JP6449977B2 - Method for manufacturing compression bonded magnet with case - Google Patents

Method for manufacturing compression bonded magnet with case Download PDF

Info

Publication number
JP6449977B2
JP6449977B2 JP2017239941A JP2017239941A JP6449977B2 JP 6449977 B2 JP6449977 B2 JP 6449977B2 JP 2017239941 A JP2017239941 A JP 2017239941A JP 2017239941 A JP2017239941 A JP 2017239941A JP 6449977 B2 JP6449977 B2 JP 6449977B2
Authority
JP
Japan
Prior art keywords
case
compression
magnet
bonded magnet
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017239941A
Other languages
Japanese (ja)
Other versions
JP2018064111A (en
Inventor
真二 宮崎
真二 宮崎
拓治 原野
拓治 原野
中島 達雄
達雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2017239941A priority Critical patent/JP6449977B2/en
Publication of JP2018064111A publication Critical patent/JP2018064111A/en
Application granted granted Critical
Publication of JP6449977B2 publication Critical patent/JP6449977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、非接触で角度を検出するセンサーに使用されるケース付き圧縮ボンド磁石の製造方法に関し、特に、水、オイル、排ガスなどの流体と接触し、耐食性の要求される腐食性環境下で使用されるケース付き圧縮ボンド磁石の製造方法に関する。   The present invention relates to a method of manufacturing a compression bonded magnet with a case used for a sensor that detects an angle in a non-contact manner, and particularly in contact with a fluid such as water, oil, exhaust gas, and the like in a corrosive environment that requires corrosion resistance. The present invention relates to a method of manufacturing a compression bonded magnet with a case to be used.

希土類合金などの磁石粉末を樹脂バインダで結合して成形したボンド磁石は、樹脂バインダを含む分、バインダレスの焼結磁石より磁気特性は劣るものの、任意の形状に加工が容易であり、その寸法精度にも優れることから、種々の用途に使用されている。例えば、非接触で角度を検出するセンサー用途として、自動車分野では、HEV車やEV車のエンジン、インバータ、バッテリーなどの冷却を効率よく行うためのウォーターポンプの流路切り換えバルブや、オイルポンプ、燃料ポンプなどの開閉角度を検知するセンサーマグネットとして利用され、産業機械分野では、ロボットにおける絶対角度検出用のセンサーマグネットとして利用されている。   Bonded magnets formed by bonding magnetic powders such as rare earth alloys with a resin binder are inferior in magnetic properties to binderless sintered magnets because they contain resin binders, but they can be easily processed into arbitrary shapes and their dimensions Since it is excellent in accuracy, it is used in various applications. For example, as a sensor application that detects angles without contact, in the automotive field, water pump flow path switching valves, oil pumps, fuel for efficient cooling of engines, inverters, batteries, etc. of HEV and EV vehicles It is used as a sensor magnet for detecting the opening / closing angle of a pump or the like, and in the industrial machine field, it is used as a sensor magnet for detecting an absolute angle in a robot.

ボンド磁石としては、磁石粉末と熱硬化性エポキシ樹脂などの樹脂バインダとを含む混合物を金型に充填して圧縮成形したもの(圧縮ボンド磁石)と、磁石粉末と熱可塑性樹脂バインダとの混合物をペレット化し、これを用いて射出成形したものがある。圧縮ボンド磁石は、射出成形によるものと比較して、磁石粉末量を多くできるため、高い磁気特性を達成できる。   As a bonded magnet, a mixture of magnet powder and a resin binder such as a thermosetting epoxy resin filled in a mold and compression-molded (compressed bonded magnet), and a mixture of magnet powder and a thermoplastic resin binder are used. Some are pelletized and injection molded using this. Since the compression bonded magnet can increase the amount of magnet powder as compared with that obtained by injection molding, high magnetic properties can be achieved.

希土類磁石粉末をボンド磁石に用いる場合、鉄や希土類を含むため、錆が内部浸透する問題や、酸化腐食による磁気特性の劣化のおそれがある。特に、水などの流体と接触する腐食性環境下では顕著となる。このため、圧縮ボンド磁石では、磁石の露出面に、例えば、電着塗装、静電塗装、スプレー塗装などにより樹脂塗膜を形成することで、上記問題に対処している。   When the rare earth magnet powder is used for a bonded magnet, it contains iron or rare earth, so there is a problem that rust penetrates into the inside or there is a risk of deterioration of magnetic properties due to oxidative corrosion. This is particularly noticeable in a corrosive environment in contact with a fluid such as water. For this reason, in the compression bond magnet, the above-mentioned problem is dealt with by forming a resin coating film on the exposed surface of the magnet by, for example, electrodeposition coating, electrostatic coating, spray coating or the like.

従来、希土類磁石の表面に浸漬法により防錆熱硬化性被膜を形成した圧縮ボンド磁石の製造方法が提案されている(特許文献1参照)。この製造方法では、浸漬、乾燥・硬化を2〜6回繰り返して行ない、磁石内空隙に樹脂を含浸させつつ磁石表面に0.005mm〜0.05mmの防錆熱硬化性被膜を形成している。   Conventionally, a method for producing a compression bonded magnet in which a rust-proof thermosetting film is formed on the surface of a rare earth magnet by an immersion method has been proposed (see Patent Document 1). In this manufacturing method, immersion, drying and curing are repeated 2 to 6 times to form a 0.005 mm to 0.05 mm rust-proof thermosetting film on the magnet surface while impregnating the resin in the gap in the magnet. .

特開2002−260943号公報JP 2002-260943 A

近年、水、オイル、排ガスなどの流体と接触し、耐食性の要求される環境下で使用される小型センサーなどでは、優れた耐食性と成形性を確保した上での、磁気特性の更なる高性能化が望まれている。しかし、特許文献1を含め、従来の圧縮ボンド磁石は、射出成形によるものと比較すれば磁石粉末量を多くできるものの、磁石粉末量は磁石全体に対して体積比率で最大でも83%程度であり、圧縮ボンド磁石の磁気特性では上記要求に対応することが困難な場合がある。単純に、磁気特性向上のために樹脂バインダ量を少なくし、磁石粉末量を通常の限界量(83%)よりも増加させると、使用時において、圧縮成形体である磁石自体の耐久強度や接着強度を維持できないおそれがある。   In recent years, small sensors used in environments where corrosion resistance is required due to contact with fluids such as water, oil, exhaust gas, etc. have further improved magnetic properties while ensuring excellent corrosion resistance and moldability. Is desired. However, although conventional compression bonded magnets including Patent Document 1 can increase the amount of magnet powder as compared with that by injection molding, the amount of magnet powder is about 83% at maximum in volume ratio with respect to the whole magnet. In some cases, it is difficult to meet the above requirements with the magnetic properties of the compression bonded magnet. Simply reducing the amount of resin binder to improve the magnetic properties and increasing the amount of magnet powder beyond the normal limit (83%), the durability strength and adhesion of the compression molded magnet itself during use The strength may not be maintained.

一方で、ボンド磁石に替えて、より高磁気特性を有するバインダレス磁石(焼結磁石)を採用することが考えられるが、バインダレス磁石は、希土類合金などの磁石粉末を超高圧下で圧縮成形した後、真空炉で高温(例えば500℃以上)で熱処理を行ない製造する工程が必要であり、圧縮ボンド磁石よりも製造コストが高くなる。また、高温熱処理によって、磁気特性が低下するおそれがある。さらに、耐食性環境下で使用するため、別途、この希土類磁石表面に上述の樹脂塗膜の形成や、電気めっきや金属蒸着による金属被膜の形成を行なう必要がある。   On the other hand, it is conceivable to use binderless magnets (sintered magnets) with higher magnetic properties instead of bonded magnets, but binderless magnets are compression molding of rare earth alloys and other magnet powders under ultra high pressure. After that, a process of performing heat treatment in a vacuum furnace at a high temperature (for example, 500 ° C. or higher) is necessary, and the manufacturing cost is higher than that of a compression bonded magnet. In addition, the magnetic properties may be deteriorated by the high-temperature heat treatment. Furthermore, since it is used in a corrosion-resistant environment, it is necessary to separately form the above-mentioned resin coating film on the surface of the rare earth magnet, or a metal coating film by electroplating or metal deposition.

特許文献1の製造方法では、防錆熱硬化性被膜の形成を、磁石形成後に別工程で行なっており、また、浸漬処理を複数回繰り返すものであるため、製造工程が多くなり、生産性に劣り製造コストも高くなる。   In the manufacturing method of Patent Document 1, the formation of the rust-proof thermosetting film is performed in a separate process after the magnet is formed, and the dipping process is repeated a plurality of times. Inferior manufacturing costs also increase.

また、希土類磁石粉末の種類として、異方性磁石を用いることで等方性磁石を用いる場合よりも高磁気特性とできるが、異方性磁石では磁場成形機による磁場配向成形が必要となり、製造コストが高くなる。   In addition, by using an anisotropic magnet as the type of rare earth magnet powder, it is possible to achieve higher magnetic properties than when using an isotropic magnet. However, an anisotropic magnet requires magnetic field orientation molding by a magnetic field molding machine and is manufactured. Cost increases.

本発明はこのような問題に対処するためになされたものであり、高磁気特性、高耐食性、高耐久強度のケース付き圧縮ボンド磁石を、高い生産性かつ低コストで製造可能なケース付き圧縮ボンド磁石の製造方法を提供することを目的とする。   The present invention has been made to address such problems, and a compression bond magnet with a case capable of manufacturing a compression bond magnet with a case having high magnetic properties, high corrosion resistance, and high durability strength at high productivity and at low cost. It aims at providing the manufacturing method of a magnet.

