JP6446888B2 - Ultrasonic flaw detection method for round bars - Google Patents

Ultrasonic flaw detection method for round bars Download PDF

Info

Publication number
JP6446888B2
JP6446888B2 JP2014150357A JP2014150357A JP6446888B2 JP 6446888 B2 JP6446888 B2 JP 6446888B2 JP 2014150357 A JP2014150357 A JP 2014150357A JP 2014150357 A JP2014150357 A JP 2014150357A JP 6446888 B2 JP6446888 B2 JP 6446888B2
Authority
JP
Japan
Prior art keywords
round bar
ultrasonic
bar material
wave
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014150357A
Other languages
Japanese (ja)
Other versions
JP2016024142A (en
Inventor
森 大輔
大輔 森
たける 吉田
たける 吉田
啓司 樹神
啓司 樹神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014150357A priority Critical patent/JP6446888B2/en
Publication of JP2016024142A publication Critical patent/JP2016024142A/en
Application granted granted Critical
Publication of JP6446888B2 publication Critical patent/JP6446888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は丸棒材の超音波探傷方法に関し、特に丸棒材の表面疵と表面近くの表層疵を良好に識別して検出することができる超音波探傷方法に関する。   The present invention relates to an ultrasonic flaw detection method for a round bar material, and more particularly, to an ultrasonic flaw detection method that can satisfactorily identify and detect a surface flaw of a round bar material and a surface flaw near the surface.

丸棒材の外周表面に生じる表面疵と丸棒材の表面直下の内部に生じる表層疵を明確に識別できれば、表面疵は切削等で簡易に除去することにより丸棒材を良品化できることから製造歩留りが向上する。そこで、特許文献1では、サークル形状のアレイ型超音波探触子を使用して超音波ビームの振り角を調整し、丸棒材の内部に超音波を入射させることで表層疵の探傷を行うとともに、表面疵の探傷は丸棒材の表面に表面波を生起させることによって行うことが提案されている。   Manufacture because the round bar material can be made good by simply removing it by cutting etc., if the surface defect generated on the outer peripheral surface of the round bar material and the surface layer defect generated inside the round bar material can be clearly identified. Yield is improved. Therefore, in Patent Document 1, a circle-shaped array-type ultrasonic probe is used to adjust the swing angle of an ultrasonic beam, and ultrasonic waves are incident on the inside of a round bar to detect flaws on the surface layer. At the same time, it has been proposed that surface flaw detection be performed by generating surface waves on the surface of a round bar.

特開昭59−126952号JP 59-126952 A

しかし、上記従来の探傷方法では、表面疵の検出に表面波を利用しているために、丸棒材の表面粗さによって疵検出の精度が左右されるという問題があるとともに、丸棒材を支持する部分では疵検出ができないという問題もあった。   However, in the above conventional flaw detection method, since surface waves are used for detecting surface flaws, there is a problem that the accuracy of wrinkle detection is influenced by the surface roughness of the round bar material. There was also a problem that wrinkles could not be detected at the supporting part.

そこで、本発明はこのような課題を解決するもので、丸棒材の表面粗さや支持部の有無に影響されることなく、表面疵と表層疵を区別して正確に検出することができる丸棒材の超音波探傷方法を提供することを目的とする。   Therefore, the present invention solves such a problem, and can be accurately detected by distinguishing surface wrinkles and surface wrinkles without being affected by the surface roughness of the round bar material or the presence or absence of support portions. An object of the present invention is to provide an ultrasonic flaw detection method for a material.

上記目的を達成するために本第1発明では、超音波受発振器(1)の圧電振動子(12)に、互いに近接する一対の矩形波パルス電圧(2a,2b)を印加して、前記超音波受発振器(1)の圧電振動子(12)から出力される超音波を、丸棒材(4)の外周面から所定の屈折角(θ)でその内部へ入射させ、反射波の疵検出波形(3cd)に位相の反転が無い場合に前記丸棒材(4)に表面疵(41)があるものと判定し、反射波の疵検出波形(3cd)に位相の反転が有る場合には前記丸棒材(4)に表層疵(42)があるものと判定することを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, a pair of rectangular wave pulse voltages (2a, 2b) close to each other are applied to the piezoelectric vibrator (12) of the ultrasonic receiver / oscillator (1) and Ultrasonic waves output from the piezoelectric vibrator (12) of the sound wave receiving oscillator (1) are incident on the inside of the round bar (4) at a predetermined refraction angle (θ) to detect wrinkles of reflected waves. When there is no phase inversion in the waveform (3cd), it is determined that the round bar (4) has a surface flaw (41), and when there is a phase inversion in the reflected wave wrinkle detection waveform (3cd) It is determined that the round bar (4) has a surface ridge (42).

