JPH08189986A - Structure for fixing pressure vessel housing - Google Patents

Structure for fixing pressure vessel housing

Info

Publication number
JPH08189986A
JPH08189986A JP7001322A JP132295A JPH08189986A JP H08189986 A JPH08189986 A JP H08189986A JP 7001322 A JP7001322 A JP 7001322A JP 132295 A JP132295 A JP 132295A JP H08189986 A JPH08189986 A JP H08189986A
Authority
JP
Japan
Prior art keywords
housing
end plate
gap
pressure vessel
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7001322A
Other languages
Japanese (ja)
Inventor
Koichi Matsumoto
耕一 松本
Etsuro Domoto
悦朗 堂本
Masao Kubo
正雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP7001322A priority Critical patent/JPH08189986A/en
Publication of JPH08189986A publication Critical patent/JPH08189986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PURPOSE: To mitigate thermal stress generating in end plates and welding part of a vessel in starting operation by making a gap formed between the inner surface of end plate penetration hole of a housing and the outer surface of the housing larger than the gap formed between the inner surface of stub tube or builtup welding parts and the outer surface of the housing. CONSTITUTION: The gaps between a housing 3 and a stub tube 4, and between the housing and an end plate 2 are changed by the tube 4 part and the end plate 2 part. More in detail, the gap 7 formed between the housing 3 and the end plate 2 is made ten times or more the gap between the housing 3 and the tube 4. By providing the gap 7, the air layer formed in the gap 7 works as insulator, suppresses the thermal flow from the end plate 2 to the internal fluid 8 in the housing 3 and makes temperature rise of the end plate 2 at startup easy, and the temperature difference between the tube 4 and the end plate 2 decreases, which leads to mitigating the thermal stress generated in the welding part 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉等の圧力容器の鏡
板に、管台(スタッブチューブ)等を介して貫通して取
り付けられる圧力容器のハウジング取付構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a housing mounting structure for a pressure vessel, which is attached to an end plate of a pressure vessel of a nuclear reactor or the like through a nozzle (stub tube) or the like.

【0002】[0002]