本発明のケース付き圧縮ボンド磁石の製造方法は、希土類磁石粉末と熱硬化性樹脂の樹脂バインダとを含む圧縮ボンド磁石と、該圧縮ボンド磁石を挿入するケースと、封止部材とを備えてなり、上記圧縮ボンド磁石が上記封止部材と上記ケースとで密封されているケース付き圧縮ボンド磁石の製造方法であって、上記希土類磁石粉末と上記樹脂バインダとを含む混合物を圧縮成形して圧紛体を形成する圧紛体成形工程と、上記樹脂バインダが硬化後の圧粉体または上記樹脂バインダが硬化前の圧粉体を上記ケースに挿入する圧紛体挿入工程と、上記ケースの上記圧紛体の挿入開口部に封止部材を固定する封止工程とを備えてなることを特徴とする。   A manufacturing method of a compression bonded magnet with a case of the present invention comprises a compression bonded magnet including a rare earth magnet powder and a thermosetting resin resin binder, a case for inserting the compression bonded magnet, and a sealing member. A method of manufacturing a compression bonded magnet with a case in which the compression bonded magnet is sealed with the sealing member and the case, wherein the mixture containing the rare earth magnet powder and the resin binder is compression molded and compressed. Forming a green compact, forming a green compact after the resin binder is cured or a green compact before the resin binder is cured into the case, and inserting the green compact into the case And a sealing step of fixing a sealing member to the opening.

上記圧粉体挿入工程が、上記樹脂バインダが硬化前の圧紛体を前記ケースに挿入する工程であり、上記封止工程が、上記ケースの上記圧紛体の挿入開口部において、硬化後に上記封止部材となる熱硬化性樹脂を、上記ケースに一部接触させつつ上記圧紛体の上記ケースとの非接触部を覆うように塗布し、上記熱硬化性樹脂および上記樹脂バインダの熱硬化開始温度以上の熱処理で、上記熱硬化性樹脂を硬化させて上記封止部材を上記ケースに固定しつつ形成するとともに、上記圧粉体中の上記樹脂バインダを硬化させて上記圧縮ボンド磁石を形成する工程である、ことを特徴とする。   The green compact insertion step is a step in which the resin binder inserts the compact before being cured into the case, and the sealing step is performed after the curing in the insertion opening of the compact in the case after the curing. The thermosetting resin to be a member is applied so as to cover the non-contact portion of the compact with the case while partly contacting the case, and the thermosetting resin and the resin binder have a heat curing start temperature or higher. In the process of curing the thermosetting resin and fixing the sealing member to the case, and curing the resin binder in the green compact to form the compression bonded magnet. It is characterized by that.

上記ケースが非磁性材からなり、上記圧粉体および上記圧縮ボンド磁石が略円柱形状であり、該円柱の径方向に磁化されており、該円柱の外周面側および底面側を覆って上記ケースが配置され、該円柱の上面側に上記封止部材が配置されることを特徴とする。   The case is made of a non-magnetic material, the green compact and the compression bonded magnet are substantially cylindrical, and are magnetized in the radial direction of the cylinder, covering the outer peripheral surface side and the bottom surface side of the cylinder. Is arranged, and the sealing member is arranged on the upper surface side of the cylinder.

上記ケースが非磁性材からなり、上記圧粉体および上記圧縮ボンド磁石が略円柱形状であり、該円柱の径方向に磁化されており、該円柱の外周面側および底面側を覆って上記ケースが配置され、該円柱の上面側に上記封止部材が配置され、上記圧粉体は、その外周面の少なくとも円柱上面側端部に上記ケースと非接触となる段差部を有し、上記封止工程において該段差部に上記熱硬化性樹脂が充填され、該段差部に上記封止部材の一部が形成されることを特徴とする。   The case is made of a non-magnetic material, the green compact and the compression bonded magnet are substantially cylindrical, and are magnetized in the radial direction of the cylinder, covering the outer peripheral surface side and the bottom surface side of the cylinder. The sealing member is disposed on the upper surface side of the cylinder, and the green compact has a step portion that is in non-contact with the case at least on the cylinder upper surface side end portion of the outer peripheral surface thereof. In the stopping step, the step portion is filled with the thermosetting resin, and a part of the sealing member is formed in the step portion.

上記封止工程における熱処理は、200℃以下の温度、かつ、常圧下で行なうことを特徴とする。   The heat treatment in the sealing step is performed at a temperature of 200 ° C. or lower and under normal pressure.

上記希土類磁石粉末が等方性Nd−Fe−B磁石粉末であり、該磁石粉末が上記圧縮ボンド磁石全体に対して体積比率で85〜90%含まれることを特徴とする。   The rare earth magnet powder is an isotropic Nd—Fe—B magnet powder, and the magnet powder is contained in a volume ratio of 85 to 90% with respect to the whole compression bonded magnet.

本発明のケース付き圧縮ボンド磁石の製造方法は、希土類磁石粉末と熱硬化性樹脂の樹脂バインダとを含む圧縮ボンド磁石と、該圧縮ボンド磁石を挿入するケースと、封止部材とを備え、上記圧縮ボンド磁石が封止部材とケースとで密封されているケース付き圧縮ボンド磁石の製造方法であり、(a)希土類磁石粉末と樹脂バインダとを含む混合物を圧縮成形して圧紛体を形成する圧紛体成形工程と、(b)樹脂バインダが硬化後の圧粉体または樹脂バインダが硬化前の圧粉体をケースに挿入する圧紛体挿入工程と、(c)ケースの圧紛体の挿入開口部に封止部材を固定する封止工程とを備えてなるので、圧縮ボンド磁石をケース内部に完全に密封封止でき、耐食性に優れ、直接に水、オイル、排ガスなどと接触する腐食性環境下であっても好適に利用可能な高い耐食性を有するケース付き圧縮ボンド磁石が得られる。また、上記封止構造により、圧縮ボンド磁石自体には高い耐久強度が要求されないので、通常の圧縮ボンド磁石よりも樹脂バインダ量を少なくして、希土類磁石粉末量を多くすることが可能となり、高い磁気特性を有するケース付き圧縮ボンド磁石が得られる。さらに、上記封止構造により、樹脂バインダ量の少ない圧縮ボンド磁石を採用する場合でも、ケースおよび封止部材と組み合わせた全体として耐久強度に優れるケース付き圧縮ボンド磁石が得られる。   A manufacturing method of a compression bonded magnet with a case of the present invention includes a compression bonded magnet including a rare earth magnet powder and a thermosetting resin resin binder, a case for inserting the compression bonded magnet, and a sealing member. A method for producing a compression-bonded magnet with a case in which the compression-bonded magnet is sealed with a sealing member and a case, and (a) a pressure at which a compact including a rare earth magnet powder and a resin binder is compression-molded to form a compact. A powder molding step, (b) a green compact after the resin binder is cured or a green compact before the resin binder is cured into the case, and (c) at the insertion opening of the compact in the case And a sealing process for fixing the sealing member, so that the compression bonded magnet can be completely sealed inside the case, has excellent corrosion resistance, and in a corrosive environment that directly contacts water, oil, exhaust gas, etc. Even so Case with compressed bonded magnet having high available corrosion resistance suitable is obtained. In addition, since the compression bond magnet itself does not require high durability due to the sealing structure, it is possible to reduce the amount of the resin binder and increase the amount of rare earth magnet powder compared to the normal compression bond magnet. A compression bonded magnet with a case having magnetic properties is obtained. Furthermore, even when a compression bonded magnet with a small amount of resin binder is employed, the above-described sealing structure can provide a compression bonded magnet with a case that has excellent durability as a whole in combination with the case and the sealing member.

また、圧粉体挿入工程が、樹脂バインダが硬化前の圧紛体をケースに挿入する工程であり、封止工程が、ケースの圧紛体の挿入開口部において、硬化後に封止部材となる熱硬化性樹脂を、ケースに一部接触させつつ圧紛体のケースとの非接触部を覆うように塗布し、熱硬化性樹脂および樹脂バインダの熱硬化開始温度以上の熱処理で、熱硬化性樹脂を硬化させて封止部材をケースに固定しつつ形成するとともに、圧粉体中の樹脂バインダを硬化させて圧縮ボンド磁石を形成するので、圧縮ボンド磁石の硬化と封止部材の硬化とを同一工程で行なうことができ、それぞれを単独で行なう必要がない。また、従来の耐食性向上のための塗装処理も削除できる。このため、製造工程と処理費用を大幅に削減でき、高い生産性かつ低コストでケース付き圧縮ボンド磁石が製造可能となる。   The green compact insertion step is a step of inserting the compact before the resin binder is cured into the case, and the sealing step is thermosetting that becomes a sealing member after curing at the insertion opening of the compact of the case. The resin is applied so as to cover the non-contact part of the compact with the case while partly contacting the case, and the thermosetting resin is cured by heat treatment above the thermosetting temperature of the thermosetting resin and resin binder. The sealing member is fixed to the case and formed, and the resin binder in the green compact is cured to form the compression bond magnet. Therefore, the compression bond magnet and the sealing member are cured in the same process. Each can be done without having to do each alone. In addition, the conventional coating process for improving the corrosion resistance can be eliminated. For this reason, the manufacturing process and the processing cost can be greatly reduced, and a compression bonded magnet with a case can be manufactured with high productivity and low cost.

