WO2020049773A1 - Rail vehicle - Google Patents
Rail vehicle Download PDFInfo
- Publication number
- WO2020049773A1 WO2020049773A1 PCT/JP2019/009594 JP2019009594W WO2020049773A1 WO 2020049773 A1 WO2020049773 A1 WO 2020049773A1 JP 2019009594 W JP2019009594 W JP 2019009594W WO 2020049773 A1 WO2020049773 A1 WO 2020049773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power storage
- power
- storage device
- railway vehicle
- storage battery
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/18—Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a railway vehicle that supplies energy using an onboard storage battery.
- a train equipped with a power storage device has a starting station and an end station, and sometimes some intermediate stations even in non-electrified sections where ground equipment such as overhead lines and substations are not installed. It is possible to travel in the section by providing a charging facility only at a station and charging a storage battery for each charging facility. Even for electrified routes, trains equipped with onboard power storage devices can be introduced, and for infrequently operated routes such as branch lines, ground equipment such as overhead lines and substations can be abolished, and maintenance costs can be reduced.
- the need for introducing a power storage device is increasing because the vehicle can travel a certain distance in order to avoid getting stuck in a section where it is difficult for passengers to evacuate, such as on a bridge or in a tunnel.
- Japanese Unexamined Patent Application Publication No. 2009-183079 discloses a “railroad vehicle driving device” that includes a power collection device and a chargeable / dischargeable power storage device 7. Running of the railway vehicle in the abnormal state is performed only by the power storage device. Further, in the above publication, in a normal state, control is performed such that the amount of power stored in the power storage device is larger than a threshold, and in an abnormal state, the amount of power stored in the power storage device is allowed to be smaller than the threshold.
- a railway vehicle drive device that controls so as to increase or decrease according to both or one of vehicle conditions is described.
- an object of the present invention is to provide a new storage battery management method useful for long-term operation of a storage battery and a railway vehicle employing the same.
- the present invention can take various embodiments, and an example of the railway vehicle is a railway vehicle having a “main conversion device, an electric motor connected to the main conversion device, and a secondary motor connectable to the main conversion device.
- a railway vehicle including at least a battery-type power storage device, including a control device that controls a power storage rate of the power storage device based on a time elapsed from the start of use of the power storage device.
- FIG. 1 shows a schematic configuration of a railway vehicle system according to an embodiment of the present invention.
- 1 shows a schematic configuration of a drive system.
- 1 shows a schematic configuration of a storage battery control unit.
- the basic concept of the proposed power storage rate management method will be described. An outline of processing when the proposed storage battery management method is implemented will be described. The relationship between the power storage rate and the capacity retention rate in the proposed storage battery management method is shown. The relationship between the storage capacity and the storage rate at the beginning of use in the proposed storage battery management method is shown. The relationship between the storage capacity at the end of use and the storage rate in the proposed storage battery management method is shown. The relationship between the target value of the storage rate and the reference time in the proposed storage battery management method is shown.
- 7 shows the relationship between the storage capacity and the storage rate at the beginning of use in a comparative example. 7 shows the relationship between the storage capacity and the storage rate at the end of use in a comparative example.
- 5 shows a schematic configuration of a railway vehicle system according to another embodiment of the present invention. 9 shows a schematic configuration of a modification of the drive system.
- the present invention relates to a method for managing a storage battery used for traveling of a railway vehicle, and provides a railway vehicle equipped with a storage battery managed by the present method.
- the storage batteries to be managed include lead storage batteries, lithium ion secondary batteries, nickel-metal hydride storage batteries, nickel-cadmium storage batteries, silver oxide-zinc storage batteries, and the like, and include other chargeable and dischargeable chemical batteries.
- the storage battery managed by this method is configured to be connectable to the main motor, and the type of the main motor may be either an AC motor or a DC motor.
- the present invention may be applied to an electric diesel vehicle equipped with an internal combustion engine and running with electric power generated by the internal combustion engine.
- the present invention can be applied not only to a passenger train but also to a freight train, and is applicable to a transport device configured to be able to travel on a track, in which a storage battery can be used for traveling.
- embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples relating to the application of the present invention, and the invention is not limited to these examples. All or some of the embodiments can be exchanged and combined according to the conditions of the application target. Further, it is possible to appropriately change, combine, or omit the types of components to be adopted.
- FIG. 1 shows a schematic configuration of a railway vehicle drive system according to an embodiment of the present invention.
- This railway vehicle is a so-called AC train, and the vehicle travels by applying a driving force generated from an AC rotating machine to a mechanical drive device.
- the basic configuration of a railway vehicle is the vehicles 1a and 1b. These are vehicles constituting a train set, or a part thereof.
- the vehicles 1a and 1b are connected by an inter-vehicle coupler 6, and each vehicle has a bogie.
- the trolley 2a (also the trolley 2b) has wheel sets 3a and 3b. Wheels are fixed to the respective wheel sets and run on rail surfaces.
- the vehicle 1b also has a trolley 2c and a trolley 2d, and is supported on rail surfaces by wheel sets 3e, 3f, 3g, and 3h, which are parts of the respective trolleys.
- each vehicle is supported by the bogie from the rail surface, and at least one of the vehicles has a drive system, and power is transmitted from the drive system to the bogie, thereby realizing the running of the train formation.
- the vehicle 1a is a driven vehicle having a drive system
- the vehicle 1b is an accompanying vehicle without a drive system.
- the drive system mounted on the vehicle 1a includes a current collector 5, a transformer 7 (Transformer), a main converter 8 (Traction @ Converter), an electric motor 17, a power storage device 9 (Traction @ Battery), and an integrated control device 11 (Control @ Unit).
- An auxiliary power supply device 10 (APS (Auxiliary equipment) Power Supplier) is provided in parallel with the power storage device 9 for the main converter 8 as a main power utilization device not included in the drive system.
- This converts the AC power Pd1 of the main converter 8 into AC power Pa3 having a constant voltage and a constant frequency (CVCF), and supplies the power to a vehicle accessory 19 representing a lighting and an air conditioning system in the vehicle.
- the drive system does not need to be mounted on one vehicle in a concentrated manner, and may be provided separately on any vehicle (including one cab of both cabs) in the formation.
- the general control device 11 has at least one CPU, a storage device communicable with the CPU, and an input / output interface, and generates a control command.
- the states of the controlled devices are obtained via an input interface, and control commands for them are output via an output interface.
- These interfaces specifically include a PCI bus, a DI / DO interface connected thereto, a signal cable, and a relay.
- the arithmetic function adopts a logic circuit such as an ASIC, an FPGA, a PLD, and a PLC in addition to the CPU, and includes implementation by these.
- the first drive mode by the first drive system that converts electric power into drive power is determined as follows.
- the AC power Pa0 is supplied from the overhead line 4 to the transformer 7 via the current collector 5.
- the transformer 7 converts the voltage Va0 of the AC power Pa0 into the AC power Pa1 of the lower voltage Va1, and supplies the AC power Pa1 to the main converter 8.
- the main conversion device 8 includes a converter device 14 and an inverter device 15, and the converter device 14 converts the AC power Pa1 into the DC power Pd1 and controls the power to be a predetermined voltage Vd1.
- Inverter device 15 is a VVVF inverter that variably controls voltage and frequency, converts DC power Pd1 to AC power Pa2, inputs the same to electric motor 17, and controls the torque.
- the torque of the electric motor 17 is transmitted as a rotational torque to all or any of the wheel sets 3a, 3b, 3c, and 3d to rotate wheels fixed to the wheel set.
- a tread force acts between the rotating wheel and the rail surface, and the vehicle 1a accelerates or decelerates due to the tread force.
- the inverter device 15 is controlled by the inverter control unit 22 and generates a torque current command for generating a drive torque of the electric motor 17 for accelerating or decelerating the vehicles 1a and 1b according to a command from the general control unit 20. More specifically, constant current control is performed so that the torque current calculated based on the motor currents Imu, Imv, Imw detected by the AC current detector 18 follows the torque current command, and the switching of the inverter device 15 is performed based on the output. A PWM pulse for operating the circuit is generated and input to the inverter device 15.
- the storage battery control unit 23 restricts charging / discharging (input / output) of the storage means by turning on / off the storage power circuit breaker 23c in response to a command from the overall control unit 20, and also stores state information (power storage rate) from the storage means. : SOC, storage battery temperature Tb, etc.) and transmit them to the overall control unit 20.
- the overall control unit 20 Based on the voltage Vbat of the power storage device 9, the overall control unit 20 generates a voltage command Vbd larger than Vbat by ⁇ Vbat when charging the power storage device 9, and a voltage command ⁇ bbat smaller than Vbat by ⁇ Vbat when discharging the power storage device 9.
- the command Vbd is calculated.
- the magnitude of the charge / discharge current generated for ⁇ Vbat is determined by the internal resistance value of power storage device 9.
- the SOC is managed so as to match the target power storage value: SOC (t) by adjusting the charge / discharge power Pbat of the power storage device 9.
- the storage rate target value: SOC (t) is determined based on the elapsed time from the start of use of the power storage device 9 and the battery temperature Tb of the power storage device 9.
- the elapsed time from the start of use of the power storage device 9 can be obtained by integrating the time from the start of use of the power storage device 9 by the timer 20b provided in the overall control unit 20, but for simplicity, the elapsed time from the start of use
- the time value may be entered manually.
- the storage battery temperature Tb of the power storage device 9 can be detected as state information from the power storage device 9, but an average temperature in an environment where the power storage device 9 is used may be stored in advance.
- the second drive mode by the second drive system that converts electric power into drive power is determined as follows.
- the second drive system realizes traveling only by the power storage device 9, and the power storage device 9 supplies power to the main converter 8 (more specifically, the inverter device 15 of the main converter 8).
- the main converter 8 more specifically, the inverter device 15 of the main converter 8.
- the same device configuration as that of the first system is adopted, and a tread force is generated using these components.
- the power storage device 9 in the second drive system includes, for example, a lithium-ion type storage battery 9a that stores power, and includes a storage power breaker 23c and a storage power breaker 23c that limit charging and discharging (input and output) of storage power.
- a power storage controller 23a for controlling is provided.
- the power storage controller 23a has a function of monitoring the state of the storage battery 9a, and the monitoring targets are, for example, the voltage between the terminals of the storage battery 9a, the internal resistance of the storage battery 9a, the surface temperature of the storage battery 9a or the cell internal temperature (so-called storage battery temperature), and the storage battery 9a. And the surrounding environmental temperature.
- FIG. 2B shows an example in which a thermometer 23b for measuring the surface temperature of the storage battery 9a is provided.
- the state of charge / discharge by power storage device 9 is determined based on a comparison between voltage Vd1 of DC power Pd1 of main converter 8 and voltage Vbat of power storage device 9.
- the storage controller 23a operates the storage power breaker 23c to disconnect the storage battery 9a from the main converter 8.
- the charge / discharge control is performed as follows. First, the voltage Vd1 is obtained based on the measurement or estimation of the voltage applied to the power bus connecting the converter device 14 and the inverter device 15 in the main converter 8. Note that voltage Vd1 may be estimated based on control data of converter device 14 or inverter device 15.
- Voltage Vbat is obtained by measuring a voltage between terminals in power storage device 9 or employing an estimated value based on a relationship between SOC (SOC: State Of Charge) and a discharge voltage obtained in advance by a discharge test or the like. You.
- the main converter 8 When the main converter 8 is operated such that the voltage Vbat becomes lower than the voltage Vd1 with respect to the voltage Vd1 and the voltage Vbat obtained in this manner, the storage battery 9a is charged, and conversely, the voltage Vbat becomes higher than the voltage Vd1. With such control, the discharge by the power storage device 9 is performed.
- the general control device 11 calculates a voltage command Vbd which is larger than the voltage Vbat by ⁇ Vbat when charging the power storage device 9 in a normal state, and a voltage command Vbd which is smaller by ⁇ Vbat than Vbat when discharging the power storage device 9. I do. Subsequently, the overall control device 11 outputs the calculated voltage command Vbd to the main converter 8, and the main converter 8 follows the voltage Vd1 to the voltage command Vdb. At this time, the magnitude of the charging / discharging current generated with respect to ⁇ Vbat is determined by the internal resistance value of power storage device 9.
- the converter device 14 included in the main converter 8 plays a central role in the voltage tracking control.
- the operation of the converter device 14 of the present embodiment is controlled by the converter control unit 21 which is a higher-level device.
- the converter control unit 21 is connected to the AC voltage detector 12, the AC current detector 13, the DC voltage detector 51, and the DC current detector 52, and controls the operation of the converter device 14 based on the measurement result by these measuring means. . Specifically, based on the AC voltage Va0 collected by the AC voltage detector 12 and the AC current Ia1 collected by the AC current detector 13, the DC voltage Vd1 is controlled so as to follow the voltage command Vbd, and the SOC Is managed so as to match the power storage rate target value (SOC (t)).
- DC power supplied to inverter device 15 is determined.
- the general control device 11 supplies power to the inverter device 15 by operating the converter device 14 so that the DC power is input.
- the charge rate target value (hereinafter referred to as SOC (t)) is appropriately adjusted, and the charge rate is maintained at a value equal to or close to SOC (t) by charge / discharge control in normal times.
- the adjustment of the SOC (t) can be performed using at least elapsed time information from the start of use of the power storage device 9 to the present (hereinafter, referred to as elapsed time), and further using the storage battery temperature (Tb) of the power storage device 9. preferable.
- Each piece of information may be provided with a device to be automatically collected in the overall control unit 20, the storage battery control unit 23, or the power storage device 9, or may be configured to be manually input.
- FIG. 2B shows an example in which information is automatically collected.
- the elapsed time from the start of using the power storage device 9 is obtained by the general control unit 20 which is a part of the general control device 11.
- the overall control unit 20 has a timer 20b and can accumulate the elapsed time from the start of using the power storage device 9.
- a method of accumulating time for example, any one of a day unit, a week unit, and a month unit may be adopted, or counting may be performed in an arbitrarily set unit.
- the timer 20b a configuration may be adopted in which the elapsed time from the start of use is manually input, or the power storage device 9 may include the timer 20b.
- the power storage device 9 has a storage unit in which its own manufacturing date is registered, a timer 20b that operates using the stored power, and outputs the time elapsed from the manufacturing date to the outside. May be configured. In this case, it is more desirable that power storage device 9 has an output interface relating to the elapsed time, and that storage battery control unit 23 has an input interface that can be connected to the output interface.
- the storage battery temperature Tb of the power storage device 9 is configured such that a signal is input from the thermometer 23b to the storage controller 23a of the storage battery control unit 23, and is determined based on the acquired signal. If there is no temperature measurement function, the average temperature in the environment where the power storage device 9 is used may be stored in advance and replaced. In particular, for railway vehicles, the routes to be operated are limited to some extent, so that temperature information around the operation routes can also be acquired based on past weather data published by the Internet or public institutions.
- the storage battery control unit 23 acquires this information from the time when communication with the power storage device 9 becomes possible, that is, from the time when the operation of the power storage device 9 is started, and starts managing the power storage device 9 illustrated in FIG. .
- FIG. 3 is a diagram showing a change in the capacity retention rate of the storage battery 9a and a change in the power storage rate according to the change.