【従来の技術】従来の圧力容器の鏡板に取り付けられる
ハウジングの貫通孔の構造は、例えば、図5に示す圧力
容器1の鏡板2(A部)に取り付けられるものとして、
図6に、その要部拡大断面構造を示す。図において、ハ
ウジング3は、鏡板2に溶接部5により圧力容器1の内
面側に取り付けられたスタッブチューブ4(または肉盛
溶接部5)を介し、溶接部6により取り付けられてい
る。そして、ハウジング3は鏡板2を貫通し、ハウジン
グ3と、スタッブチューブ4および鏡板2の間に形成さ
れるギャップ7は、一般的に、地震および外部荷重によ
るハウジング3の振れを止める溶接部6への力の伝達を
低減する目的で非常に小さく設定されている。例えば、
沸騰水型原子炉(BWR)の圧力容器の制御棒駆動機構
ハウジングの貫通孔の場合のギャップ7は0.4mm以
下となっている。しかし、ハウジング3の外周面は、圧
力容器1の内部流体9に接触する。この内部流体9は、
圧力容器の場合に高温であるのが普通である。このため
ハウジング3の内部には、その内部構造物の高温化によ
る機能停止を保護する目的で、圧力容器1の内部流体9
よりも低温の内部流体8をハウジング3内に流すことが
ある。この場合、圧力容器の運転によって内部流体9の
温度は上昇し高温となるので、図6に示す、鏡板2、ハ
ウジング3、スタッブチューブ4、溶接部5、溶接部6
の間に温度差が生じ熱応力が発生する。この熱応力は、
圧力容器1の運転中において変動するが、一般的には圧
力容器1の起動運転、すなわち、圧力容器1の内部流体
9の温度上昇時において特に熱応力が大きくなる。圧力
容器1の起動運転において、圧力容器1の内部流体9は
徐々に温度上昇するが、スタッブチューブ4および鏡板
2はそれらの熱容量が異なるため起動運転中に温度差が
生じる。鏡板2は、スタッブチューブ4に比較して板厚
が非常に厚く、熱容量も大きいために圧力容器1の内部
流体9が温度上昇しても、なかなか昇温しない。これに
対し、スタッブチューブ4は熱容量が小さいために圧力
容器の内部流体9の温度上昇に追従しやすい。このた
め、スタッブチューブ4と鏡板2に温度差が生じ溶接部
5に熱応力を発生するが、ハウジング3内に低温のハウ
ジング3の内部流体8が流れる場合は、鏡板2の熱をギ
ャップ(隙間)7およびハウジング3を介して奪うた
め、さらに鏡板2の起動運転時の温度上昇は遅延し、ス
タッブチューブ4と鏡板2の温度差をさらに生じさせる
こととなり、熱応力が増大することになる。 なお、従
来技術として、特公平5−64758号公報、特開昭6
1−270693号公報等が挙げられる。
2. Description of the Related Art A conventional through-hole structure of a housing attached to an end plate of a pressure vessel is, for example, as shown in FIG.
FIG. 6 shows an enlarged cross-sectional structure of the relevant part. In the figure, the housing 3 is attached to the end plate 2 by a welded portion 6 via a stub tube 4 (or an overlay welded portion 5) attached to the inner surface side of the pressure vessel 1 by a welded portion 5. Then, the housing 3 penetrates the end plate 2, and the gap 7 formed between the housing 3 and the stub tube 4 and the end plate 2 is generally connected to the welded portion 6 for stopping the shake of the housing 3 due to an earthquake and an external load. It is set to be very small for the purpose of reducing the transmission of force. For example,
In the case of the through hole of the control rod drive mechanism housing of the pressure vessel of a boiling water reactor (BWR), the gap 7 is 0.4 mm or less. However, the outer peripheral surface of the housing 3 contacts the internal fluid 9 of the pressure vessel 1. This internal fluid 9 is
High temperatures are usually the case in pressure vessels. Therefore, inside the housing 3, the internal fluid 9 of the pressure vessel 1 is protected for the purpose of protecting the internal structure from the function stop due to the high temperature.
A lower temperature internal fluid 8 may flow into the housing 3. In this case, since the temperature of the internal fluid 9 rises and becomes high due to the operation of the pressure vessel, the end plate 2, the housing 3, the stub tube 4, the welded portion 5, and the welded portion 6 shown in FIG.
A temperature difference occurs between the two and thermal stress is generated. This thermal stress is
Although it fluctuates during the operation of the pressure vessel 1, generally, the thermal stress becomes particularly large during the startup operation of the pressure vessel 1, that is, when the temperature of the internal fluid 9 of the pressure vessel 1 rises. In the startup operation of the pressure vessel 1, the temperature of the internal fluid 9 of the pressure vessel 1 gradually rises, but the stub tube 4 and the end plate 2 have different heat capacities, so that a temperature difference occurs during the startup operation. Since the end plate 2 has a very large plate thickness as compared with the stub tube 4 and has a large heat capacity, even if the temperature of the internal fluid 9 of the pressure vessel 1 rises, it does not easily rise. On the other hand, since the stub tube 4 has a small heat capacity, it is easy to follow the temperature rise of the internal fluid 9 in the pressure vessel. Therefore, a temperature difference is generated between the stub tube 4 and the end plate 2, and thermal stress is generated in the welded portion 5. However, when the internal fluid 8 of the low-temperature housing 3 flows into the housing 3, the heat of the end plate 2 is changed to a gap (gap). ) 7 and the housing 3, the temperature rise during the start-up operation of the end plate 2 is further delayed, and the temperature difference between the stub tube 4 and the end plate 2 is further generated, and the thermal stress increases. As prior art, Japanese Patent Publication No. 5-64758 and Japanese Patent Laid-Open No.
For example, JP-A 1-270693 can be cited.

【0003】[0003]

【発明が解決しようとする課題】上述したごとく、従来
技術において、特に圧力容器1の起動運転時において、
圧力容器の内部流体は徐々に昇温するが、スタッブチュ
ーブおよび鏡板はそれぞれ熱容量が異なるため温度差が
生じる。鏡板は、スタッブチューブに比較して板厚が非
常に厚く、熱容量も大きいため、圧力容器の内部流体が
昇温してもなかなか温度が上昇しない。これに対し、ス
タッブチューブは熱容量が小さいために圧力容器の内部
流体の温度上昇に追従しやすい。このため、スタッブチ
ューブと鏡板に温度差が生じ溶接部5に熱応力が発生す
るが、ハウジング内に低温の内部流体が流れる場合は、
鏡板の熱を、ギャップ(隙間)およびハウジングを介し
て奪うため、さらに鏡板の起動運転時の温度上昇は遅延
し、スタッブチューブと鏡板の温度差が大きくなり熱応
力は著しく増大するという問題があった。
As described above, in the prior art, especially during the startup operation of the pressure vessel 1,
The temperature of the fluid inside the pressure vessel gradually rises, but the stub tube and the end plate have different heat capacities, which causes a temperature difference. Since the end plate has an extremely large plate thickness and a large heat capacity as compared with the stub tube, the temperature does not rise easily even when the temperature of the internal fluid of the pressure vessel rises. On the other hand, since the stub tube has a small heat capacity, it easily follows the temperature rise of the internal fluid of the pressure vessel. Therefore, a temperature difference occurs between the stub tube and the end plate, and thermal stress is generated in the welded portion 5, but when a low-temperature internal fluid flows in the housing,
Since the heat of the end plate is taken away through the gap and the housing, the temperature rise during the start-up operation of the end plate is further delayed, and the temperature difference between the stub tube and the end plate becomes large, resulting in a significant increase in thermal stress. It was