磁石として圧縮ボンド磁石を採用するので、上記熱硬化の際の熱処理は、例えば200℃以下の温度、かつ、常圧下で行なうことができ、真空・高温での熱処理は不要であり、より高い生産性かつ低コストでの製造が可能となる。   Since a compression bonded magnet is used as the magnet, the heat treatment at the time of the thermosetting can be performed, for example, at a temperature of 200 ° C. or less and under normal pressure, and no heat treatment at a vacuum / high temperature is required, resulting in higher production. Manufacturing at low cost.

ケースが非磁性材からなり、圧粉体および圧縮ボンド磁石が略円柱形状であり、該円柱の径方向に磁化されており、該円柱の外周面側および底面側を覆ってケースが配置され、該円柱の上面側に封止部材が配置されるので、ケースが磁気特性に悪影響を与えない。また、封止部材を通常の塗膜よりも厚膜の成形体としながら、センサー感度などに悪影響を与えない。   The case is made of a non-magnetic material, the green compact and the compression bonded magnet are substantially cylindrical, and are magnetized in the radial direction of the cylinder, and the case is arranged to cover the outer peripheral surface side and the bottom surface side of the cylinder, Since the sealing member is disposed on the upper surface side of the cylinder, the case does not adversely affect the magnetic characteristics. In addition, the sensor sensitivity is not adversely affected while the sealing member is a thicker molded body than a normal coating film.

また、上記圧粉体は、その外周面の少なくとも円柱上面側端部にケースと非接触となる段差部を有し、封止工程において該段差部に熱硬化性樹脂が充填され、該段差部に封止部材の一部が形成されるので、ケースと封止部材との接着面積が大きくなり、接着強度に優れ、剥がれなどを防止できる。また、腐食性流体のバリア性に優れる。   Further, the green compact has a stepped portion that is not in contact with the case at least at the end of the outer peripheral surface of the cylindrical upper surface, and the stepped portion is filled with a thermosetting resin in the sealing step. Since a part of the sealing member is formed, the bonding area between the case and the sealing member is increased, the adhesive strength is excellent, and peeling can be prevented. In addition, the barrier property of the corrosive fluid is excellent.

上記希土類磁石粉末が等方性Nd−Fe−B磁石粉末であるので、資源的に豊富で安価な材料であり、かつ、高価な磁場成形機による磁場配向成形が不要であるため、製造コストの更なる低下が図れる。また、上記封止構造により、圧縮ボンド磁石がケースと封止部材により完全に密封封止されているので、酸化されやすい鉄と希土類を含む等方性Nd−Fe−B磁石粉末を用いながら、腐食による磁気特性の劣化や錆の発生を防止できるケース付き圧縮ボンド磁石が得られる。さらに、この磁石粉末が圧縮ボンド磁石全体に対して体積比率で85〜90%含まれるので、通常の圧縮ボンド磁石では得られない高い磁気特性を有するケース付き圧縮ボンド磁石が得られる。   Since the rare earth magnet powder is an isotropic Nd-Fe-B magnet powder, it is a resource-rich and inexpensive material and does not require magnetic field orientation molding by an expensive magnetic field molding machine. Further reduction can be achieved. In addition, since the compression bonded magnet is completely hermetically sealed by the case and the sealing member by the above sealing structure, while using the isotropic Nd-Fe-B magnet powder containing iron and rare earth that are easily oxidized, A compression-bonded magnet with a case that can prevent deterioration of magnetic properties and rust due to corrosion can be obtained. Furthermore, since the magnet powder is contained in a volume ratio of 85 to 90% with respect to the whole compression bonded magnet, a compression bonded magnet with a case having high magnetic characteristics that cannot be obtained with a normal compression bonded magnet is obtained.

本発明のケース付き圧縮ボンド磁石の製造工程フロー図である。It is a manufacturing process flowchart of the compression bonded magnet with a case of this invention. 本発明のケース付き圧縮ボンド磁石の製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of the compression bonded magnet with a case of this invention. 本発明の製造方法で得られるケース付き圧縮ボンド磁石の一例を示す平面図および断面図である。It is the top view and sectional drawing which show an example of the compression bonded magnet with a case obtained with the manufacturing method of this invention. 図3のケース付き圧縮ボンド磁石の磁力線の向きの模式図である。It is a schematic diagram of the direction of the magnetic force line of the compression bonded magnet with a case of FIG.

本発明のケース付き圧縮ボンド磁石の製造方法を図1および図2に基づいて説明する。図1は、本発明のケース付き圧縮ボンド磁石の製造工程フロー図であり、図2は具体的な製造工程の一例を示す図である。本発明のケース付き圧縮ボンド磁石の製造方法は、希土類磁石粉末と熱硬化性樹脂の樹脂バインダとを含む圧縮ボンド磁石と、該圧縮ボンド磁石を挿入するケースと、封止部材とを備え、圧縮ボンド磁石が封止部材とケースとで密封されているケース付き圧縮ボンド磁石を製造するための方法である。   The manufacturing method of the compression bonded magnet with a case of this invention is demonstrated based on FIG. 1 and FIG. FIG. 1 is a manufacturing process flow diagram of a compression bonded magnet with a case of the present invention, and FIG. 2 is a diagram showing an example of a specific manufacturing process. A manufacturing method of a compression bonded magnet with a case of the present invention includes a compression bonded magnet including a rare earth magnet powder and a thermosetting resin resin binder, a case for inserting the compression bonded magnet, and a sealing member. This is a method for manufacturing a compression bonded magnet with a case in which the bonded magnet is sealed with a sealing member and a case.

この製造方法は、以下の(a)〜(c)の3つの工程を少なくとも備える。すなわち、(a)希土類磁石粉末と樹脂バインダとを含む混合物を圧縮成形して圧紛体を形成する圧紛体成形工程と、(b)樹脂バインダが硬化後の圧粉体(圧縮ボンド磁石としての完成品)または樹脂バインダが硬化前の圧粉体をケースに挿入する圧紛体挿入工程と、(c)ケースの圧紛体の挿入開口部に封止部材を固定する封止工程と、を備えてなる。図1および図2は、(c)封止工程において、圧縮ボンド磁石の硬化と熱硬化性樹脂からなる封止部材の硬化とを同時に行ない、封止部材の具体的な固定手順として、該工程に(c1)塗布工程と(c2)熱硬化工程とを含む場合である。各工程について以下に説明する。   This manufacturing method includes at least the following three steps (a) to (c). (A) a compact forming process in which a mixture containing a rare earth magnet powder and a resin binder is compression molded to form a compact, and (b) a compact after the resin binder is cured (completion as a compressed bond magnet). Product) or a compact for inserting a green compact before the resin binder is cured into a case, and (c) a sealing step for fixing a sealing member to the insertion opening of the compact in the case. . FIG. 1 and FIG. 2 show (c) in the sealing step, the compression bonded magnet is cured simultaneously with the curing of the sealing member made of a thermosetting resin. (C1) includes a coating step and (c2) a thermosetting step. Each step will be described below.

[(a)圧紛体成形工程]
希土類磁石粉末と樹脂バインダとを含む混合物を圧縮成形する。例えば、図2(a)に示すように希土類磁石粉末と熱硬化性樹脂の樹脂バインダとの混合物をダイス6内に入れ、これを上パンチ7と下パンチ8とで圧縮して圧粉体2’(硬化前)を形成する。希土類磁石粉末と樹脂バインダとの混合は、樹脂バインダの熱硬化性樹脂のタイプに応じて乾式法または湿式法を適宜選択でき、例えば、ブレンダー、ニーダーなどの混合機を用いて行なう。また、この圧紛体成形工程において使用される成形金型は490〜980MPaの成形圧力を印加できる金型であればよい。
[(A) Powder compacting process]
A mixture containing the rare earth magnet powder and the resin binder is compression molded. For example, as shown in FIG. 2A, a mixture of a rare earth magnet powder and a thermosetting resin resin binder is placed in a die 6 and compressed with an upper punch 7 and a lower punch 8 to obtain a green compact 2. '(Before curing) is formed. The mixing of the rare earth magnet powder and the resin binder can be appropriately selected from a dry method or a wet method according to the type of the thermosetting resin of the resin binder, and is performed using a blender such as a blender or a kneader. Moreover, the molding die used in this compacting process should just be a metal mold | die which can apply the molding pressure of 490-980 MPa.

本発明では、圧縮ボンド磁石として、希土類磁石粉末が圧縮ボンド磁石全体に対して体積比率で85〜90%含まれる磁石を用いることが好ましい。また、樹脂バインダは体積比率で3〜10%程度であり、空隙率は5〜10%程度である。これらの体積比率は、希土類磁石粉末と樹脂バインダとの圧縮成形(圧粉体成形)および熱処理による樹脂バインダの硬化を経て得られた最終的な圧縮ボンド磁石における体積比率であり、各材料の比重、圧縮成形時の成形圧力、空隙率などを考慮しつつ、各材料の配合重量を調整することで設定する。なお、従来の圧縮ボンド磁石の磁石粉末の体積比率は、上述のとおり、最大でも83%程度であり、通常は磁石粉末が75〜80%、空隙率が10%〜15%程度である。   In this invention, it is preferable to use the magnet in which rare earth magnet powder is contained by 85 to 90% by volume ratio with respect to the whole compression bond magnet as a compression bond magnet. The resin binder has a volume ratio of about 3 to 10% and a porosity of about 5 to 10%. These volume ratios are the volume ratios in the final compression bonded magnet obtained through compression molding (compact molding) of rare earth magnet powder and resin binder and curing of the resin binder by heat treatment, and the specific gravity of each material It is set by adjusting the blending weight of each material in consideration of the molding pressure at the time of compression molding, the porosity, and the like. In addition, the volume ratio of the magnet powder of the conventional compression bond magnet is about 83% at the maximum as described above, and usually the magnet powder is about 75 to 80% and the porosity is about 10% to 15%.