- T0 indicates the time point at which the use of the power storage device 9 is started
- the vertical axis indicates the capacity retention rate of the power storage device 9.
- the capacity retention ratio is a capacity ratio that relatively represents the storage capacity at each time point when the storage capacity at the start of use is set to 100.
- the storage battery control unit 23 sets the SOC (t) to 50% in the section from T0 to T1, to 60% in the section from T1 to T2, to 70% in the section from T2 to T3, ⁇ Maintain 80% in the section of T4.
- the storage battery control unit 23 controls the power storage device 9 based on the memory 20c in which the SOC (t) and the reference time information for updating the SOC (t) are registered. It has an arithmetic unit 20a that outputs the SOC.
- the setting of the reference time may be arbitrarily determined. For example, if the operation period of the power storage device 9 is 16 years, each section may be 4 years. Alternatively, instead of equal intervals, T0 ⁇ T1 may be set to 7 years, T1 ⁇ T2 to 5 years, T2 ⁇ T3 to 3 years, and T3 ⁇ T4 to 1 year.
- the ⁇ SOC (t) update process is executed by, for example, the process steps shown in FIG.
- the storage battery control unit 23 operates a timer (Step # 1).
- the general control unit 20 calls the reference time (T1) closest to the present time from the reference times registered in the memory 20c, and holds it as a reference time to be queried (inquiry reference time) (Step # 2). If the reference time is held as a serial value and the timer is implemented by a periodic count value of the clock signal, the serial value is set as the reference time.
- the overall control unit 20 may store the operation start time of the power storage device 9 and calculate the difference from the present time to obtain the operation period as appropriate.
- the use start time may be the date of manufacture of the storage battery 9a instead of the time when the operation of the power storage device 9 is started.
- the arithmetic unit 20a periodically acquires a value (timer value) from the timer 20b and compares the timer value with an inquiry reference time (Step # 3). As a result of the comparison, when the timer value matches or exceeds the inquiry reference time, the SOC (T1) corresponding to the inquiry reference time is read (Step # 4). Arithmetic device 20a transmits SOC (T1) information to general control unit 20 (Step # 4). At this time, the current value of the storage rate is also transmitted to the overall control unit 20. The current value of the power storage rate is obtained using the voltage between terminals of the storage battery 9a or an existing estimation algorithm.
- the overall control unit 20 compares the SOC (T1) received from the storage battery control unit 23 with the latest power storage rate information (Step # 5), and when the SOC (T1) is larger than the latest SOC, the integrated control unit 20 The charge control is executed (Step # 6). Conversely, if SOC (T1) is smaller than the latest SOC, it is assumed that SOC (T1) matches the latest SOC by natural discharge, and the SOC (t) updating process itself ends. If power can be sent to the overhead wire or used for traveling, discharging may be performed from the power storage device 9 toward the power line. The comparison operation may be performed by the storage battery control unit 23.
- the general control unit 20 updates the inquiry reference time. Specifically, with respect to the inquiry reference time set immediately before, the nearest future reference time is read from the memory and held as a new inquiry reference time (Step # 8). For a reference time which has already been used, data is deleted or a flag indicating that setting is impossible is assigned so that the reference time is not accidentally set again.
- the SOC (t) and the reference time may be newly set only when they are larger than the current set value. By doing so, it is possible to suppress the possibility that a low SOC (t) is erroneously set and falls below the required power storage amount.
- the charging control process may be performed by the vehicle, and the other processes may be performed by a management device provided separately from the vehicle.
- the management device is provided with a database that stores information on the identification information of the power storage device 9, the start time of use, and information on the line section in which the vehicle on which the power storage device 9 is mounted is operated.
- the SOC (t) update command is notified by communication or the like.
- FIG. 5 is a characteristic diagram showing a general change in the capacity maintenance rate of the storage battery with respect to the elapsed time when the storage rate of the storage battery is maintained constant.
- FIG. 5 shows the change in the capacity retention ratio from T0 to T4 when the SOC is maintained at 50%, 60%, 70%, and 80%.
- T0 initial state
- T3 capacity maintenance rate
- the capacity maintenance rate increases. Shows a tendency to decrease.
- lowering the SOC means limiting the amount of power that can be used. Therefore, in a state where the capacity maintenance rate has been reduced over time, if the power storage rate is lowered, it may be impossible to secure a required power storage amount.
- the power storage device 9 set the SOC (t) to be as small as possible in the early stage of operation and change the SOC (t) according to the elapsed time within a range in which the required power storage amount is secured. . (See the dotted line in Figure 5.)
- the SOC (t) gradually increases to 50%, 60%, 70%, and 80%. increase.
- the change of the capacity retention ratio in each section of T0 ⁇ T1, T1 ⁇ T2, T2 ⁇ T3, T3 ⁇ T4 is equivalent to the change of the capacity retention ratio in the corresponding SOC in FIG.
- the capacity retention rate of the storage battery over time shown in FIG. 5 shows different characteristics depending on the temperature of the storage battery in addition to the power storage rate.
- a lithium ion storage battery has a characteristic that the higher the storage rate and the higher the ambient temperature, the more easily the storage battery deteriorates (that is, the lower the capacity retention rate).
- the SOC 50% and the ambient temperature is 25 ° C. Often designed to minimize degradation.
- the battery control is performed such that SOC (t) is sequentially changed in accordance with the temperature of the storage battery at that time, or SOC (t) is corrected in accordance with a long-term trend of temperature change (for example, seasonal variation).
- the unit 23 may be configured.
- the upper limit value S1 of the storage rate and the lower limit value S2 of the storage rate (hereinafter referred to as the upper limit value S1 and the lower limit value S2). Use).
- FIG. 6 (a) and 6 (b) show the relationship between the capacity retention rate of the storage battery and the range of the power storage rate that is allowed to be used, and FIG. 6 (a) shows the relationship at the start of use of the power storage device 9 (T0).
- FIG. 6B shows a relationship at the end of use, for example.
- the portion corresponding to the region R is the capacity that has disappeared with respect to the storage capacity in the early stage of operation.
- the storage battery control unit 23 sets a management upper limit value S1 and a management lower limit value S2 for the SOC.
- These management upper limit value S1 and management lower limit value S2 are based on the safety and soundness of the storage battery and the amount of discharge power E1 (hereinafter referred to as power E1) required for running vehicles 1a and 1b over a predetermined distance or section. Is determined based on
- the management upper limit S1 is set as a value obtained by taking a margin from an SOC area (for example, 90% or more) whose use is not recommended from the viewpoint of soundness and safety of the storage battery, based on the SOC of 100%. .
- the SOC since the SOC is maintained higher than the initial state at the end of use, deterioration may be promoted even at room temperature, and it is desirable to set the management upper limit value S1 in consideration of this possibility. For example, if the ambient temperature of the operating environment fluctuates between ⁇ 10 ° C. and 40 ° C., for example, if the management upper limit S1 is determined in consideration of 40 ° C., the storage battery 9a can be provided even if no separate cooling equipment such as a cooling fan is provided. Can be placed in a state that is unlikely to deteriorate, and the restrictions on the mounting space when mounted on a vehicle are relaxed.
- control lower limit S2 is set as a value obtained by adding a margin to the lower limit of the power storage rate at which the discharge by the power storage device 9 can be appropriately performed. Since the internal resistance of the storage battery 9a may increase at the end of use and the voltage between terminals may decrease, the management lower limit S2 may be set higher at the end of use than at the beginning of use.
- the capacity of the storage battery that satisfies these conditions is specified. For example, if the storage capacity at the end of use is 20% smaller than the storage capacity at the beginning of use, and the management upper limit S1 and the management lower limit S2 at that time are 70% and 20%, respectively, the initial usage (that is, At the time of introduction) the capacity required of the storage battery is required to be 2.5 times the power E1.
- power E1, management upper limit S1, and management lower limit S2 may be set after power storage device 9 is mounted on the vehicle.
- the operation of the power storage device 9 is such that the SOC is charged beyond the management upper limit value S1 or the discharge that falls below the management lower limit value S2 does not occur. Will be managed. That is, the portion represented by region N1 and region N2 in the SOC is a capacity that is not used in the operation of power storage device 9.
- the central control unit 20 uses the usage upper limit LC (so as to secure the power E1 based on the management lower limit S2. (Limit ⁇ of ⁇ Charge) is set.
- the use upper limit LC is held in accordance with the number of reference times (T0, T1, T2,%), And is associated with the reference times in the SOC (T1, T2, T3).
- the use upper limit LC at the beginning of use corresponds to SOC (T0).
- the use upper limit LC may be set to a different value for each reference time, or may be kept constant from the start of use to the middle of operation depending on the setting of the SOC.
- FIG. 6 (b) shows the end of use of the storage battery, and the capacity retention rate decreases with time.
- the power E1 is ensured by setting the use upper limit LC higher than the reference time (T0) with respect to the control lower limit S2, and making the use upper limit LC substantially equal to the control upper limit S1.
- the capacity maintenance rate is more likely to decrease, but since it is the end of use, it is unlikely to cause a problem for the purpose of using the power storage device 9.
- FIGS. 7 (a) and 7 (b) show a case where the use lower limit LD (Limit @ of ⁇ discharge) is updated based on the management upper limit S1. 7A and 7B, the power E1 to be secured is the same.
- the SOC is set high from the beginning of operation of the power storage device 9, and the power storage device 9 is more likely to deteriorate.
- a large capacity of the storage battery is inevitably required, and an excessive amount of power is stored in the initial stage.
- a secondary battery such as a lithium-ion storage battery or a nickel-metal hydride storage battery generally has a characteristic that the higher the storage rate and the higher the ambient temperature, the more easily the storage battery deteriorates.
- it is often manufactured so that the progress of deterioration is minimized at a storage rate of 50% and an ambient temperature of 25 ° C.
- it is necessary to prepare a power storage system having a capacity twice as large as the power storage capacity at the power storage rate of 50%.
- the usage upper limit LC that can secure the necessary electric power E1 is set, and the usage upper limit LC gradually increases toward the end of the use of the storage amount. Is adjusted so as to approach the management upper limit value S1, thereby suppressing a decrease in the capacity maintenance ratio, and the storage battery can be operated for a long time.
- the power storage device 9 can be designed so as to have a power storage capacity suitable for holding the electric power E1.
- the margin of the power storage capacity can be reduced, and the size of the power storage device 9 can be reduced, which contributes to the reduction in the size and weight of the on-board equipment of the railway vehicle.
- the size of the storage battery is small, and the management method proposed in this regard is useful.
- the management upper limit value S1 and the usage upper limit value LC are separate parameters, but they may be treated as upper limit values for one power storage rate without distinction.
- the management lower limit S2 may not be fixed but may be changed according to the passage of time.
- FIG. 8 shows a schematic configuration of a railway vehicle drive system according to the second embodiment of the present invention. Unlike the first embodiment, this type of electric train is driven by the drive system DC power supplied from the overhead line 4.
- the general configuration is the same as that of the first embodiment, and the vehicles 1a and 1b are vehicles constituting a train set or a part thereof.
- the vehicle 1a and the vehicle 1b are connected by an inter-vehicle coupler 6.
- the vehicle 1a is supported on a rail surface (not shown) by the wheel sets 3a and 3b via the bogie 2a and by the wheel sets 3c and 3d via the bogie 2b.
- the vehicle 1b is supported on rail surfaces (not shown) by wheel sets 3e and 3f via a truck 2c and by wheel sets 3g and 3h via a truck 2d.
- the DC power Pd0 is supplied from the overhead line 4 to the inverter device 15, the DC converter device 25, and the auxiliary power supply device 10 via the current collector 5.
- the inverter device 15 converts the DC power Pd0 into a variable voltage, variable frequency (VVVF) AC power Pa2, and controls the torque of the electric motor 17 (not shown).
- the torque of the electric motor 17 transmits rotational torque to all or any of the wheel sets 3a, 3b, 3c, and 3d, and applies a tread force between the wheel set and the rail surface, and accelerates the vehicle 1a by the tread force, or Slow down.
- DC converter device 25 converts voltage Vd0 of DC power Pd0 to DC power Pd1 of voltage Vd1.
- Power storage device 9 includes a power storage means such as a lithium ion battery, a power storage power breaker for limiting charging and discharging (input / output) of stored power, and a power storage controller for monitoring the state of the power storage means and controlling the power storage circuit breaker. Is done.
- the power storage unit is charged / discharged according to the magnitude of voltage Vd1 of DC power Pd1 output from DC converter device 25 and voltage Vbat of power storage device 9.
- the auxiliary power supply 10 converts the AC power Pd1 of the main converter 8 into AC power Pa3 having a constant voltage and a constant frequency (CVCF), and vehicle auxiliary equipment (not shown) (air conditioning, certification, air compressor, etc.). To supply.
- CVCF constant voltage and a constant frequency
- the overall control device 11 Based on the voltage Vbat of the power storage device 9, the overall control device 11 supplies a voltage command Vbd that is larger than Vbat by ⁇ Vbat when charging the power storage device 9, and a voltage command Vbd that is smaller than Vbat by ⁇ Vbat when discharging the power storage device 9.
- the command Vbd is calculated.
- the magnitude of the charge / discharge current generated for ⁇ Vbat is determined by the internal resistance value of power storage device 9.
- the DC converter device 25 adjusts the constant voltage so that the DC voltage Vd1 follows the voltage command Vdb, and manages the storage amount SOC so as to match the storage amount target value SOC (t).
- the target value SOC (t) is managed in the same manner as in the first embodiment. That is, it is determined based on the elapsed time from the start of use of the power storage device 9 and the battery temperature Tb of the power storage device 9 with reference to the storage battery capacity maintenance rate prediction means.
- the elapsed time from the start of use of the power storage device 9 can be obtained by integrating the time from the start of use of the power storage device 9 by the time measuring means provided in the general control unit 23. May be manually input.
- the storage battery temperature Tb of the power storage device 9 can be detected as state information from the power storage device 9, an average temperature in an environment where the power storage device 9 is used may be stored in advance. In particular, since the operating routes of railway vehicles are limited to some extent, it is also possible to use temperature information around the operating routes based on past weather data published on the Internet or the like.
- the two-car formation by the vehicles 1a and 1b is shown, but the number of both cars is not limited.
- the railway vehicle drive system of the present invention does not need to be mounted on one vehicle in a concentrated manner, and may be provided separately on any vehicle (including one cab of both cabs) in the formation.
- FIG. 9 is a diagram showing a configuration for realizing the power storage amount management method in the second embodiment of the present invention.
- the DC power Pd0 is supplied from the overhead wire 4 (not shown) to the reactor 24 via the current collector 5.
- Reactor 24 forms a filter circuit together with capacitor 16 to remove harmonics of DC power Pd0, and supplies its output to inverter device 15, DC converter device 25, and auxiliary power supply device 10.
- the inverter device 15 converts the DC power Pd0 into a variable voltage, variable frequency (VVVF) AC power Pa2, and controls the torque of the electric motor 17 (not shown).
- the torque of the electric motor 17 transmits the rotational torque to all or any of the wheel sets 3a, 3b, 3c, and 3d, and applies a tread force between the wheel set and the rail surface, thereby accelerating the vehicle 1a by the tread force, or Slow down.
- DC converter device 25 converts voltage Vd0 of DC power Pd0 to DC power Pd1 of voltage Vd1.
