JP6448224B2 - Reactor pressure vessel reactor bottom protection structure - Google Patents

Reactor pressure vessel reactor bottom protection structure Download PDF

Info

Publication number
JP6448224B2
JP6448224B2 JP2014123366A JP2014123366A JP6448224B2 JP 6448224 B2 JP6448224 B2 JP 6448224B2 JP 2014123366 A JP2014123366 A JP 2014123366A JP 2014123366 A JP2014123366 A JP 2014123366A JP 6448224 B2 JP6448224 B2 JP 6448224B2
Authority
JP
Japan
Prior art keywords
reactor
heat insulating
pressure vessel
protection structure
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014123366A
Other languages
Japanese (ja)
Other versions
JP2016003908A (en
Inventor
琢矢 小川
琢矢 小川
板谷 雅雄
雅雄 板谷
忠浩 三橋
忠浩 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2014123366A priority Critical patent/JP6448224B2/en
Publication of JP2016003908A publication Critical patent/JP2016003908A/en
Application granted granted Critical
Publication of JP6448224B2 publication Critical patent/JP6448224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明の実施形態は、原子炉圧力容器の炉底部を貫通する炉内機器が固定される溶接部を保護する原子炉圧力容器の炉底部保護構造物に関する。   Embodiments described herein relate generally to a reactor bottom vessel protection structure for a reactor pressure vessel that protects a welded portion to which an in-core device that penetrates the reactor bottom of a reactor pressure vessel is fixed.

沸騰水型原子炉では、通常、原子炉内の炉水の水位は炉心領域よりも上方にあり、炉心領域にある燃料棒は炉水中に位置している。   In a boiling water reactor, the level of reactor water in the reactor is usually above the core region, and the fuel rods in the core region are located in the reactor water.

配管の不具合等何らかのトラブルにより、炉内への注水が停止して水位が低下して、燃料棒が露出した場合には、水位の低下を検知して非常用炉心注水系による炉内注水を行うことで燃料棒の露出が継続することを防止している。   If water injection stops into the furnace due to some trouble such as a piping failure, and the water level drops and the fuel rod is exposed, water drop is detected and water injection into the reactor is performed using the emergency core water injection system. This prevents the fuel rod from continuing to be exposed.

しかし、地震や津波等による過酷事故が発生して、非常用炉心注水系による炉内注水により燃料棒の露出を防止できない場合、燃料棒の温度が上昇し、最終的には炉心溶融に至るおそれがある。   However, if a severe accident such as an earthquake or tsunami occurs and the exposure of the fuel rods cannot be prevented by in-core water injection by the emergency core water injection system, the temperature of the fuel rods may rise and eventually the core melts There is.

万一炉心溶融が発生した場合、高温の炉心溶融物が落下して、炉底部に損傷を与える可能性がある。さらに、炉底部の損傷によって炉心溶融物が圧力容器の外部に流出した場合、炉心溶融物が原子炉格納容器内に落下し、コンクリートとの反応により二酸化炭素や水素等の非凝縮性ガスを大量に発生させるとともに、原子炉格納容器に損傷を与えることが考えられる。   In the unlikely event of core melting, the hot core melt may fall and damage the bottom of the reactor. Furthermore, when the core melt flows out of the pressure vessel due to damage to the bottom of the reactor core, the core melt falls into the reactor containment vessel, and a large amount of non-condensable gases such as carbon dioxide and hydrogen are reacted with the concrete. It is considered that the reactor containment vessel may be damaged.

このため、万一炉心溶融に至った場合であっても、炉心溶融物を原子炉圧力容器内に保持できれば、炉心溶融物とコンクリートとの反応や原子炉格納容器の損傷を回避することが可能となる。また、炉心溶融物の拡散領域を原子炉圧力容器内に留めることができるため、燃料取出しや廃炉措置に要する時間や費用の大幅な削減につながる。   Therefore, even if the core melts, if the core melt can be held in the reactor pressure vessel, it is possible to avoid reaction between the core melt and concrete and damage to the reactor containment vessel It becomes. Further, since the diffusion region of the core melt can be kept in the reactor pressure vessel, the time and cost required for fuel removal and decommissioning measures are greatly reduced.

原子炉圧力容器の炉底部に炉心溶融物が落下して堆積した場合、最も損傷の危険性が高い部位は、原子炉圧力容器の炉底部を貫通する炉内機器(例えば、制御棒駆動機構(CRD)ハウジング等)が溶接により固定される溶接部であることが知られている。   When the core melt falls and accumulates on the bottom of the reactor pressure vessel, the most dangerous part is the in-core equipment (for example, control rod drive mechanism ( It is known that the CRD) housing and the like) are welded parts fixed by welding.