希土類磁石粉末と樹脂バインダとの配合重量割合は、これらの合計量に対して、例えば、エポキシ樹脂(硬化剤含む)が0.5質量%以上2質量%未満であり、残部が希土類磁石粉末である。この範囲とすることで、上記好適範囲で示す体積比率(85〜90%)を達成し得る。なお、通常の圧縮ボンド磁石では、樹脂バインダは、希土類磁石粉末と樹脂バインダとの合計量に対して2〜3質量%配合している。また、この圧縮ボンド磁石には、樹脂バインダと希土類磁石粉末以外に、磁気特性に影響を与えない範囲で、圧縮成形性改善などの目的でステアリン酸カルシウムや窒化硼素などの他の配合剤を微量含んでいてもよい。   The blending weight ratio of the rare earth magnet powder and the resin binder is, for example, 0.5 mass% or more and less than 2 mass% of the epoxy resin (including the curing agent) with respect to the total amount, and the remainder is the rare earth magnet powder. is there. By setting it as this range, the volume ratio (85-90%) shown by the said suitable range can be achieved. In a normal compression bonded magnet, the resin binder is blended in an amount of 2 to 3% by mass with respect to the total amount of the rare earth magnet powder and the resin binder. In addition to the resin binder and rare earth magnet powder, this compression bonded magnet contains a small amount of other compounding agents such as calcium stearate and boron nitride for the purpose of improving compression moldability within a range that does not affect the magnetic properties. You may go out.

希土類磁石粉末の配合量を、圧縮ボンド磁石全体に対して体積比率で85体積%以上とすることで、高い磁気特性を得ることができる。高い磁気特性とは、具体的には、最大エネルギー積、残留磁束密度、保磁力などに優れることである。希土類磁石粉末が圧縮ボンド磁石全体に対して85体積%未満であると、所望の磁気特性が得られないおそれがある。一方、90体積%をこえると、相対的に樹脂バインダの量が少なくなりすぎ、圧粉体挿入工程の際に破損するなどのおそれがある。また、希土類磁石粉末は、圧縮ボンド磁石全体に対して体積比率で85〜88%含まれることがより好ましい。この好適範囲とすることで、磁気特性と材料強度について両立した特性が得られ、圧縮ボンド磁石のケース圧入における自動化対応などの効果がある。   By setting the blending amount of the rare earth magnet powder to 85% by volume or more with respect to the whole compression bonded magnet, high magnetic properties can be obtained. Specifically, the high magnetic characteristics are excellent in maximum energy product, residual magnetic flux density, coercive force and the like. If the rare earth magnet powder is less than 85% by volume with respect to the entire compression bonded magnet, the desired magnetic properties may not be obtained. On the other hand, if it exceeds 90% by volume, the amount of the resin binder becomes relatively small, and there is a risk of damage during the green compact insertion process. The rare earth magnet powder is more preferably contained in a volume ratio of 85 to 88% with respect to the entire compression bonded magnet. By setting it as this suitable range, the characteristic which was compatible about the magnetic characteristic and material strength is acquired, and there exists an effect of the automation response | compatibility etc. in case press-fit of a compression bond magnet.

圧粉体を形成する希土類磁石粉末としては、希土類永久磁石を製造するために採用することができる磁石粉末であれば使用でき、例えば、Nd−Fe−B系、Sm−Co系などの磁石粉末が挙げられる。また、等方性、異方性のいずれであっても使用できる。上記の中でも、資源的に豊富で安価な材料からなり、かつ、高い磁気特性を有することから、Nd−Fe−B磁石粉末を用いることが好ましい。また、磁場成形機による磁場配向成形が不要であり、生産性の向上や製造コストの低減が図れることから、等方性のNd−Fe−B磁石粉末を用いることが特に好ましい。ここで、本発明に用いる等方性Nd−Fe−B磁石粉末における各成分の含有量は、Ndが27〜40重量%、Feが60〜70重量%、Bが1〜2重量%であり、磁気特性向上のため、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mgなどの他元素を少量含んでいてもよい。   As the rare earth magnet powder forming the green compact, any magnet powder that can be used for producing rare earth permanent magnets can be used. For example, Nd—Fe—B type, Sm—Co type magnet powder, etc. Is mentioned. Moreover, any of isotropic and anisotropy can be used. Among these, it is preferable to use Nd—Fe—B magnet powder because it is made of a resource-rich and inexpensive material and has high magnetic properties. In addition, it is particularly preferable to use isotropic Nd—Fe—B magnet powder because magnetic field orientation molding by a magnetic field molding machine is unnecessary and productivity can be improved and manufacturing costs can be reduced. Here, the content of each component in the isotropic Nd-Fe-B magnet powder used in the present invention is such that Nd is 27 to 40% by weight, Fe is 60 to 70% by weight, and B is 1 to 2% by weight. Small amounts of other elements such as Dy, Tb, Co, Cu, Al, Si, Ga, Nb, V, Pr, Mo, Zr, Ta, Ti, W, Ag, Bi, Zn, Mg to improve magnetic properties May be included.

希土類磁石粉末(特に、Nd−Fe−B磁石粉末)からなる圧縮ボンド磁石は、酸化されやすい鉄と希土類を含むため、その表面が露出した状態で腐食環境下で使用されると、酸化腐食による磁気特性の劣化や錆の発生のおそれがある。本発明の製造方法で得られるケース付き圧縮ボンド磁石では、圧縮ボンド磁石がケースと封止部材により完全に密封封止された状態で使用されるので、この腐食の問題を回避できる。   A compression bonded magnet made of rare earth magnet powder (particularly Nd-Fe-B magnet powder) contains iron and rare earth that are easily oxidized, and therefore, when used in a corrosive environment with its surface exposed, it is caused by oxidative corrosion. There is a risk of deterioration of magnetic properties and generation of rust. In the case of the compression bonded magnet with the case obtained by the manufacturing method of the present invention, the compression bonded magnet is used in a state of being completely sealed and sealed by the case and the sealing member, so that this corrosion problem can be avoided.

希土類磁石粉末の平均粒子径(レーザー解析法による測定値)は、300μm以下であることが好ましい。より好ましくは30μm〜250μmである。また、圧縮成形後における粒子間の空隙部を少なくするためには、粒度分布が2つのピークを有することが好ましい。   The average particle diameter (measured value by laser analysis method) of the rare earth magnet powder is preferably 300 μm or less. More preferably, it is 30 micrometers-250 micrometers. Moreover, in order to reduce the space between the particles after compression molding, the particle size distribution preferably has two peaks.

圧縮ボンド磁石を形成する樹脂バインダとしては、熱硬化性樹脂を用いる。例えば、圧縮ボンド磁石用の公知の樹脂バインダである、エポキシ樹脂、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂などが挙げられる。これらの中でもエポキシ樹脂を用いることが好ましい。また、封止部材に用いる熱硬化性樹脂と同様の硬化温度を有するものが好ましい。   A thermosetting resin is used as the resin binder for forming the compression bonded magnet. For example, an epoxy resin, a phenol resin, a urea resin, an unsaturated polyester resin, and the like, which are known resin binders for compression bonded magnets, can be used. Among these, it is preferable to use an epoxy resin. Moreover, what has the same curing temperature as the thermosetting resin used for a sealing member is preferable.

樹脂バインダとして用いるエポキシ樹脂は、接着用のエポキシ樹脂として使用できる樹脂であればよく、軟化温度が100〜120℃の樹脂が好ましい。例えば、室温では固体(粉末)であるが、50〜60℃でペースト状になり、130〜140℃で流動性になり、さらに加熱を続けると硬化反応が始まるエポキシ樹脂が好ましい。この硬化反応は120℃付近でも始まるが、実用的な硬化時間、例えば2時間以内で硬化反応が終了する温度としては170〜190℃であることが好ましい。この温度範囲であると、硬化時間は45〜80分である。このようなエポキシ樹脂(潜在性エポキシ硬化剤を含む)と、希土類磁石粉末とを該エポキシ樹脂の軟化温度以上、熱硬化開始温度未満の温度で乾式混合することで、後述するように、圧縮成形前に希土類磁石粉末にエポキシ樹脂を均一にコーティングした状態とできる。   The epoxy resin used as the resin binder may be a resin that can be used as an adhesive epoxy resin, and a resin having a softening temperature of 100 to 120 ° C. is preferable. For example, an epoxy resin that is solid (powder) at room temperature, becomes a paste at 50 to 60 ° C., becomes fluid at 130 to 140 ° C., and starts a curing reaction when further heated is preferred. This curing reaction starts at around 120 ° C., but the temperature at which the curing reaction is completed within a practical curing time, for example, 2 hours, is preferably 170 to 190 ° C. In this temperature range, the curing time is 45 to 80 minutes. By compression-mixing such an epoxy resin (including a latent epoxy curing agent) and a rare earth magnet powder at a temperature not lower than the softening temperature of the epoxy resin and lower than the thermal curing start temperature, as will be described later. The rare earth magnet powder can be uniformly coated with epoxy resin before.