- Power storage device 9 includes a power storage means such as a lithium ion battery, a power storage power breaker for limiting charging and discharging (input / output) of stored power, and a power storage controller for monitoring the state of the power storage means and controlling the power storage circuit breaker. Is done. The power storage unit is charged / discharged according to the magnitude of voltage Vd1 of DC power Pd1 output from DC converter device 25 and voltage Vbat of power storage device 9.
- the auxiliary power supply 10 converts the AC power Pd1 of the main converter 8 into AC power Pa3 having a constant voltage and a constant frequency (CVCF), and vehicle auxiliary equipment (not shown) (air conditioning, certification, air compressor, etc.). To supply.
- CVCF constant voltage and a constant frequency
- the overall control device 11 includes a converter control unit 21, an inverter control unit 22, a storage battery control unit 23, and an overall control unit 20.
- the converter control unit 21 performs constant voltage control for causing the DC voltage Vd1 detected by the DC voltage detector 51 to follow the voltage command Vdb according to a command from the overall control unit 20, and generates a DC current based on the output. Constant current control is performed so that the DC current Id1 detected by the DC current detector 52 follows the command. Based on the output, a PWM pulse for operating the switching circuit of the converter device 26 is generated and input to the converter device 26.
- the inverter control unit 22 generates a torque current command for generating a drive torque of the electric motor 17 for accelerating or decelerating the vehicles 1a and 1b in response to a command from the general control unit 20, and the electric motor detected by the AC current detector 18.
- the constant current control is performed so that the torque current calculated based on the currents Imu, Imv, and Imw follows the torque current command, and a PWM pulse for operating the switching circuit of the inverter device 15 is generated based on the output thereof. input.
- the storage battery control unit 23 limits charging / discharging (input / output) of the storage means by turning on / off the storage power circuit breaker in response to a command from the overall control unit 20, and also stores state information (power storage amount, Storage battery temperature, etc.) and convey it to the overall control unit 20.
- the charge and discharge power Pbat of the power storage device 9 is adjusted to manage the SOC so as to match the SOC (t).
- SOC (t) is determined based on the elapsed time from the start of use of the power storage device 9 and the storage battery temperature Tb of the power storage device 9 with reference to the storage battery capacity maintenance rate prediction means.
- the elapsed time from the start of use of the power storage device 9 is obtained by integrating the time from the start of use of the power storage device 9 by the time measuring means provided in the general control unit 23.
- the elapsed time value may be manually entered.
- the storage battery temperature Tb of the power storage device 9 can be detected as state information from the power storage device 9, but an average temperature in an environment where the power storage device 9 is used may be stored in advance.
- the general control device 11 is exemplified as including the general control unit 20, the converter control unit 21, the inverter control unit 22, and the storage battery control unit 23 as individual control units.
- This division is for convenience, and the control may be implemented by one control unit or a combination of a plurality of control units.
- the control content of each control unit is not limited to the embodiment, and any mounting form can be adopted.
- the central control unit 20 collectively generates the control commands generated by each control unit in the embodiment, and each of the other control units notifies the general control unit 20 of the state of the controlled object. It may be specialized in the function of notifying the user.
- the general control device 11 controls the operation of the main conversion device 8 as a basic function based on the train control command, and additionally switches between the first drive mode and the second drive mode.
- the function of switching between the first drive mode and the second drive mode may be realized by providing a command device in the cab, and based on command information output from the command device to the overall control device 11. Good.
- Power storage device 9a: storage battery
- 10 auxiliary power supply
- 11 general control device
- 12 AC voltage detector
- 13 AC current detector
- 14 converter device
- 15 inverter device
- 16 capacitor
- 17 electric motor
- 18 AC current detector
- 19 vehicle auxiliary equipment
- 20 general control unit 20a arithmetic unit
- 20b timer 20c memory
- 21 converter control unit
- 22 inverter control unit 23 storage battery control Unit
- 23a storage controller
- 23b thermometer
- 23c storage power circuit breaker
- 24 reactor
- 25 DC converter device
- 51 DC voltage detector
- 52 DC current Can.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
The present invention addresses the problem of providing a new storage battery management method useful for operating a storage battery for a long period of time and a rail vehicle in which this storage battery management method is adopted. Accordingly, the rail vehicle of the present invention is provided with at least a main conversion device, an electric motor connected to the main conversion device, and a secondary batter-type electricity storage device connectable to the main conversion device, and is characterized by being provided with a control device for controlling the electricity storage rate of the electricity storage device on the basis of the time elapsed from the start of use of the electricity storage device.
Description
本発明は、車載蓄電池によりエネルギを供給する鉄道車両に関する。
The present invention relates to a railway vehicle that supplies energy using an onboard storage battery.
リチウムイオン電池など、蓄電池のエネルギ密度の向上に伴い、電気自動車(EV)の普及が徐々に拡大し、1充電の走行距離は、乗用車タイプで400kmを超えている。
(4) With the improvement in energy density of storage batteries such as lithium-ion batteries, the spread of electric vehicles (EVs) has gradually expanded, and the mileage per charge exceeds 400 km for passenger car types.
車両1両の質量が30~40ton、また機器の車載スペースが限られる鉄道車両においては、リチウムイオン電池の開発当初より、その高出力密度特性を活用して電車(EMU)の回生エネルギの一部を吸収して回生失効を防止する回生エネルギ吸収システム、気動車(DEMU)の回生エネルギを吸収し、力行エネルギをアシストするハイブリッド気動車への適用を進めた。近年では、高エネルギ密度と高出力密度を両立するリチウムイオン電池の開発が進み、1充電で100kmを超える走行を可能とする蓄電装置を車載した電車が導入されている。
In the case of railcars where the mass of one vehicle is 30 to 40 tons and the space for installing equipment is limited, a part of the regenerative energy of a train (EMU) has been utilized by utilizing the high output density characteristics of lithium-ion batteries since the beginning of development. It has been applied to a regenerative energy absorption system that absorbs energy and prevents regenerative expiration, and a hybrid diesel vehicle that absorbs regenerative energy of a diesel motor vehicle (DEMU) and assists powering energy. In recent years, the development of lithium ion batteries that achieve both high energy density and high output density has progressed, and electric trains equipped with a power storage device capable of traveling over 100 km with one charge have been introduced.
蓄電装置を車載した電車は、通常の電車システムと比較して、架線、変電所等の地上設備が設けられていない非電化区間であっても、始発駅と終端駅、場合によりいくつかの中間駅のみ充電設備を設け、充電設備毎に蓄電池を充電することによって当該区間を走行することができる。電化路線であっても、蓄電装置を車載した電車を導入し、支線等で運用頻度の低い路線は、架線、変電所等の地上設備を廃止し、メンテナンスコストを低減できる。さらに、地上設備の故障時は、橋梁上やトンネル内など、乗客の退避が難しい区間での立ち往生を避けるため、一定距離の走行が可能である点で蓄電装置の導入のニーズは高まりつつある。
Compared with a normal train system, a train equipped with a power storage device has a starting station and an end station, and sometimes some intermediate stations even in non-electrified sections where ground equipment such as overhead lines and substations are not installed. It is possible to travel in the section by providing a charging facility only at a station and charging a storage battery for each charging facility. Even for electrified routes, trains equipped with onboard power storage devices can be introduced, and for infrequently operated routes such as branch lines, ground equipment such as overhead lines and substations can be abolished, and maintenance costs can be reduced. Furthermore, in the event of a failure of the ground equipment, the need for introducing a power storage device is increasing because the vehicle can travel a certain distance in order to avoid getting stuck in a section where it is difficult for passengers to evacuate, such as on a bridge or in a tunnel.
このような、蓄電装置を車載した電車では、一回の充電で所定の距離を走り切るため、高い蓄電率まで充電することが一般的である。特に、蓄電装置を地上設備故障時の車両立ち往生を防ぐことを目的として用いる場合には、万が一発生する故障時に備え、蓄電率が高い状態を長期間維持する必要がある。
電車 In such a train on which a power storage device is mounted, it is common to charge up to a high power storage rate in order to run a predetermined distance with a single charge. In particular, when the power storage device is used for the purpose of preventing the vehicle from being stuck in the event of a ground equipment failure, it is necessary to maintain a high power storage state for a long time in case of a failure that occurs.
電池走行が必要となる場合を考慮して蓄電量を確保しつつ、制動時に発生する回生電力を高効率に吸収するように、蓄電装置に蓄える蓄電量を制御する鉄道車両駆動装置を提供することを目的とした鉄道車両駆動装置としては、特開2009-183079号公報に示されている「鉄道車両駆動装置」が挙げられる。
To provide a railway vehicle drive device that controls the amount of power stored in a power storage device so as to absorb regenerative power generated during braking with high efficiency while securing the amount of power storage in consideration of the need for battery running. As a railway vehicle driving device for the purpose, there is a “rail vehicle driving device” disclosed in JP-A-2009-183079.
特開2009-183079号公報の「鉄道車両駆動装置」では、集電装置と、充放電可能な蓄電装置7とを備え、通常状態における鉄道車両の走行は集電装置と蓄電装置を併用し、異常状態における鉄道車両の走行は蓄電装置のみで行う。また、前記公報では、通常状態においては蓄電装置の蓄電量が閾値より大きくなるよう制御し、異常状態においては蓄電装置の蓄電量が閾値より小さくなることを許容し、閾値は鉄道車両の運行条件と車両条件の両方もしくはどちらかに応じて増減するように制御する鉄道車両駆動装置について述べられている。
Japanese Unexamined Patent Application Publication No. 2009-183079 discloses a “railroad vehicle driving device” that includes a power collection device and a chargeable / dischargeable power storage device 7. Running of the railway vehicle in the abnormal state is performed only by the power storage device. Further, in the above publication, in a normal state, control is performed such that the amount of power stored in the power storage device is larger than a threshold, and in an abnormal state, the amount of power stored in the power storage device is allowed to be smaller than the threshold. A railway vehicle drive device that controls so as to increase or decrease according to both or one of vehicle conditions is described.
前述のように、架線等の集電装置からの電力供給がなく、車載蓄電装置の電力により駆動される鉄道車両では、所定の走行区間、あるいは走行距離を走破するために必要なエネルギを蓄電装置に予め蓄えておく必要がある。さらに蓄電池は長時間にわたって充電した状態で維持することが求められる。
As described above, in a railway vehicle driven by electric power of an on-board power storage device without power supply from a power collection device such as an overhead line, energy required for traveling through a predetermined traveling section or a traveling distance is stored in the power storage device. Must be stored in advance. Further, the storage battery is required to be maintained in a charged state for a long time.
そこで、本発明は、蓄電池の長期運用に有用な新たな蓄電池の管理方法およびこれを採用した鉄道車両を提供することを課題とする。
Therefore, an object of the present invention is to provide a new storage battery management method useful for long-term operation of a storage battery and a railway vehicle employing the same.
上記課題の解決にあたり本発明は様々な実施形態をとり得るが、その一例の鉄道車両は「主変換装置と、前記主変換装置に接続された電動機と、前記主変換装置に接続可能な二次電池型の蓄電装置と、を少なくとも備えた鉄道車両において、前記蓄電装置の蓄電率を、前記蓄電装置の利用開始から経過した時間に基づき制御する制御装置を備える」ことを特徴とする。
In order to solve the above problems, the present invention can take various embodiments, and an example of the railway vehicle is a railway vehicle having a “main conversion device, an electric motor connected to the main conversion device, and a secondary motor connectable to the main conversion device. A railway vehicle including at least a battery-type power storage device, including a control device that controls a power storage rate of the power storage device based on a time elapsed from the start of use of the power storage device. "
本発明によれば、蓄電池の長期運用に有用な新たな蓄電池の管理方法およびこれを採用した鉄道車両を提供できる。
According to the present invention, it is possible to provide a new storage battery management method useful for long-term operation of a storage battery and a railway vehicle employing the same.
本発明は鉄道車両の走行に利用される蓄電池を管理する手法であって、本手法により管理された蓄電池を搭載した鉄道車両を提供する。管理対象である蓄電池は、鉛蓄電池、リチウムイオン二次電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、酸化銀・亜鉛蓄電池などが例として挙げられ、その他の充放電可能な化学電池が含まれる。
The present invention relates to a method for managing a storage battery used for traveling of a railway vehicle, and provides a railway vehicle equipped with a storage battery managed by the present method. The storage batteries to be managed include lead storage batteries, lithium ion secondary batteries, nickel-metal hydride storage batteries, nickel-cadmium storage batteries, silver oxide-zinc storage batteries, and the like, and include other chargeable and dischargeable chemical batteries.
この手法によって管理された蓄電池は主電動機と接続可能に構成され、主電動機の型式は交流電動機と直流電動機のどちらでもよい。あるいは内燃機関を搭載し、これによって発電した電力によって走行する電気式気動車に適用してもよい。また旅客列車に限らず、貨物列車に適用することもでき、軌道上を走行可能に構成された輸送機器であって、蓄電池を走行に利用できる輸送機器に適用できる。
以下、本発明の実施の形態について、図面を用いて説明していく。なお以降に挙げる実施例は、本発明の適用に関する一例であって、発明はこれらの例に限定されない。適用対象の条件に合わせて実施例同士の全てまたは一部を交換し組み合わせることが可能である。また適宜、採用する部品の種別の変更や組み合わせ、省略が可能である。 The storage battery managed by this method is configured to be connectable to the main motor, and the type of the main motor may be either an AC motor or a DC motor. Alternatively, the present invention may be applied to an electric diesel vehicle equipped with an internal combustion engine and running with electric power generated by the internal combustion engine. The present invention can be applied not only to a passenger train but also to a freight train, and is applicable to a transport device configured to be able to travel on a track, in which a storage battery can be used for traveling.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples relating to the application of the present invention, and the invention is not limited to these examples. All or some of the embodiments can be exchanged and combined according to the conditions of the application target. Further, it is possible to appropriately change, combine, or omit the types of components to be adopted.
以下、本発明の実施の形態について、図面を用いて説明していく。なお以降に挙げる実施例は、本発明の適用に関する一例であって、発明はこれらの例に限定されない。適用対象の条件に合わせて実施例同士の全てまたは一部を交換し組み合わせることが可能である。また適宜、採用する部品の種別の変更や組み合わせ、省略が可能である。 The storage battery managed by this method is configured to be connectable to the main motor, and the type of the main motor may be either an AC motor or a DC motor. Alternatively, the present invention may be applied to an electric diesel vehicle equipped with an internal combustion engine and running with electric power generated by the internal combustion engine. The present invention can be applied not only to a passenger train but also to a freight train, and is applicable to a transport device configured to be able to travel on a track, in which a storage battery can be used for traveling.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples relating to the application of the present invention, and the invention is not limited to these examples. All or some of the embodiments can be exchanged and combined according to the conditions of the application target. Further, it is possible to appropriately change, combine, or omit the types of components to be adopted.
図1は、本発明の一実施形態である鉄道車両の駆動システムについて概略構成を示す。この鉄道車両は、いわゆる交流電車であって、機械的な駆動装置に対して交流回転機から生じた駆動力を付与し車両が走行する。
FIG. 1 shows a schematic configuration of a railway vehicle drive system according to an embodiment of the present invention. This railway vehicle is a so-called AC train, and the vehicle travels by applying a driving force generated from an AC rotating machine to a mechanical drive device.
