JP2016075630A - Reactor pressure vessel and mounting method of welding protection device - Google Patents
Reactor pressure vessel and mounting method of welding protection device Download PDFInfo
- Publication number
- JP2016075630A JP2016075630A JP2014207338A JP2014207338A JP2016075630A JP 2016075630 A JP2016075630 A JP 2016075630A JP 2014207338 A JP2014207338 A JP 2014207338A JP 2014207338 A JP2014207338 A JP 2014207338A JP 2016075630 A JP2016075630 A JP 2016075630A
- Authority
- JP
- Japan
- Prior art keywords
- pressure vessel
- reactor pressure
- protection device
- welded part
- metal cover
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
本発明の実施形態は、溶接部の破損を防止する溶接部保護装置を備えた原子炉圧力容器およびその溶接部保護装置の取付方法に関する。 Embodiments described herein relate generally to a reactor pressure vessel including a welded part protection device that prevents damage to a welded part, and a method for attaching the welded part protective apparatus.
水冷却型原子炉では、原子炉圧力容器内への給水の停止や原子炉圧力容器に接続された配管の破断による冷却水が喪失すると、原子炉水位が低下して炉心が露出し、冷却が不充分になる可能性がある。炉心冷却が不充分な場合を想定して、水位低下信号を検出して原子炉を自動的に非常停止させ、非常用炉心冷却装置による冷却材の注入によって炉心を冠水させて冷却し、炉心溶融事故が生じるのを未然に防止している。 In a water-cooled nuclear reactor, if the cooling water is lost due to the stoppage of water supply to the reactor pressure vessel or the breakage of the piping connected to the reactor pressure vessel, the reactor water level is lowered and the core is exposed, and cooling is performed. It may be insufficient. Assuming inadequate core cooling, the reactor is automatically shut down by detecting a water level drop signal, and the core is submerged and cooled by injecting coolant using an emergency core cooling system, and the core melts. Accidents are prevented from occurring.
確率的には極めて低いが、非常用炉心冷却装置が何らかの原因で作動せず、かつ、その他の炉心への注水装置も利用できない事態も想定され得る。炉心への注水が不充分な場合には、原子炉水の低下により炉心冷却が充分に行なわれず、原子炉停止後も発生し続ける崩壊熱によって燃料棒温度が上昇し、最終的には炉心溶融に至る可能性が考えられる。 Although the probability is extremely low, it may be assumed that the emergency core cooling device does not operate for some reason and water injection devices for other cores cannot be used. If the water injection into the core is insufficient, the core water will not be sufficiently cooled due to the decrease in reactor water, and the fuel rod temperature will rise due to the decay heat that continues to occur even after the reactor shuts down. The possibility of reaching
炉心溶融が万一生じる場合には、高温の炉心溶融物が原子炉圧力容器下部に溶け落ち、さらに、圧力容器下鏡の貫通部を溶融貫通して格納容器内の床上に落下する可能性がある。格納容器床に落下する炉心溶融物は、格納容器床に張られたコンクリートを加熱し、接触面が高温状態になると、コンクリートと反応し、二酸化炭素、水素等の非凝縮正ガスを大量に発生させ、コンクリートを溶融浸食させる。発生した非凝縮ガスは格納容器内の圧力を高め、格納容器を破損させる可能性がある。また、コンクリートの溶融浸食により格納容器バウンダリを破損させる可能性がある。 In the unlikely event that core melting occurs, there is a possibility that the hot core melt melts down into the lower part of the reactor pressure vessel, and further melts through the penetration part of the lower pressure vessel mirror and falls onto the floor in the containment vessel. is there. The core melt that falls on the containment floor heats the concrete stretched on the containment floor and reacts with the concrete when the contact surface reaches a high temperature, generating a large amount of noncondensable positive gases such as carbon dioxide and hydrogen. To melt and erode the concrete. The generated non-condensable gas increases the pressure in the containment vessel and may damage the containment vessel. In addition, the containment boundary may be damaged by melting and erosion of concrete.
一方、炉心溶融が生じても、炉心溶融物を原子炉圧力容器内に保持することができれば、炉心溶融物とコンクリートとの反応等を回避でき、考慮する必要かせなくなる。この点から、万一炉心溶融が生じても、炉心溶融物を原子炉圧力容器内に封じ込めて保持し、冷却する手段が提案されている。 On the other hand, even if the core melts, if the core melt can be held in the reactor pressure vessel, the reaction between the core melt and the concrete can be avoided and it is not necessary to consider. From this point, even if a core melt occurs, a means for confining and holding the core melt in the reactor pressure vessel and cooling it has been proposed.
炉心溶融物を原子炉圧力容器内に保持する代表的な手法にIVR(In−Vessel Retension)と呼ばれる手法がある。IVRは原子炉圧力容器上に落下した炉心溶融物が格納容器に流出するのを防止する手法である。これは、原子炉圧力容器を冷却水で外部冠水させ、炉心溶融物から伝わる熱を冷却水の沸騰熱伝達で除熱し、発生した蒸気を格納容器内で冷却して凝縮させ、凝縮水を原子炉圧力容器周りに戻すことにより(圧力容器下鏡上に溶け落ちた)炉心溶融物および原子炉圧力容器を冷却し、炉心溶融物の流出を防止するものである。 There is a technique called IVR (In-Vessel Retention) as a typical technique for holding the core melt in the reactor pressure vessel. IVR is a technique for preventing the core melt that has fallen onto the reactor pressure vessel from flowing out into the containment vessel. This is because the reactor pressure vessel is externally flooded with cooling water, the heat transferred from the core melt is removed by boiling water transfer of the cooling water, and the generated steam is cooled and condensed in the containment vessel, and the condensed water is atomized. By returning to the periphery of the reactor pressure vessel (melted down on the mirror under the pressure vessel), the core melt and the reactor pressure vessel are cooled to prevent the core melt from flowing out.