溶接部が損傷した場合、この損傷部から炉心溶融物が流出することになる。したがって、溶接部を確実に保護することは、原子炉圧力容器外部への炉心溶融物の流出を防止するために重要と考える。   When the welded portion is damaged, the core melt flows out from the damaged portion. Therefore, it is considered important to protect the welded part reliably in order to prevent the core melt from flowing out of the reactor pressure vessel.

従来から、炉心溶融が発生した際に、炉心溶融物を原子炉圧力容器の内部に保持するための様々技術が検討されている。特許文献1には、炉底部に複数の通水管を設けて、炉心溶融物と原子炉圧力容器との間に形成されるギャップに注水することで炉心溶融物を効率的に冷却し、炉底部の損傷を防止する技術が開示されている。   Conventionally, various techniques for holding a core melt inside a reactor pressure vessel when core melting occurs have been studied. In Patent Document 1, a plurality of water pipes are provided at the bottom of the reactor, and the core melt is efficiently cooled by pouring water into a gap formed between the core melt and the reactor pressure vessel. A technique for preventing the damage of the apparatus is disclosed.

特開2000−162358号公報JP 2000-162358 A

しかし、通常、炉内機器は原子炉圧力容器の炉底部に設けられたスタブチューブを介して原子炉圧力容器に溶接され固定されるものであり、溶接部は炉内に突き出た位置に形成される。このため、炉心溶融物と溶接部との間にギャップは形成されないため、特許文献1の技術では、溶接部に接触する炉心溶融物を十分に冷却することはできず、溶接部の損傷を防止するには不十分なものであった。   However, normally, the in-reactor equipment is welded and fixed to the reactor pressure vessel via a stub tube provided at the bottom of the reactor pressure vessel, and the weld is formed at a position protruding into the reactor. The For this reason, since a gap is not formed between the core melt and the welded portion, the technique disclosed in Patent Document 1 cannot sufficiently cool the core melt contacting the welded portion, and prevents damage to the welded portion. It was not enough to do.

また、非常に高温な炉心溶融物が炉底部に落下した際、破損すること無く健全に溶接部を保護できる保護構造物を実現することは困難であった。   Also, it has been difficult to realize a protective structure that can protect the welded portion without breaking when a very hot core melt falls to the bottom of the furnace.

本発明はこのような事情を考慮してなされたもので、原子炉圧力容器の炉底部を貫通する炉内機器が固定される溶接部を、高い健全性で保護する原子炉圧力容器の炉底部保護構造物を提供することを目的とする。   The present invention was made in consideration of such circumstances, and the reactor bottom portion of the reactor pressure vessel that protects the welded portion to which the in-furnace equipment passing through the reactor bottom portion of the reactor pressure vessel is fixed with high soundness. The purpose is to provide a protective structure.

本発明の実施形態に係る原子炉圧力容器の炉底部保護構造物において、原子炉圧力容器の炉底部に設けられた貫通孔を貫通する炉内機器が溶接により固定される溶接部の周囲に配置された断熱部と、前記断熱部の外表面の少なくとも一部を被うように配置され、前記断熱部を保持する金属カバー部と、前記断熱部と前記金属カバー部とで形成される空間に設けられ、前記断熱部よりも弾性率が低い低弾性率部と、前記炉内機器および前記炉底部と前記金属カバー部との間に一定の空隙を設け、前記金属カバーの上部を前記炉内機器に固定する固定部と、を備えることを特徴とする。 In the reactor bottom vessel protection structure for a reactor pressure vessel according to an embodiment of the present invention, an in-reactor device that penetrates a through hole provided in the reactor bottom portion of the reactor pressure vessel is arranged around a welded portion that is fixed by welding. A space formed by the heat insulating part, the metal cover part that is arranged to cover at least a part of the outer surface of the heat insulating part, and holds the heat insulating part, and the heat insulating part and the metal cover part A low elastic modulus part having a lower elastic modulus than the heat insulating part, a certain gap is provided between the in-furnace equipment and the furnace bottom part and the metal cover part, and the upper part of the metal cover part is disposed in the furnace And a fixing portion for fixing to the internal device.

本発明の実施形態により、原子炉圧力容器の炉底部を貫通する炉内機器が固定される溶接部を、高い健全性で保護する原子炉圧力容器の炉底部保護構造物が提供される。   According to the embodiment of the present invention, there is provided a reactor bottom vessel protection structure for a reactor pressure vessel that protects a welded portion to which an in-core device passing through the reactor bottom portion of the reactor pressure vessel is fixed with high soundness.