樹脂バインダとして用いるエポキシ樹脂の樹脂成分としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹脂、アクリルエポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アリールアルキレン型エポキシ樹脂などが挙げられる。   Examples of the resin component of the epoxy resin used as the resin binder include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, and stilbene type epoxy. Resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, alicyclic epoxy resin, novolac-type epoxy resin, acrylic epoxy resin, glycidylamine-type epoxy resin, triphenolphenolmethane-type epoxy resin, alkyl-modified triphenolmethane-type epoxy Examples thereof include resins, biphenyl type epoxy resins, dicyclopentadiene skeleton-containing epoxy resins, naphthalene skeleton-containing epoxy resins, and arylalkylene type epoxy resins.

樹脂バインダとして用いるエポキシ樹脂の硬化剤成分は、潜在性エポキシ硬化剤であることが好ましい。潜在性エポキシ硬化剤としては、ジシアンジアミド、三フッ化ホウ素−アミン錯体、有機酸ヒドラジドなどが挙げられる。また、潜在性エポキシ硬化剤と共に、三級アミン、イミダゾール、芳香族アミンなどの硬化促進剤を含むことができる。潜在性エポキシ硬化剤を用いることにより、軟化温度を100〜120℃に、また硬化温度を170〜190℃に設定することができ、圧紛体成形工程において、まず希土類磁石粉末にエポキシ樹脂をコーティングした状態とし、その後に圧縮成形を行なうことができる。   It is preferable that the curing agent component of the epoxy resin used as the resin binder is a latent epoxy curing agent. Examples of the latent epoxy curing agent include dicyandiamide, boron trifluoride-amine complex, and organic acid hydrazide. Moreover, hardening accelerators, such as tertiary amine, an imidazole, and an aromatic amine, can be included with a latent epoxy hardening | curing agent. By using the latent epoxy curing agent, the softening temperature can be set to 100 to 120 ° C. and the curing temperature can be set to 170 to 190 ° C. In the compacting process, the rare earth magnet powder is first coated with an epoxy resin. After that, compression molding can be performed.

例えば、この圧紛体成形工程において、初めに希土類磁石粉末と樹脂バインダであるエポキシ樹脂とを室温で十分にブレンダーなどを用いて混合し、次に、混合された混合物をニーダーなどの混合機に投入してエポキシ樹脂の軟化温度(100〜120℃)にて加熱混合する。この加熱混合の工程により、希土類磁石粉末の表面に未硬化のエポキシ樹脂が均一にコーティング(被覆)された状態となる。ニーダーなどの混合機を用いて加熱混合された内容物は、凝集したケーキ状となっているため、この凝集ケーキを室温でヘンシェルミキサーなどにより粉砕して篩分けすることにより、表面に樹脂バインダであるエポキシ樹脂(未硬化)がコーティングされた希土類磁石粉末が得られる。このような状態の希土類磁石粉末と樹脂バインダとの混合物を圧縮成形して圧粉体を形成する。これにより、樹脂バインダ量を通常よりも少なくする場合であっても、希土類磁石粉末と樹脂バインダ粉末とを単純混合する場合と比較して、比重の異なる磁石粉末と樹脂バインダ粉末の偏析を低減でき、圧紛体成形時の圧縮性や磁石自体の耐久性を向上させ得る。   For example, in this compacting process, the rare earth magnet powder and the epoxy resin, which is a resin binder, are first mixed thoroughly at room temperature using a blender, and then the mixed mixture is put into a mixer such as a kneader. The mixture is heated and mixed at the softening temperature (100 to 120 ° C.) of the epoxy resin. By this heating and mixing step, the surface of the rare earth magnet powder is uniformly coated with an uncured epoxy resin. The contents heated and mixed using a mixer such as a kneader are in the form of agglomerated cakes. A rare earth magnet powder coated with an epoxy resin (uncured) is obtained. A mixture of the rare earth magnet powder and the resin binder in such a state is compression molded to form a green compact. As a result, even when the amount of the resin binder is smaller than usual, segregation of the magnet powder and the resin binder powder having different specific gravities can be reduced as compared with the case where the rare earth magnet powder and the resin binder powder are simply mixed. Further, the compressibility at the time of compacting the compact and the durability of the magnet itself can be improved.

[(b)圧紛体挿入工程]
図2(b)に示すように、圧紛体成形工程で得られた圧粉体をケースに挿入する。ケースへの挿入は、該ケースと圧縮ボンド磁石を密接できるよう圧入することが好ましい。また、任意の接着剤をケースと圧縮ボンド磁石との間に塗布してもよい。
[(B) Compact body insertion process]
As shown in FIG. 2B, the green compact obtained in the compact forming process is inserted into the case. The insertion into the case is preferably press-fitted so that the case and the compression bonded magnet can be brought into close contact with each other. Moreover, you may apply | coat arbitrary adhesive agents between a case and a compression bond magnet.

ケースの材質としては、特に限定されないが、磁気特性に悪影響を与えないことから非磁性材とすることが好ましい。図3に示すように、圧縮ボンド磁石が略円柱形状であり、該円柱の径方向に磁化されており、該円柱の外周面側および底面側を覆ってケース3が配置されている場合、磁力線が図4に示す形状となる。ここで、圧縮ボンド磁石の外周面側を覆うケースを非磁性材とすることで、圧縮ボンド磁石からの磁力線が遮断されず、磁気特性の低下を防止できる。   The material of the case is not particularly limited, but is preferably a nonmagnetic material because it does not adversely affect the magnetic characteristics. As shown in FIG. 3, when the compression bonded magnet has a substantially cylindrical shape, is magnetized in the radial direction of the cylinder, and the case 3 is disposed so as to cover the outer peripheral surface side and the bottom surface side of the cylinder, Is the shape shown in FIG. Here, by using a non-magnetic material for the case that covers the outer peripheral surface side of the compression bond magnet, the lines of magnetic force from the compression bond magnet are not blocked, and a decrease in magnetic properties can be prevented.

ケースを形成する非磁性材としては、樹脂材、ゴム材、オーステナイト系などのステンレス非磁性材などが挙げられる。ステンレス非磁性材としては焼結部品と切削加工品とがあり、焼結部品は耐熱性、寸法精度、量産性、コスト面で有利であり、切削加工品は耐熱性、寸法精度、強度の面で有利である。ステンレス切削加工品などを用いる場合は、熱硬化性樹脂からなる封止部材との密着性をより向上させるため、該封止部材との接触表面に、ショット・サンドなどのブラスト処理、機械加工(表面荒し)、酸などの薬液処理を施してもよい。また、ゴム材や樹脂材を採用した場合、形状の設計自由度が高くなり、例えば、ケース側に樹脂硬化後に抜け止めとなる嵌合構造などを容易に形成できる。なお、ステンレス非磁性材などのケースは、一般には高価でかつ切削性に劣るので、ケース部分は、簡易な形状で、圧縮ボンド磁石を保持できる最小限サイズとし、これを一般の磁性材シャフトなどの先端に連結することが好ましい。   Examples of the nonmagnetic material forming the case include resin materials, rubber materials, austenitic stainless steel nonmagnetic materials, and the like. Stainless steel non-magnetic materials include sintered parts and machined parts. Sintered parts are advantageous in terms of heat resistance, dimensional accuracy, mass productivity, and cost. Cut parts are heat resistant, dimensional accuracy, and strength. Is advantageous. When using stainless steel cutting products, etc., in order to further improve the adhesion to the sealing member made of thermosetting resin, blasting such as shot sand, machining ( (Surface roughening) and chemicals such as acid may be applied. Further, when a rubber material or a resin material is employed, the degree of freedom in design of the shape is increased, and for example, a fitting structure that is prevented from coming off after the resin is cured can be easily formed on the case side. Cases such as stainless steel non-magnetic materials are generally expensive and inferior in machinability, so the case part has a simple shape and is the minimum size that can hold a compression bond magnet. It is preferable to connect to the tip of the.

[(c)封止工程−(c1)塗布工程]
ケースの圧紛体の挿入開口部において、硬化後に封止部材となる熱硬化性樹脂を、ケースに一部接触させつつ圧紛体のケースとの非接触部を覆うように塗布する。具体的には、図2(c)に示すように、圧粉体2’をケースに圧入後、ケース3の挿入開口部側からディスペンサーを用いて熱硬化性樹脂接着剤を塗布し、未硬化の封止部材4’がケース3と圧粉体2’に塗布された状態の部材を得る。
[(C) Sealing step- (c1) Coating step]
In the insertion opening of the compact body of the case, a thermosetting resin that becomes a sealing member after curing is applied so as to cover a non-contact portion of the compact with the case while partially contacting the case. Specifically, as shown in FIG. 2 (c), after pressing the green compact 2 'into the case, a thermosetting resin adhesive is applied from the insertion opening side of the case 3 using a dispenser and uncured. A member in a state where the sealing member 4 ′ is applied to the case 3 and the green compact 2 ′ is obtained.

封止部材の材料に熱硬化性樹脂接着剤を用いることで、封止部材をケースに固定するための別途の接着剤が不要であり、該封止部材を直接に自身の接着力で固定することができる。また、圧縮ボンド磁石との接着性にも優れる。さらに、熱硬化温度範囲を、圧縮ボンド磁石の樹脂バインダ(熱硬化性樹脂)の温度範囲に合わせることで、圧縮ボンド磁石の樹脂バインダ硬化(c2−1)と、封止部材の硬化(c2−2)とを該封止工程の一処理(c2)で同時にできる。その他、必要に応じて、樹脂製の封止部材を塗布形成・硬化後に表面を機械加工処理してもよい。   By using a thermosetting resin adhesive as the material of the sealing member, there is no need for a separate adhesive for fixing the sealing member to the case, and the sealing member is directly fixed by its own adhesive force. be able to. Moreover, it is excellent also in adhesiveness with a compression bond magnet. Furthermore, by adjusting the thermosetting temperature range to the temperature range of the resin binder (thermosetting resin) of the compression bond magnet, the resin binder curing (c2-1) of the compression bond magnet and the curing of the sealing member (c2- 2) can be simultaneously performed by one treatment (c2) of the sealing step. In addition, if necessary, the surface of the resin sealing member may be machined after application formation and curing.