IVRを成立させるためには、炉心溶融物から原子炉圧力容器に伝わる熱によって原子炉圧力容器が破損するのを防ぐ必要がある。このため、炉心溶融物から伝わる熱が集中する位置の原子炉圧力容器内壁面に耐熱材を張り、原子炉圧力容器に伝わる熱を制限して、原子炉圧力容器の溶融・破損を防ぐ技術が特許文献1で知られている。 In order to establish IVR, it is necessary to prevent the reactor pressure vessel from being damaged by heat transferred from the core melt to the reactor pressure vessel. For this reason, a technology to prevent melting and breakage of the reactor pressure vessel by applying a heat-resistant material to the inner wall of the reactor pressure vessel at the position where the heat transmitted from the core melt is concentrated and limiting the heat transmitted to the reactor pressure vessel It is known from Patent Document 1.
また、原子炉圧力容器内に炉心溶融物を受け止める構造物を設置し、圧力容器下部の構造物を保護する技術も特許文献2で知られている。 Patent Document 2 also discloses a technique for installing a structure for receiving a core melt in a reactor pressure vessel and protecting the structure under the pressure vessel.
炉心溶融が万一生じ、圧力容器下部ヘッド(圧力容器下鏡)上で炉心溶融物を保持しようとする場合、圧力容器下部ヘッドに存在する貫通部の溶接部を保護することが課題となる。 In the unlikely event that core melting occurs and the core melt is to be held on the pressure vessel lower head (pressure vessel lower mirror), it becomes a problem to protect the welded portion of the penetration portion existing in the pressure vessel lower head.
炉心溶融物が原子炉圧力容器内部に保持された状態で原子炉圧力容器が外部から冷却されている場合、原子炉圧力容器内側が高温の炉心溶融物によって溶融浸食される。このとき、原子炉圧力容器外部は冷却により圧力容器壁の健全性が維持されていても、図11に示すように、原子炉圧力容器1は圧力容器下部ヘッド1aから内部に突き出た位置に、貫通部2を通る部材3を支持する溶接部4が存在すると、溶接部4が溶融し易く、貫通部2を通る部材3が落下する可能性が大きい。貫通部材3が抜け落ちると、原子炉圧力容器1の貫通部2に口径の大きい破損孔が生じ、この破損孔を通して炉心溶融物が外部に流出し、流れ落ちてしまう。
When the reactor pressure vessel is cooled from the outside while the core melt is held inside the reactor pressure vessel, the inside of the reactor pressure vessel is melted and eroded by the hot core melt. At this time, even if the outside of the reactor pressure vessel maintains the soundness of the pressure vessel wall by cooling, as shown in FIG. 11, the reactor pressure vessel 1 protrudes from the pressure vessel lower head 1a to the inside. If the
特許文献1は、原子炉圧力容器の内壁に耐熱材を張って保護層を帯状に配置し、原子炉圧力容器の溶融・破損を防ぐ技術であるが、圧力容器下部ヘッドの貫通部を炉心溶融物から保護することはできない。 Patent Document 1 is a technology in which a heat-resistant material is stretched on the inner wall of a reactor pressure vessel and a protective layer is disposed in a band shape to prevent melting and breakage of the reactor pressure vessel. It cannot be protected from things.
また、特許文献2では、圧力容器下部ヘッド上に炉心溶融物を受け止めるギャップ構造物を設置し、原子炉圧力容器を貫通する構造物を保持することができるとされているが、ギャップ構造物が大型であるため、既設の原子炉に適用することが困難である。 Further, in Patent Document 2, it is said that a gap structure for receiving the core melt can be installed on the pressure vessel lower head and the structure penetrating the reactor pressure vessel can be held. Due to its large size, it is difficult to apply to existing reactors.
本発明の実施形態は、上述した事情を考慮してなされたもので、万一の炉心溶融時にも、原子炉圧力容器の溶接部の損傷・破損を防止することができる原子炉圧力容器およびその溶接部保護装置の取付方法を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above-described circumstances, and a reactor pressure vessel capable of preventing damage and breakage of a welded portion of the reactor pressure vessel even in the event of a core melt, and its It aims at providing the attachment method of a welding part protective device.
本発明に係る原子炉圧力容器は、上述した課題を解決するために、断熱材を覆った金属カバー容器を、原子炉圧力容器貫通部上の溶接部周囲に設置した溶接部保護装置を備え、前記溶接部保護装置は、前記金属カバー容器の内部に補剛部材のリブあるいはリバーが配設されたことを特徴とするものである。 In order to solve the above-described problems, a reactor pressure vessel according to the present invention includes a welded part protection device in which a metal cover container covering a heat insulating material is installed around a welded part on a reactor pressure vessel penetration part, The welded part protection device is characterized in that a rib or a river of a stiffening member is disposed inside the metal cover container.
また、本発明に係る原子炉圧力容器の溶接部保護装置の取付方法は、上述した課題を解決するために、原子炉圧力容器貫通部上の溶接部により貫通部材を固定する一方、断熱材を覆う金属カバー容器の内部に、補剛部材のリブあるいはリバーを配設した溶接部保護装置を準備し、前記貫通部材を固定する溶接部の周囲に前記溶接部保護装置を外側から覆うように設置して、前記溶接保護装置を取り付けることを特徴とする取付方法である。 Moreover, in order to solve the above-described problems, the method for attaching the reactor pressure vessel welded part protection apparatus according to the present invention fixes the penetration member by the welded part on the reactor pressure vessel penetration part, while providing the heat insulating material. Prepare a welded part protection device with ribs or rivers of stiffening members inside the metal cover container to cover, and install the welded part protection device from the outside around the welded part that fixes the penetrating member And it is the attachment method characterized by attaching the said welding protection apparatus.
本発明においては、万一の炉心溶融時にも、原子炉圧力容器の溶接部の溶融を防止して、溶接部の損傷・破損を防止することができる。 In the present invention, even in the unlikely event of melting of the core, melting of the welded portion of the reactor pressure vessel can be prevented, and damage / breakage of the welded portion can be prevented.
以下、本発明の実施形態について、添付図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
本発明の実施形態は水を冷却材とした水冷却型原子炉に適用される。水冷却型原子炉には沸騰水型原子炉や加圧水型原子炉の軽水型原子炉の他重水型原子炉がある。 The embodiment of the present invention is applied to a water-cooled nuclear reactor using water as a coolant. Water-cooled reactors include boiling water reactors, pressurized water reactors, light water reactors, and heavy water reactors.