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、圧力容器の起動運転時に
おける鏡板とハウジングの貫通取付け溶接部に生じる熱
応力を緩和し、信頼性の高い原子力等の各種の圧力容器
鏡板のハウジング貫通取付け構造を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to alleviate the thermal stress generated in the penetration mounting welded portion between the end plate and the housing at the time of start-up operation of the pressure vessel, which is highly reliable. An object of the present invention is to provide a housing penetrating mounting structure for end plates of various pressure vessels such as nuclear power.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、本発明は特許請求の範囲に記載されている
ような構成とするものである。すなわち、本発明は請求
項1に記載のように、圧力容器の鏡板に、スタッブチュ
ーブを介して、肉盛り溶接によりハウジングを貫通させ
て取り付ける圧力容器のハウジング取付構造において、
上記ハウジングの鏡板貫通孔の内面とハウジング外周面
との間に形成されるギャップを、上記スタッブチューブ
または肉盛り溶接部の内面と上記ハウジングの外周面と
の間に形成されるギャップよりも大きくして、上記ハウ
ジングの鏡板貫通孔の内面とハウジング外周面との間に
断熱のための間隙を形成した圧力容器のハウジング取付
構造とするものである。また、本発明は請求項2に記載
のように、圧力容器の鏡板に、スタッブチューブを介し
て、肉盛り溶接によりハウジングを貫通させて取り付け
る圧力容器のハウジング取付構造において、上記ハウジ
ングの鏡板貫通孔の内面とハウジング外周面との間に形
成されるギャップを、上記スタッブチューブまたは肉盛
り溶接部の内面と上記ハウジングの外周面との間に形成
されるギャップよりも大きくして、該ギャップ部に断熱
材を充填した構造とするものである。また、本発明は請
求項3に記載のように、請求項1または請求項2におい
て、ハウジングの鏡板貫通孔の内面とハウジング外周面
との間に形成されるギャップを、スタッブチューブまた
は肉盛り溶接部の内面と上記ハウジングの外周面との間
に形成されるギャップの10倍以上とするものである。
また、本発明は請求項4に記載のように、請求項1ない
し請求項3のいずれか1項において、ハウジングの鏡板
貫通孔の内面とハウジング外周面との間に形成するギャ
ップの形状を、上記鏡板の内面側に凹状の間隙部を形成
するか、もしくはハウジングの外周側に凹状の間隙部を
形成して、該凹状の間隙部に形成される凸部により上記
ハウジングの外力による横振れを抑止する構造とするも
のである。また、本発明は請求項5に記載のように、請
求項1ないし請求項4のいずれか1項において、スタッ
ブチューブまたは肉盛り溶接部の内面と上記ハウジング
の外周面との間に形成されるギャップは0.4mm以下
であり、ハウジングの鏡板貫通孔の内面とハウジング外
周面との間に形成されるギャップを4mm以上とするも
のである。
In order to achieve the above-mentioned object of the present invention, the present invention has a structure as described in the claims. That is, according to the present invention, as described in claim 1, in a housing mounting structure for a pressure vessel, which is attached to the end plate of the pressure vessel via a stub tube by penetrating the housing by build-up welding,
The gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing is made larger than the gap formed between the inner surface of the stub tube or build-up weld and the outer peripheral surface of the housing. Thus, a housing mounting structure for a pressure vessel is formed in which a gap for heat insulation is formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing. Further, according to a second aspect of the present invention, in the housing mounting structure of the pressure vessel, which is attached to the end plate of the pressure vessel through the stub tube by overlay welding, the end plate through hole of the housing is provided. The gap formed between the inner surface of the housing and the outer peripheral surface of the housing to be larger than the gap formed between the inner surface of the stub tube or buildup weld and the outer peripheral surface of the housing. The structure is filled with a heat insulating material. Further, according to the present invention, as defined in claim 3, in claim 1 or 2, the gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing is provided with a stub tube or build-up welding. The gap is 10 times or more the gap formed between the inner surface of the portion and the outer peripheral surface of the housing.
Further, according to the present invention, as described in claim 4, in any one of claims 1 to 3, the shape of the gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing, A concave gap portion is formed on the inner surface side of the end plate or a concave gap portion is formed on the outer peripheral side of the housing, and the lateral deflection due to the external force of the housing is caused by the convex portion formed in the concave gap portion. It is a structure to suppress. Further, according to a fifth aspect of the present invention, in any one of the first to fourth aspects, the present invention is formed between the inner surface of the stub tube or the weld overlay and the outer peripheral surface of the housing. The gap is 0.4 mm or less, and the gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing is 4 mm or more.

