄電装置のSOC及び電池温度を所定のタイミングで複数取得し、前記満充電容量が推定されていない期間の経過時間と共に所定の記憶領域に記憶することを特徴とする請求項1又は2に記載の蓄電システム。   The controller acquires a plurality of SOCs and battery temperatures of the power storage device at a predetermined timing during a period when the full charge capacity is not estimated regardless of whether the vehicle is running or stopped, and the full charge capacity is estimated. The power storage system according to claim 1 or 2, wherein the storage system stores information in a predetermined storage area together with an elapsed time of a period that is not set. 前記コントローラは、前記満充電容量が推定されていない期間が所定期間を超える場合に、前記推定処理を遂行すると共に、前回満充電容量に応じて前記所定期間を変更することを特徴とする請求項1から3のいずれか1つに記載の蓄電システム。   The controller, when the period when the full charge capacity is not estimated exceeds a predetermined period, performs the estimation process and changes the predetermined period according to the previous full charge capacity. The power storage system according to any one of 1 to 3. 前記低下率マップは、前記平均SOC及び平均電池温度が高いほど、前記低下率が大きくなるように設定されていることを特徴とする請求項1から4のいずれか1つに記載の蓄電システム。   5. The power storage system according to claim 1, wherein the decrease rate map is set such that the decrease rate increases as the average SOC and the average battery temperature increase. 車両に搭載される蓄電装置の経過期間に応じて予め規定された初期満充電容量からの低下率に基づいて、現在の満充電容量を算出する満充電容量推定方法であって、
前回満充電容量が算出されたときから現在まで満充電容量が推定されていない期間の平均SOC及び平均電池温度を算出するステップと、
前記平均SOC及び平均電池温度に応じて変化する前記低下率が予め規定された低下率マップを用いて、前記満充電容量が推定されていない期間中の低下率を算出するステップと、
前記満充電容量が推定されていない期間中の低下率と前記初期満充電容量とに基づいて前回満充電容量が算出されたときの前記蓄電装置の第1経過期間を算出するステップと、
前記第1経過期間と前記満充電容量が推定されていない期間とから算出される前記蓄電装置の現在の第2経過期間、前記満充電容量が推定されていない期間中の低下率、及び前記初期満充電容量に基づいて、現在の満充電容量を算出するステップと、
を含むことを特徴とする満充電容量推定方法。
A full charge capacity estimation method for calculating a current full charge capacity based on a rate of decrease from an initial full charge capacity defined in advance according to an elapsed period of a power storage device mounted on a vehicle,
Calculating an average SOC and an average battery temperature during a period when the full charge capacity is not estimated from the time when the full charge capacity was calculated last time;
Calculating a reduction rate during a period when the full charge capacity is not estimated using a reduction rate map in which the reduction rate that changes according to the average SOC and average battery temperature is defined in advance;
Calculating a first elapsed period of the power storage device when a previous full charge capacity was calculated based on a decrease rate during a period when the full charge capacity is not estimated and the initial full charge capacity;
The current second elapsed period of the power storage device calculated from the first elapsed period and the period in which the full charge capacity is not estimated, the rate of decrease during the period in which the full charge capacity is not estimated, and the initial stage Calculating the current full charge capacity based on the full charge capacity;
A method for estimating a full charge capacity.
JP2013173525A 2013-08-23 2013-08-23 Power storage system and method for estimating full charge capacity of power storage device Active JP6197479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013173525A JP6197479B2 (en) 2013-08-23 2013-08-23 Power storage system and method for estimating full charge capacity of power storage device
PCT/IB2014/001575 WO2015025212A1 (en) 2013-08-23 2014-08-20 Electric storage system and full charge capacity estimation method for electric storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173525A JP6197479B2 (en) 2013-08-23 2013-08-23 Power storage system and method for estimating full charge capacity of power storage device

Publications (2)

Publication Number Publication Date
JP2015040832A true JP2015040832A (en) 2015-03-02
JP6197479B2 JP6197479B2 (en) 2017-09-20

Family

ID=51659957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173525A Active JP6197479B2 (en) 2013-08-23 2013-08-23 Power storage system and method for estimating full charge capacity of power storage device

Country Status (2)