図1は、水冷却型原子炉として沸騰水型原子炉の原子炉圧力容器10の例を示すものである。原子炉圧力容器10は、溶接構造の円筒型容器で構成され、内部に炉心11を収容した炉心シュラウド12がシュラウドサポート13により支持される。炉心シュラウド12を覆うシュラウドヘッド14上には、スタンドパイプ15を介して気水分離器16が設けられ、この気水分離器16上に蒸気乾燥器17が設置される。
FIG. 1 shows an example of a
また、原子炉圧力容器10の圧力容器下鏡を構成する圧力容器下部ヘッド20には、多数の制御棒駆動機構ハウジング(以下、CRDハウジング)21が垂設され、図示しない制御棒駆動機構(CRD)が設けられる。CRDハウジング21上に図示しない炉心支持板との間で制御棒案内管22が支持され、制御棒案内管22は炉心11内に、制御棒(図示せず)の出し入れを案内している。
In addition, a large number of control rod drive mechanism housings (hereinafter referred to as CRD housings) 21 are suspended from the pressure vessel
なお、図1において、符号23は主蒸気ノズルであり、符号24は給水ノズルである。また、符号25は再循環出口ノズルであり、符号26は再循環入口ノズルである。
In addition, in FIG. 1, the code |
CRDハウジング21は、図2に示すように、圧力容器下部ヘッド20の貫通部28を通る部材(以下、貫通部材という。)21を構成している。貫通部材21は圧力容器下部ヘッド20上で(サポートスリーブを構成する)スタブチューブ29に溶接部30で固定され、保持される。このように、貫通部材21は原子炉圧力容器10内部に突き出た位置で貫通部28に拘束されて固定保持される。この実施形態は、圧力容器下部ヘッド(圧力容器下鏡)20の貫通部28を貫通部材21が下方から挿入され、圧力容器下部ヘッド20上で溶接部30により固定支持される原子炉を対象としている。
As shown in FIG. 2, the
ところで、貫通部材21の溶接部30は原子炉圧力容器10内で炉心下部プレナム31に露出して晒されるため、炉心溶融が万一生じて1000℃を遥かに超える高温の炉心溶融物が圧力容器下部ヘッド20上に溶け落ちると、炉心溶融物が堆積されるスタブチューブ29や制御棒案内管22の温度が非常高温となり、溶接部30に溶融が生じる虞がある。溶接部30が溶融すると、貫通部材21が抜け落ち、落下することが懸念される。この原子炉圧力容器10内の溶接部25の溶融・破損が生じるのを防止するため、原子炉圧力容器10内に溶接部保護装置33が設けられる。
By the way, the welded
溶接部保護装置33は、原子炉圧力容器貫通部28の溶接部30周囲に設置され、貫通部材21を固定保持する溶接部30を、トーラス状あるいはドーナツ状の金属カバー容器35内に収容される断熱材36で熱的に保護するものである。
The welded
金属カバー容器35は、例えば、ボックス状容器35aの開口部を蓋材35bで覆って2分割可能に構成される。金属カバー容器35の分割構造は他にも種々の割型が考えられる。金属カバー容器35は、ステンレス鋼や炭素鋼等の炉内構造物に用いられる金属材料で構成され、プレス成形や絞り成形、削り出し成形などで型成形される。金属カバー容器35は溶接部30に接触する部分が無垢の材料で好適に構成される。
The
また、金属カバー容器35内に収容される断熱材36には、鉄酸化物、酸化アルミニウム(AlO2)、酸化ジルコニウム(ZnO2)等で構成され、断熱材36は断熱性能を良好にするため、繊維状金属材料が充填され、収容される。
The
溶接部保護装置33は、原子炉圧力容器貫通部28の溶接部30周囲を覆うように設置され、貫通部材21を固定保持する溶接部30の周囲を、断熱材36で熱的に保護している。万一の炉心溶融時、炉心溶融物が圧力容器下部ヘッド20上に落下すると、落下した炉心溶融物は冷却水により冷却され、固化して体積されるが、冷却水が蒸発してドライアウト状態になると、崩壊熱により炉心溶融物の温度が上昇する。上昇した温度や圧力により、溶接部保護装置33は機械的・物理的強度が不足し、溶接部30が損傷を受ける虞がある。
The welded
[第1の実施形態]
図3(A)および(B)は、原子炉圧力容器の第1の実施形態を示すもので、その溶接部保護装置33Aを示す縦断面図および平断面図である。図1および図2と同じ構成には同一符号を付して重複説明を省略する。
[First Embodiment]
FIGS. 3A and 3B show a first embodiment of a reactor pressure vessel, and are a longitudinal sectional view and a plan sectional view showing a welded
原子炉圧力容器10は、原子炉圧力容器10内部に立設されたスタブチューブ29頂部の溶接部30でCRDハウジングの貫通部材21を固定保持しており、貫通部材21を固定保持する溶接部30の周囲を溶接部保護装置33Aが外周側から覆設される。溶接部保護装置33Aは溶接部30を熱的に保護している。
In the
溶接部保護装置33Aは、図3(A)および(B)に示すように、トーラス状あるいはドーナツ状の金属カバー容器35内に断熱材36が充填され、収容される一方、金属カバー容器35内部に周方向に沿って等間隔に垂直(縦)リブ37が放射状に配設されて補強構造に構成される。垂直リブ37は、コバルトや鉄系金属材料、酸化ジルコニウム、アルミナ、タングステン等の剛性材料で板状補剛部材を構成している。垂直リブ37のリブ内側およびリブ外側は金属カバー容器35の内壁に固定され、金属カバー容器35の物理的・機械的強度や剛性を高めている。
As shown in FIGS. 3 (A) and 3 (B), the welded
溶接部保護装置33Aは、圧力容器下部ヘッド20の突出位置で(貫通部材21を固定保持する)溶接部30への装着性や取付性を考慮して割型構造に構成される。溶接部保護装置33Aは、圧力容器下部ヘッド20の突出位置で、貫通部材21を固定保持する溶接部30の周囲を断熱材36で覆って保護することで、溶接部30への熱伝達を効果的に防止している。圧力容器下部ヘッド20の貫通部28上の溶接部30の周囲を断熱材36と金属カバー容器35で覆うだけでは溶接部保護装置33Aの機械的・物理的強度が劣り、不足する可能性がある。このため、溶接部保護装置33Aは、金属カバー容器35内部に板状補剛部材の縦(垂直)リブ37を放射状に配設することで、金属カバー容器35の強度、剛性を向上させ、貫通部材21を固定保持する溶接部30の損傷・破損を防止するものである。
The welded
[作用]
原子炉圧力容器10の溶接部保護装置33Aの取付は、次のようにして行なわれる。