【0006】[0006]

【作用】本発明の圧力容器鏡板のハウジング取付構造
は、請求項1に記載のように、ハウジングとスタッブチ
ューブまたは肉盛り溶接部との間のギャップを、スタッ
ブチューブと鏡板の部分とで異なるものとなし、上記ハ
ウジングとスタッブチューブもしくは肉盛り溶接部との
間のギャップは従来と同様に非常に狭いままとし、ハウ
ジングと鏡板の間のギャップを、上記スタッブチューブ
部分のギャップよりも大きくするものである。このよう
に設定すると、ハウジングと鏡板の間のギャップ部は、
空気層であるためメタルとの接触に比べ熱を伝えにく
く、厚いギャップ、すなわち空気層の場合には断熱材の
働きをする。したがって、ハウジングと鏡板との間のギ
ャップを大きく設定することにより両者の間は断熱さ
れ、鏡板から低温のハウジングの内部流体への熱の伝達
が抑制されるため、鏡板は昇温しやすくなる。また、ハ
ウジングとスタッブチューブとの間のギャップは、従来
と同様に非常に狭いためギャップ部の空気層の断熱材と
しての働きは小さく、スタッブチューブの熱は、低温の
ハウジングの内部流体によって冷却されることになりス
タッブチューブの温度上昇は抑制される。このため、圧
力容器の起動運転時において鏡板は温度上昇しやすくな
り、起動運転時におけるハウジングと鏡板との間の温度
差を小さくすることができ熱応力が緩和されることにな
る。また、請求項2に記載のように、ハウジングと鏡板
との間のギャップ部に、通常用いられている耐熱性の断
熱材を充填することにより、空気層よりも断熱効果を高
めることができ、鏡板から低温のハウジングの内部流体
への熱の伝達をいっそう抑制することができ、起動運転
時のハウジングと鏡板との間の温度差を一段と小さくす
ることができ熱応力を緩和することができる。また、請
求項3に記載のように、具体的には、ハウジングと鏡板
の間のギャップをスタッブチューブ部分のギャップより
も10倍以上大きくするものであって、このようにする
ことにより、上記ギャップ部の断熱効果が高まり、起動
運転時におけるハウジングと鏡板との間の温度差を小さ
くすることができ熱応力を緩和することができる。ま
た、請求項4に記載のように、ハウジングの鏡板貫通孔
の内面とハウジング外周面との間に形成するギャップの
形状を、上記鏡板の内面側に凹状の間隙部を形成する
か、もしくはハウジングの外周側に凹状の間隙部を形成
して、該凹状の間隙部に形成される凸部によって、上記
ハウジングにかかる地震やその他の外部からの力による
横振れを効果的に抑止することができる。また、請求項
5に記載のように、実際的に、スタッブチューブまたは
肉盛り溶接部の内面と上記ハウジングの外周面との間に
形成されるギャップは0.4mm以下とし、ハウジング
の鏡板貫通孔の内面とハウジング外周面との間に形成さ
れるギャップを4mm以上とすることにより、圧力容器
の起動運転時におけるハウジングと鏡板との間の温度差
を小さく保持することができ熱応力を効果的に緩和する
ことができる。従来技術における一例として、沸騰水型
原子炉圧力容器の制御棒駆動機構のハウジング貫通孔の
場合に、ハウジングと、スタッブチューブおよび鏡板と
の間のギャップは0.4mm以下に設定されている。こ
れを、本発明のハウジングと鏡板の部分におけるギャッ
プとして、上記ハウジングとスタッブチューブのギャッ
プの10倍、すなわち4mmとした場合に、ギャップ部
を通過する熱の移動率を示す熱伝達率は、近似的に空気
の熱伝導率をギャップ幅で割った伝達率で与えられる。
空気の熱伝導率は、350℃で約0.04kcal/mh℃
であるから、伝達率は、0.04kcal/mh℃÷0.0
04m=10kcal/m2h℃となる。一般に、圧力容器
の内部流体と鏡板との間の熱の伝達率は10000kca
l/m2h℃と高いため、上記のギャップ幅4mmは、本
発明の圧力容器の内部流体からの熱の流入量と比較して
十分に小さいため断熱効果は十分である言える。したが
って、ハウジングと鏡板との間のギャップを、従来技術
におけるギャップの10倍以上とすることにより熱応力
が緩和され本発明の目的を達成することができる。
According to the housing mounting structure of the pressure vessel end plate of the present invention, as described in claim 1, the gap between the housing and the stub tube or the weld overlay is different between the stub tube and the end plate. The gap between the housing and the stub tube or the weld overlay is kept very narrow as before, and the gap between the housing and the end plate is made larger than that of the stub tube. . With this setting, the gap between the housing and the end plate is
Since it is an air layer, it is less likely to transfer heat as compared with contact with metal, and acts as a heat insulating material in the case of a thick gap, that is, an air layer. Therefore, by setting a large gap between the housing and the end plate, the two are insulated from each other, and the heat transfer from the end plate to the internal fluid of the low-temperature housing is suppressed, so that the end plate easily rises in temperature. Also, since the gap between the housing and the stub tube is very narrow as in the conventional case, the air layer in the gap portion does not act as a heat insulating material, and the heat of the stub tube is cooled by the internal fluid of the low temperature housing. As a result, the temperature rise of the stub tube is suppressed. For this reason, the temperature of the end plate tends to rise during the startup operation of the pressure vessel, the temperature difference between the housing and the end plate during the startup operation can be reduced, and the thermal stress can be relieved. Further, as described in claim 2, by filling the gap portion between the housing and the end plate with a heat-resistant heat insulating material which is usually used, the heat insulating effect can be enhanced