鉄道車両の基本的構成は、車両1a、1bである。これらは列車編成を構成する車両、またはその一部であって、車両1aと車両1bは車間連結器6で連結され各車両は台車を有する。台車2a(台車2bも同様)は輪軸3a、3bを有し、それぞれの輪軸に車輪が固定され、レール面上を走行する。また車両1bも台車2c、台車2dを有し、それぞれの台車の一部である輪軸3e、3f、3g、3hによりレール面上に支持されている。
The basic configuration of a railway vehicle is the vehicles 1a and 1b. These are vehicles constituting a train set, or a part thereof. The vehicles 1a and 1b are connected by an inter-vehicle coupler 6, and each vehicle has a bogie. The trolley 2a (also the trolley 2b) has wheel sets 3a and 3b. Wheels are fixed to the respective wheel sets and run on rail surfaces. The vehicle 1b also has a trolley 2c and a trolley 2d, and is supported on rail surfaces by wheel sets 3e, 3f, 3g, and 3h, which are parts of the respective trolleys.
このようにいずれの車両も台車によってレール面から支持され、またいずれか少なくとも一両の車が駆動システムを有し、駆動システムから台車に動力が伝達され、列車編成の走行を実現する。図1に挙げた列車編成においては、車両1aが駆動システムを有した駆動車であって、車両1bは駆動システムを持たない付随車としている。
As described above, each vehicle is supported by the bogie from the rail surface, and at least one of the vehicles has a drive system, and power is transmitted from the drive system to the bogie, thereby realizing the running of the train formation. In the train set shown in FIG. 1, the vehicle 1a is a driven vehicle having a drive system, and the vehicle 1b is an accompanying vehicle without a drive system.
車両1aに搭載された駆動システムは、集電装置5、変圧装置7(Transformer)、主変換装置8(Traction Converter)、電動機17、蓄電装置9(Traction Battery)および統括制御装置11(Control Unit)を基本的な構成として有する。また、駆動システムには含まれない主要な電力利用機器として、主変換装置8に対して蓄電装置9と並列に補助電源装置10(APS (Auxially equipment Power Supplier))が設けられる。これは主変換装置8の交流電力Pd1を、電圧一定かつ周波数一定(CVCF)な交流電力Pa3に変換し、車両内の照明や空調システムを代表とする車両用補機19に対して電力を供給する。なお駆動システムは、1車両に集中して搭載する必要はなく、編成中のいずれかの車両(両運転台の1両編成を含む)に分散して備えてもよい。
The drive system mounted on the vehicle 1a includes a current collector 5, a transformer 7 (Transformer), a main converter 8 (Traction @ Converter), an electric motor 17, a power storage device 9 (Traction @ Battery), and an integrated control device 11 (Control @ Unit). As a basic configuration. An auxiliary power supply device 10 (APS (Auxiliary equipment) Power Supplier) is provided in parallel with the power storage device 9 for the main converter 8 as a main power utilization device not included in the drive system. This converts the AC power Pd1 of the main converter 8 into AC power Pa3 having a constant voltage and a constant frequency (CVCF), and supplies the power to a vehicle accessory 19 representing a lighting and an air conditioning system in the vehicle. I do. The drive system does not need to be mounted on one vehicle in a concentrated manner, and may be provided separately on any vehicle (including one cab of both cabs) in the formation.
また、統括制御装置11は、少なくとも1基のCPU、当該CPUと通信可能に構成された記憶装置および入出力インターフェイスを有し、制御指令を生成する。被制御機器の状態は入力インターフェイスを介して取得され、それらに対する制御指令は出力インターフェイスを介して出力される。これらのインターフェイスは、具体的にはPCIバスやこれに接続されたDI/DOインターフェイス、信号ケーブル、その他に継電器を含む。また、演算機能は、CPUに加えて、ASIC、FPGA、PLD、PLCなどの論理回路を採用し、これらによる実装を含む。
The general control device 11 has at least one CPU, a storage device communicable with the CPU, and an input / output interface, and generates a control command. The states of the controlled devices are obtained via an input interface, and control commands for them are output via an output interface. These interfaces specifically include a PCI bus, a DI / DO interface connected thereto, a signal cable, and a relay. In addition, the arithmetic function adopts a logic circuit such as an ASIC, an FPGA, a PLD, and a PLC in addition to the CPU, and includes implementation by these.
図1に示す駆動システムにおいて、電力を駆動力に変換する第1の駆動システムによる第1の駆動モードは次のように定められる。まず交流電力Pa0が架線4より集電装置5を介して変圧装置7に供給される。変圧装置7は、交流電力Pa0の電圧Va0を、より低い電圧Va1の交流電力Pa1に変換し、主変換装置8に供給する。主変換装置8は、コンバータ装置14、インバータ装置15で構成され、コンバータ装置14は、交流電力Pa1を直流電力Pd1に変換し、かつ所定の電圧Vd1となるように制御する。
に お い て In the drive system shown in FIG. 1, the first drive mode by the first drive system that converts electric power into drive power is determined as follows. First, the AC power Pa0 is supplied from the overhead line 4 to the transformer 7 via the current collector 5. The transformer 7 converts the voltage Va0 of the AC power Pa0 into the AC power Pa1 of the lower voltage Va1, and supplies the AC power Pa1 to the main converter 8. The main conversion device 8 includes a converter device 14 and an inverter device 15, and the converter device 14 converts the AC power Pa1 into the DC power Pd1 and controls the power to be a predetermined voltage Vd1.
インバータ装置15は電圧および周波数を可変制御するVVVFインバータであり、直流電力Pd1を交流電力Pa2に変換して、電動機17に対して入力しそのトルクを制御する。電動機17のトルクは、輪軸3a、3b、3c、3dの全て、またはその何れかに回転トルクとして伝達され、輪軸に固定された車輪を回転させる。回転する車輪とレール面間には踏面力が作用し、この踏面力により車両1aは加速、または減速する。
Inverter device 15 is a VVVF inverter that variably controls voltage and frequency, converts DC power Pd1 to AC power Pa2, inputs the same to electric motor 17, and controls the torque. The torque of the electric motor 17 is transmitted as a rotational torque to all or any of the wheel sets 3a, 3b, 3c, and 3d to rotate wheels fixed to the wheel set. A tread force acts between the rotating wheel and the rail surface, and the vehicle 1a accelerates or decelerates due to the tread force.
インバータ装置15はインバータ制御ユニット22によって制御され、統括制御ユニット20からの指令に応じて、車両1a、1bを加速または減速させる電動機17の駆動トルクを発生するトルク電流指令を生成する。より詳細には、交流電流検出器18で検出する電動機電流Imu、Imv、Imwを基に演算するトルク電流をトルク電流指令に追従させる定電流制御を行い、その出力を基にインバータ装置15のスイッチング回路を動作させるPWMパルスを生成し、インバータ装置15に入力する。
The inverter device 15 is controlled by the inverter control unit 22 and generates a torque current command for generating a drive torque of the electric motor 17 for accelerating or decelerating the vehicles 1a and 1b according to a command from the general control unit 20. More specifically, constant current control is performed so that the torque current calculated based on the motor currents Imu, Imv, Imw detected by the AC current detector 18 follows the torque current command, and the switching of the inverter device 15 is performed based on the output. A PWM pulse for operating the circuit is generated and input to the inverter device 15.
蓄電池制御ユニット23は、統括制御ユニット20からの指令に応じて、蓄電電力遮断器23cを投入/釈放して蓄電手段の充放電(入出力)を制限するとともに、蓄電手段より状態情報(蓄電率:SOC、蓄電池温度Tb等)を集約し、統括制御ユニット20に伝える。
The storage battery control unit 23 restricts charging / discharging (input / output) of the storage means by turning on / off the storage power circuit breaker 23c in response to a command from the overall control unit 20, and also stores state information (power storage rate) from the storage means. : SOC, storage battery temperature Tb, etc.) and transmit them to the overall control unit 20.
統括制御ユニット20は、蓄電装置9の電圧Vbatを基に、蓄電装置9を充電する場合にはVbatよりΔVbatだけ大きい電圧指令Vbdを、蓄電装置9を放電する場合にはVbatよりΔVbatだけ小さい電圧指令Vbdを演算する。ΔVbatに対して発生する充放電電流の大きさは蓄電装置9の内部抵抗値により決定する。
Based on the voltage Vbat of the power storage device 9, the overall control unit 20 generates a voltage command Vbd larger than Vbat by ΔVbat when charging the power storage device 9, and a voltage command Δbbat smaller than Vbat by ΔVbat when discharging the power storage device 9. The command Vbd is calculated. The magnitude of the charge / discharge current generated for ΔVbat is determined by the internal resistance value of power storage device 9.
以上の構成により、蓄電装置9の充放電電力Pbatを調整することで、SOCを蓄電率目標値:SOC(t)と一致するように管理する。なお、蓄電率目標値:SOC(t)は、蓄電装置9の使用開始からの経過時間と、蓄電装置9の蓄電池温度Tbを基に決定する。蓄電装置9の使用開始からの経過時間は、統括制御ユニット20が備えるタイマー20bにて、蓄電装置9の使用開始からの時間を積算することで求められるが、簡易的には使用開始からの経過時間値を手動で入力してもよい。蓄電装置9の蓄電池温度Tbは、蓄電装置9からの状態情報として検出できるが、蓄電装置9を使用する環境での平均的な温度を予め記憶させておいてもよい。
With the above configuration, the SOC is managed so as to match the target power storage value: SOC (t) by adjusting the charge / discharge power Pbat of the power storage device 9. The storage rate target value: SOC (t) is determined based on the elapsed time from the start of use of the power storage device 9 and the battery temperature Tb of the power storage device 9. The elapsed time from the start of use of the power storage device 9 can be obtained by integrating the time from the start of use of the power storage device 9 by the timer 20b provided in the overall control unit 20, but for simplicity, the elapsed time from the start of use The time value may be entered manually. The storage battery temperature Tb of the power storage device 9 can be detected as state information from the power storage device 9, but an average temperature in an environment where the power storage device 9 is used may be stored in advance.
また電力を駆動力に変換する第2の駆動システムによる第2の駆動モードは次のように定められる。第2の駆動システムは蓄電装置9のみにより走行を実現するものであって、蓄電装置9が主変換装置8(より詳細には主変換装置8のインバータ装置15)に対して電力を供給する。主変換装置8に対する電力の入力以降の構成については第1のシステムと同様の機器構成が採用され、これらを利用して踏面力を発生させる。
{Circle around (2)} The second drive mode by the second drive system that converts electric power into drive power is determined as follows. The second drive system realizes traveling only by the power storage device 9, and the power storage device 9 supplies power to the main converter 8 (more specifically, the inverter device 15 of the main converter 8). Regarding the configuration after the input of power to the main converter 8, the same device configuration as that of the first system is adopted, and a tread force is generated using these components.
第2の駆動システムにおける蓄電装置9は、例えば、電力をためるリチウムイオン型の蓄電池9aを有し、蓄電電力の充放電(入出力)を制限する蓄電電力遮断器23c、蓄電電力遮断器23cを制御する蓄電制御器23aが設けられる。なお蓄電制御器23aは蓄電池9aの状態監視機能を有し、監視対象は例えば蓄電池9aの端子間電圧、蓄電池9aの内部抵抗、蓄電池9aの表面温度またはセル内部温度(いわゆる蓄電池温度)、蓄電池9aの周辺環境温度などが含まれる。図2(b)では、蓄電池9aの表面温度を計測する温度計23bを設置した例を示す。
The power storage device 9 in the second drive system includes, for example, a lithium-ion type storage battery 9a that stores power, and includes a storage power breaker 23c and a storage power breaker 23c that limit charging and discharging (input and output) of storage power. A power storage controller 23a for controlling is provided. The power storage controller 23a has a function of monitoring the state of the storage battery 9a, and the monitoring targets are, for example, the voltage between the terminals of the storage battery 9a, the internal resistance of the storage battery 9a, the surface temperature of the storage battery 9a or the cell internal temperature (so-called storage battery temperature), and the storage battery 9a. And the surrounding environmental temperature. FIG. 2B shows an example in which a thermometer 23b for measuring the surface temperature of the storage battery 9a is provided.
蓄電装置9による充放電は、主変換装置8の直流電力Pd1の電圧Vd1と、蓄電装置9の電圧Vbatとの比較に基づき、いずれの状態を取るかが決定される。充放電が不要な状況においては、蓄電制御器23aが蓄電電力遮断器23cを動作させて蓄電池9aを主変換装置8から切り離した状態とする。
充 The state of charge / discharge by power storage device 9 is determined based on a comparison between voltage Vd1 of DC power Pd1 of main converter 8 and voltage Vbat of power storage device 9. When charging and discharging are not required, the storage controller 23a operates the storage power breaker 23c to disconnect the storage battery 9a from the main converter 8.
充放電制御は次のように実施される。まず主変換装置8におけるコンバータ装置14とインバータ装置15とを接続する電力バスに掛かる電圧の計測または推測に基づき電圧Vd1が取得される。なお電圧Vd1はコンバータ装置14またはインバータ装置15の制御データに基づき推測されてもよい。
The charge / discharge control is performed as follows. First, the voltage Vd1 is obtained based on the measurement or estimation of the voltage applied to the power bus connecting the converter device 14 and the inverter device 15 in the main converter 8. Note that voltage Vd1 may be estimated based on control data of converter device 14 or inverter device 15.
続いて、主変換装置8と接続された蓄電装置9の出力電圧が電圧Vbatとして取得される。電圧Vbatは、蓄電装置9において端子間電圧を計測したり、放電試験等によって事前に取得されたSOC(SOC : State Of Charge)および放電電圧の関係に基づく推測値を採用したりして取得される。
Next, the output voltage of power storage device 9 connected to main converter 8 is obtained as voltage Vbat. Voltage Vbat is obtained by measuring a voltage between terminals in power storage device 9 or employing an estimated value based on a relationship between SOC (SOC: State Of Charge) and a discharge voltage obtained in advance by a discharge test or the like. You.
このようにして取得された電圧Vd1および電圧Vbatについて、電圧Vbatが電圧Vd1よりも低くなるように主変換装置8を動作させると蓄電池9aは充電され、反対に電圧Vd1よりも電圧Vbatが高くなるように制御すると蓄電装置9による放電が実行される。
When the main converter 8 is operated such that the voltage Vbat becomes lower than the voltage Vd1 with respect to the voltage Vd1 and the voltage Vbat obtained in this manner, the storage battery 9a is charged, and conversely, the voltage Vbat becomes higher than the voltage Vd1. With such control, the discharge by the power storage device 9 is performed.