[Action]
The welded
原子炉の建設時や定検時等に、原子炉圧力容器10は圧力容器下部ヘッド20の各貫通部28に立設されたスタブチューブ29に貫通部材21を挿入し、貫通部材21を圧力容器下部ヘッド貫通部28上で、周溶接して溶接部30に固定保持される。
At the time of construction of the nuclear reactor or at the time of regular inspection, the
貫通部材21を溶接部30に固定保持させた後、圧力容器下部ヘッド20上の溶接部30周囲を覆うように、溶接部保護装置33Aが装着され、取り付けられる。溶接部保護装置33Aは、圧力容器下部ヘッド20の溶接部30周囲を覆って設置される。
After fixing the penetrating
溶接部保護装置33Aには、トーラス状あるいはドーナツ状金属カバー容器35の内部に垂直リブ37が放射状に配設され、かつ金属カバー容器35内に断熱材36が充填され、収容されている。
In the welded
しかして、圧力容器下部ヘッド20の突出位置で、溶接部30により貫通部材21を固定させ、保持した状態で、溶接部30の周囲を覆うように溶接部保護装置33Aを外側あるいは上方から被せて装着し、設置される。溶接部保護装置33Aは各圧力容器下部ヘッド20上の溶接部30を順次覆うように設置していくことで、溶接部保護装置33Aの取付が完了し、原子炉圧力容器10の貫通部28上の溶接部30の熱的保護構造が得られる。
Then, in the protruding position of the pressure vessel
溶接部保護装置33Aを取り付けた後、制御棒案内管22、図示しない制御棒、炉心11、気水分離器16や蒸気乾燥器17等が原子炉圧力容器10内で所要の手順で順次組み立てて構成され、原子炉圧力容器10が構成されたり、あるいは検査後の原子炉圧力容器10の組立が完了される。
After attaching the welded
[第1の実施形態の効果]
第1の実施形態は、原子炉圧力容器10底部の各貫通部材21を圧力容器下部ヘッド20上で固定保持する溶接部30を、断熱材36を備えた補強構造の溶接部保護装置33Aで周囲から覆って保護したので、溶接部30の温度を融点以下に保持して、溶接部30の溶融や損傷を防止することができる。
[Effect of the first embodiment]
In the first embodiment, the welded
また、溶接部保護装置33Aは金属カバー容器35内に、縦リブ37を放射状に配置したので、金属カバー容器35の強度・剛性を向上させることができ、通常運転時の冷却水や事故時の炉心溶融物の温度や圧力による損傷・破損を防ぐことができ、溶接部30の保護を図ることができる。したがって、万一の事故時に炉心溶融が生じて、炉心溶融物が圧力容器下部ヘッド20上に落下しても、溶接部30の溶融や損傷を効果的に防止し、貫通部材21が抜け落ちて落下するのを防ぐことができる。
Moreover, since the welded
[第2の実施形態]
次に、原子炉圧力容器の第2の実施形態を図4(A)および(B)を参照して説明する。
[Second Embodiment]
Next, a second embodiment of the reactor pressure vessel will be described with reference to FIGS. 4 (A) and 4 (B).
第2の実施形態に係る原子炉圧力容器10は、その溶接部保護装置33Bの補強構造が第1の実施形態に示される原子炉圧力容器10の溶接部保護装置33Aの補強構造と異なり、他の構成は異ならないので、同じ構成には同一符号を付し、重複する説明を省略ないしは簡略化する。
The
図4(A)および(B)は、原子炉圧力容器10の溶接部保護装置33Bを示す縦断面図および平断面図である。
4A and 4B are a longitudinal sectional view and a plan sectional view showing the welded
この溶接部保護装置33Bは、原子炉圧力容器10内の突出位置(スタブチューブ29)で溶接部30を周囲から覆って保護するものである。圧力容器下部ヘッド20の突出位置(スタブチューブ29)の溶接部30で原子炉圧力容器10の貫通部28を貫く、貫通部材21を固定保持し、貫通部材21を固定する溶接部30を周囲から溶接部保護装置33Bで覆って熱的に保護するものである。
The welded
第2の実施形態に示された溶接部保護装置33Bは、断熱材36を備えたトーラス状あるいはドーナツ状金属カバー容器35の内部にリング状あるいはワッシャ状の水平リブ38を複数箇所で縦方向に間隔を置いて段状に配設した構成が、縦リブ37を放射状に配設した第1の実施形態の溶接部保護装置33Aとは相違する。水平リブ38は、金属カバー容器35内に一段だけ水平方向に配設したものでもよい。水平リブ38はコバルト、あるいは鉄系金属材料、酸化ジルコニウム、アルミナ、タングステン等の剛性材料で構成された板状補剛部材である。
The welded
第2の実施形態の原子炉圧力容器10の溶接部保護装置33Bにおいて、圧力容器下部ヘッド貫通部28上の溶接部30への溶接部保護装置33Bの取付は、第1の実施形態に示された溶接部保護装置33Aの取付と、金属カバー容器35の内部の水平リブ38の配設構造が異なるのみで、他の取付態様は異ならないので、説明を省略する。
In the weld
[第2の実施形態の効果]
原子炉圧力容器10底部を貫通する貫通部材21を圧力容器下部ヘッド20の突出位置で固定保持する溶接部30の周囲を、断熱材36を備えた補強構造の溶接部保護装置33Bで覆って保護することで、第1の実施形態と同様、万一の炉心溶融時にも、溶接部30の温度を融点以下に保持して、溶接部30の溶融や損傷を防止することができる。
[Effects of Second Embodiment]
The periphery of the welded
また、溶接部保護装置33Bにおいても、補強構造に構成して金属カバー容器35の強度、剛性を向上させることができ、第1の実施形態に示される溶接部保護装置33Aと同様の効果を奏することができ、溶接部30の熱的保護を図ることができ、貫通部材21が抜け落ちて落下するのを防止することができる。
Further, the welded
[第3の実施形態]
図5(A)および(B)は、原子炉圧力容器の第3の実施形態を示す縦断面図および平断面図である。
[Third Embodiment]
FIGS. 5A and 5B are a longitudinal sectional view and a plan sectional view showing a third embodiment of the reactor pressure vessel.