more than that of the air layer, The heat transfer from the end plate to the internal fluid of the low temperature housing can be further suppressed, the temperature difference between the housing and the end plate at the time of start-up operation can be further reduced, and the thermal stress can be relieved. Further, as described in claim 3, specifically, the gap between the housing and the end plate is made 10 times or more larger than the gap of the stub tube portion. The heat insulation effect is improved, the temperature difference between the housing and the end plate at the time of start-up operation can be reduced, and the thermal stress can be relieved. Further, as described in claim 4, the shape of the gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing is such that a concave gap portion is formed on the inner surface side of the end plate, or A concave gap portion is formed on the outer peripheral side of the housing, and the convex portion formed in the concave gap portion can effectively suppress lateral shake due to an earthquake applied to the housing or other external force. . Further, as described in claim 5, the gap formed between the inner surface of the stub tube or the build-up weld and the outer peripheral surface of the housing is 0.4 mm or less, and the end plate through hole of the housing is practically used. By setting the gap formed between the inner surface of the housing and the outer peripheral surface of the housing to 4 mm or more, the temperature difference between the housing and the end plate during the startup operation of the pressure vessel can be kept small, and the thermal stress can be effectively reduced. Can be relaxed. As an example in the prior art, in the case of a housing through hole of a control rod drive mechanism of a boiling water reactor pressure vessel, the gap between the housing and the stub tube and the end plate is set to 0.4 mm or less. When this is set as a gap between the housing and the end plate of the present invention and is 10 times the gap between the housing and the stub tube, that is, 4 mm, the heat transfer coefficient indicating the transfer rate of heat passing through the gap is approximately It is given by the thermal conductivity of air divided by the gap width.
The thermal conductivity of air is about 0.04kcal / mh ° C at 350 ° C.
Therefore, the transfer rate is 0.04 kcal / mh ° C / 0.0.
04m = 10 kcal / m 2 h ° C. Generally, the heat transfer coefficient between the inner fluid of the pressure vessel and the end plate is 10,000 kca.
Since it is as high as 1 / m 2 h ° C., the above-mentioned gap width of 4 mm is sufficiently small as compared with the inflow amount of heat from the internal fluid of the pressure vessel of the present invention, so it can be said that the heat insulating effect is sufficient. Therefore, by setting the gap between the housing and the end plate to be 10 times or more the gap in the prior art, thermal stress is relieved and the object of the present invention can be achieved.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1は、本実施例で例示する圧
力容器鏡板のハウジング取付構造を示す模式図である。
図に示すとおり、本発明の特徴とするところはギャップ
7である。すなわち、ハウジング3とスタッブチューブ
4および鏡板2との間に形成されるギャップを、スタッ
ブチューブ4の部分と鏡板2の部分とで変え、ハウジン
グ3と鏡板2との間で形成するギャップ7の間隙の大き
さを、ハウジング3とスタッブチューブ4との間のギャ
ップ(間隙)の10倍以上としたハウジング取付構造で
ある。上記の大きさのギャップ7を設けることにより、
ギャップ7に形成される空気層が断熱材として働き、圧
力容器の起動運転時において鏡板2からハウジング3の
内部流体8への熱の流出を抑制し、起動運転時の鏡板2
が昇温しやすくなるため、スタッブチューブ4と鏡板2
との間の温度差が小さくなり溶接部5に発生する熱応力
が緩和される。本発明の他の実施例を、図2、図3、図
4、図5(a)、(b)および図6(a)、(b)に、
それぞれ示す。図2に示す実施例は、ハウジング3の外
面の一部を削って段差を付け、ギャップ7を確保した構