本実施形態が適用される原子炉圧力容器の概略図。Schematic of a reactor pressure vessel to which this embodiment is applied. (A)第1実施形態に係る炉底部保護構造物の構成を示す拡大断面図、(B)I−Iの横断面図。(A) The expanded sectional view which shows the structure of the furnace bottom part protection structure concerning 1st Embodiment, (B) The cross-sectional view of II. (A)第1実施形態に係る炉底部保護構造物の第1の変形例を示す拡大断面図、(B)II−IIの横断面図。(A) The expanded sectional view which shows the 1st modification of the furnace bottom part protection structure concerning 1st Embodiment, (B) The cross-sectional view of II-II. (A)第1実施形態に係る炉底部保護構造物の第2の変形例を示す拡大断面図構成図、(B)III−IIIの横断面図。(A) The expanded sectional view block diagram which shows the 2nd modification of the furnace bottom part protection structure concerning 1st Embodiment, (B) The cross-sectional view of III-III. 第2実施形態に係る炉底部保護構造物の構成を示す拡大断面図、(B)IV−IVの横断面図。The expanded sectional view which shows the structure of the furnace bottom part protection structure concerning 2nd Embodiment, (B) The cross-sectional view of IV-IV.

以下、本実施形態を添付図面に基づいて説明する。
図1は、本実施形態が適用される、沸騰水型原子炉における原子炉圧力容器50の概略図を示している。以下では、原子炉圧力容器50の炉底部13を貫通して設けられる炉内機器としてCRDハウジング12を例に説明を行う。
Hereinafter, this embodiment is described based on an accompanying drawing.
FIG. 1 shows a schematic diagram of a reactor pressure vessel 50 in a boiling water reactor to which the present embodiment is applied. Hereinafter, the CRD housing 12 will be described as an example of the in-furnace equipment provided through the reactor bottom 13 of the reactor pressure vessel 50.

CRDハウジング12は、炉底部13を貫通して原子炉圧力容器50の内部に挿入されて、原子炉圧力容器50に固設される。CRDハウジング12内には、その下方から制御棒駆動機構(図示省略)が挿入されて収容されている。そして、この制御棒駆動機構を用いて、制御棒が炉心領域11に挿入される。   The CRD housing 12 passes through the reactor bottom 13 and is inserted into the reactor pressure vessel 50 and fixed to the reactor pressure vessel 50. A control rod drive mechanism (not shown) is inserted and accommodated in the CRD housing 12 from below. Then, the control rod is inserted into the core region 11 using this control rod drive mechanism.

(第1実施形態)
図2(A)は、第1実施形態に係る炉底部保護構造物10の構成を示す拡大断面図である(図1に示すAの領域)。そして、図2(B)は、I−Iの横断面図を示している。
(First embodiment)
FIG. 2A is an enlarged cross-sectional view showing the configuration of the furnace bottom portion protection structure 10 according to the first embodiment (region A shown in FIG. 1). FIG. 2B shows a cross-sectional view taken along line II.

図2(A)に示すように、実施形態に係る原子炉圧力容器50の炉底部保護構造物10(以下、保護構造物10と省略する)は、原子炉圧力容器50の炉底部13に設けられた貫通孔20を貫通するCRDハウジング12が溶接により固定される溶接部15の周囲に配置された断熱部16と、断熱部16の外表面の少なくとも一部を被うように配置され、断熱部16を保持する金属カバー部18と、断熱部16と金属カバー部18とで形成される空間に設けられ、断熱部16よりも弾性率が低い低弾性率部17と、を備える。   As shown in FIG. 2A, the reactor bottom protection structure 10 (hereinafter abbreviated as protection structure 10) of the reactor pressure vessel 50 according to the embodiment is provided in the reactor bottom 13 of the reactor pressure vessel 50. The CRD housing 12 penetrating the formed through-hole 20 is disposed around the welded portion 15 where the CRD housing 12 is fixed by welding, and is disposed so as to cover at least a part of the outer surface of the heat-insulated portion 16. The metal cover part 18 which hold | maintains the part 16, and the low elastic modulus part 17 which is provided in the space formed by the heat insulation part 16 and the metal cover part 18 and whose elastic modulus is lower than the heat insulation part 16 is provided.

CRDハウジング12は、炉底部13に設けられた貫通孔20を介して炉内に挿入される。一方、スタブチューブ14は、炉底部13の内表面に形成されており、貫通孔20の近くでは挿入されるCRDハウジング12と平行に炉内部に突き出て形成されている。   The CRD housing 12 is inserted into the furnace through a through hole 20 provided in the furnace bottom 13. On the other hand, the stub tube 14 is formed on the inner surface of the furnace bottom 13, and is formed in the vicinity of the through hole 20 so as to protrude into the furnace in parallel with the inserted CRD housing 12.