第3の実施形態に示された原子炉圧力容器10の溶接部保護装置33Cは、第1の実施形態に示された溶接部保護装置33Aの板状補剛部材に代り、金属カバー容器35の内部にバー(棒)状補剛部材のリバー39を配設した構成を採用したもので、他の構成は、第1の実施形態に示された原子炉圧力容器10の溶接部保護装置33Aと異ならないので、同じ構成には同一符号を付して重複説明を省略する。
The welded
第3の実施形態に示される原子炉圧力容器10において、その溶接部保護装置33Cは、原子炉圧力容器10内部に貫通部28から突き出した位置で、(貫通部材21を固定支持する)溶接部30を外周部から覆い保護するものである。溶接部保護装置33Cは、第1の実施形態の溶接部保護装置33Aに用いられる縦リブ37の板状補剛部材に代り、バー(棒)状補剛部材であるリバー39を用いたものである。
In the
第3の実施形態において、原子炉圧力容器10の溶接部保護装置33Cは、断熱材36を備えたトーラス状あるいはドーナツ状金属カバー容器35の内部に周方向に沿ってバー状補剛部材のリバー39を放射状に複数本配設したものである。リバー39は第1の実施形態の縦リブ37および第2の実施形態の水平リブ38と同じ剛性材料で構成されて、水平方向に配設され、リバー39両端が金属カバー容器35の内壁に固定される。放射状のリバー39は金属カバー容器35内部で1段あるいは2段以上の多段構造に配設される。
In the third embodiment, the welded
第3の実施形態の溶接部保護装置33Cは、圧力容器下部ヘッド20の突出位置で溶接部30の周囲を金属カバー容器35および断熱材36で覆って保護することで、圧力容器下部ヘッド20上で貫通部材21を保持する溶接部30への熱の伝達を防ぐことができる。また、溶接部保護装置33Cは金属カバー容器35の内部にバー状補剛部材の複数本のリバー39を放射状に配設することで、補強構造に構成でき、金属カバー容器35の強度や剛性を向上させることができる。
The welded
第3の実施形態において、原子炉圧力容器10の溶接部保護装置33Cの取付は、第1の実施形態の溶接部保護装置33Aの取付と、金属カバー容器35内のリバー39の配設を除いて異ならないので、第1の実施形態を参照して詳細な説明を省略する。
In the third embodiment, the welding
[第3の実施形態の効果]
原子炉圧力容器10底部を貫通する貫通部材21を圧力容器下部ヘッド20の突出位置で固定保持する溶接部30の周囲を、断熱材36を備えた溶接部保護装置33Cで覆って保護することで、第1の実施形態と同様、万一の炉心溶融時にも、溶接部30の温度を融点以下に保持して、溶接部30の溶融や損傷を防止することができる。
[Effect of the third embodiment]
By covering and protecting the periphery of the welded
また、溶接部保護装置33Cにおいても、複数本のバー状補剛部材のリバー39を放射状に配設して金属カバー容器35の強度、剛性を向上させることができ、第1の実施形態に示された溶接部保護装置33Aと同様の効果を奏することができ、溶接部30の保護を図ることができる。
Also in the welded
[第4の実施形態]
次に、原子炉圧力容器の第4の実施形態を図6(A)および(B)を参照して説明する。
[Fourth Embodiment]
Next, a fourth embodiment of the reactor pressure vessel will be described with reference to FIGS. 6 (A) and (B).
図6(A)および(B)は、原子炉圧力容器10の溶接部保護装置33Dの片側縦断面構造を部分的に示す概略図である。この溶接部保護装置33Dを説明するに当り、第1の実施形態ないし第3の実施形態に示された原子炉圧力容器10の溶接部保護装置33A,33B,33Cと同じ構成には同一符号を付して重複する説明を省略する。
6 (A) and 6 (B) are schematic views partially showing a one-side longitudinal sectional structure of a welded
図6(A)に示される原子炉圧力容器の溶接部保護装置33Dは、圧力容器下鏡の圧力容器下部ヘッド20の突出位置上に位置する溶接部30の周囲を覆い保護するものである。圧力容器下部ヘッド20上突出位置の溶接部30(図3(A),図4(A),図5(A)参照)は、原子炉圧力容器10の底部を貫通する貫通部材21を固定保持するもので、この貫通部材21を固定保持する溶接部30の周囲を覆うように溶接部保護装置33Dが設けられ、装着される。
The reactor pressure vessel welded
溶接部保護装置33Dは、第1の実施形態ないし第3の実施形態に示される金属カバー容器35と同様、トーラス状あるいはドーナツ状金属カバー容器35内に断熱材36が収容される。金属カバー容器35の内部には板状補剛部材であるリブ40が水平方向に配設される。リブ40に代えてバー(棒)状補剛部材のリバー39であってもよい。リブ40あるいはリバー39の中間部41が途中で凹凸結合され、弱化領域が形成されて嵌め合される。
As with the
第4の実施形態に示された原子炉圧力容器10の溶接部保護装置33Dでは、トーラス状あるいはドーナツ状金属カバー容器35内に配置されるリブ40あるいはリバーは、原子炉の通常運転時の水圧では補剛部材として機能し、リブ40あるいはリバーが変形したり、凹凸結合が外れるのを防止することができる。リブ40あるいはリバーには酸化ジルコニウムやアルミナ等の材料が用いられる。
In the welded
炉心溶融が生じる事故時の圧力容器下部ヘッド20の変形挙動を熱流動解析で評価した解析結果表示例によると、炉心溶融物が堆積している圧力容器下部ヘッド20貫通部近傍の温度分布では、スタブチューブ29や制御棒案内管22の温度が1200℃程度の高温となっている例が紹介されている[日本原子力学会[2014年春の年会]2014年3月26日〜28日;N48、事故時の圧力容器下部ヘッドの破損挙動評価に関する検討、(3)下部ヘッドの破損評価解析(その1)、原子力機構 加治芳行氏他5名 参照]。
According to the analysis result display example in which the deformation behavior of the pressure vessel
炉心溶融が生じる万一の事故時には、圧力容器下部ヘッド20上に落下して体積される高温の炉心溶融物の温度・圧力に抗し切れず、溶接部保護装置33Dの金属カバー容器35が図6(B)に示すように変形し、損傷を受けることが予想される。
In the event of an accident in which core melting occurs, the
第4の実施形態に示された溶接部保護装置33Dは、金属カバー容器35の内部にリブ40あるいはリバーが配設され、事故時に炉心溶融物の温度や圧力を受けて金属カバー容器35が変形すると、図6(B)に示すように金属カバー容器35内部のリブ40あるいはリバーの凹凸結合が外れる。