これらの充放電制御は統括制御装置11による制御指令に基づき実行される。統括制御装置11は、蓄電装置9を、平常時において、充電する場合には電圧VbatよりΔVbatだけ大きい電圧指令Vbdを、蓄電装置9を放電する場合にはVbatよりΔVbatだけ小さい電圧指令Vbdを演算する。続いて統括制御装置11は、演算した電圧指令Vbdを主変換装置8に対して出力し、主変換装置8は電圧指令Vdbへ電圧Vd1を追従する。この際、ΔVbatに対して発生する充放電電流の大きさは蓄電装置9の内部抵抗値により決定される。
充 These charge / discharge controls are executed based on control commands from the overall control device 11. The general control device 11 calculates a voltage command Vbd which is larger than the voltage Vbat by ΔVbat when charging the power storage device 9 in a normal state, and a voltage command Vbd which is smaller by ΔVbat than Vbat when discharging the power storage device 9. I do. Subsequently, the overall control device 11 outputs the calculated voltage command Vbd to the main converter 8, and the main converter 8 follows the voltage Vd1 to the voltage command Vdb. At this time, the magnitude of the charging / discharging current generated with respect to ΔVbat is determined by the internal resistance value of power storage device 9.
電圧追従制御は、本実施例において、主変換装置8に含まれるコンバータ装置14が中心的役割を果たす。本実施例のコンバータ装置14は、上位装置であるコンバータ制御ユニット21によって動作を制御される。
In the present embodiment, the converter device 14 included in the main converter 8 plays a central role in the voltage tracking control. The operation of the converter device 14 of the present embodiment is controlled by the converter control unit 21 which is a higher-level device.
コンバータ制御ユニット21は、交流電圧検出器12、交流電流検出器13、直流電圧検出器51、および直流電流検出器52と接続され、これら計測手段による計測結果に基づきコンバータ装置14の動作を制御する。具体的には、交流電圧検出器12によって収集される交流電圧Va0、交流電流検出器13によって収集される交流電流Ia1を基に、直流電圧Vd1が電圧指令Vbdに追従するように制御し、SOCが蓄電率目標値(SOC(t))と一致するように管理する。
The converter control unit 21 is connected to the AC voltage detector 12, the AC current detector 13, the DC voltage detector 51, and the DC current detector 52, and controls the operation of the converter device 14 based on the measurement result by these measuring means. . Specifically, based on the AC voltage Va0 collected by the AC voltage detector 12 and the AC current Ia1 collected by the AC current detector 13, the DC voltage Vd1 is controlled so as to follow the voltage command Vbd, and the SOC Is managed so as to match the power storage rate target value (SOC (t)).
一方、平常時ではない、すなわち何らかの事情によって集電装置5から十分な電力供給を受けられず、第2のシステムによって駆動力を得る場合は、必要とされる駆動力および現在のSOCに基づき、インバータ装置15に供給される直流電力が決定される。統括制御装置11は、この直流電力が入力されるようコンバータ装置14を動作させてインバータ装置15に対して電力を供給する。
On the other hand, when it is not a normal time, that is, when the power is not sufficiently supplied from the current collector 5 for some reason and the driving force is obtained by the second system, based on the required driving force and the current SOC, DC power supplied to inverter device 15 is determined. The general control device 11 supplies power to the inverter device 15 by operating the converter device 14 so that the DC power is input.
ここで、蓄電装置9を充電された状態で長期間にわたって運用するために、蓄電池9aに対して新たな管理手法を適用する。具体的には蓄電率目標値(以下、SOC(t)とする)を適切に調整し、平常時にておける充放電制御によって充電率をSOC(t)と一致もしくはこれに近い値で維持する。このSOC(t)の調整は、少なくとも蓄電装置9の使用開始から現在までの経過時間情報(以下、経過時間とする)を利用し、さらに蓄電装置9の蓄電池温度(Tb)を利用することが好ましい。
Here, in order to operate the power storage device 9 in a charged state for a long period of time, a new management method is applied to the storage battery 9a. More specifically, the charge rate target value (hereinafter referred to as SOC (t)) is appropriately adjusted, and the charge rate is maintained at a value equal to or close to SOC (t) by charge / discharge control in normal times. The adjustment of the SOC (t) can be performed using at least elapsed time information from the start of use of the power storage device 9 to the present (hereinafter, referred to as elapsed time), and further using the storage battery temperature (Tb) of the power storage device 9. preferable.
それぞれの情報は、自動的に収集する機器を統括制御ユニット20や蓄電池制御ユニット23、あるいは蓄電装置9に持たせてもよいし、手動入力するように構成されてもよい。図2(b)は自動的に情報を収集する場合の一例であり、蓄電装置9の使用開始からの経過時間は、統括制御装置11の一部である統括制御ユニット20によって取得される。統括制御ユニット20はタイマー20bを有し、蓄電装置9の使用開始からの経過時間を積算することができる。時間の積算方法は、例えば、日にち単位、週単位、月単位のいずれが採用されてもよく、あるいは任意に設定した単位でカウントされるものとしてもよい。また、タイマー20bに代わり、使用開始からの経過時間が手動で入力されるように構成してもよいし、蓄電装置9がタイマー20bを有していてもよい。
Each piece of information may be provided with a device to be automatically collected in the overall control unit 20, the storage battery control unit 23, or the power storage device 9, or may be configured to be manually input. FIG. 2B shows an example in which information is automatically collected. The elapsed time from the start of using the power storage device 9 is obtained by the general control unit 20 which is a part of the general control device 11. The overall control unit 20 has a timer 20b and can accumulate the elapsed time from the start of using the power storage device 9. As a method of accumulating time, for example, any one of a day unit, a week unit, and a month unit may be adopted, or counting may be performed in an arbitrarily set unit. Further, instead of the timer 20b, a configuration may be adopted in which the elapsed time from the start of use is manually input, or the power storage device 9 may include the timer 20b.
その他、蓄電装置9が、自身の製造年月日が登録された記憶部、自身の蓄電した電力を使って稼働するタイマー20bを有し、製造年月日から経過した時間を外部へ出力するように構成されていてもよい。この場合、蓄電装置9は経過時間に関する出力インターフェイスを有し、蓄電池制御ユニット23はその出力インターフェイスと接続できる入力インターフェイスを持つことがさらに望ましい。
In addition, the power storage device 9 has a storage unit in which its own manufacturing date is registered, a timer 20b that operates using the stored power, and outputs the time elapsed from the manufacturing date to the outside. May be configured. In this case, it is more desirable that power storage device 9 has an output interface relating to the elapsed time, and that storage battery control unit 23 has an input interface that can be connected to the output interface.
また、蓄電装置9の蓄電池温度Tbは、蓄電池制御ユニット23の蓄電制御器23aに温度計23bから信号が入力されるように構成し、取得した信号に基づき把握される。もし温度計測機能が無い場合は、蓄電装置9を使用する環境での平均的な温度を予め記憶させておくことで代替してもよい。特に鉄道車両であれば、運用される路線がある程度限定されるため、インターネットや公共機関によって公開されている過去の気象データを基に、運用路線周辺地域の温度情報を取得することもできる。
The storage battery temperature Tb of the power storage device 9 is configured such that a signal is input from the thermometer 23b to the storage controller 23a of the storage battery control unit 23, and is determined based on the acquired signal. If there is no temperature measurement function, the average temperature in the environment where the power storage device 9 is used may be stored in advance and replaced. In particular, for railway vehicles, the routes to be operated are limited to some extent, so that temperature information around the operation routes can also be acquired based on past weather data published by the Internet or public institutions.
これらの情報を蓄電池制御ユニット23は、蓄電装置9との通信が可能となった時点、すなわち蓄電装置9の運用が開始された時点から取得し、図3に示される蓄電装置9の管理を始める。
The storage battery control unit 23 acquires this information from the time when communication with the power storage device 9 becomes possible, that is, from the time when the operation of the power storage device 9 is started, and starts managing the power storage device 9 illustrated in FIG. .
蓄電池制御ユニット23は、蓄電装置9の運用が始まると、蓄電率(SOC)を経過時間に応じて変化させる。図3は、蓄電池9aの容量維持率の推移と、それに応じた蓄電率の推移を示した図である。横軸においてT0が蓄電装置9の利用開始時点を示し、縦軸は蓄電装置9の容量維持率を示す。なお、容量維持率は、利用開始時点における蓄電容量を100とした場合に、それぞれ時点における蓄電容量を相対的に表す容量比である。
(4) When the operation of the power storage device 9 starts, the storage battery control unit 23 changes the storage rate (SOC) according to the elapsed time. FIG. 3 is a diagram showing a change in the capacity retention rate of the storage battery 9a and a change in the power storage rate according to the change. In the horizontal axis, T0 indicates the time point at which the use of the power storage device 9 is started, and the vertical axis indicates the capacity retention rate of the power storage device 9. Note that the capacity retention ratio is a capacity ratio that relatively represents the storage capacity at each time point when the storage capacity at the start of use is set to 100.
図3に示されるように、蓄電池制御ユニット23は、T0→T1の区間ではSOC(t)を50%に、T1→T2の区間では60%に、T2→T3の区間では70%に、T3→T4の区間では80%に維持する。このような管理を実現するために、蓄電池制御ユニット23は、SOC(t)およびSOC(t)を更新すべき基準時間の情報が登録されたメモリ20c、およびこれらの情報に基づき蓄電装置9に対するSOCを出力する演算装置20aを有する。
As shown in FIG. 3, the storage battery control unit 23 sets the SOC (t) to 50% in the section from T0 to T1, to 60% in the section from T1 to T2, to 70% in the section from T2 to T3, → Maintain 80% in the section of T4. In order to realize such management, the storage battery control unit 23 controls the power storage device 9 based on the memory 20c in which the SOC (t) and the reference time information for updating the SOC (t) are registered. It has an arithmetic unit 20a that outputs the SOC.
基準時間の設定は任意に定めてよい。例えば、蓄電装置9の運用期間を16年とするならば、それぞれの区間を4年としてもよい。あるいは等間隔ではなく、T0→T1を7年、T1→T2を5年、T2→T3を3年、T3→T4を1年と設定してもよい。
The setting of the reference time may be arbitrarily determined. For example, if the operation period of the power storage device 9 is 16 years, each section may be 4 years. Alternatively, instead of equal intervals, T0 → T1 may be set to 7 years, T1 → T2 to 5 years, T2 → T3 to 3 years, and T3 → T4 to 1 year.
SOC(t)の更新処理は、一例として、図4に示すような処理ステップによって実行される。
The 処理 SOC (t) update process is executed by, for example, the process steps shown in FIG.
まず、蓄電池制御ユニット23は、蓄電装置9の利用開始を示す情報が入力されると、タイマーを動作させる(Step 1)。合わせて、統括制御ユニット20は、メモリ20cに登録された基準時間の中から最も現在に近い基準時間(T1)を呼び出し、照会すべき基準時間(照会基準時間)として保持する(Step 2)。仮に基準時間をシリアル値として保持し、タイマーを周期的なクロック信号のカウント値によって実装する場合は、そのシリアル値を照会基準時間として設定する。その他、統括制御ユニット20が蓄電装置9の利用開始時期を記憶し、適宜、現時点との差分を演算することによって運用期間を取得するように構成してもよい。また利用開始時期は、蓄電装置9の運用を始めた時点に代わって、蓄電池9aの製造年月日を採用してもよい。
First, when information indicating the start of use of the power storage device 9 is input, the storage battery control unit 23 operates a timer (Step # 1). At the same time, the general control unit 20 calls the reference time (T1) closest to the present time from the reference times registered in the memory 20c, and holds it as a reference time to be queried (inquiry reference time) (Step # 2). If the reference time is held as a serial value and the timer is implemented by a periodic count value of the clock signal, the serial value is set as the reference time. Alternatively, the overall control unit 20 may store the operation start time of the power storage device 9 and calculate the difference from the present time to obtain the operation period as appropriate. The use start time may be the date of manufacture of the storage battery 9a instead of the time when the operation of the power storage device 9 is started.
演算装置20aは、周期的にタイマー20bから値(タイマー値)を取得し、タイマー値と照会基準時間とを比較する(Step 3)。比較の結果、タイマー値が照会基準時間と一致または超えた場合に、照会基準時間に対応するSOC(T1)を読み出す(Step 4)。演算装置20aはSOC(T1)の情報を統括制御ユニット20へ送信する(Step 4)。この際に蓄電率の現在値も統括制御ユニット20に対して送信される。蓄電率の現在値は、蓄電池9aの端子間電圧や、既存の推定アルゴリズムを利用して取得される。
The arithmetic unit 20a periodically acquires a value (timer value) from the timer 20b and compares the timer value with an inquiry reference time (Step # 3). As a result of the comparison, when the timer value matches or exceeds the inquiry reference time, the SOC (T1) corresponding to the inquiry reference time is read (Step # 4). Arithmetic device 20a transmits SOC (T1) information to general control unit 20 (Step # 4). At this time, the current value of the storage rate is also transmitted to the overall control unit 20. The current value of the power storage rate is obtained using the voltage between terminals of the storage battery 9a or an existing estimation algorithm.
統括制御ユニット20は、蓄電池制御ユニット23から受信したSOC(T1)および最新の蓄電率の情報を比較し(Step 5)、SOC(T1)が最新のSOCよりも大きい場合は、蓄電装置9の充電制御を実行する(Step 6)。反対にSOC(T1)が最新のSOCよりも小さい場合は、自然放電によってSOC(T1)と最新のSOCが一致することを待つものとし、SOC(t)の更新処理そのものは終了する。もし架線に電力を送ることや走行に利用可能であれば、そちらに向かって蓄電装置9から放電が実行されてもよい。なお比較演算は蓄電池制御ユニット23によって実行されてもよい。
The overall control unit 20 compares the SOC (T1) received from the storage battery control unit 23 with the latest power storage rate information (Step # 5), and when the SOC (T1) is larger than the latest SOC, the integrated control unit 20 The charge control is executed (Step # 6). Conversely, if SOC (T1) is smaller than the latest SOC, it is assumed that SOC (T1) matches the latest SOC by natural discharge, and the SOC (t) updating process itself ends. If power can be sent to the overhead wire or used for traveling, discharging may be performed from the power storage device 9 toward the power line. The comparison operation may be performed by the storage battery control unit 23.
充電制御または放電制御が実行され、蓄電装置9のSOCがSOC(T1)と一致または予め定められた許容範囲に入った場合は、統括制御ユニット20はSOC(t)の更新処理を終了し、次回の更新を待機する状態へ移行する(Step 7)。
When charge control or discharge control is performed and the SOC of power storage device 9 matches SOC (T1) or falls within a predetermined allowable range, overall control unit 20 ends the SOC (t) update process, The state shifts to a state of waiting for the next update (Step # 7).
さらに、統括制御ユニット20は照会基準時間を更新する。具体的には、直前まで設定されていた照会基準時間に対して、これに最も近い将来の基準時間をメモリから読み出し、新たな照会基準時間として保持する(Step 8)。すでに利用歴のある基準時間は、誤って再度設定されないようにデータを削除し、あるいは設定不可のフラグを割りつける。その他、SOC(t)や照会基準時間は、現在の設定値よりも増大する場合のみ新たに設定できるとしてもよい。このようにすることで、誤って低いSOC(t)が設定され、必要な蓄電量を下回ってしまう可能性を抑制できる。
(4) Further, the general control unit 20 updates the inquiry reference time. Specifically, with respect to the inquiry reference time set immediately before, the nearest future reference time is read from the memory and held as a new inquiry reference time (Step # 8). For a reference time which has already been used, data is deleted or a flag indicating that setting is impossible is assigned so that the reference time is not accidentally set again. In addition, the SOC (t) and the reference time may be newly set only when they are larger than the current set value. By doing so, it is possible to suppress the possibility that a low SOC (t) is erroneously set and falls below the required power storage amount.