Country Link
JP (1) JP6197479B2 (en)
WO (1) WO2015025212A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779670A (en) * 2015-04-16 2015-07-15 东南大学 Method for detecting whether storage battery is fully charged or not
CN105539180A (en) * 2015-12-28 2016-05-04 青岛大学 Control method for electromobile combined power source shaped like Chinese character ''tian''
JP2016201984A (en) * 2015-04-10 2016-12-01 株式会社豊田自動織機 Power storage device and power storage method
JP2017116522A (en) * 2015-12-17 2017-06-29 ローム株式会社 Deterioration estimation method and deterioration estimation circuit for charging type battery, and electronic equipment and automobile using the same
JP2018014849A (en) * 2016-07-22 2018-01-25 株式会社豊田自動織機 Charger
JP2018048910A (en) * 2016-09-21 2018-03-29 株式会社豊田自動織機 Power storage device
WO2018062394A1 (en) * 2016-09-29 2018-04-05 株式会社Gsユアサ Power storage element soc estimation device, power storage device, and power storage element soc estimation method
KR20190078095A (en) * 2017-12-26 2019-07-04 주식회사 엘지화학 Battery management system and method for calculating a full charge capacity of a battery
WO2020049773A1 (en) * 2018-09-06 2020-03-12 株式会社日立製作所 Rail vehicle
WO2020085011A1 (en) 2018-10-26 2020-04-30 ビークルエナジージャパン株式会社 Battery control device
JP2020085658A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Battery control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224579B2 (en) 2015-12-31 2019-03-05 Robert Bosch Gmbh Evaluating capacity fade in dual insertion batteries using potential and temperature measurements
US10686321B2 (en) 2016-01-29 2020-06-16 Robert Bosch Gmbh Secondary battery management
US10243385B2 (en) 2016-01-29 2019-03-26 Robert Bosch Gmbh Secondary battery management system
US10263447B2 (en) 2016-01-29 2019-04-16 Robert Bosch Gmbh Secondary battery management system
US10447046B2 (en) 2016-09-22 2019-10-15 Robert Bosch Gmbh Secondary battery management system with remote parameter estimation
CN108572320B (en) * 2017-03-09 2020-02-14 郑州宇通客车股份有限公司 Method and device for estimating effective capacity and health state of minimum single battery and system
US11714136B2 (en) * 2019-11-13 2023-08-01 Electric Power Research Institute, Inc. Method of determining battery degradation
KR102459682B1 (en) * 2021-10-13 2022-10-27 주식회사 피엠그로우 Battery life predicting method for predicting battery life of electric vehicle and apparatus therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006191A (en) * 2002-06-02 2004-01-08 Fuji Heavy Ind Ltd Battery pack system
US20070285061A1 (en) * 2006-06-07 2007-12-13 Zettel Andrew M Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle
JP2008308122A (en) * 2007-06-18 2008-12-25 Mazda Motor Corp Control apparatus for vehicle battery
WO2009025307A1 (en) * 2007-08-22 2009-02-26 Gs Yuasa Corporation Aircraft and method of using aircraft
WO2011135609A1 (en) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 Degradation estimation device and degradation estimation method for storage battery device
JP2012037337A (en) * 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Battery deterioration detection apparatus, battery deterioration detection method and program therefor
JP2012127938A (en) * 2010-11-24 2012-07-05 Mitsubishi Electric Corp Degradation monitoring method for electricity storage device and degradation monitoring device thereof
JP2012135168A (en) * 2010-12-24 2012-07-12 Honda Motor Co Ltd Electric vehicle
JP2013089424A (en) * 2011-10-17 2013-05-13 Internatl Business Mach Corp <Ibm> System, method and program for battery state prediction
JP2013101072A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Full charge capacity estimation method of power storage device and power storage system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504657B2 (en) * 2009-03-18 2014-05-28 日産自動車株式会社 Secondary battery total capacity estimation device
JP4978662B2 (en) 2009-06-24 2012-07-18 トヨタ自動車株式会社 CHARGE STATE ESTIMATION DEVICE AND CHARGE STATE ESTIMATION METHOD
US20130311119A1 (en) * 2011-01-31 2013-11-21 Shigeto Tamezane Method of detecting battery full-charge capacity