図3に示すように、封止部材4は、ケース3の挿入開口部3aに沿った略平円板形状であり、その厚み(X)が0.1mm以上であり、従来の塗装による防錆塗膜とは異なる。該図に示す形態では、圧粉体2’(または圧縮ボンド磁石2)が略円柱形状であり、該円柱の径方向に磁化されており、該円柱の外周面側および底面側を覆ってケース3が配置され、該円柱の上面側に封止部材4が配置されている。この構造により、磁力線が図4に示す形状となり、検出センサー5が圧縮ボンド磁石の上方に配置される。この磁力線形状により、検出センサー5は磁石表面に極近接させるのではなく、ギャップを設けて設置する。封止部材4は、通常の塗膜よりも厚膜であるが、このギャップ範囲内に配置できるので、センサー感度などに悪影響を与えることがない。安定した接着性、高い耐腐食性を達成するためには、封止部材4の厚み(X)は、0.3mm〜1.0mmであることが好ましい。   As shown in FIG. 3, the sealing member 4 has a substantially flat disk shape along the insertion opening 3 a of the case 3 and has a thickness (X) of 0.1 mm or more. It is different from the coating film. In the form shown in the figure, the green compact 2 ′ (or the compression bonded magnet 2) has a substantially cylindrical shape, is magnetized in the radial direction of the cylinder, and covers the outer peripheral surface side and the bottom surface side of the cylinder. 3 is disposed, and the sealing member 4 is disposed on the upper surface side of the cylinder. With this structure, the lines of magnetic force have the shape shown in FIG. 4, and the detection sensor 5 is disposed above the compression bonded magnet. Due to the shape of the lines of magnetic force, the detection sensor 5 is not provided in close proximity to the magnet surface, but is provided with a gap. Although the sealing member 4 is thicker than a normal coating film, since it can be disposed within this gap range, it does not adversely affect sensor sensitivity or the like. In order to achieve stable adhesion and high corrosion resistance, the thickness (X) of the sealing member 4 is preferably 0.3 mm to 1.0 mm.

封止部材4の鍔部の厚み(Y)は、本体部の厚み(X)と同程度の厚み、例えば±20%程度とすることが好ましい。また、封止部材4の鍔部の厚み(Z)は、本体部の厚み(X)の2倍〜挿入開口部3aの高さとすることが好ましい。より好ましくは、本体部の厚み(X)の2倍〜4倍である。   The thickness (Y) of the collar portion of the sealing member 4 is preferably about the same as the thickness (X) of the main body, for example, about ± 20%. Moreover, it is preferable that the thickness (Z) of the collar part of the sealing member 4 is set to be twice the thickness (X) of the main body part to the height of the insertion opening 3a. More preferably, it is 2 to 4 times the thickness (X) of the main body.

また、図3に示すように、圧粉体2’(または圧縮ボンド磁石2)の外周面の円柱上面側一部とケース3との間に封止部材4が介在する構造とすることが好ましい。これにより、挿入開口部3aの縁においてケース3と封止部材4との接合面積が大きくなり、接着強度と腐食性流体のバリア性に優れる。図3(b)に示す構造において、圧粉体2’(または圧縮ボンド磁石2)の円柱高さを、挿入開口部3aの高さよりも小さくし(この差が厚み(X)となる)、さらに、圧縮成形時に圧粉体2’の外周面の円柱上面側一部に内径側への段差部2aを予め設けておく(この段差部2aの軸方向長さが厚み(Z)となり、径方向長さが厚み(Y)となる)。段差部2aの部分はケース3と非接触である。この形状の圧粉体2’(または圧縮ボンド磁石2)をケース3に挿入または圧入し、挿入開口部3aの縁まで熱硬化性樹脂接着剤を塗布し、熱硬化処理させることで、段差部2aにも樹脂接着剤が充填され、上記厚み(X)(Y)(Z)の構造を有する鍔部付き略平円板形状の封止部材4が得られる。圧粉体2’(または圧縮ボンド磁石2)の段差部2aは樹脂溜りとなる。   Further, as shown in FIG. 3, it is preferable to have a structure in which the sealing member 4 is interposed between a part of the cylindrical upper surface side of the outer peripheral surface of the green compact 2 ′ (or the compression bonded magnet 2) and the case 3. . Thereby, the joining area of the case 3 and the sealing member 4 becomes large at the edge of the insertion opening 3a, and the adhesive strength and the barrier property of the corrosive fluid are excellent. In the structure shown in FIG. 3B, the cylindrical height of the green compact 2 ′ (or the compression bonded magnet 2) is made smaller than the height of the insertion opening 3a (this difference becomes the thickness (X)), Further, a stepped portion 2a toward the inner diameter side is provided in advance on a part of the cylindrical upper surface side of the outer peripheral surface of the green compact 2 'during compression molding (the axial length of the stepped portion 2a becomes the thickness (Z), and the diameter The direction length is the thickness (Y)). The stepped portion 2a is not in contact with the case 3. The step 2 is formed by inserting or press-fitting the green compact 2 ′ (or the compression bonded magnet 2) of this shape into the case 3, applying a thermosetting resin adhesive to the edge of the insertion opening 3 a, and performing a thermosetting treatment. 2a is also filled with a resin adhesive, and a substantially flat disk-shaped sealing member 4 with a flange having the structure of the thickness (X) (Y) (Z) is obtained. The step 2a of the green compact 2 '(or the compression bonded magnet 2) becomes a resin reservoir.

封止部材に用いる熱硬化性樹脂接着剤としては、耐熱性や耐食性に優れる、エポキシ樹脂接着剤、フェノール樹脂接着剤、アクリル系樹脂接着剤などが挙げられる。エポキシ樹脂としては、上記樹脂バインダで列挙したものと同様の樹脂成分を有し、溶剤希釈可能な一液型または二液型のエポキシ樹脂接着剤などを使用できる。また、このエポキシ樹脂接着剤における硬化剤としては、上記潜在性エポキシ硬化剤以外に、アミン系硬化剤、ポリアミド系硬化剤、酸無水物系硬化剤などを適宜使用でき、硬化温度範囲や硬化時間は上記樹脂バインダと同様とすることが好ましい。フェノール樹脂接着剤としては、例えば、樹脂成分としてノボラック型フェノール樹脂やレゾール型フェノール樹脂を、硬化剤としてヘキサメチレンテトラミンなどを用い、これをメチルエチルケトンなどの溶剤に溶解させたものなどを使用できる。   Examples of the thermosetting resin adhesive used for the sealing member include an epoxy resin adhesive, a phenol resin adhesive, and an acrylic resin adhesive that are excellent in heat resistance and corrosion resistance. As the epoxy resin, a one-component or two-component epoxy resin adhesive having the same resin components as those listed for the resin binder and capable of solvent dilution can be used. As the curing agent in the epoxy resin adhesive, in addition to the latent epoxy curing agent, an amine curing agent, a polyamide curing agent, an acid anhydride curing agent, and the like can be used as appropriate, and a curing temperature range and a curing time can be used. Is preferably the same as the resin binder. As the phenol resin adhesive, for example, a novolak type phenol resin or a resol type phenol resin as a resin component, hexamethylenetetramine or the like as a curing agent, and the like dissolved in a solvent such as methyl ethyl ketone can be used.

熱硬化性樹脂接着剤は、圧粉体の封孔処理目的ではなく、厚膜の封止部材として用いるため、その粘度は封孔処理用のものよりも高い粘度を有することが好ましい。具体的には、25℃における粘度(mPa・s)として、100〜20000mPa・sが好ましく、500〜10000mPa・sがさらに好ましい。この範囲とすることで、ケースおよび圧粉体との密着性に優れる。また、圧粉体の空隙内に浸透する接着剤量を抑制し、圧粉体表面に所望膜厚の封止部材を容易に形成できる。また、熱硬化性樹脂接着剤を圧粉体表面に塗布する方法は、スプレーコーティング、ディスペンサーコーティングなどの公知の方法を採用できる。粘度の高い接着剤を用いることができ、厚膜化が容易であり、塗料の無駄を省くことができるため、ディスペンサーコーティングを採用することが好ましい。   Since the thermosetting resin adhesive is used not for the purpose of sealing the green compact but as a thick film sealing member, the viscosity thereof is preferably higher than that for sealing. Specifically, the viscosity (mPa · s) at 25 ° C. is preferably 100 to 20000 mPa · s, more preferably 500 to 10000 mPa · s. By setting it as this range, it is excellent in adhesiveness with a case and a compact. Further, it is possible to easily form a sealing member having a desired film thickness on the surface of the green compact by suppressing the amount of adhesive penetrating into the voids of the green compact. As a method for applying the thermosetting resin adhesive to the surface of the green compact, known methods such as spray coating and dispenser coating can be employed. It is preferable to employ a dispenser coating because an adhesive having a high viscosity can be used, a thick film can be easily formed, and waste of paint can be eliminated.