また、以上において説明した処理のうち、充電制御の処理のみを車両にて実行し、その他の処理を車両とは別に設けられた管理装置によって実行することもできる。この場合、管理装置側に、蓄電装置9の識別情報や利用開始時点、当該蓄電装置9が搭載された車両が運用される線区の情報を記憶したデータベースを持たせ、地上―車上の無線通信等によってSOC(t)の更新指令を通知する。管理装置を地上に集約し、車両側は管理装置から通知される情報に基づき動作するように構成することで、タイマーの故障や、メモリの破損といった管理の継続を困難なものとする事象を回避し、長期的な蓄電池の管理をより実現しやすくできる。その他、充電制御以外の処理を、人手によって実行することも可能であり、適用対象に応じて、適宜、人手によって実行する処理と計算機等によって実行する処理を組み合わせてよい。
In addition, among the processes described above, only the charging control process may be performed by the vehicle, and the other processes may be performed by a management device provided separately from the vehicle. In this case, the management device is provided with a database that stores information on the identification information of the power storage device 9, the start time of use, and information on the line section in which the vehicle on which the power storage device 9 is mounted is operated. The SOC (t) update command is notified by communication or the like. By integrating the management device on the ground and configuring the vehicle to operate based on the information notified from the management device, it is possible to avoid events that make it difficult to continue management, such as failure of a timer or corruption of memory. In addition, long-term storage battery management can be more easily realized. In addition, processes other than the charge control can be performed manually, and the processes executed manually and the processes executed by a computer or the like may be appropriately combined depending on the application target.
上述の蓄電池制御ユニット23による蓄電池管理方式によって、蓄電量が適切に保有される機序は次のように説明される。
The mechanism by which the storage amount is appropriately held by the storage battery management method by the storage battery control unit 23 will be described as follows.
図5は、蓄電池について、蓄電率を一定に維持した場合における、経過時間に対する蓄電池の容量維持率の一般的な変化を示した特性図である。図5では、SOCを50%、60%、70%、80%を維持した場合それぞれについて、T0~T4における容量維持率の変化を示している。リチウムイオン電池など、一般的な高容量大出力蓄電池では、容量維持率100%の初期状態(T0)から時間が経つほど(すなわちT0→T1→T2→T3→T4と進むほど)、容量維持率が低下していく傾向を示す。
FIG. 5 is a characteristic diagram showing a general change in the capacity maintenance rate of the storage battery with respect to the elapsed time when the storage rate of the storage battery is maintained constant. FIG. 5 shows the change in the capacity retention ratio from T0 to T4 when the SOC is maintained at 50%, 60%, 70%, and 80%. In a general high-capacity high-output storage battery such as a lithium-ion battery, as the time elapses from the initial state (T0) at a capacity maintenance rate of 100% (that is, as T0 → T1 → T2 → T3 → T4), the capacity maintenance rate increases. Shows a tendency to decrease.
加えて特にSOCが50%を超すと、SOCを高い状態で維持するほど、時間の経過に対する容量維持率の低下が大きい。このことから、概ねSOCが50%以上の領域では、SOCを下げることにより、時間経過に対する容量維持率の低下を抑えられる。
て In addition, especially when the SOC exceeds 50%, as the SOC is maintained in a high state, the capacity retention ratio with the passage of time is greatly reduced. For this reason, in a region where the SOC is approximately 50% or more, by lowering the SOC, it is possible to suppress a decrease in the capacity maintenance ratio with the passage of time.
一方で、SOCを下げることは、使用可能な蓄電量を限定することを意味する。したがって時間の経過により容量維持率の低下が進んだ状態において、蓄電率を下げると必要な蓄電量の確保ができなくなる恐れがある。
On the other hand, lowering the SOC means limiting the amount of power that can be used. Therefore, in a state where the capacity maintenance rate has been reduced over time, if the power storage rate is lowered, it may be impossible to secure a required power storage amount.
この状況を回避するため、必要な蓄電量を確保する範囲内で、蓄電装置9は運用初期においてSOC(t)をできるだけ小さく設定し、SOC(t)を経過時間に応じて変化させることが望ましい。(図5における点線による表記を参照)
In order to avoid this situation, it is desirable that the power storage device 9 set the SOC (t) to be as small as possible in the early stage of operation and change the SOC (t) according to the elapsed time within a range in which the required power storage amount is secured. . (See the dotted line in Figure 5.)
図3において示した蓄電池管理方式は、時間がT0→T1、T1→T2、T2→T3、T3→T4と進むに従い、SOC(t)を50%、60%、70%、80%と徐々に増加させる。本管理方式を採用することで、運用期間が短いうちは容量維持率の低下を緩慢にでき、蓄電率を80%一定に保つ場合よりも劣化を抑制できる。なお、T0→T1、T1→T2、T2→T3、T3→T4の各区間における容量維持率の変化は、図5の該当するSOCにおける容量維持率の変化と同等である。
In the storage battery management method shown in FIG. 3, as the time progresses from T0 to T1, T1 to T2, T2 to T3, and T3 to T4, the SOC (t) gradually increases to 50%, 60%, 70%, and 80%. increase. By adopting this management method, it is possible to slow down the capacity maintenance rate during the short operation period, and to suppress the deterioration as compared with the case where the power storage rate is kept constant at 80%. The change of the capacity retention ratio in each section of T0 → T1, T1 → T2, T2 → T3, T3 → T4 is equivalent to the change of the capacity retention ratio in the corresponding SOC in FIG.
なお図5に示した、時間経過に対する蓄電池の容量維持率は、蓄電率に加え、蓄電池の温度によっても異なる特性を示す。リチウムイオン蓄電池では、一般的に蓄電率が高いほど、また周囲温度が高いほど、蓄電池の劣化が進行(すなわち容量維持率が低下)しやすい特性があり、SOCが50%、周囲温度25℃で劣化を最小とするように設計されることが多い。
The capacity retention rate of the storage battery over time shown in FIG. 5 shows different characteristics depending on the temperature of the storage battery in addition to the power storage rate. In general, a lithium ion storage battery has a characteristic that the higher the storage rate and the higher the ambient temperature, the more easily the storage battery deteriorates (that is, the lower the capacity retention rate). When the SOC is 50% and the ambient temperature is 25 ° C. Often designed to minimize degradation.
また、図3に示すSOCを時間経過に応じて変化させる場合も、長期間にわたる管理であるため、それぞれの時点に関する蓄電池の容量維持率の推移も蓄電池の温度毎に異なることが想定される。この影響を考慮し、その時の蓄電池の温度に応じてSOC(t)を逐次変更し、または温度変化の長期トレンド(例えば季節変動)に応じて、SOC(t)を補正するように、蓄電池制御ユニット23を構成してもよい。
Also, when the SOC shown in FIG. 3 is changed with the passage of time, since the management is performed over a long period of time, it is assumed that the change in the capacity retention ratio of the storage battery at each time point also differs for each temperature of the storage battery. In consideration of this effect, the battery control is performed such that SOC (t) is sequentially changed in accordance with the temperature of the storage battery at that time, or SOC (t) is corrected in accordance with a long-term trend of temperature change (for example, seasonal variation). The unit 23 may be configured.
SOC(t)の設定についてより詳細には、図6(a)(b)に示す蓄電率の管理上限値S1、蓄電率の管理下限値S2(以降、管理上限値S1、管理下限値S2とする)を使う。
More specifically, the setting of the SOC (t) is described in FIGS. 6 (a) and 6 (b). The upper limit value S1 of the storage rate and the lower limit value S2 of the storage rate (hereinafter referred to as the upper limit value S1 and the lower limit value S2). Use).
図6(a)(b)は蓄電池の容量維持率と、利用が許される蓄電率の範囲との関係を示し、図6(a)は蓄電装置9の利用開始時点(T0)における関係を示し、図6(b)は例えば利用終期における関係を示す。図6(b)においては、領域Rに相当する部分が、運用初期における蓄電容量に対して消失した容量である。
6 (a) and 6 (b) show the relationship between the capacity retention rate of the storage battery and the range of the power storage rate that is allowed to be used, and FIG. 6 (a) shows the relationship at the start of use of the power storage device 9 (T0). FIG. 6B shows a relationship at the end of use, for example. In FIG. 6B, the portion corresponding to the region R is the capacity that has disappeared with respect to the storage capacity in the early stage of operation.
蓄電池制御ユニット23は、蓄電装置9の運用が開始された時点で、SOCについて管理上限値S1および管理下限値S2が設定される。これら管理上限値S1および管理下限値S2は、蓄電池の安全性、健全性、および車両1a、1bを所定の距離または区間について走行させるために必要な放電電力量E1(以降、電力E1とする)に基づき決定される。
(4) When the operation of the power storage device 9 is started, the storage battery control unit 23 sets a management upper limit value S1 and a management lower limit value S2 for the SOC. These management upper limit value S1 and management lower limit value S2 are based on the safety and soundness of the storage battery and the amount of discharge power E1 (hereinafter referred to as power E1) required for running vehicles 1a and 1b over a predetermined distance or section. Is determined based on
具体的には、管理上限値S1は、SOC100%を基準として、蓄電池の健全性・安全性の観点から利用が推奨されないSOCの領域(例えば90%以上)からマージンをとった値として設定される。また利用終期はSOCを初期よりも高く維持するため、常温下でも劣化が促進される可能性があり、管理上限値S1はこの可能性を考慮した値を設定することが望ましい。例えば運用環境の周囲温度が例えば-10~40℃で変動するとした場合、40℃を考慮して管理上限値S1が定められると、冷却ファンなどの別段の冷却設備が設けられなくとも、蓄電池9aを劣化しづらい状態に置くことができ、車載時の搭載空間に関する制約が緩和させる。
Specifically, the management upper limit S1 is set as a value obtained by taking a margin from an SOC area (for example, 90% or more) whose use is not recommended from the viewpoint of soundness and safety of the storage battery, based on the SOC of 100%. . In addition, since the SOC is maintained higher than the initial state at the end of use, deterioration may be promoted even at room temperature, and it is desirable to set the management upper limit value S1 in consideration of this possibility. For example, if the ambient temperature of the operating environment fluctuates between −10 ° C. and 40 ° C., for example, if the management upper limit S1 is determined in consideration of 40 ° C., the storage battery 9a can be provided even if no separate cooling equipment such as a cooling fan is provided. Can be placed in a state that is unlikely to deteriorate, and the restrictions on the mounting space when mounted on a vehicle are relaxed.
一方、管理下限値S2は、蓄電装置9による放電が適切に実施できる蓄電率の下限値に対してマージンを付加した値として設定される。なお利用終期は蓄電池9aの内部抵抗が上昇し、端子間電圧が低下する可能性があるため、管理下限値S2を利用初期よりも利用終期において高く設定してもよい。
On the other hand, the control lower limit S2 is set as a value obtained by adding a margin to the lower limit of the power storage rate at which the discharge by the power storage device 9 can be appropriately performed. Since the internal resistance of the storage battery 9a may increase at the end of use and the voltage between terminals may decrease, the management lower limit S2 may be set higher at the end of use than at the beginning of use.
このように利用終期において電力E1を確保可能な管理上限値S1、管理上限値S2を決定した後に、この条件を満たす蓄電池の容量を特定する。例えば、利用終期における蓄電容量が、利用初期における蓄電容量に対して20%小さくなり、その時点における管理上限値S1を70%、管理下限値S2を20%とするのであれば、利用初期(すなわち導入時)蓄電池に求められる容量は電力E1の2.5倍と求められる。なお搭載した蓄電池に応じて走行距離を決定する場合、電力E1、管理上限値S1および管理下限値S2は、蓄電装置9が車両に搭載された後に設定してもよい。
(4) After determining the management upper limit S1 and the management upper limit S2 at which the electric power E1 can be secured at the end of use, the capacity of the storage battery that satisfies these conditions is specified. For example, if the storage capacity at the end of use is 20% smaller than the storage capacity at the beginning of use, and the management upper limit S1 and the management lower limit S2 at that time are 70% and 20%, respectively, the initial usage (that is, At the time of introduction) the capacity required of the storage battery is required to be 2.5 times the power E1. When the traveling distance is determined according to the mounted storage battery, power E1, management upper limit S1, and management lower limit S2 may be set after power storage device 9 is mounted on the vehicle.
管理上限値S1、管理下減値S2の設定後、原則として、蓄電装置9の運用はSOCが管理上限値S1を超える充電がされること、または管理下限値S2を下回るような放電が生じないように管理される。すなわち、SOCにおいて領域N1および領域N2で表される部分は、蓄電装置9の運用上は利用されない容量である。
After setting the management upper limit value S1 and the management lowering value S2, in principle, the operation of the power storage device 9 is such that the SOC is charged beyond the management upper limit value S1 or the discharge that falls below the management lower limit value S2 does not occur. Will be managed. That is, the portion represented by region N1 and region N2 in the SOC is a capacity that is not used in the operation of power storage device 9.
電力E1、管理上限値S1、管理下限値S2の設定後、統括制御ユニット20は図6(a)に示すように、管理下限値S2を基準として電力E1を確保するように利用上限値LC(Limit of Charge)を設定する。この利用上限値LCは図6(c)に示すように、基準時間の個数(T0、T1、T2・・・)に応じて保持し、基準時間と関連付けた状態でSOC(T1、T2、T3・・・)として保有する。利用初期のおける利用上限値LCは、SOC(T0)に相当する。利用上限値LCは基準時間ごとに異なる値を設定してもよいし、利用開始から運用中期まではSOCの設定によっては一定の値を保持してもよい。
After setting the power E1, the management upper limit S1, and the management lower limit S2, as shown in FIG. 6A, the central control unit 20 uses the usage upper limit LC (so as to secure the power E1 based on the management lower limit S2. (Limit \ of \ Charge) is set. As shown in FIG. 6 (c), the use upper limit LC is held in accordance with the number of reference times (T0, T1, T2,...), And is associated with the reference times in the SOC (T1, T2, T3). ...). The use upper limit LC at the beginning of use corresponds to SOC (T0). The use upper limit LC may be set to a different value for each reference time, or may be kept constant from the start of use to the middle of operation depending on the setting of the SOC.
図6(b)は蓄電池の使用終期を示し、時間経過により容量維持率は低下している。しかし、管理下限値S2に対して利用上限値LCを基準時間(T0)のときよりも高く設定し、ほぼ管理上限値S1と同等とすることで電力E1は確保される。この状態は容量維持率がより低下しやすい状態でもあるが、使用終期であるため蓄電装置9の利用目的上は問題となりづらい。
FIG. 6 (b) shows the end of use of the storage battery, and the capacity retention rate decreases with time. However, the power E1 is ensured by setting the use upper limit LC higher than the reference time (T0) with respect to the control lower limit S2, and making the use upper limit LC substantially equal to the control upper limit S1. In this state, the capacity maintenance rate is more likely to decrease, but since it is the end of use, it is unlikely to cause a problem for the purpose of using the power storage device 9.