溶接部15は、炉内部に突き出したスタブチューブ14の先端とCRDハウジング12の側面とが溶接により固定される。これにより、CRDハウジング12は炉底部13に固定されて支持される。   As for the welding part 15, the front-end | tip of the stub tube 14 protruded inside the furnace and the side surface of the CRD housing 12 are fixed by welding. Thereby, the CRD housing 12 is fixed to and supported by the furnace bottom portion 13.

保護構造物10は、溶接部15の周囲を被うように円筒状に形成されており、その内表面側は溶接部15を囲むようにCRDハウジング12及びスタブチューブ14の外周に沿って形成されている。   The protective structure 10 is formed in a cylindrical shape so as to cover the periphery of the welded portion 15, and its inner surface side is formed along the outer periphery of the CRD housing 12 and the stub tube 14 so as to surround the welded portion 15. ing.

断熱部16は、円筒状に形成されており、溶接部15の周囲に配置されている。断熱部16を構成する材料には、炉心溶融が発生した際に生じる炉心溶融物と接触した場合であっても溶融せず、かつ溶接部15への熱伝導を防止できる、すなわち高融点かつ低熱伝導率な断熱材料が選択される。   The heat insulating portion 16 is formed in a cylindrical shape and is disposed around the welded portion 15. The material constituting the heat insulating portion 16 is not melted even when it comes into contact with the core melt generated when core melting occurs, and heat conduction to the welded portion 15 can be prevented, that is, it has a high melting point and low heat. A heat insulating material with conductivity is selected.

具体的には、融点が2500℃以上で、かつ熱伝導率が2W/(mK)以下の断熱材料が望ましい。断熱部16を構成する断熱材料として、炭化ケイ素、ジルコニウム等が例示される。また、多孔質な断熱材料は、低熱伝導率を実現できるため好適となる。   Specifically, a heat insulating material having a melting point of 2500 ° C. or higher and a thermal conductivity of 2 W / (mK) or lower is desirable. Examples of the heat insulating material constituting the heat insulating portion 16 include silicon carbide and zirconium. A porous heat insulating material is preferable because it can realize low thermal conductivity.

低弾性率部17は、断熱部16の内周側に、断熱部16と金属カバー部18とで形成された空間に設けられる。低弾性率部17を構成する材料には、断熱部16よりも弾性率が低く、変形能を有する低弾性率な材料が選択される。   The low elastic modulus portion 17 is provided in a space formed by the heat insulating portion 16 and the metal cover portion 18 on the inner peripheral side of the heat insulating portion 16. As the material constituting the low elastic modulus portion 17, a low elastic modulus material having a lower elastic modulus than the heat insulating portion 16 and having deformability is selected.

また、高融点(概ね2500℃以上)かつ低熱伝導率(概ね1W/(mK)以下)な性質を有して、断熱部16の断熱性能を阻害しない材料が望ましい。低弾性率部17を構成する材料として、繊維状ジルコニアや繊維状アルミナや繊維状シリカ等の繊維状セラミクスが例示される。   A material that has a high melting point (approximately 2500 ° C. or higher) and low thermal conductivity (approximately 1 W / (mK) or less) and does not impair the heat insulating performance of the heat insulating portion 16 is desirable. Examples of the material constituting the low elastic modulus portion 17 include fibrous ceramics such as fibrous zirconia, fibrous alumina, and fibrous silica.

金属カバー部18は、断熱部16と低弾性率部17とを被うように形成されており、機械的な強度が弱い断熱部16を金属材料により保持するものである。金属材料として、ステンレス鋼やニッケル基合金等が例示される。   The metal cover portion 18 is formed so as to cover the heat insulating portion 16 and the low elastic modulus portion 17, and holds the heat insulating portion 16 having a low mechanical strength with a metal material. Examples of the metal material include stainless steel and nickel-base alloy.

固定部19は、保護構造物10の上部に配置されており、保護構造物10をCRDハウジング12に固定するための部材である。当該固定は、溶接により行われる。なお、保護構造物10のCRDハウジング12への固定は、固定部19を介して行う構成に限定されず、保護構造物10とCRDハウジング12とを直接溶接により固定しても良い。   The fixing portion 19 is disposed on the upper portion of the protective structure 10 and is a member for fixing the protective structure 10 to the CRD housing 12. The fixing is performed by welding. Note that the fixing of the protective structure 10 to the CRD housing 12 is not limited to the configuration performed via the fixing portion 19, and the protective structure 10 and the CRD housing 12 may be fixed directly by welding.