本第1発明においては、超音波反射波の疵検出波形における位相の反転の有無によって、丸棒材に生じた表面疵と表層疵を確実に区別して検出することができる。   In the first invention, it is possible to reliably distinguish and detect surface wrinkles and surface wrinkles generated in a round bar material by the presence or absence of phase inversion in the wrinkle detection waveform of the ultrasonic reflected wave.

本第2発明では、前記超音波受発振器(1)を前記丸棒材(4)に対し一定間隔を保ちつつ同心状に相対旋回移動させる。 In the second aspect of the invention, the ultrasonic receiver / oscillator (1) is pivoted relative to the round bar (4) while maintaining a constant interval.

本第3発明では、前記所定の屈折角を30°〜70°とする In the third invention, the predetermined refraction angle is set to 30 ° to 70 ° .

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   The reference numerals in the parentheses indicate the correspondence with specific means described in the embodiments described later.

以上のように、本発明の丸棒材の超音波探傷方法によれば、表面粗さや支持部の有無に影響されることなく、表面疵と表層疵を区別して正確に検出することができる。   As described above, according to the ultrasonic flaw detection method for a round bar material of the present invention, it is possible to accurately detect a surface flaw and a surface flaw without being affected by the surface roughness or the presence or absence of a support portion.

超音波受発振器の断面図である。It is sectional drawing of an ultrasonic receiving oscillator. 超音波受発振器の圧電振動子の入出力波形を示す図である。It is a figure which shows the input-output waveform of the piezoelectric vibrator of an ultrasonic receiving oscillator. 超音波受発振器の出力超音波の波形を示す図である。It is a figure which shows the waveform of the output ultrasonic wave of an ultrasonic receiving oscillator. 丸棒材内での超音波経路を示す断面図である。It is sectional drawing which shows the ultrasonic path | route in a round bar. 丸棒材内での超音波経路を示す断面図である。It is sectional drawing which shows the ultrasonic path | route in a round bar. 表面疵からの反射波の波形を示す図である。It is a figure which shows the waveform of the reflected wave from a surface flaw. 表層疵からの反射波の波形を示す図である。It is a figure which shows the waveform of the reflected wave from a surface layer ridge.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

図1には本発明方法で使用する、パルス持続時間が短い広帯域の超音波を出力する超音波受発振器の一例を示す。図1において、超音波受発振器1は一端が開放する筒状のハウジング11を有し、その開口を閉鎖するように板状の圧電振動子12が配設されている。圧電振動子12の前面には金属製の前板13が接合されている。圧電振動子12の背後のハウジング11内には超音波減衰特性に優れた樹脂材等よりなるダンパ層14が設けられており、ダンパ層14の中心穴141内に圧電振動子12へ至る給電線15が挿通してある。   FIG. 1 shows an example of an ultrasonic receiving oscillator that outputs a broadband ultrasonic wave having a short pulse duration used in the method of the present invention. In FIG. 1, an ultrasonic receiver / oscillator 1 has a cylindrical housing 11 with one end open, and a plate-like piezoelectric vibrator 12 is disposed so as to close the opening. A metal front plate 13 is joined to the front surface of the piezoelectric vibrator 12. A damper layer 14 made of a resin material having excellent ultrasonic attenuation characteristics is provided in the housing 11 behind the piezoelectric vibrator 12, and a power supply line reaching the piezoelectric vibrator 12 in the center hole 141 of the damper layer 14. 15 is inserted.