一方、比較例として図7(a)(b)に、管理上限値S1を基準として利用下限値LD(Limit of discharge)を更新するケースを挙げる。図7(a)(b)においても、確保すべき電力E1は同様である。しかし、このような管理方法を採用すると、SOCが蓄電装置9の運用初期から高く設定されてしまい、蓄電装置9はより劣化しやすい。初期段階から劣化しやすい状態に置かれた蓄電装置9を長期にわたって運用しようとするため、必然的に蓄電池の容量は大きなものが求められ、初期段階においては過剰な蓄電量を持つことになる。
On the other hand, as a comparative example, FIGS. 7 (a) and 7 (b) show a case where the use lower limit LD (Limit @ of \ discharge) is updated based on the management upper limit S1. 7A and 7B, the power E1 to be secured is the same. However, when such a management method is adopted, the SOC is set high from the beginning of operation of the power storage device 9, and the power storage device 9 is more likely to deteriorate. In order to operate the power storage device 9 that has been easily deteriorated from the initial stage for a long period of time, a large capacity of the storage battery is inevitably required, and an excessive amount of power is stored in the initial stage.
より具体的には、リチウムイオン蓄電池やニッケル水素蓄電池といった二次電池は、一般的に蓄電率が高いほど、さらに周囲温度が高いほど、蓄電池の劣化が進行しやすい特性があり、この劣化の進行を考慮し、例えば、蓄電率50%、周囲温度25℃で劣化の進行が最小となるように製造されることが多い。ここで、劣化の進行を最小とする場合、例えば蓄電率を50%で維持するためには、蓄電システムとして蓄電率50%における蓄電容量の倍の容量を準備することが求められる。
More specifically, a secondary battery such as a lithium-ion storage battery or a nickel-metal hydride storage battery generally has a characteristic that the higher the storage rate and the higher the ambient temperature, the more easily the storage battery deteriorates. In consideration of the above, for example, it is often manufactured so that the progress of deterioration is minimized at a storage rate of 50% and an ambient temperature of 25 ° C. Here, in order to minimize the progress of deterioration, for example, in order to maintain the power storage rate at 50%, it is necessary to prepare a power storage system having a capacity twice as large as the power storage capacity at the power storage rate of 50%.
しかし、提案する新たな管理手法、すなわち蓄電池使用初期における管理下限値S2を基準として、必要な電力E1を確保できる利用上限値LCを設定し、蓄電量使用終期に向けて徐々に利用上限値LCを管理上限値S1に向かって近づけるように調整することによって、容量維持率の低下を抑制し、長期にわたる蓄電池の運用が可能となる。
However, based on the new management method proposed, that is, based on the management lower limit S2 in the initial stage of using the storage battery, the usage upper limit LC that can secure the necessary electric power E1 is set, and the usage upper limit LC gradually increases toward the end of the use of the storage amount. Is adjusted so as to approach the management upper limit value S1, thereby suppressing a decrease in the capacity maintenance ratio, and the storage battery can be operated for a long time.
また、本管理方法によれば、電力E1を保持するために適した蓄電容量を持つように蓄電装置9を設計することができる。これによって蓄電容量のマージンを小さくすることができ、それに伴い蓄電装置9の小型化を図ることができるため、鉄道車両の車載機器の小型化、軽量化にも寄与する。特に、鉄道車両の場合は、車載スペースが限定的であるため、蓄電池の大きさは小型であることが望ましく、その点において提案する管理方法は有用である。
According to the present management method, the power storage device 9 can be designed so as to have a power storage capacity suitable for holding the electric power E1. As a result, the margin of the power storage capacity can be reduced, and the size of the power storage device 9 can be reduced, which contributes to the reduction in the size and weight of the on-board equipment of the railway vehicle. In particular, in the case of a railway vehicle, since the space on the vehicle is limited, it is desirable that the size of the storage battery is small, and the management method proposed in this regard is useful.
なお、図6(a)(b)に示す例は、管理上限値S1と利用上限値LCとを別個のパラメータとしたが、これらを区別せず一つの蓄電率に関する上限値として取り扱ってもよい。また管理下限値S2は固定せず、時間経過に応じて変更するように構成してもよい。
In the example shown in FIGS. 6A and 6B, the management upper limit value S1 and the usage upper limit value LC are separate parameters, but they may be treated as upper limit values for one power storage rate without distinction. . Further, the management lower limit S2 may not be fixed but may be changed according to the passage of time.
図8は本発明の第二実施形態における、鉄道車両駆動システムの概略構成を示す。実施例1と異なり、この駆動システム直流電力が架線4から供給され駆動するタイプの電車である。
FIG. 8 shows a schematic configuration of a railway vehicle drive system according to the second embodiment of the present invention. Unlike the first embodiment, this type of electric train is driven by the drive system DC power supplied from the overhead line 4.
大まかな構成は実施例1と同様であって、車両1a、1bは、列車編成を構成する車両、またはその一部である。車両1aと車両1bは車間連結器6で連結されている。
構成 The general configuration is the same as that of the first embodiment, and the vehicles 1a and 1b are vehicles constituting a train set or a part thereof. The vehicle 1a and the vehicle 1b are connected by an inter-vehicle coupler 6.
車両1aは、台車2aを介して輪軸3a、3bにより、また、台車2bを介して輪軸3c、3dにより、図示していないレール面上に支持されている。車両1bは、台車2cを介して輪軸3e、3fにより、また、台車2dを介して輪軸3g、3hにより、図示していないレール面上に支持されている。
The vehicle 1a is supported on a rail surface (not shown) by the wheel sets 3a and 3b via the bogie 2a and by the wheel sets 3c and 3d via the bogie 2b. The vehicle 1b is supported on rail surfaces (not shown) by wheel sets 3e and 3f via a truck 2c and by wheel sets 3g and 3h via a truck 2d.
また直流電力Pd0は、架線4より集電装置5を介して、インバータ装置15、直流コンバータ装置25、補助電源装置10に供給される。
(4) The DC power Pd0 is supplied from the overhead line 4 to the inverter device 15, the DC converter device 25, and the auxiliary power supply device 10 via the current collector 5.
インバータ装置15は、直流電力Pd0を、電圧可変、周波数可変(VVVF)な交流電力Pa2に変換し、図示していない電動機17のトルクを制御する。電動機17のトルクは、輪軸3a、3b、3c、3dの全て、またはその何れかに回転トルクを伝達し、輪軸とレール面間に踏面力を作用させ、この踏面力により車両1aを加速、または減速させる。
(4) The inverter device 15 converts the DC power Pd0 into a variable voltage, variable frequency (VVVF) AC power Pa2, and controls the torque of the electric motor 17 (not shown). The torque of the electric motor 17 transmits rotational torque to all or any of the wheel sets 3a, 3b, 3c, and 3d, and applies a tread force between the wheel set and the rail surface, and accelerates the vehicle 1a by the tread force, or Slow down.
直流コンバータ装置25は、直流電力Pd0の電圧Vd0を、電圧Vd1の直流電力Pd1に変換する。
DC converter device 25 converts voltage Vd0 of DC power Pd0 to DC power Pd1 of voltage Vd1.
蓄電装置9は、リチウムイオンバッテリ等の蓄電手段、蓄電電力の充放電(入出力)を制限する蓄電電力遮断器、蓄電手段の状態を監視し、蓄電電力遮断器を制御する蓄電制御器で構成される。蓄電手段は、直流コンバータ装置25の出力する直流電力Pd1の電圧Vd1と、蓄電装置9の電圧Vbatとの大/小に応じて、充電/放電される。
Power storage device 9 includes a power storage means such as a lithium ion battery, a power storage power breaker for limiting charging and discharging (input / output) of stored power, and a power storage controller for monitoring the state of the power storage means and controlling the power storage circuit breaker. Is done. The power storage unit is charged / discharged according to the magnitude of voltage Vd1 of DC power Pd1 output from DC converter device 25 and voltage Vbat of power storage device 9.
補助電源装置10は、主変換装置8の交流電力Pd1を、電圧一定、周波数一定(CVCF)な交流電力Pa3に変換し、図示していない車両用補機(空調、証明、空気圧縮機等)に供給する。
The auxiliary power supply 10 converts the AC power Pd1 of the main converter 8 into AC power Pa3 having a constant voltage and a constant frequency (CVCF), and vehicle auxiliary equipment (not shown) (air conditioning, certification, air compressor, etc.). To supply.
統括制御装置11は、蓄電装置9の電圧Vbatを基に、蓄電装置9を充電する場合にはVbatよりΔVbatだけ大きい電圧指令Vbdを、蓄電装置9を放電する場合にはVbatよりΔVbatだけ小さい電圧指令Vbdを演算する。ΔVbatに対して発生する充放電電流の大きさは蓄電装置9の内部抵抗値により決定する。
Based on the voltage Vbat of the power storage device 9, the overall control device 11 supplies a voltage command Vbd that is larger than Vbat by ΔVbat when charging the power storage device 9, and a voltage command Vbd that is smaller than Vbat by ΔVbat when discharging the power storage device 9. The command Vbd is calculated. The magnitude of the charge / discharge current generated for ΔVbat is determined by the internal resistance value of power storage device 9.
直流コンバータ装置25は、直流電圧Vd1が電圧指令Vdbに追従するように定電圧調整し、蓄電量SOCが蓄電量目標値SOC(t)と一致するように管理する。
(4) The DC converter device 25 adjusts the constant voltage so that the DC voltage Vd1 follows the voltage command Vdb, and manages the storage amount SOC so as to match the storage amount target value SOC (t).
蓄電量目標値SOC(t)は、実施例1と同様に管理する。すなわち蓄電装置9の使用開始からの経過時間と、蓄電装置9の蓄電池温度Tbを基に、蓄電池容量維持率予測手段を参照して決定する。蓄電装置9の使用開始からの経過時間は、統括制御ユニット23に備える時間計測手段にて、蓄電装置9の使用開始からの時間を積算することで求められるが、簡易的には使用開始を起点とした経過時間値を手動で入力してもよい。蓄電装置9の蓄電池温度Tbは、蓄電装置9からの状態情報として検出できるが、蓄電装置9を使用する環境での平均的な温度を予め記憶させておいても良い。特に鉄道車両は、運用される路線がある程度限定されるため、インターネットなどで公開されている過去の気象データを基に、運用路線周辺地域の温度情報を利用することもできる。
目標 The target value SOC (t) is managed in the same manner as in the first embodiment. That is, it is determined based on the elapsed time from the start of use of the power storage device 9 and the battery temperature Tb of the power storage device 9 with reference to the storage battery capacity maintenance rate prediction means. The elapsed time from the start of use of the power storage device 9 can be obtained by integrating the time from the start of use of the power storage device 9 by the time measuring means provided in the general control unit 23. May be manually input. Although the storage battery temperature Tb of the power storage device 9 can be detected as state information from the power storage device 9, an average temperature in an environment where the power storage device 9 is used may be stored in advance. In particular, since the operating routes of railway vehicles are limited to some extent, it is also possible to use temperature information around the operating routes based on past weather data published on the Internet or the like.
また、本実施例では、車両1a、1bによる2両編成を示しているが、編成車両の両数は限定しない。本発明の鉄道車両駆動システムは、1車両に集中して搭載する必要はなく、編成中のいずれかの車両(両運転台の1両編成を含む)に分散して備えてもよい。
In addition, in the present embodiment, the two-car formation by the vehicles 1a and 1b is shown, but the number of both cars is not limited. The railway vehicle drive system of the present invention does not need to be mounted on one vehicle in a concentrated manner, and may be provided separately on any vehicle (including one cab of both cabs) in the formation.
図9は、本発明の第二実施形態における、蓄電量管理方式を実現する構成を示す図である。
FIG. 9 is a diagram showing a configuration for realizing the power storage amount management method in the second embodiment of the present invention.
直流電力Pd0は、図示していない架線4より集電装置5を介して、リアクトル24に供給される。リアクトル24は、コンデンサ16とともにフィルタ回路を構成して直流電力Pd0の高調波を除去し、その出力をインバータ装置15、直流コンバータ装置25、補助電源装置10に供給する。
The DC power Pd0 is supplied from the overhead wire 4 (not shown) to the reactor 24 via the current collector 5. Reactor 24 forms a filter circuit together with capacitor 16 to remove harmonics of DC power Pd0, and supplies its output to inverter device 15, DC converter device 25, and auxiliary power supply device 10.
インバータ装置15は、直流電力Pd0を、電圧可変、周波数可変(VVVF)な交流電力Pa2に変換し、図示していない電動機17のトルクを制御する。電動機17のトルクは、輪軸3a、3b、3c、3dの全て、またはその何れかに回転トルクを伝達し、輪軸とレール面間に踏面力を作用させ、この踏面力により車両1aを加速、または減速させる。
(4) The inverter device 15 converts the DC power Pd0 into a variable voltage, variable frequency (VVVF) AC power Pa2, and controls the torque of the electric motor 17 (not shown). The torque of the electric motor 17 transmits the rotational torque to all or any of the wheel sets 3a, 3b, 3c, and 3d, and applies a tread force between the wheel set and the rail surface, thereby accelerating the vehicle 1a by the tread force, or Slow down.
直流コンバータ装置25は、直流電力Pd0の電圧Vd0を、電圧Vd1の直流電力Pd1に変換する。蓄電装置9は、リチウムイオンバッテリ等の蓄電手段、蓄電電力の充放電(入出力)を制限する蓄電電力遮断器、蓄電手段の状態を監視し、蓄電電力遮断器を制御する蓄電制御器で構成される。蓄電手段は、直流コンバータ装置25の出力する直流電力Pd1の電圧Vd1と、蓄電装置9の電圧Vbatとの大/小に応じて、充電/放電される。
DC converter device 25 converts voltage Vd0 of DC power Pd0 to DC power Pd1 of voltage Vd1. Power storage device 9 includes a power storage means such as a lithium ion battery, a power storage power breaker for limiting charging and discharging (input / output) of stored power, and a power storage controller for monitoring the state of the power storage means and controlling the power storage circuit breaker. Is done. The power storage unit is charged / discharged according to the magnitude of voltage Vd1 of DC power Pd1 output from DC converter device 25 and voltage Vbat of power storage device 9.
補助電源装置10は、主変換装置8の交流電力Pd1を、電圧一定、周波数一定(CVCF)な交流電力Pa3に変換し、図示していない車両用補機(空調、証明、空気圧縮機等)に供給する。
The auxiliary power supply 10 converts the AC power Pd1 of the main converter 8 into AC power Pa3 having a constant voltage and a constant frequency (CVCF), and vehicle auxiliary equipment (not shown) (air conditioning, certification, air compressor, etc.). To supply.
統括制御装置11は、コンバータ制御ユニット21、インバータ制御ユニット22、蓄電池制御ユニット23、統括制御ユニット20で構成される。
The overall control device 11 includes a converter control unit 21, an inverter control unit 22, a storage battery control unit 23, and an overall control unit 20.
コンバータ制御ユニット21は、統括制御ユニット20からの指令に応じて、直流電圧検出器51で検出する直流電圧Vd1を電圧指令Vdbに追従させる定電圧制御を行い、その出力を基に生成する直流電流指令に直流電流検出器52で検出する直流電流Id1を追従させる定電流制御を行い、その出力を基にコンバータ装置26のスイッチング回路を動作させるPWMパルスを生成し、コンバータ装置26に入力する。
The converter control unit 21 performs constant voltage control for causing the DC voltage Vd1 detected by the DC voltage detector 51 to follow the voltage command Vdb according to a command from the overall control unit 20, and generates a DC current based on the output. Constant current control is performed so that the DC current Id1 detected by the DC current detector 52 follows the command. Based on the output, a PWM pulse for operating the switching circuit of the converter device 26 is generated and input to the converter device 26.