ここで、低弾性率部17を設ける効果について説明する。
炉心溶融が発生して、炉底部13に溶融炉心が堆積した場合には、炉心溶融物から発生する崩壊熱により保護構造物10の温度が1200℃程度まで上昇することが想定される。
Here, the effect of providing the low elastic modulus portion 17 will be described.
When core melting occurs and the molten core is deposited on the bottom 13, it is assumed that the temperature of the protective structure 10 rises to about 1200 ° C. due to decay heat generated from the core melt.

例えば、断熱部16の構成材料として多孔質なジルコニアを選択し、金属カバー部18の構成材料としてステンレス鋼を選択した場合、ジルコニアの熱膨張率は約7×10−6/Kである一方、ステンレス鋼の熱膨張率は約16.2×10−6/Kとなる。このため、熱膨張率の乖離が大きく、熱膨張差による応力が発生する。 For example, when porous zirconia is selected as the constituent material of the heat insulating portion 16 and stainless steel is selected as the constituent material of the metal cover portion 18, the thermal expansion coefficient of zirconia is about 7 × 10 −6 / K, The thermal expansion coefficient of stainless steel is about 16.2 × 10 −6 / K. For this reason, the difference in thermal expansion coefficient is large, and stress due to the thermal expansion difference is generated.

特に、断熱部16の内周面側には、金属カバー部18を介してCRDハウジング12と近接しているため、発生する応力を逃がすことができず径方向に大きな応力がかかることになる。   In particular, since the inner peripheral surface side of the heat insulating portion 16 is close to the CRD housing 12 via the metal cover portion 18, the generated stress cannot be released and a large stress is applied in the radial direction.

多孔質な材料は断熱性能の向上を図ることができるが、機械強度は低下するため、熱膨張差による応力により断熱部16が破損に至る恐れがある。   Although the porous material can improve the heat insulating performance, the mechanical strength is lowered, and therefore, the heat insulating portion 16 may be damaged due to the stress due to the difference in thermal expansion.

本実施形態のように、変形能を有する低弾性率部17を断熱部16の内周面側に設けることにより、断熱部16と金属カバー部18との熱膨張差により生じる径方向の応力を低減させることが可能となる。これにより、万一炉心溶融した場合であっても、断熱部16と金属カバー部18との熱膨張差による断熱部16の破損を防止することが可能となる。   As in the present embodiment, by providing the low elastic modulus portion 17 having deformability on the inner peripheral surface side of the heat insulating portion 16, the radial stress caused by the thermal expansion difference between the heat insulating portion 16 and the metal cover portion 18 is reduced. It can be reduced. Thereby, even if it is a case where a core melts, it becomes possible to prevent the damage of the heat insulation part 16 by the thermal expansion difference of the heat insulation part 16 and the metal cover part 18. FIG.

このため、保護構造物10は、高温環境になった場合であっても破損すること無く保護機能を健全に維持しつつ、炉心溶融物から溶接部15を保護することができる。   For this reason, even if it becomes a high temperature environment, the protection structure 10 can protect the welding part 15 from a core melt, maintaining a protection function healthy, without being damaged.

図3(A)は、第1実施形態に係る保護構造物10の第2の変形例を示す拡大断面図である。そして、図3(B)は、II−IIの横断面図を示している。   FIG. 3A is an enlarged cross-sectional view showing a second modification of the protective structure 10 according to the first embodiment. FIG. 3B shows a cross-sectional view of II-II.

図2(A)に示した第1実施形態に係る保護構造物10と異なる点は、断熱部16が周方向に分割して設けられ、低弾性率部17が分割された断熱部16の間に設けられる点にある。   The difference from the protective structure 10 according to the first embodiment shown in FIG. 2 (A) is that the heat insulating portion 16 is divided and provided in the circumferential direction, and the low elastic modulus portion 17 is divided between the heat insulating portions 16. It is in the point provided in.

この変形例では、円筒形状の断熱部16を複数の分割構造として、その分割構造の断熱部16の間に低弾性率部17を形成している。このようにすることで、断熱部16は円筒形状による拘束から解放されて、低弾性率部17が有する変形能により、分割構造の断熱部16に若干の可動域を設けることができる。   In this modified example, the cylindrical heat insulating portion 16 has a plurality of divided structures, and the low elastic modulus portions 17 are formed between the heat insulating portions 16 of the divided structures. By doing in this way, the heat insulation part 16 is released from restraint by a cylindrical shape, and the some movable range can be provided in the heat insulation part 16 of a divided structure by the deformability which the low elastic modulus part 17 has.