造である。また、図3に示す実施例は、ギャップ7を鏡
板2およびハウジング3の両方を削って形成して間隙を
確保した構造である。また、図4に示す実施例は、図1
に示した圧力容器鏡板のハウジング取付構造におけるギ
ャップ7に対し、溶接部5の溶接性および仕上げ加工性
を容易にするため、溶接部5の位置よりも幾分下方に離
れた位置にギャップ7を設けた構造である。また、図5
(a)に示す実施例は、図1に示した圧力容器鏡板のハ
ウジング取付構造におけるギャップ7に対し、鏡板2に
設けるハウジング貫通孔の間口近傍に突起部10を残し
て凹部構造としたものであり、ギャップ7による熱応力
の緩和と同時に、外部からの荷重を突起部10により振
れ止めする効果が生じる。図5(b)に示す実施例は、
図5(a)と同様の作用効果を有するもので、ギャップ
7と突起部10を確保するためにハウジング3の外面を
削って凹部構造を設けたものである。また、図6(a)
に示す実施例は、ギャップ7に断熱材を施すことによ
り、図1に示した実施例におけるハウジング3と鏡板2
との間の断熱効果をいっそう向上させる構造としたもの
である。図6(b)に示す実施例は、ギャップ7に断熱
材を施すことにより、図2に示した実施例におけるハウ
ジング3と鏡板2との間の断熱効果をいっそう向上させ
る構造としたものである。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing a housing mounting structure of a pressure vessel end plate exemplified in this embodiment.
As shown in the figure, the feature of the present invention is the gap 7. That is, the gap formed between the housing 3 and the stub tube 4 and the end plate 2 is changed between the portion of the stub tube 4 and the end plate 2, and the gap of the gap 7 formed between the housing 3 and the end plate 2 is changed. Is a housing mounting structure in which the size of is greater than or equal to 10 times the gap (gap) between the housing 3 and the stub tube 4. By providing the gap 7 having the above size,
The air layer formed in the gap 7 acts as a heat insulating material, and suppresses the outflow of heat from the end plate 2 to the internal fluid 8 of the housing 3 during the start-up operation of the pressure vessel, and the end plate 2 during the start-up operation.
Temperature rises easily, so the stub tube 4 and end plate 2
The temperature difference between and is reduced, and the thermal stress generated in the welded portion 5 is relaxed. Another embodiment of the present invention is shown in FIGS. 2, 3, 4, 5 (a), 5 (b) and 6 (a), 6 (b).
Shown respectively. The embodiment shown in FIG. 2 has a structure in which a part of the outer surface of the housing 3 is shaved to form a step and a gap 7 is secured. In the embodiment shown in FIG. 3, the gap 7 is formed by cutting both the end plate 2 and the housing 3 to secure the gap. Moreover, the embodiment shown in FIG.
In order to facilitate the weldability and finish workability of the welded portion 5 with respect to the gap 7 in the housing mounting structure for the pressure vessel end plate shown in Fig. 4, the gap 7 is provided at a position slightly below the position of the welded portion 5. It is the structure provided. Also, FIG.
The embodiment shown in (a) has a recessed structure in which the projection 10 is left in the vicinity of the front opening of the housing through hole provided in the mirror plate 2 with respect to the gap 7 in the housing mounting structure of the pressure vessel mirror plate shown in FIG. Therefore, the effect of restraining the load from the outside by the protrusion 10 is obtained at the same time as the thermal stress is relaxed by the gap 7. The embodiment shown in FIG.
It has the same effect as that of FIG. 5A, and the outer surface of the housing 3 is shaved to provide a concave structure in order to secure the gap 7 and the projection 10. In addition, FIG.
In the embodiment shown in FIG. 1, by providing a heat insulating material in the gap 7, the housing 3 and the end plate 2 in the embodiment shown in FIG.
It has a structure that further improves the heat insulating effect between and. The embodiment shown in FIG. 6B has a structure in which a heat insulating material is applied to the gap 7 to further improve the heat insulating effect between the housing 3 and the end plate 2 in the embodiment shown in FIG. .