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006191A (en) * 2002-06-02 2004-01-08 Fuji Heavy Ind Ltd Battery pack system
US20070285061A1 (en) * 2006-06-07 2007-12-13 Zettel Andrew M Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle
JP2008308122A (en) * 2007-06-18 2008-12-25 Mazda Motor Corp Control apparatus for vehicle battery
WO2009025307A1 (en) * 2007-08-22 2009-02-26 Gs Yuasa Corporation Aircraft and method of using aircraft
WO2011135609A1 (en) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 Degradation estimation device and degradation estimation method for storage battery device
JP2012037337A (en) * 2010-08-05 2012-02-23 Mitsubishi Heavy Ind Ltd Battery deterioration detection apparatus, battery deterioration detection method and program therefor
JP2012127938A (en) * 2010-11-24 2012-07-05 Mitsubishi Electric Corp Degradation monitoring method for electricity storage device and degradation monitoring device thereof
JP2012135168A (en) * 2010-12-24 2012-07-12 Honda Motor Co Ltd Electric vehicle
JP2013089424A (en) * 2011-10-17 2013-05-13 Internatl Business Mach Corp <Ibm> System, method and program for battery state prediction
JP2013101072A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Full charge capacity estimation method of power storage device and power storage system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201984A (en) * 2015-04-10 2016-12-01 株式会社豊田自動織機 Power storage device and power storage method
CN104779670A (en) * 2015-04-16 2015-07-15 东南大学 Method for detecting whether storage battery is fully charged or not
JP2017116522A (en) * 2015-12-17 2017-06-29 ローム株式会社 Deterioration estimation method and deterioration estimation circuit for charging type battery, and electronic equipment and automobile using the same
CN105539180A (en) * 2015-12-28 2016-05-04 青岛大学 Control method for electromobile combined power source shaped like Chinese character ''tian''
JP2018014849A (en) * 2016-07-22 2018-01-25 株式会社豊田自動織機 Charger
JP2018048910A (en) * 2016-09-21 2018-03-29 株式会社豊田自動織機 Power storage device
JPWO2018062394A1 (en) * 2016-09-29 2019-08-08 株式会社Gsユアサ Storage device SOC estimation device, power storage device, and storage device SOC estimation method
WO2018062394A1 (en) * 2016-09-29 2018-04-05 株式会社Gsユアサ Power storage element soc estimation device, power storage device, and power storage element soc estimation method
US10976370B2 (en) 2016-09-29 2021-04-13 Gs Yuasa International Ltd. SOC estimation device of energy storage device, energy storage apparatus, and SOC estimation method of energy storage device
JP7172599B2 (en) 2016-09-29 2022-11-16 株式会社Gsユアサ SOC ESTIMATION DEVICE FOR ELECTRICAL STORAGE ELEMENT, ELECTRICAL STORAGE DEVICE, SOC ESTIMATION METHOD FOR ELECTRICAL STORAGE ELEMENT
KR20190078095A (en) * 2017-12-26 2019-07-04 주식회사 엘지화학 Battery management system and method for calculating a full charge capacity of a battery
KR102437477B1 (en) * 2017-12-26 2022-08-26 주식회사 엘지에너지솔루션 Battery management system and method for calculating a full charge capacity of a battery
WO2020049773A1 (en) * 2018-09-06 2020-03-12 株式会社日立製作所 Rail vehicle
JPWO2020049773A1 (en) * 2018-09-06 2021-08-12 株式会社日立製作所 Railroad vehicle
WO2020085011A1 (en) 2018-10-26 2020-04-30 ビークルエナジージャパン株式会社 Battery control device
JP2020085658A (en) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 Battery control device
JP7087957B2 (en) 2018-11-26 2022-06-21 トヨタ自動車株式会社 Battery control device

Also Published As

Publication number Publication date
WO2015025212A1 (en) 2015-02-26
JP6197479B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6197479B2 (en) Power storage system and method for estimating full charge capacity of power storage device
JP5812032B2 (en) Power storage system and method for estimating full charge capacity of power storage device
JP5673654B2 (en) Power storage system and full charge capacity calculation method
JP5708668B2 (en) Power storage system
JP5621818B2 (en) Power storage system and equalization method
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
US10090686B2 (en) Electrical storage system
JP5784108B2 (en) Charge control device
JP2013158087A (en) Power storage system and charged state estimation method
JP5904134B2 (en) Battery system
CN103809123A (en) Condition estimation device and method for battery
JP2012178953A (en) Method of detecting state of assembled battery and controller
EP3455641A1 (en) Battery state detection system and method
JP5862478B2 (en) Power storage system and control method
JP7174327B2 (en) Method for determining state of secondary battery
JP6434245B2 (en) Charging rate estimation device and power supply system
JP2014233183A (en) Power storage system and control method
JP2014155401A (en) Power storage system
CN104871023B (en) Method for determining charged state
JP2014085118A (en) Electricity storage system and abnormality discrimination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6197479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151