これにより、熱膨張差によって金属カバー部18から断熱部16に作用する周方向の応力を低減させることができる。   Thereby, the stress of the circumferential direction which acts on the heat insulation part 16 from the metal cover part 18 by a thermal expansion difference can be reduced.

図4(A)は、第1実施形態に係る保護構造物10の第2の変形例を示す拡大断面図である。そして、図4(B)は、III−IIIの横断面図を示している。   FIG. 4A is an enlarged cross-sectional view illustrating a second modification of the protective structure 10 according to the first embodiment. FIG. 4B shows a cross-sectional view of III-III.

図2(A)に示した第1実施形態に係る保護構造物10と異なる点は、低弾性率部17を断熱部16の周縁部に設ける点にある。   The difference from the protective structure 10 according to the first embodiment shown in FIG. 2 (A) is that a low elastic modulus portion 17 is provided at the peripheral edge portion of the heat insulating portion 16.

この変形例では、熱膨張差による金属カバー部18からの応力が集中する断熱部16の周縁部(角部分)に低弾性率部17を設けている。これにより、断熱部16の周縁部にかかる応力を低減させることができ、断熱部16の破損を確実に防止することができる。   In this modification, the low elastic modulus part 17 is provided in the peripheral part (corner part) of the heat insulation part 16 where the stress from the metal cover part 18 due to the thermal expansion difference is concentrated. Thereby, the stress concerning the peripheral part of the heat insulation part 16 can be reduced, and the failure | damage of the heat insulation part 16 can be prevented reliably.

なお、低弾性率部17の形成方法は、図2〜図4で示した方法に限定されるものでは無く、図2〜図4で示した方法を組み合わせて構成することで、断熱部16に作用する応力をより効果的に低減させることが可能となる。   In addition, the formation method of the low elastic modulus part 17 is not limited to the method shown in FIGS. 2 to 4, and the heat insulating part 16 can be formed by combining the methods shown in FIGS. 2 to 4. It is possible to reduce the acting stress more effectively.

(第2実施形態)
図5(A)は、第2実施形態に係る保護構造物10の構成を示す拡大断面図である。そして、図5(B)は、IV−IVの横断面図を示している。なお、第1実施形態と同一な構成については同一の符号を付して、重複する説明を省略する。
(Second Embodiment)
FIG. 5A is an enlarged cross-sectional view showing the configuration of the protective structure 10 according to the second embodiment. And FIG. 5 (B) has shown the cross-sectional view of IV-IV. In addition, about the structure same as 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

第1実施形態と異なる点は、固定部19がCRDハウジング12と金属カバー部18とを一定の空隙21を設けて固定する点にある。具体的には、CRDハウジング12と金属カバー部18との間に2mm以上の空隙21を設けて固定する。   The difference from the first embodiment is that the fixing portion 19 fixes the CRD housing 12 and the metal cover portion 18 by providing a certain gap 21. Specifically, a gap 21 of 2 mm or more is provided and fixed between the CRD housing 12 and the metal cover portion 18.

この空隙21を設けることにより、炉心溶融時にCRDハウジング12の熱膨張が発生した際に、CRDハウジング12と保護構造物10との接触を回避することができる。これにより、CRDハウジング12との接触によって生じる断熱部16への応力を回避することができるため、断熱部16の破損を防止することができる。   By providing the gap 21, contact between the CRD housing 12 and the protective structure 10 can be avoided when thermal expansion of the CRD housing 12 occurs during melting of the core. Thereby, since the stress to the heat insulation part 16 which arises by contact with the CRD housing 12 can be avoided, damage to the heat insulation part 16 can be prevented.

以上述べた各実施形態の原子炉圧力容器の炉底部保護構造物によれば、断熱部材を用いて溶接部を被い保護する保護構造物の一部に低弾性率部を設けることにより、断熱部材に作用する応力を低減できるため、高い健全性で溶接部を保護することができる。   According to the reactor bottom vessel protection structure of the reactor pressure vessel of each embodiment described above, by providing a low elastic modulus portion in a part of the protection structure that covers and protects the welded portion using a heat insulating member, Since the stress acting on the member can be reduced, the welded portion can be protected with high soundness.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

上記各実施形態では、炉内機器としてCRDハウジング12に適用する場合について説明したが、CRDハウジング12に限定されるものでは無く、炉底部13に固定される配管や機器、例えばインコアモニタ(ICM)ハウジング、炉心差圧計ノズル等の各種計装配管にも適用可能である。   In each of the above-described embodiments, the case where the furnace device is applied to the CRD housing 12 has been described. However, the present invention is not limited to the CRD housing 12 and is not limited to the CRD housing 12. It can also be applied to various instrumentation piping such as housings and core differential pressure gauge nozzles.