In the welded
金属カバー容器35の内部に配設されたリブ40あるいはリバーの凹凸結合が外れると、金属カバー容器35の外部から内部に至る熱伝達経路が遮断され、断熱材36による熱断熱機能を向上させることができる。溶接部保護装置33Dは、リブ40あるいはリバーによる外部から内部への熱伝達経路が遮断されることで、溶接部30の温度を融点以下に保つことができる。溶接部30の溶融・損傷を防ぎ、溶接部30の溶融による貫通部材21の落下を防止することができる。
When the
したがって、炉心溶融が生じる事故時にも、溶接部保護装置33Dは、高温の炉心溶融物による溶接部30の溶融、変形、損傷を防止することができ、貫通部材21を固定・保持する溶接部30を熱的に保護し、健全性を維持することができる。
Therefore, the welded
[第4の実施形態の効果]
第4の実施形態に係る原子炉圧力容器10の溶接部保護装置33Dにおいては、原子炉の通常運転時の冷却水の水圧では、金属カバー容器35の変形を防止でき、金属カバー容器35内部のリブ40あるいはリバーは補剛部材として機能し、溶接部30の損傷を防止することができる。
[Effect of the fourth embodiment]
In the welded
また、炉心溶融が生じる万一の事故時には、高温の炉心溶融物の温度圧力により溶接部保護装置33Dの変形や損傷が生じても、金属カバー容器35の変形とリブ40あるいはリバーの凹凸結合の外れとを許容することで、金属カバー容器35の外部から内部への熱伝達経路を遮断することができ、溶接部30のか温度を融点以下に保つことで、溶接部30の損傷を防止できる。したがって、溶接部30の溶融・損傷を防ぎ、貫通部材21の落下を防止でき、溶接部30を保護することができる。
In the unlikely event of a core melting, even if the welded
[第5の実施形態]
次に、原子炉圧力容器の第5の実施形態を図7(A)および(B)を参照して説明する。
[Fifth Embodiment]
Next, a fifth embodiment of the reactor pressure vessel will be described with reference to FIGS. 7 (A) and 7 (B).
図7(A)および(B)は、原子炉圧力容器10の溶接部保護装置33Eの片側縦断面構造を部分的に示す概略図である。図6(A)および(B)に示された第4の実施形態と同じ構成には、同一符号を付して重複説明を省略する。
FIGS. 7A and 7B are schematic views partially showing a one-side longitudinal cross-sectional structure of the welded
図7(A)に示される原子炉圧力容器の溶接部保護装置33Eは、図3(A),図4(A)および図5(A)に示すように、圧力容器下鏡の圧力容器下部ヘッド20の突出位置(スタブチューブ29)上部に位置する溶接部30の周囲を覆い保護するものである。圧力容器下部ヘッド20突出位置の溶接部30は、原子炉圧力容器10底部を貫通する貫通部材21を固定保持するものである。溶接部保護装置33Eは、貫通部材21を固定保持する溶接部30の周囲を覆って装着され、設けられる。
As shown in FIGS. 3 (A), 4 (A) and 5 (A), the reactor pressure vessel weld
第5の実施形態の原子炉圧力容器の溶接部保護装置33Eは、トーラス状あるいはドーナツ金属カバー容器35内に断熱材36が収容される一方、金属カバー容器35の内部に板状補剛部材あるいはバー状補剛部材のリブ43あるいはリバーが配設される。リブ43あるいはリバーは金属カバー容器35外周側内壁および内周側内壁にそれぞれ固定される。両内壁に固定されたリブ43あるいはリバーは、中間部44が一部低融点金属あるいは樹脂材で構成される。低融点金属には、リブ43あるいはリバーにより融点の低い金属材料、例えば銅(Cu)、銀(Ag)、亜鉛(Zn)等で構成され、樹脂材にはプラスチックがある。低融点金属や樹脂材は、原子炉の通常運転時の冷却材温度では溶融することなく固定状態に保たれる。
In the reactor pressure vessel welded
第5の実施形態の原子炉圧力容器の溶接部保護装置33Eでは、トーラス状あるいはドーナツ状の金属カバー容器35内部に配設されたリブ43あるいはリバーは、原子炉の通常運転時の水圧では、補剛部材として機能し、低融点金属や樹脂材が溶融して変質するのを防止することができる。
In the reactor pressure vessel welded
炉心溶融が生じる万一の事故時には、圧力容器下部ヘッド20上に落下して体積される高温の炉心溶融物の温度・圧力に抗し切れず、溶接部保護装置33Eの金属カバー容器35が変形し、損傷を受けることが予想される。
In the unlikely event that the core melts, the
第5の実施形態に示された溶接部保護装置33Eは、金属カバー容器35の内部に配設されたリブ43あるいはリバーの一部が低融点金属あるいは樹脂材で構成されておれ、万一の炉心溶融時に炉心溶融物が落下して、温度・圧力を受けると、金属カバー容器35内部にリブ43あるいはリバーの低融点金属あるいは樹脂材の部分が溶融したり、変質する。この溶接部保護装置33Eは、リブ43あるいはリバーの低融点金属あるいは樹脂材で構成された部分が溶融あるいは変質することを利用し、外部から内部への熱伝達経路を遮断し、溶接部30の温度を融点以下に保って溶融を防ぎ、溶接部30を保護することができる。したがって、溶接部30の溶融・損傷を防止し、貫通部材21の落下を防ぐことができる。
In the welded
[第5の実施形態の効果]
第5の実施形態に係る原子炉圧力容器の溶接部保護装置33Eにおいては、原子炉の通常運転時には第4の実施形態で説明した溶接部保護装置33Dと同様の効果を奏することができる。
[Effect of Fifth Embodiment]
In the reactor pressure vessel welded
また、炉心溶融が生じる万一の事故時には、高温の炉心溶融物の温度・圧力により、溶接部保護装置33Eにおいて、金属カバー容器35内部に配設されたリブ43あるいはリバーの低融点金属あるいは樹脂材で構成された部分が溶融あるいは変質することで、外部から内部への熱伝達経路を遮断することができ、溶接部30の温度を融点以下に保って保護し、貫通部材21の落下を防ぐことができる。
In the unlikely event that the core melts, the low temperature metal or resin of the
[第6の実施形態]
次に、原子炉圧力容器の第6の実施形態を図8(A)および(B)を参照して説明する。
[Sixth Embodiment]
Next, a sixth embodiment of the reactor pressure vessel will be described with reference to FIGS. 8 (A) and 8 (B).