圧電振動子12に図2(1)に示すような近接する一対の矩形波パルス電圧2a,2bを印加する。これら一対のパルス電圧2a,2bは、それぞれ例えば7MHzの高周波の1/2波長分持続し、かつ両者の間隔を1/2波長分離す。このようにすると、最初のパルス電圧2aの印加で図2(2)に示すように、次第に減衰する(図中鎖線で示す)7MHzの超音波3aが発生し、続くパルス電圧2bの印加で図2(3)に示すように、一波長遅れた、同様に減衰する(図中鎖線で示す)7MHzの超音波3bが発生する。   A pair of adjacent rectangular pulse voltage 2a, 2b as shown in FIG. Each of the pair of pulse voltages 2a and 2b lasts for ½ wavelength of a high frequency of 7 MHz, for example, and separates the distance between them by ½ wavelength. In this way, as shown in FIG. 2 (2), the first application of the pulse voltage 2a generates a 7 MHz ultrasonic wave 3a that gradually attenuates (indicated by the chain line in the figure), and the subsequent application of the pulse voltage 2b As shown in 2 (3), an ultrasonic wave 3 b of 7 MHz that is delayed by one wavelength and similarly attenuated (indicated by a chain line in the figure) is generated.

この結果、圧電振動子12からは図2(4)に示すような、上記超音波3a,3bが合成された超音波3cが出力される。合成された出力超音波3cは山波が重畳されて1.5波目くらいが他に比して強くなる(振幅が大きくなった)とともに、波数は十分少ないものとなる。   As a result, the piezoelectric vibrator 12 outputs an ultrasonic wave 3c obtained by combining the ultrasonic waves 3a and 3b as shown in FIG. In the synthesized output ultrasonic wave 3c, a mountain wave is superimposed, and the 1.5th wave becomes stronger (the amplitude becomes larger) than others, and the wave number becomes sufficiently small.

出力超音波3cの実際の波形の一例を図3に示す。図3より明らかなように、相対的に振幅(強度)の小さい前後一対の正の波形の間に、相対的に振幅(強度)の大きい負の波形が存在し正負の強度差が大きく、0.5μsの間に3.5波が存在する十分に波数の少ない広帯域のものである。   An example of the actual waveform of the output ultrasonic wave 3c is shown in FIG. As is clear from FIG. 3, a negative waveform having a relatively large amplitude (intensity) exists between a pair of front and rear positive waveforms having a relatively small amplitude (intensity), and the difference between the positive and negative intensities is large. It is a wide band with a sufficiently small wave number in which 3.5 waves exist in .5 μs.

超音波受発振器1の圧電振動子12から出力される上記超音波3cを丸棒材4の外周面から、図4、図5に示すように所定の屈折角θで内部へ入射させる。ここで、θは30°70°の範囲にすることが多い。この状態で超音波受発振器1を丸棒材4に対し一定間隔を保ちつつ同心状に相対旋回移動させた場合、図4に示すように丸棒材4の外周面に開放する表面疵41が生じていると、当該表面疵41部分に至った超音波3cのうちの一部は、表面疵41で反射させられて丸棒材の表面に向かう。この際、空気の音響インピーダンスは丸棒材を構成する金属材の音響インピーダンスに比して非常に(5桁程度)小さいため、金属材中からこれと空気との境界へ入射することになる超音波は表面疵41での反射でその位相が反転する。そして、同様の条件となる丸棒材4の表面での反射の際にさらに位相が反転して、その反射波3cr1は結局、入射超音波3cの位相と同一で、あたかも位相の反転が生じなかったような波形で超音波受発振器1に戻る。 The ultrasonic wave 3c output from the piezoelectric vibrator 12 of the ultrasonic receiving oscillator 1 is made incident from the outer peripheral surface of the round bar 4 to the inside at a predetermined refraction angle θ as shown in FIGS. Here, θ is often in the range of 30 ° to 70 °. In this state, when the ultrasonic receiving oscillator 1 is relatively swiveled concentrically while maintaining a constant interval with respect to the round bar 4, a surface ridge 41 that opens to the outer peripheral surface of the round bar 4 is formed as shown in FIG. 4. If it has occurred, a part of the ultrasonic wave 3c that reaches the surface ridge 41 is reflected by the surface ridge 41 toward the surface of the round bar. At this time, since the acoustic impedance of air is very small (about 5 digits) compared to the acoustic impedance of the metal material constituting the round bar, it is incident on the boundary between the metal material and air. The phase of the sound wave is reversed by reflection on the surface ridge 41. Then, the phase is further reversed upon reflection on the surface of the round bar 4 under the same conditions, and the reflected wave 3cr1 is eventually the same as the phase of the incident ultrasonic wave 3c, as if the phase is not reversed. The waveform returns to the ultrasonic receiver 1 with a waveform like that.