インバータ制御ユニット22は、統括制御ユニット20からの指令に応じて、車両1a、1bを加速または減速させる電動機17の駆動トルクを発生するトルク電流指令を生成し、交流電流検出器18で検出する電動機電流Imu、Imv、Imwを基に演算するトルク電流をトルク電流指令に追従させる定電流制御を行い、その出力を基にインバータ装置15のスイッチング回路を動作させるPWMパルスを生成し、インバータ装置15に入力する。
The inverter control unit 22 generates a torque current command for generating a drive torque of the electric motor 17 for accelerating or decelerating the vehicles 1a and 1b in response to a command from the general control unit 20, and the electric motor detected by the AC current detector 18. The constant current control is performed so that the torque current calculated based on the currents Imu, Imv, and Imw follows the torque current command, and a PWM pulse for operating the switching circuit of the inverter device 15 is generated based on the output thereof. input.
蓄電池制御ユニット23は、統括制御ユニット20からの指令に応じて、蓄電電力遮断器を投入/解放して蓄電手段の充放電(入出力)を制限するとともに、蓄電手段より状態情報(蓄電量、蓄電池温度等)を集約し、統括制御ユニット20に伝える。
The storage battery control unit 23 limits charging / discharging (input / output) of the storage means by turning on / off the storage power circuit breaker in response to a command from the overall control unit 20, and also stores state information (power storage amount, Storage battery temperature, etc.) and convey it to the overall control unit 20.
以上の構成により、蓄電装置9の充放電電力Pbatを調整することで、SOCがSOC(t)と一致するように管理する。
With the above configuration, the charge and discharge power Pbat of the power storage device 9 is adjusted to manage the SOC so as to match the SOC (t).
SOC(t)は、蓄電装置9の使用開始からの経過時間と、蓄電装置9の蓄電池温度Tbを基に、蓄電池容量維持率予測手段を参照して決定する。蓄電装置9の使用開始からの経過時間は、統括制御ユニット23に備える時間計測手段にて、蓄電装置9の使用開始からの時間を積算することで求められるが、簡易的には使用開始からの経過時間値を手動で入力してもよい。蓄電装置9の蓄電池温度Tbは、蓄電装置9からの状態情報として検出できるが、蓄電装置9を使用する環境での平均的な温度を予め記憶させておいてもよい。
SOC (t) is determined based on the elapsed time from the start of use of the power storage device 9 and the storage battery temperature Tb of the power storage device 9 with reference to the storage battery capacity maintenance rate prediction means. The elapsed time from the start of use of the power storage device 9 is obtained by integrating the time from the start of use of the power storage device 9 by the time measuring means provided in the general control unit 23. The elapsed time value may be manually entered. The storage battery temperature Tb of the power storage device 9 can be detected as state information from the power storage device 9, but an average temperature in an environment where the power storage device 9 is used may be stored in advance.
また、以上に挙げた各実施例において、統括制御装置11は、統括制御ユニット20、コンバータ制御ユニット21、インバータ制御ユニット22、蓄電池制御ユニット23を個別の制御ユニットを含むものとして例示されているが、この区分は便宜上のものであって、一つの制御ユニットまたは複数の制御ユニットの組み合わせによってそれらの制御が実装されてよい。また、それぞれの制御ユニットにおける制御内容についても、実施例に限られず、任意の実装形態を採用できる。例えば、統括制御ユニット20が、実施例においてそれぞれの制御ユニットが生成していた制御指令を一括して生成するものとし、それぞれの他の制御ユニットは、被制御対象の状態を統括制御ユニット20に対して通知する機能に特化していてもよい。
Further, in each of the embodiments described above, the general control device 11 is exemplified as including the general control unit 20, the converter control unit 21, the inverter control unit 22, and the storage battery control unit 23 as individual control units. This division is for convenience, and the control may be implemented by one control unit or a combination of a plurality of control units. Also, the control content of each control unit is not limited to the embodiment, and any mounting form can be adopted. For example, it is assumed that the central control unit 20 collectively generates the control commands generated by each control unit in the embodiment, and each of the other control units notifies the general control unit 20 of the state of the controlled object. It may be specialized in the function of notifying the user.
また、統括制御装置11は、基本機能として主変換装置8の動作を列車制御指令に基づき制御し、それに加えて、第1の駆動モードおよび第2の駆動モードの切り替えを実行する。なお、第1の駆動モードおよび第2の駆動モードの切り替え機能は、運転台に指令装置を設け、この指令装置から統括制御装置11に対して出力される指令情報に基づき実現されるものとしてもよい。
統 Moreover, the general control device 11 controls the operation of the main conversion device 8 as a basic function based on the train control command, and additionally switches between the first drive mode and the second drive mode. The function of switching between the first drive mode and the second drive mode may be realized by providing a command device in the cab, and based on command information output from the command device to the overall control device 11. Good.
さらに上述の各実施例は、車載型の蓄電装置が提案する管理方法によって管理される場合を示したが、この管理方法を地上側の電力供給設備に設けられた蓄電装置に適用することも可能である。
Further, in each of the above-described embodiments, the case where the vehicle-mounted power storage device is managed by the proposed management method has been described, but this management method can also be applied to the power storage device provided in the ground-side power supply equipment It is.
1a、1b…車両、2a、2b、2c、2d…台車3a、3b…輪軸、4…架線、5…集電装置、6…車間連結器、7…変圧装置、8…主変換装置、9…蓄電装置、9a…蓄電池、10…補助電源装置、11…統括制御装置、12…交流電圧検出器、13…交流電流検出器、14…コンバータ装置、15…インバータ装置、16…コンデンサ、17…電動機、18…交流電流検出器、19…車両用補機、20…統括制御ユニット、20a…演算装置、20b…タイマー、20c…メモリ、21…コンバータ制御ユニット、22…インバータ制御ユニット、23…蓄電池制御ユニット、23a…蓄電制御器、23b…温度計、23c…蓄電電力遮断器、24…リアクトル、25…直流コンバータ装置、51…直流電圧検出器、52…直流電流検出器。
1a, 1b: vehicle, 2a, 2b, 2c, 2d: trolley 3a, 3b: wheel axle, 4: overhead wire, 5: current collector, 6: inter-vehicle coupler, 7: transformer, 8 ... main converter, 9 ... Power storage device, 9a: storage battery, 10: auxiliary power supply, 11: general control device, 12: AC voltage detector, 13: AC current detector, 14: converter device, 15: inverter device, 16: capacitor, 17: electric motor , 18 AC current detector, 19 vehicle auxiliary equipment, 20 general control unit, 20a arithmetic unit, 20b timer, 20c memory, 21 converter control unit, 22 inverter control unit, 23 storage battery control Unit, 23a: storage controller, 23b: thermometer, 23c: storage power circuit breaker, 24: reactor, 25: DC converter device, 51: DC voltage detector, 52: DC current Can.
Claims (7)
- 主変換装置と、
前記主変換装置に接続された電動機と、
前記主変換装置に接続可能な二次電池型の蓄電装置と、
を少なくとも備えた鉄道車両において、
前記蓄電装置の蓄電率を、前記蓄電装置の利用開始から経過した時間に基づき制御する制御装置を備える
ことを特徴とする鉄道車両。 A main converter;
An electric motor connected to the main converter,
A secondary battery type power storage device connectable to the main converter,
In a railway vehicle having at least
A railway vehicle, comprising: a control device that controls a power storage rate of the power storage device based on a time elapsed from a start of use of the power storage device. - 請求項1に記載の鉄道車両において、
前記制御装置は、
前記利用開始から経過した時間が増大するにつれて、前記蓄電率が増大するように前記主変換装置を動作させる
ことを特徴とする鉄道車両。 The railway vehicle according to claim 1,
The control device includes:
A railway vehicle, wherein the main converter is operated such that the power storage rate increases as the time elapsed from the start of use increases. - 請求項2に記載の鉄道車両において
前記制御装置は、
前記蓄電率が増大するように前記主変換装置を動作させる基準となる基準時間を記憶したメモリと、
前記基準時間と現在時点とを比較する演算装置と、
を少なくとも備える
ことを特徴とする鉄道車両。 The railway vehicle according to claim 2, wherein the control device includes:
A memory storing a reference time serving as a reference for operating the main converter so that the power storage rate increases;
An arithmetic unit that compares the reference time with the current time;
A railway vehicle comprising at least: - 請求項1から請求項3のいずれか一項に記載の鉄道車両において、
前記制御装置は、
前記蓄電装置の蓄電率に関して設定された管理下限値と、
前記蓄電装置から前記電動機に対して供給されるべき電力量と、
前記管理下限値を基準として前記電力量が確保される蓄電率である利用上限値と、
を少なくとも記憶した記憶装置を備える
ことを特徴とする鉄道車両。 The railway vehicle according to any one of claims 1 to 3,
The control device includes:
A management lower limit set for the power storage rate of the power storage device,
The amount of power to be supplied from the power storage device to the motor,
A usage upper limit value that is a storage rate at which the power amount is secured based on the management lower limit value,
A railway vehicle comprising a storage device that stores at least the following. - 請求項1から請求項4のいずれか一項に記載の鉄道車両において、
前記蓄電装置の温度を計測する計測手段を有し、
前記制御装置は、前記蓄電装置の利用開始から経過した時間および前記計測手段によって計測された温度に基づき前記蓄電率を制御する
ことを特徴とする鉄道車両。 The railway vehicle according to any one of claims 1 to 4,
Having a measuring means for measuring the temperature of the power storage device,
The railway vehicle, wherein the control device controls the power storage rate based on a time elapsed from the start of use of the power storage device and a temperature measured by the measurement unit. - 請求項1から請求項5のいずれか一項に記載の鉄道車両において、
前記制御装置は、
前記蓄電装置の利用開始を示す時点情報として、前記蓄電装置の製造時点情報を保持する
ことを特徴とする鉄道車両。 The railway vehicle according to any one of claims 1 to 5,
The control device includes:
A railway vehicle, wherein time information indicating the start of use of the power storage device is stored as manufacturing time information of the power storage device. - 請求項1から請求項6のいずれか一項に記載の鉄道車両において、
前記主変換装置に対して電力を供給可能に構成された集電装置を備え、
前記集電装置による電力を利用して動作する第一の駆動モードと、
前記蓄電装置による電力を利用して動作する第二の駆動モードと、
前記第一の駆動モードと前記第二の駆動モードとを切り替える制御指令を出力する指令装置を備える
ことを特徴とする鉄道車両。 The railway vehicle according to any one of claims 1 to 6,
Comprising a current collector configured to be able to supply power to the main converter,
A first drive mode that operates using power from the current collector,
A second drive mode that operates using power from the power storage device,
A railway vehicle comprising: a command device that outputs a control command for switching between the first drive mode and the second drive mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020540998A JP7198284B2 (en) | 2018-09-06 | 2019-03-11 | rail car |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018166539 | 2018-09-06 | ||
JP2018-166539 | 2018-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020049773A1 true WO2020049773A1 (en) | 2020-03-12 |
Family
ID=69723059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009594 WO2020049773A1 (en) | 2018-09-06 | 2019-03-11 | Rail vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7198284B2 (en) |
WO (1) | WO2020049773A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008308122A (en) * | 2007-06-18 | 2008-12-25 | Mazda Motor Corp | Control apparatus for vehicle battery |
JP2010123503A (en) * | 2008-11-21 | 2010-06-03 | Honda Motor Co Ltd | Charge control device |
WO2011061811A1 (en) * | 2009-11-17 | 2011-05-26 | トヨタ自動車株式会社 | Vehicle and method for controlling vehicle |
JP2015040832A (en) * | 2013-08-23 | 2015-03-02 | トヨタ自動車株式会社 | Power storage system and method of estimating full charge capacity of power storage device |
JP2017189062A (en) * | 2016-04-08 | 2017-10-12 | 株式会社日立製作所 | Railway vehicle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4959511B2 (en) * | 2007-11-07 | 2012-06-27 | 富士重工業株式会社 | Charge control device for storage battery |
-
2019
- 2019-03-11 JP JP2020540998A patent/JP7198284B2/en active Active
- 2019-03-11 WO PCT/JP2019/009594 patent/WO2020049773A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008308122A (en) * | 2007-06-18 | 2008-12-25 | Mazda Motor Corp | Control apparatus for vehicle battery |
JP2010123503A (en) * | 2008-11-21 | 2010-06-03 | Honda Motor Co Ltd | Charge control device |
WO2011061811A1 (en) * | 2009-11-17 | 2011-05-26 | トヨタ自動車株式会社 | Vehicle and method for controlling vehicle |
JP2015040832A (en) * | 2013-08-23 | 2015-03-02 | トヨタ自動車株式会社 | Power storage system and method of estimating full charge capacity of power storage device |
JP2017189062A (en) * | 2016-04-08 | 2017-10-12 | 株式会社日立製作所 | Railway vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP7198284B2 (en) | 2022-12-28 |
JPWO2020049773A1 (en) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11142088B2 (en) | Vehicle control system and method | |
US8063609B2 (en) | Method and system for extending life of a vehicle energy storage device | |
US9545854B2 (en) | System and method for controlling and powering a vehicle | |
JP5274715B1 (en) | Railway vehicle system and non-powered vehicle | |
US7783396B2 (en) | Hybrid cruising control system | |
US11027624B2 (en) | Electric vehicle charging by adjusting charger current based on battery chemistry | |
US20170174099A1 (en) | Electric vehicle control device | |
CN110775080B (en) | Vehicle propulsion system | |
US9168932B2 (en) | Battery charging control apparatus of a train | |
US20100300780A1 (en) | Apparatus and system for low voltage direct current at industrial power recharging of hybrid high occupany capacity on-road transporation vehicles | |
JP6765208B2 (en) | Railroad vehicle | |
JP7048313B2 (en) | Control device and control method for controlling charge / discharge of power storage device installed in railway vehicles | |
WO2014091619A1 (en) | Device for controlling hybrid vehicle | |
WO2020049773A1 (en) | Rail vehicle | |
US11034247B2 (en) | Vehicle propulsion system | |
Ogura | Next-generation battery-driven light rail vehicles and trains | |
JP5190883B2 (en) | Overhead voltage compensation vehicle | |
GB2601224A (en) | Vehicle control device and vehicle control method | |
Jeong et al. | Efficient energy management for onboard battery-driven light railway vehicle | |
WO2021112109A1 (en) | Power storage system for railway vehicle and control method for power storage system for railway vehicle | |
WO2024034326A1 (en) | Storage battery system, rail vehicle, data server, and storage battery system control method | |
JP2016201948A (en) | Power storage device and charge and discharge control method | |
JP2019112023A (en) | Power storage device for railway | |
Chang et al. | Retrofitting Existing Rolling Stock for Wire-Free Travel: Exploring Energy Storage Solutions for Partial Catenary-Free Light Rail Vehicle | |
Swanson | Practical Off-Wire Streetcar and Light Rail Vehicle Operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19858044 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020540998 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19858044 Country of ref document: EP Kind code of ref document: A1 |