図8(A)および(B)は、原子炉圧力容器の溶接部保護装置33Fの片側縦断面構造を部分的に示す概略図である。図6(A)および(B)に示された第4の実施形態と同じ構成には、同一符号を付して重複説明を省略する。
FIGS. 8A and 8B are schematic views partially showing a one-side longitudinal cross-sectional structure of a welded
図8(A)に示される原子炉圧力容器の溶接部保護装置33Fは、圧力容器下鏡の圧力容器下部ヘッド20の突出位置(スタブチューブ29)上の溶接部30の周囲を覆って保護するものである。圧力容器下部ヘッド20突出位置上の溶接部30は、原子炉圧力容器10底部を貫通する貫通部材21を固定保持するもので、この貫通部材21を固定保持する溶接部30の周囲を覆うように溶接部保護装置33Fが設けられる。
The reactor pressure vessel welded
溶接部保護装置33Fは、トーラス状あるいはドーナツ状金属カバー容器35内に断熱材36が収容される。金属カバー容器35の内部には板状補剛部材のリブ45あるいはバー(棒)状補剛部材のリバーが水平方向に配設される。リブ45あるいはリバーの両端部が金属カバー容器35の内壁(外周側内壁および内周側内壁)に固定される。リブ45あるいはリバーは中間部46が途中で凹凸結合され、弱化領域が形成されて嵌め合される。リブ45あるいはリバーの周囲には遮熱コーティング48が施される。
In the welded
第6の実施形態に示された原子炉圧力容器10の溶接部保護装置33Fでは、トーラス状あるいはドーナツ状金属カバー容器35内に配設されるリブ45あるいはリバーは、原子炉の通常運転時の水圧では補剛部材として機能し、リブ45あるいはリバーが変形したり、弱化領域の凹凸結合が外れるのを防止することができる。リブ45やリバーには酸化ジルコニウムやアルミナ等の材料が用いられる。
In the welded
炉心溶融が生じる万一の事故時には、圧力容器下部ヘッド20上に落下して体積される高温の炉心溶融物の温度・圧力に抗し切れず、溶接部保護装置33Fの金属カバー容器35が変形し、損傷を受けることが予想される。
In the unlikely event of a core melting, the
第6の実施形態に示された溶接部保護装置33Fは、金属カバー容器35の内部にリブ45あるいはリバーが配設され、事故時に炉心溶融物の温度や圧力を受けて金属カバー容器35が変形すると、図8(B)に示すように金属カバー容器35内部のリブ45あるいはリバーの中間部46の凹凸結合が外れる。
In the welded
金属カバー容器35の内部に配設されたリブ45あるいはリバーの凹凸結合が外れると、金属カバー容器35の外部から内部に至る熱伝達経路が遮断され、遮熱コーティングや断熱材36の作用で熱断熱機能を向上させることができる。溶接部保護装置33Fは、リブ45あるいはリバーによる外部から内部への熱伝達経路が遮断されることで、溶接部30の温度を融点以下に保つことができる。このため、溶接部30の溶融・損傷を防ぎ、溶接部30の溶融による貫通部材21の落下を防止することができる。
When the
したがって、炉心溶融が生じる事故時にも、溶接部保護装置33Fは、高温の炉心溶融物による溶接部30の溶融、変形、損傷を防止することができ、貫通部材21を固定・保持する溶接部30を熱的に保護し、健全性を維持することができる。
Therefore, the welded
[第6の実施形態の効果]
第6の実施形態に係る原子炉圧力容器の溶接部保護装置33Fにおいては、原子炉の通常運転時や炉心溶融が生じる事故時には、第4の実施形態で説明した溶接部保護装置33Dと同様の効果を奏する他、溶接部保護装置33Fの金属カバー容器35内部に配設されるリブ45あるいはリバー同士が再接触した場合でも、遮熱コーティング48によって再び熱伝達経路とすることを防ぐことができる。
[Effect of the sixth embodiment]
In the reactor pressure vessel welded
[その他の実施形態]
本発明の実施形態に示された原子炉圧力容器の溶接部保護装置では、圧力容器下部ヘッド貫通部上の溶接部保護装置において、金属カバー容器の内部に補剛部材である金属製のリブやリバーを配設した補強構造の例を示したが、図9の第7の実施形態で示すように、溶接部保護装置33Gは、金属カバー容器35内部に配設されるリブあるいはリバー50全体をセラミックスあるいは樹脂材で構成してもよい。この場合、セラミックスあるいは樹脂材製のリブやリバー50は金属カバー容器35の内壁から突出する係止用突起51で保持され、固定されるように構成される。
[Other Embodiments]
In the reactor pressure vessel welded part protecting apparatus shown in the embodiment of the present invention, in the welded part protecting apparatus on the pressure vessel lower head penetration part, a metal rib or stiffening member is provided inside the metal cover container. Although the example of the reinforcing structure in which the river is disposed has been shown, as shown in the seventh embodiment of FIG. 9, the welded part protection device 33G has the rib disposed inside the
また、溶接部保護装置33Hは、図10の第8の実施形態に示すように、セラミックス52をステンレス鋼製カバー53で被覆して補剛部材のリブやレバー54を構成し、このリブやリバー54を金属カバー容器35の内壁に溶接にて固定させる補強構造としてもよい。
Further, as shown in the eighth embodiment of FIG. 10, the welded
いずれにしても、本発明の実施形態は、原子炉(圧力)容器の底部貫通部に貫通部材が挿入されて貫通し、原子炉(圧力)容器の貫通部上の溶接部で貫通部材を固定支持する溶接部を保護する補強構造の溶接部保護装置が設けられる。 In any case, in the embodiment of the present invention, the penetrating member is inserted into the bottom penetrating portion of the reactor (pressure) vessel and penetrates, and the penetrating member is fixed by the weld on the penetrating portion of the reactor (pressure) vessel. A welded part protection device having a reinforcing structure for protecting the supporting welded part is provided.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
10…原子炉圧力容器、11…炉心、12…炉心シュラウド、13…シュラウドサポート、14…シュラウドヘッド、15…スタンドパイプ、16…気水分離器、17…蒸気乾燥器、20…圧力容器下部ヘッド(圧力容器下鏡)、21…貫通部材(制御棒駆動機構(CRD)ハウジング)、22…制御棒案内管、23…主蒸気ノズル、24…給水ノズル、25…再循環出口ノズル、26…再循環入口ノズル、28…貫通部、29…スタブチューブ(サポートチューブ)、30…溶接部、31…炉心下部プレナム、33,33A〜33H…溶接部保護装置、35…金属カバー容器、36…断熱材、37…垂直リブ(板状補剛部材)、38…水平リブ(板状補剛部材)、39…リバー(棒状補剛部材)、40,43,45…リブあるいはリバー(補剛部材)、41,46…中間部(凹凸結合部)、44…低融点金属または樹脂材、48…遮断コーティング、50,54…リブあるいはリバー(補剛部材)、51…係止用突起、52…セラミックス、55…ステンレス鋼製カバー。
DESCRIPTION OF
Claims (10)
前記溶接部保護装置は、前記金属カバー容器の内部に補剛部材のリブあるいはリバーが配設されたことを特徴とする原子炉圧力容器。 A metal cover container covering the heat insulating material is provided with a welded part protection device installed around the welded part on the reactor pressure vessel penetration part,