これに対して、図5に示すように丸棒材4の表面直下に表層疵42が生じていると、入射超音波3cのうちの一部は表層疵42の表面で直接反射し、これは金属材中からこれと空気との境界へ入射することになるため位相が反転した反射波3cr2となって超音波受発振器1に戻る。これら反射波3cr1,3cr2が超音波受発振器1に戻るまでの時間は同程度になることから、この時間範囲に反射波検出ウィンドウを設定して疵検出波形を捉えることにより、当該疵検出波形の位相反転の有無によって、丸棒材4に表面疵41を生じているか表層疵42を生じているかを確実に判定することができる。   On the other hand, as shown in FIG. 5, when the surface layer ridge 42 is generated immediately below the surface of the round bar 4, a part of the incident ultrasonic wave 3 c is directly reflected on the surface of the surface layer ridge 42. Since the light is incident on the boundary between the metal and the air, the reflected wave 3cr2 is reversed in phase and returned to the ultrasonic receiving oscillator 1. Since the time until these reflected waves 3cr1 and 3cr2 return to the ultrasonic oscillator 1 is about the same, by setting a reflected wave detection window in this time range and capturing the wrinkle detection waveform, Whether the surface bar 41 or the surface layer 42 is generated on the round bar 4 can be reliably determined by the presence or absence of the phase inversion.

ここで、φ38mmの白皮丸棒鋼に、R0.3mmの丸溝を表面疵として形成し、また表層直下1mmの位置にφ0.6mmの横穴を表層疵として形成して、屈折角(θ)44°で図3に示す出力超音波3cを丸棒鋼内に入射させて得られた反射波の一例を図6、図7に示す。図6に示す反射波における疵検出波形3cdは、相対的に振幅(強度)の小さい前後一対の正の波形の間に、相対的に振幅(強度)の大きい負の波形が存在する、出力超音波3cと同相のものとなっており、位相の反転が無いことから、丸棒鋼に表面疵があると判定できる。   Here, a round groove of R 0.3 mm is formed as a surface ridge on a white bar round steel bar of Φ38 mm, and a horizontal hole of φ0.6 mm is formed as a surface ridge at a position 1 mm immediately below the surface layer, and a refraction angle (θ) 44 FIGS. 6 and 7 show examples of reflected waves obtained by causing the output ultrasonic wave 3c shown in FIG. The wrinkle detection waveform 3cd in the reflected wave shown in FIG. 6 is a super output waveform in which a negative waveform having a relatively large amplitude (intensity) exists between a pair of front and rear positive waveforms having a relatively small amplitude (intensity). Since it has the same phase as the sound wave 3c and there is no phase inversion, it can be determined that the round bar steel has surface defects.

一方、図7に示す反射波における疵検出波形3cdは、相対的に振幅(強度)の小さい前後一対の負の波形の間に、相対的に振幅(強度)の大きい正の波形が存在する、出力超音波3cとは逆相のものとなっており、位相の反転が有ることから、丸棒鋼に表層疵があると判定できる。   On the other hand, the wrinkle detection waveform 3cd in the reflected wave shown in FIG. 7 has a positive waveform with a relatively large amplitude (intensity) between a pair of negative waveforms with a relatively small amplitude (intensity). Since the output ultrasonic wave 3c has a phase opposite to that of the output ultrasonic wave 3c and has a phase inversion, it can be determined that the round bar steel has surface flaws.

1…超音波受発振器、3c…超音波、3cd…疵検出波形、4…丸棒材、41…表面疵、42…表層疵。 DESCRIPTION OF SYMBOLS 1 ... Ultrasonic wave receiving oscillator, 3c ... Ultrasonic wave, 3cd ... Wedge detection waveform, 4 ... Round bar material, 41 ... Surface wrinkles, 42 ... Surface wrinkles.