なお、上記各実施形態では、沸騰水型原子炉における原子炉圧力容器に適用する場合について説朋したが、沸騰水型原子炉に限定されるものでは無く、例えば加圧水型原子炉等の原子炉にも適用可能である。   In each of the above embodiments, the case where the present invention is applied to a reactor pressure vessel in a boiling water reactor has been described. However, the present invention is not limited to a boiling water reactor. For example, a reactor such as a pressurized water reactor It is also applicable to.

10 炉底部保護構造物
11 炉心領域
12 CRDハウジング(炉内機器)
13 炉底部
14 スタブチューブ
15 溶接部
16 断熱部
17 低弾性率部
18 金属カバー部
19 固定部
20 貫通孔
21 空隙
50 原子炉圧力容器
10 Reactor bottom protection structure 11 Core region 12 CRD housing (in-furnace equipment)
13 Furnace bottom part 14 Stub tube 15 Welding part 16 Heat insulation part 17 Low elastic modulus part 18 Metal cover part 19 Fixing part 20 Through-hole 21 Void 50 Reactor pressure vessel

Claims (6)

原子炉圧力容器の炉底部に設けられた貫通孔を貫通する炉内機器が溶接により固定される溶接部の周囲に配置された断熱部と、
前記断熱部の外表面の少なくとも一部を被うように配置され、前記断熱部を保持する金属カバー部と、
前記断熱部と前記金属カバー部とで形成される空間に設けられ、前記断熱部よりも弾性率が低い低弾性率部と、
前記炉内機器および前記炉底部と前記金属カバー部との間に一定の空隙を設け、前記金属カバーの上部を前記炉内機器に固定する固定部と、を備えることを特徴とする原子炉圧力容器の炉底部保護構造物。
A heat insulating portion disposed around a welded portion in which an in-reactor device penetrating a through hole provided in the bottom of the reactor pressure vessel is fixed by welding;
A metal cover part that is arranged to cover at least a part of the outer surface of the heat insulating part and holds the heat insulating part;
A low elastic modulus portion provided in a space formed by the heat insulating portion and the metal cover portion, and having a lower elastic modulus than the heat insulating portion;
A nuclear reactor, comprising: a fixed part that provides a certain gap between the in-furnace equipment and the bottom of the furnace and the metal cover part, and fixes an upper part of the metal cover part to the in-furnace equipment. Pressure vessel furnace bottom protection structure.
前記低弾性率部は、前記断熱部の内周面側に設けられることを特徴とする請求項1に記載の原子炉圧力容器の炉底部保護構造物。   2. The reactor bottom vessel protection structure according to claim 1, wherein the low elastic modulus portion is provided on an inner peripheral surface side of the heat insulating portion. 前記断熱部は、周方向に分割して設けられ、
前記低弾性率部は、分割された前記断熱部の間に設けられることを特徴とする請求項1または請求項2に記載の原子炉圧力容器の炉底部保護構造物。
The heat insulating portion is provided by being divided in the circumferential direction,
The reactor bottom vessel protection structure for a reactor pressure vessel according to claim 1 or 2, wherein the low elastic modulus portion is provided between the divided heat insulating portions.
前記低弾性率部は、前記断熱部の周縁部に設けることを特徴とする請求項1から請求項3のいずれか一項に記載の原子炉圧力容器の炉底部保護構造物。   The reactor bottom vessel protection structure for a reactor pressure vessel according to any one of claims 1 to 3, wherein the low elastic modulus portion is provided at a peripheral portion of the heat insulating portion. 前記断熱部は、多孔質のジルコニアであることを特徴とする請求項1から請求項4のいずれか一項に記載の原子炉圧力容器の炉底部保護構造物。   5. The reactor bottom protection structure for a reactor pressure vessel according to claim 1, wherein the heat insulating portion is porous zirconia. 6. 前記低弾性率部は、繊維状セラミクスであることを特徴とする請求項1から請求項5のいずれか一項に記載の原子炉圧力容器の炉底部保護構造物。   The reactor bottom vessel protection structure for a reactor pressure vessel according to any one of claims 1 to 5, wherein the low elastic modulus portion is a fibrous ceramic.
JP2014123366A 2014-06-16 2014-06-16 Reactor pressure vessel reactor bottom protection structure Active JP6448224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123366A JP6448224B2 (en) 2014-06-16 2014-06-16 Reactor pressure vessel reactor bottom protection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123366A JP6448224B2 (en) 2014-06-16 2014-06-16 Reactor pressure vessel reactor bottom protection structure