The reactor pressure vessel according to claim 1, wherein the welded part protection device is provided with a rib or river of a stiffening member inside the metal cover vessel.
断熱材を覆う金属カバー容器の内部に、補剛部材のリブあるいはリバーを配設した溶接部保護装置を準備し、
前記貫通部材を固定する溶接部の周囲に前記溶接部保護装置を外側から覆うように設置して、前記溶接保護装置を取り付けることを特徴とする原子炉圧力容器の溶接部保護装置の取付方法。 While fixing the penetrating member by the weld on the reactor pressure vessel penetration,
Prepare a welding part protection device in which ribs or rivers of stiffening members are arranged inside the metal cover container covering the heat insulating material,
A method for attaching a welded part protecting device for a reactor pressure vessel, wherein the welded protective device is installed around the welded part that fixes the penetrating member so as to cover the welded part from the outside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014207338A JP2016075630A (en) | 2014-10-08 | 2014-10-08 | Reactor pressure vessel and mounting method of welding protection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014207338A JP2016075630A (en) | 2014-10-08 | 2014-10-08 | Reactor pressure vessel and mounting method of welding protection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016075630A true JP2016075630A (en) | 2016-05-12 |
Family
ID=55951383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014207338A Pending JP2016075630A (en) | 2014-10-08 | 2014-10-08 | Reactor pressure vessel and mounting method of welding protection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016075630A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106903397A (en) * | 2017-03-31 | 2017-06-30 | 中国核工业第五建设有限公司 | The method of welding AP1000 nuclear power station CV cylinders and penetration piece sleeve |
-
2014
- 2014-10-08 JP JP2014207338A patent/JP2016075630A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106903397A (en) * | 2017-03-31 | 2017-06-30 | 中国核工业第五建设有限公司 | The method of welding AP1000 nuclear power station CV cylinders and penetration piece sleeve |
CN106903397B (en) * | 2017-03-31 | 2019-07-19 | 中国核工业第五建设有限公司 | The method for welding AP1000 nuclear power station CV cylinder and penetration piece sleeve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107210070B (en) | The cooling and closed system of water cooling, water-moderated reactor reactor core fusant | |
CN107251153B (en) | Nuclear reactor core melt cooling and containment system | |
JP6452732B2 (en) | Flow distribution device and nuclear reactor module having the device | |
JPH03152497A (en) | Passive type dry well water injector | |
JP5759137B2 (en) | Reactor melting prevention cooling system | |
JP4828963B2 (en) | Core melt cooling device, reactor containment vessel, and method of installing core melt cooling device | |
JP2013007574A (en) | Nuclear power plant | |
JP6310449B2 (en) | Fuel bundles for liquid metal cooled reactors. | |
JP2013104711A (en) | Liquid metal cooled nuclear reactor | |
US6195405B1 (en) | Gap structure for nuclear reactor vessel | |
JP2011163829A (en) | Corium cooling structure | |
JP2013015375A (en) | Reactivity suppression method for nuclear fuel and reactivity suppression device therefor | |
JP2016075630A (en) | Reactor pressure vessel and mounting method of welding protection device | |
JP2008139023A (en) | Device for holding melt in reactor and reactor containment vessel | |
JP2012021877A (en) | Core molten material holding device and containment vessel | |
WO2013150750A1 (en) | Structure for protecting penetrating part of reactor pressure vessel, and reactor | |
JP6448224B2 (en) | Reactor pressure vessel reactor bottom protection structure | |
JP2006308395A (en) | Fast reactor and construction method for fast reactor facility | |
JP2013076675A (en) | Passive cooling system for liquid metal cooling reactor | |
KR20140060768A (en) | Support structure for nuclear reactor | |
JP2021032693A (en) | Access hatch and access hatch protection system | |
JP6878203B2 (en) | Core melt receiver and its installation method, heat-resistant parts, and nuclear facilities | |
JP2016090408A (en) | Nuclear reactor containment vessel | |
JP2017040588A (en) | Nuclear reactor facility | |
WO2017179407A1 (en) | Fuel debris holding device |