【0008】[0008]

【発明の効果】以上詳細に説明したごとく、本発明の圧
力容器鏡板のハウジング取付構造は、ハウジングの鏡板
貫通孔の内面とハウジング外周面との間に断熱のための
間隙もしくは断熱層を設けているので、特に圧力容器の
起動運転時の温度上昇段階において、圧力容器鏡板とハ
ウジングの貫通取付け溶接部に生じる熱応力を緩和する
ことができ、信頼性の高い原子力等の各種の圧力容器鏡
板のハウジング貫通取付け構造を実現することができ
る。
As described above in detail, in the housing mounting structure of the pressure vessel end plate of the present invention, a gap or a heat insulating layer is provided between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing. Since it is possible to mitigate the thermal stress generated in the welded joint of the pressure vessel end plate and the through-hole of the housing, especially in the temperature rising stage at the time of start-up operation of the pressure vessel, the reliability of various pressure vessel end plates such as nuclear power can be reduced. A housing penetrating attachment structure can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において例示した圧力容器鏡板
のハウジング貫通取付構造を示す模式図。
FIG. 1 is a schematic diagram showing a housing penetrating mounting structure of a pressure vessel end plate illustrated in an embodiment of the present invention.

【図2】本発明の実施例において例示した他の圧力容器
鏡板のハウジング貫通取付構造を示す模式図。
FIG. 2 is a schematic view showing a housing penetrating mounting structure of another pressure vessel end plate illustrated in the embodiment of the invention.

【図3】本発明の実施例において例示した他の圧力容器
鏡板のハウジング貫通取付構造を示す模式図。
FIG. 3 is a schematic view showing another housing mounting structure for a pressure vessel end plate illustrated in the embodiment of the present invention.

【図4】本発明の実施例において例示した他の圧力容器
鏡板のハウジング貫通取付構造を示す模式図。
FIG. 4 is a schematic view showing a housing penetrating mounting structure of another pressure vessel end plate illustrated in the embodiment of the present invention.

【図5】本発明の実施例において例示した他の圧力容器
鏡板のハウジング貫通取付構造を示す模式図。
FIG. 5 is a schematic view showing another housing mounting structure for a pressure vessel end plate illustrated in the embodiment of the present invention.

【図6】本発明の実施例において例示した他の圧力容器
鏡板のハウジング貫通取付構造を示す模式図。
FIG. 6 is a schematic view showing a housing penetrating mounting structure of another pressure vessel end plate illustrated in the embodiment of the present invention.

【図7】従来の圧力容器全体の構成を示す模式図。FIG. 7 is a schematic diagram showing the overall configuration of a conventional pressure vessel.

【図8】従来の圧力容器鏡板のハウジング貫通取付構造
を示す模式図。
FIG. 8 is a schematic diagram showing a conventional housing penetrating mounting structure of a pressure vessel end plate.

【符号の説明】[Explanation of symbols]