[(c)封止工程−(c2)熱硬化工程]
未硬化の熱硬化性樹脂接着剤が塗布された状態の部材に熱処理を施して該接着剤を硬化させる(c2−2)。図2(d)に示すように、熱処理は、該部材を乾燥機10に入れ、圧粉体中の樹脂バインダおよび熱硬化性樹脂接着剤の熱硬化開始温度以上(例えば170〜190℃であり200℃以下)の温度、常圧下で、十分に硬化が進行する時間行なう。圧粉体中の樹脂バインダと熱硬化性樹脂接着剤の硬化温度範囲および硬化時間は、その材料選定などにより合わせる。樹脂バインダおよび熱硬化性樹脂接着剤の熱硬化開始温度以上の温度としては、200℃以下であり、例えば170〜190℃であり、十分に硬化が進行する時間としては、例えば45〜80分である。
[(C) Sealing step- (c2) Thermosetting step]
The member applied with the uncured thermosetting resin adhesive is subjected to a heat treatment to cure the adhesive (c2-2). As shown in FIG.2 (d), heat processing puts this member in the dryer 10, and is more than the thermosetting start temperature (for example, 170-190 degreeC) of the resin binder and thermosetting resin adhesive in a green compact. 200 ° C. or lower) at normal pressure and for a time during which curing proceeds sufficiently. The curing temperature range and curing time of the resin binder and the thermosetting resin adhesive in the green compact are matched by selecting the material. The temperature above the thermosetting start temperature of the resin binder and the thermosetting resin adhesive is 200 ° C. or less, for example, 170 to 190 ° C., and the time for sufficient curing to proceed is, for example, 45 to 80 minutes. is there.

これにより、圧紛体中の樹脂バインダが硬化し該バインダにより希土類磁石粉末が結着して圧縮ボンド磁石2が形成され(c2−1)、同時に、封止部材4がケース3および圧縮ボンド磁石2に固定されつつ硬化形成され(c2−2)、圧縮ボンド磁石2とケース3と封止部材4とが一体になったケース付き圧縮ボンド磁石が得られる。最後に圧縮ボンド磁石2が径方向に着磁されて完成品となる。   As a result, the resin binder in the compact is cured and the rare earth magnet powder is bound by the binder to form the compression bond magnet 2 (c2-1). At the same time, the sealing member 4 is the case 3 and the compression bond magnet 2. The compression-bonded magnet with the case in which the compression-bonded magnet 2, the case 3, and the sealing member 4 are integrated is obtained. Finally, the compression bonded magnet 2 is magnetized in the radial direction to obtain a finished product.

以上、図1および図2に基づいて説明した態様では、圧縮ボンド磁石の硬化工程と、封止部材の硬化工程を同一工程で行なうことができ、製造工程と処理費用を大幅に削減でき、高い生産性かつ低コストでケース付き圧縮ボンド磁石が製造可能となる。また、封止工程における熱処理を200℃以下の温度、かつ、常圧下(空気中)で行なうことができ、真空・高温での熱処理は不要であり、より高い生産性かつ低コストでの製造が可能となる。   As described above, in the embodiment described based on FIG. 1 and FIG. 2, the curing process of the compression bonded magnet and the curing process of the sealing member can be performed in the same process, and the manufacturing process and the processing cost can be greatly reduced. It becomes possible to manufacture a compression bonded magnet with a case at low cost and productivity. In addition, the heat treatment in the sealing process can be performed at a temperature of 200 ° C. or less and under normal pressure (in air), and no heat treatment under vacuum or high temperature is required, so that production with higher productivity and lower cost can be achieved. It becomes possible.

圧紛体挿入工程における圧縮ボンド磁石の他の態様として、ケースへの挿入前に圧粉体中の樹脂バインダを硬化させ圧縮ボンド磁石を完成させておくこともできる。この場合は、圧縮成形の金型温度を樹脂バインダの熱硬化開始温度以上に調整して該樹脂バインダを硬化させてもよい。熱処理による加熱硬化後、必要に応じて、切削加工、バレル加工などの機械加工を施すことができるが、焼結磁石と比較して熱処理による収縮が少ないため、該機械加工費用を削減できる。また、本発明の磁石では、焼結などの高温熱処置(例えば500℃以上)を行なっていないことから、製造工程中における磁気特性の劣化がなく高い磁気特性を維持でき、また製造コストも削減できる。   As another aspect of the compression bond magnet in the compact insertion process, the resin binder in the green compact can be cured before the insertion into the case to complete the compression bond magnet. In this case, the resin binder may be cured by adjusting the mold temperature for compression molding to be equal to or higher than the thermosetting temperature of the resin binder. After heat curing by heat treatment, machining such as cutting and barreling can be performed as necessary, but the machining cost can be reduced because there is less shrinkage due to heat treatment compared to sintered magnets. In addition, since the magnet of the present invention is not subjected to high-temperature heat treatment (for example, 500 ° C. or higher) such as sintering, it can maintain high magnetic characteristics without deterioration of magnetic characteristics during the manufacturing process, and reduce manufacturing costs. it can.

封止工程における封止部材の他の態様として、ケースとは別体の金属製または樹脂製の成形体として予め準備し、ケースに圧粉体(または圧縮ボンド磁石)を挿入した後に、このケースに固定してもよい。封止工程における封止部材のケースへの固定手段は、封止部材の材質や構造に依存し、接着固定、圧入固定、引っ掛け構造による形状的な嵌合固定などが採用できる。また、樹脂成形体からなる封止部材を設ける場合、ケース側に樹脂硬化後に抜け止めとなる構造を設けることが好ましい。   As another aspect of the sealing member in the sealing step, the case is prepared in advance as a metal or resin molded body separate from the case, and a green compact (or a compression bonded magnet) is inserted into the case. It may be fixed to. The means for fixing the sealing member to the case in the sealing step depends on the material and structure of the sealing member, and adhesive fixing, press-fit fixing, shape fitting fixing by a hook structure, and the like can be employed. Moreover, when providing the sealing member which consists of a resin molding, it is preferable to provide the case side with the structure used as a retaining after resin hardening.

また、圧粉体(または圧縮ボンド磁石)が挿入されたケースを金型内に配置し、これに封止部材を樹脂組成物の射出成形(インサート成形)で設ける態様としてもよい。樹脂としては、射出成形が可能な熱可塑性樹脂などを使用できる。このような熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン樹脂、ポリフェニレンサルファイド(PPS)樹脂、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアセタール樹脂、ポリエーテルサルホン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリフタールアミド樹脂、ポリアミド樹脂、または、これらの混合物が挙げられる。これらの中でも、耐食性や耐熱性に優れるPPS樹脂またはPEEK樹脂が好ましい。また、この樹脂組成物には、封止部材としての機能を損なわない範囲で任意の配合剤を含んでいてもよい。射出成形方法、射出成形条件、射出成形金型については、樹脂の種類に応じて公知の方法・条件を採用できる。   Moreover, it is good also as an aspect which arrange | positions the case in which the green compact (or compression bond magnet) was inserted in a metal mold | die, and provides a sealing member in this by injection molding (insert molding) of a resin composition. As the resin, a thermoplastic resin that can be injection-molded can be used. Examples of such thermoplastic resins include polyolefin resins such as polyethylene resins and polypropylene resins, polyphenylene sulfide (PPS) resins, liquid crystal polymers, polyether ether ketone (PEEK) resins, polyimide resins, polyether imide resins, polyacetal resins, poly Examples include ether sulfone resins, polycarbonate resins, polyethylene terephthalate resins, polybutylene terephthalate resins, polyphenylene oxide resins, polyphthalamide resins, polyamide resins, or mixtures thereof. Among these, PPS resin or PEEK resin excellent in corrosion resistance and heat resistance is preferable. Moreover, this resin composition may contain an arbitrary compounding agent as long as the function as a sealing member is not impaired. For the injection molding method, injection molding conditions, and injection mold, known methods and conditions can be adopted according to the type of resin.

本発明のケース付き圧縮ボンド磁石の製造方法は、高磁気特性、高耐食性、高耐久強度のケース付き圧縮ボンド磁石を、高い生産性かつ低コストで製造可能であるので、自動車分野や産業機械分野などの種々の分野において使用される角度検出用センサーのセンサーマグネットの製造に利用できる。特に、冷却水の流路切り換えバルブの回転角度検出センサー、オイルポンプ開閉角度検出センサー、燃料ポンプ用開閉角度検出センサーのように、水、オイル、排ガスなどの流体と接触して耐食性の要求される腐食性環境下で使用されるセンサー用のセンサーマグネットの製造に好適に利用できる。   The method of manufacturing a compression bonded magnet with a case according to the present invention can manufacture a compression bonded magnet with a case having high magnetic properties, high corrosion resistance, and high durability strength at high productivity and low cost. It can utilize for manufacture of the sensor magnet of the sensor for angle detection used in various field | areas. In particular, corrosion resistance is required in contact with fluids such as water, oil, and exhaust gas, such as the rotation angle detection sensor of the coolant switching valve, the oil pump opening / closing angle detection sensor, and the fuel pump opening / closing angle detection sensor. The present invention can be suitably used for manufacturing a sensor magnet for a sensor used in a corrosive environment.