Publications (2)

Publication Number Publication Date
JP2016003908A JP2016003908A (en) 2016-01-12
JP6448224B2 true JP6448224B2 (en) 2019-01-09

Family

ID=55223285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123366A Active JP6448224B2 (en) 2014-06-16 2014-06-16 Reactor pressure vessel reactor bottom protection structure

Country Status (1)

Country Link
JP (1) JP6448224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984892B (en) * 2017-04-05 2019-04-19 中国核工业第五建设有限公司 Main steam and water supply penetration piece component mounting method in AP1000 nuclear power station
CN114242276B (en) * 2021-12-17 2024-02-23 中国核动力研究设计院 Detachable heating structure applied to pressure vessel and installation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990092A (en) * 1982-11-15 1984-05-24 富士電機株式会社 Supporting device for weight material fixed in high temperature gas
JP2905501B2 (en) * 1989-07-08 1999-06-14 科学技術振興事業団 Active thermal insulation method using fibrous body or porous body
JPH0662265U (en) * 1993-02-10 1994-09-02 石川島播磨重工業株式会社 Structure of through-container housing
JPH08189986A (en) * 1995-01-09 1996-07-23 Babcock Hitachi Kk Structure for fixing pressure vessel housing
JPH08304579A (en) * 1995-04-28 1996-11-22 Babcock Hitachi Kk Reactor pressure vessel
JPH10268078A (en) * 1997-03-27 1998-10-09 Mitsubishi Heavy Ind Ltd In-pile lower part structure of pressurized water reactor
JPH1194978A (en) * 1997-09-22 1999-04-09 Hitachi Ltd Reactor equipment
DE59915207D1 (en) * 1998-11-26 2010-11-25 Areva Np Gmbh DEVICE FOR RECOVERING AND COOLING A MELT
WO2010038876A1 (en) * 2008-10-03 2010-04-08 株式会社東芝 Method of repairing bottom section of nuclear reactor
JP2011174897A (en) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd Molten material cooling structure, reactor containment vessel provided with cooling structure, and nuclear power plant provided with containment vessel
JPWO2013150750A1 (en) * 2012-04-03 2015-12-17 株式会社東芝 Reactor pressure vessel penetration protection structure and reactor
JP6175393B2 (en) * 2014-03-24 2017-08-02 株式会社東芝 Protection equipment for reactor bottom

Also Published As

Publication number Publication date
JP2016003908A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6776241B2 (en) A system that cools and traps the molten core of a pressurized water reactor
KR102239023B1 (en) Water-Cooled Water-Moderated Nuclear Reactor Core Melt Cooling and Confinement System
JP6181067B2 (en) Reactor assembly comprising nuclear fuel and a system for activating and inserting at least one neutron absorption and / or mitigation element
US20130216016A1 (en) Device for Mitigating Serious Accidents for a Nuclear Fuel Assembly, With Improved Effectiveness
JP6448224B2 (en) Reactor pressure vessel reactor bottom protection structure
EP3067895B1 (en) Primary containment vessel
US20130170598A1 (en) Nuclear reactor containment vessel
JP5710240B2 (en) Retainer for core melt
KR20120132551A (en) Melted-core retention structure
JP4828963B2 (en) Core melt cooling device, reactor containment vessel, and method of installing core melt cooling device
WO2013150750A1 (en) Structure for protecting penetrating part of reactor pressure vessel, and reactor
BR112019028268B1 (en) METHOD OF FUSION COOLING OF A NUCLEAR REACTOR AND A CONTROL SYSTEM FOR FUSION COOLING OF A NUCLEAR REACTOR
JP6615605B2 (en) Fast reactor core and fast reactor
KR100984017B1 (en) Inner-wall structure for protecting a reactor vessel in the event of core melting accidecnt
JP2005201735A (en) Test method for simulating actual utilization of new type fuel
JP2014025785A (en) Core melt holding device
JP2016080434A (en) Corium retaining device and nuclear facility
JP2016197051A (en) Corium holding arrangement
JP2016075630A (en) Reactor pressure vessel and mounting method of welding protection device
JP5851357B2 (en) Retainer for core melt
JP6605385B2 (en) Reactor core catcher
JP4996158B2 (en) Fast reactor
WO2017179407A1 (en) Fuel debris holding device
JP2011232089A (en) Nuclear reactor
JP2011169744A (en) Device for holding of core molten material, and containment vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150