1…圧力容器 2…鏡板 3…ハウジング 4…スタッブチューブ 5…溶接部 6…溶接部 7…ギャップ 8…ハウジングの内部流体 9…圧力容器の内部流体 10…突起部 11…断熱材 DESCRIPTION OF SYMBOLS 1 ... Pressure container 2 ... End plate 3 ... Housing 4 ... Stub tube 5 ... Welding part 6 ... Welding part 7 ... Gap 8 ... Internal fluid of housing 9 ... Internal fluid of pressure container 10 ... Protrusion 11 ... Insulating material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧力容器の鏡板に、スタッブチューブを介
して、肉盛り溶接によりハウジングを貫通させて取り付
ける圧力容器のハウジング取付構造において、上記ハウ
ジングの鏡板貫通孔の内面とハウジング外周面との間に
形成されるギャップを、上記スタッブチューブまたは肉
盛り溶接部の内面と上記ハウジングの外周面との間に形
成されるギャップよりも大きくして、上記ハウジングの
鏡板貫通孔の内面とハウジング外周面との間に断熱のた
めの間隙を形成してなることを特徴とする圧力容器のハ
ウジング取付構造。
1. A housing mounting structure for a pressure vessel, which is attached to an end plate of a pressure vessel through build-up welding through a stub tube, wherein a housing is mounted between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing. A gap formed between the inner surface of the stub tube or the build-up weld portion and the outer peripheral surface of the housing, and the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing. A housing mounting structure for a pressure vessel, characterized in that a gap for heat insulation is formed between them.
【請求項2】圧力容器の鏡板に、スタッブチューブを介
して、肉盛り溶接によりハウジングを貫通させて取り付
ける圧力容器のハウジング取付構造において、上記ハウ
ジングの鏡板貫通孔の内面とハウジング外周面との間に
形成されるギャップを、上記スタッブチューブまたは肉
盛り溶接部の内面と上記ハウジングの外周面との間に形
成されるギャップよりも大きくして、該ギャップ部に断
熱材を充填してなることを特徴とする圧力容器のハウジ
ング取付構造。
2. A housing mounting structure for a pressure container, which is mounted on a mirror plate of a pressure container through build-up welding through a stub tube, wherein the housing is mounted between the inner surface of the mirror plate through hole and the outer peripheral surface of the housing. The gap formed between the stub tube or the buildup weld portion and the outer peripheral surface of the housing is made larger, and the gap portion is filled with a heat insulating material. Characteristic pressure vessel housing mounting structure.
【請求項3】請求項1または請求項2において、ハウジ
ングの鏡板貫通孔の内面とハウジング外周面との間に形
成されるギャップを、スタッブチューブまたは肉盛り溶
接部の内面と上記ハウジングの外周面との間に形成され
るギャップよりも10倍以上に形成してなることを特徴
とする圧力容器のハウジング取付構造。
3. The gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing according to claim 1 or 2, wherein the inner surface of the stub tube or the build-up welding portion and the outer peripheral surface of the housing are formed. A housing mounting structure for a pressure vessel, characterized in that it is formed 10 times or more than a gap formed between the pressure vessel and the pressure vessel.
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、ハウジングの鏡板貫通孔の内面とハウジング外
周面との間に形成するギャップの形状を、上記鏡板の内
面側に凹状の間隙部を形成するか、もしくはハウジング
の外周側に凹状の間隙部を形成して、該凹状の間隙部に
形成される凸部により上記ハウジングの外力による横振
れを抑止する構造としたことを特徴とする圧力容器のハ
ウジング取付構造。
4. The shape of the gap formed between the inner surface of the end plate through hole of the housing and the outer peripheral surface of the housing according to any one of claims 1 to 3, wherein a concave gap is formed on the inner surface side of the end plate. Or a concave gap portion is formed on the outer peripheral side of the housing, and a convex portion formed in the concave gap portion suppresses lateral shake due to an external force of the housing. A pressure vessel housing mounting structure.
【請求項5】請求項1ないし請求項4のいずれか1項に
おいて、請求項4において、スタッブチューブまたは肉
盛り溶接部の内面と上記ハウジングの外周面との間に形
成されるギャップは0.4mm以下であり、ハウジング
の鏡板貫通孔の内面とハウジング外周面との間に形成さ
れるギャップが4mm以上としてなることを特徴とする
圧力容器のハウジング取付構造。
5. The gap according to any one of claims 1 to 4, wherein the gap formed between the inner surface of the stub tube or the build-up welded portion and the outer peripheral surface of the housing is 0. A housing mounting structure for a pressure vessel, wherein the housing is 4 mm or less, and the gap formed between the inner surface of the housing end plate through hole and the outer peripheral surface of the housing is 4 mm or more.
JP7001322A 1995-01-09 1995-01-09 Structure for fixing pressure vessel housing Pending JPH08189986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7001322A JPH08189986A (en) 1995-01-09 1995-01-09 Structure for fixing pressure vessel housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7001322A JPH08189986A (en) 1995-01-09 1995-01-09 Structure for fixing pressure vessel housing

Publications (1)

Publication Number Publication Date
JPH08189986A true JPH08189986A (en) 1996-07-23

Family

ID=11498266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7001322A Pending JPH08189986A (en) 1995-01-09 1995-01-09 Structure for fixing pressure vessel housing

Country Status (1)

Country Link
JP (1) JPH08189986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249327A (en) * 2003-02-20 2004-09-09 Toshiba Corp Welding equipment
JP2016003908A (en) * 2014-06-16 2016-01-12 株式会社東芝 Reactor bottom protection structure of nuclear reactor pressure vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249327A (en) * 2003-02-20 2004-09-09 Toshiba Corp Welding equipment
JP2016003908A (en) * 2014-06-16 2016-01-12 株式会社東芝 Reactor bottom protection structure of nuclear reactor pressure vessel

Similar Documents

Publication Publication Date Title
JPH08189986A (en) Structure for fixing pressure vessel housing
JP2789865B2 (en) Capacitor
JP3221989B2 (en) Fast reactor core
JPH0843575A (en) Core catcher
JPS6350791A (en) Safety vessel for fast breeder reactor
JPS60238788A (en) Liquid metal cooling type nuclear reactor
JPH1194978A (en) Reactor equipment
JPH11173446A (en) Melting plug for preventing electric corrosion
JP3964489B2 (en) Gas filled assembly
JPS6019987A (en) Hot water pump
JPH084982A (en) Duct
JP3933766B2 (en) Self-acting furnace stop device
JP2000316720A (en) Electric pot
JPS622721Y2 (en)
JPS6046493A (en) Nuclear reactor having fall preventive means of internal pump
JP3664417B2 (en) Self-acting furnace stop device
JPS6073200A (en) Safety device of pressure container
JPH03179295A (en) Protective structure of reactor vessel against heat
JPS6255635B2 (en)
JPH11174183A (en) Fuel spacer and fuel assembly
JPH0836074A (en) Vacuum container for nuclear fusion device
JPH07113889A (en) Reactor pressure vessel
JPH06258473A (en) Melting time output suppression type fuel element
JPH10106845A (en) Tank for electrical equipment
JPH08106974A (en) Heater for vertical type device