1 ケース付き圧縮ボンド磁石
2 圧縮ボンド磁石
2’ 圧粉体
3 ケース
4 封止部材
4’ 未硬化の封止部材
5 検出センサー
6 ダイス
7 上パンチ
8 下パンチ
9 ディスペンサー
10 乾燥機
DESCRIPTION OF SYMBOLS 1 Compression bond magnet with case 2 Compression bond magnet 2 'Compact 3 Case 4 Sealing member 4' Uncured sealing member 5 Detection sensor 6 Dice 7 Upper punch 8 Lower punch 9 Dispenser 10 Dryer

Claims (7)

希土類磁石粉末と熱硬化性樹脂の樹脂バインダとを含む圧縮ボンド磁石と、該圧縮ボンド磁石を挿入するケースと、封止部材とを備えてなり、前記圧縮ボンド磁石が前記封止部材と前記ケースとで密封されているケース付き圧縮ボンド磁石の製造方法であって、
前記希土類磁石粉末と前記樹脂バインダとを含む混合物を圧縮成形して圧体を形成する圧体成形工程と、
前記樹脂バインダが硬化前の圧粉体を前記ケースに挿入する圧体挿入工程と、
前記ケースの前記圧体の挿入開口部に封止部材を固定する封止工程とを備えてなり、
前記封止工程は、前記ケースの前記圧粉体の挿入開口部において、25℃における粘度100〜20000mPa・sの熱硬化性樹脂を、前記ケースに一部接触させつつ前記圧粉体の前記ケースとの非接触部を覆うように塗布し、
前記熱硬化性樹脂および前記樹脂バインダの熱硬化開始温度以上の熱処理で、前記熱硬化性樹脂を硬化させて前記封止部材を前記ケースに固定しつつ形成するとともに、前記圧粉体中の前記樹脂バインダを硬化させて前記圧縮ボンド磁石を形成する工程である、ことを特徴とするケース付き圧縮ボンド磁石の製造方法。
A compression bond magnet including a rare earth magnet powder and a thermosetting resin resin binder, a case into which the compression bond magnet is inserted, and a sealing member, the compression bond magnet including the sealing member and the case A method for producing a compression bonded magnet with a case sealed with
A pressure powder molding process for forming a pressure powder by compression molding a mixture comprising the resin binder and the rare earth magnet powder,
A pressure powder insertion step of the resin binder inserts green compact before curing in the case,
Becomes a sealing step of fixing the sealing member into the insertion opening of the pressure powder of the case,
In the sealing step, the case of the green compact is partially contacted with a thermosetting resin having a viscosity of 100 to 20000 mPa · s at 25 ° C. in the insertion opening of the green compact of the case. Apply to cover the non-contact part with
Forming the thermosetting resin and the resin binder while fixing the sealing member to the case by curing the thermosetting resin by heat treatment at a temperature equal to or higher than the thermosetting start temperature of the resin binder, and in the green compact A method for producing a compression-bonded magnet with a case , wherein the compression-bonded magnet is formed by curing a resin binder .
前記ケースが非磁性材からなり、
前記圧粉体および前記圧縮ボンド磁石が略円柱形状であり、該円柱の径方向に磁化されており、該円柱の外周面側および底面側を覆って前記ケースが配置され、該円柱の上面側に前記封止部材が配置されることを特徴とする請求項1記載のケース付き圧縮ボンド磁石の製造方法。
The case is made of a non-magnetic material,
The green compact and the compression bonded magnet have a substantially cylindrical shape, are magnetized in the radial direction of the cylinder, the case is disposed to cover the outer peripheral surface side and the bottom surface side of the cylinder, and the upper surface side of the cylinder The method for producing a compression-bonded magnet with a case according to claim 1, wherein the sealing member is disposed on the casing.
前記圧粉体は、その外周面の少なくとも円柱上面側端部に前記ケースと非接触となる段差部を有し、前記封止工程において該段差部に前記熱硬化性樹脂が充填され、該段差部に前記封止部材の一部が形成されることを特徴とする請求項2記載のケース付き圧縮ボンド磁石の製造方法。   The green compact has a stepped portion that is not in contact with the case at least at the end of the outer peripheral surface of the cylindrical upper surface, and the stepped portion is filled with the thermosetting resin in the sealing step. The method for manufacturing a compression-bonded magnet with a case according to claim 2, wherein a part of the sealing member is formed in the portion. 前記封止工程における熱処理は、200℃以下の温度、かつ、常圧下で行なうことを特徴とする請求項1から請求項のいずれか1項記載のケース付き圧縮ボンド磁石の製造方法。 The method for producing a compression-bonded magnet with a case according to any one of claims 1 to 3 , wherein the heat treatment in the sealing step is performed at a temperature of 200 ° C or lower and under normal pressure. 前記希土類磁石粉末が等方性Nd−Fe−B磁石粉末であり、該磁石粉末が前記圧縮ボンド磁石全体に対して体積比率で85〜90%含まれることを特徴とする請求項1から請求項のいずれか1項記載のケース付き圧縮ボンド磁石の製造方法。 The rare earth magnet powder is an isotropic Nd-Fe-B magnet powder, and the magnet powder is contained in a volume ratio of 85 to 90% with respect to the entire compression bonded magnet. 5. A method for producing a compression bonded magnet with a case according to any one of claims 4 to 4 . 前記封止工程で得られる前記封止部材の厚みが0.3mm〜1.0mmであることを特徴とする請求項1から請求項のいずれか1項記載のケース付き圧縮ボンド磁石の製造方法。 The thickness of the said sealing member obtained at the said sealing process is 0.3 mm-1.0 mm, The manufacturing method of the compression bonded magnet with a case of any one of Claims 1-5 characterized by the above-mentioned. . 前記封止工程における熱硬化性樹脂の25℃での粘度が、500〜10000mPa・sであることを特徴とする請求項1から請求項のいずれか1項記載のケース付き圧縮ボンド磁石の製造方法。 Viscosity at 25 ° C. of the thermosetting resin in the sealing step, manufacture of the casing with the compressed bonded magnet according to any one of claims 1 to 6, characterized in that the 500~10000mPa · s Method.
JP2017239941A 2017-12-14 2017-12-14 Method for manufacturing compression bonded magnet with case Active JP6449977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017239941A JP6449977B2 (en) 2017-12-14 2017-12-14 Method for manufacturing compression bonded magnet with case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017239941A JP6449977B2 (en) 2017-12-14 2017-12-14 Method for manufacturing compression bonded magnet with case

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014017183A Division JP6259673B2 (en) 2013-12-13 2014-01-31 Method for manufacturing compression bonded magnet with case

Publications (2)

Publication Number Publication Date
JP2018064111A JP2018064111A (en) 2018-04-19
JP6449977B2 true JP6449977B2 (en) 2019-01-09

Family

ID=61966876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017239941A Active JP6449977B2 (en) 2017-12-14 2017-12-14 Method for manufacturing compression bonded magnet with case

Country Status (1)

Country Link
JP (1) JP6449977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163291A1 (en) * 2021-01-27 2022-08-04 日本発條株式会社 Manufacturing method of resin-coated permanent magnet, and manufacturing method of rotor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157507A (en) * 1991-06-18 1993-06-22 Mitsubishi Electric Corp Magnetic sensor and fixing method of magnet for magnetic sensor
JP3539486B2 (en) * 2000-06-27 2004-07-07 荒川化学工業株式会社 Coating composition
JP3891842B2 (en) * 2002-01-07 2007-03-14 株式会社Adeka Epoxy resin composition
EP2381452A1 (en) * 2008-12-12 2011-10-26 Aichi Steel Corporation Bonded rare earth magnet

Also Published As

Publication number Publication date
JP2018064111A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2015087890A1 (en) Compression-bonded magnet with case, and method for producing same
JP3918874B2 (en) Motor housing and motor device
US20190207460A1 (en) Rotary Electric Machine and Manufacturing Method for Rotary Electric Machine
JP6258689B2 (en) Compression bonded magnet with case
JP2023111957A (en) Thermosetting resin composition, coil having magnetic core and/or outer package member, and method for manufacturing molded product
WO2010071111A1 (en) Iron-based magnetic alloy powder containing rare earth element, method for producing same, resin composition for bonded magnet obtained from same, bonded magnet, and compacted magnet
JP2019104954A (en) Metal element-containing powder, and molded body
JP6259673B2 (en) Method for manufacturing compression bonded magnet with case
JP6449977B2 (en) Method for manufacturing compression bonded magnet with case
JP4358743B2 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
JP2010232468A (en) Rare earth bonded magnet
JP2019218516A (en) Resin composition for melting molding, magnetic member, coil having magnetic member, and manufacturing method of magnetic member
JP7102882B2 (en) Molding material and molded body
JP6441445B2 (en) Compression bonded magnet with case
US20240013961A1 (en) Composite component and method for producing same
JP2010193568A (en) Integral assembly composed of motor case and magnet in electric motor, and method of manufacturing the same
EP1583111B1 (en) Oxidation-resistant rare earth containing magnet powder and method for production thereof, compound for rare earth containing bonded magnet, rare earth containing bonded magnet and method for production thereof
JP2019212664A (en) Resin composition for forming magnetic member, magnetic member, coil, manufacturing method of magnetic member, and kit for forming magnetic member
JP4140778B2 (en) Resin-bonded magnet and manufacturing method thereof
CN100416720C (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
CN107958764A (en) A kind of computer CPU radiator fan ultra-thin Agglutinate neodymium-iron-boron magnet and preparation method thereof
JP7477745B2 (en) Field element and its manufacturing method
JP2014120492A (en) High heat resistant bond magnet, process of manufacturing the same, and motor
JP2022157625A (en) Method for manufacturing compressed bond magnet
JP2006332311A (en) Bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250