Claims (3)

超音波受発振器の圧電振動子に、互いに近接する一対の矩形波パルス電圧を印加して、前記超音波受発振器の圧電振動子から出力される超音波を、丸棒材の外周面から所定の屈折角でその内部へ入射させ、反射波の疵検出波形に位相の反転が無い場合に前記丸棒材に表面疵があるものと判定し、反射波の疵検出波形に位相の反転が有る場合には前記丸棒材に表層疵があるものと判定することを特徴とする丸棒材の超音波探傷方法。 A pair of rectangular pulse voltages close to each other are applied to the piezoelectric vibrator of the ultrasonic receiver / oscillator, and the ultrasonic wave output from the piezoelectric vibrator of the ultrasonic receiver / oscillator is transmitted from the outer peripheral surface of the round bar to a predetermined value. When the refraction angle is incident on the inside and the reflected wave wrinkle detection waveform has no phase reversal, it is determined that the round bar has surface wrinkles, and the reflected wave wrinkle detection waveform has phase reversal The method for ultrasonic flaw detection of a round bar material is characterized in that it is determined that the round bar material has a surface flaw. 前記超音波受発振器を前記丸棒材に対し一定間隔を保ちつつ同心状に相対旋回移動させる請求項1に記載の丸棒材の超音波探傷方法。The ultrasonic inspection method for a round bar material according to claim 1, wherein the ultrasonic wave receiving oscillator is relatively swiveled and moved concentrically with respect to the round bar material at a constant interval. 前記所定の屈折角を30°〜70°とした請求項1又は2に記載の丸棒材の超音波探傷方法。The method for ultrasonic inspection of a round bar material according to claim 1 or 2, wherein the predetermined refraction angle is 30 ° to 70 °.
JP2014150357A 2014-07-24 2014-07-24 Ultrasonic flaw detection method for round bars Active JP6446888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150357A JP6446888B2 (en) 2014-07-24 2014-07-24 Ultrasonic flaw detection method for round bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150357A JP6446888B2 (en) 2014-07-24 2014-07-24 Ultrasonic flaw detection method for round bars

Publications (2)

Publication Number Publication Date
JP2016024142A JP2016024142A (en) 2016-02-08
JP6446888B2 true JP6446888B2 (en) 2019-01-09

Family

ID=55270992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150357A Active JP6446888B2 (en) 2014-07-24 2014-07-24 Ultrasonic flaw detection method for round bars

Country Status (1)

Country Link
JP (1) JP6446888B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135450A (en) * 1982-02-05 1983-08-12 Hitachi Ltd Method and device for discrimination of defect by using ultrasonic wave
JPS58213248A (en) * 1982-06-07 1983-12-12 Hitachi Ltd Method and apparatus for discriminating defect by ultrasonic wave
JP2531733B2 (en) * 1988-03-29 1996-09-04 キヤノン株式会社 Ultrasonic measuring method and ultrasonic measuring apparatus
JP5750989B2 (en) * 2011-04-22 2015-07-22 大同特殊鋼株式会社 Ultrasonic flaw detection method for round bars

Also Published As

Publication number Publication date
JP2016024142A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP5951332B2 (en) Laser ultrasonic inspection apparatus and method
JPWO2007145200A1 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP6030013B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JP2017161499A5 (en)
US10234427B2 (en) Noncontact deformation detecting device with inclination measurement
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP2012037307A (en) Ultrasonic inspection system
JP6797788B2 (en) Ultrasonic probe
JP5750989B2 (en) Ultrasonic flaw detection method for round bars
JP6446888B2 (en) Ultrasonic flaw detection method for round bars
JP2010175340A (en) Plate thickness measuring method and plate thickness measuring apparatus
JP2010054497A (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detector
JP6479478B2 (en) Ultrasonic flaw detection method
JP5810873B2 (en) Ultrasonic flaw detection method
JP6761780B2 (en) Defect evaluation method
JP6731863B2 (en) Inspection method
JP6987554B2 (en) Non-destructive inspection equipment and its method
JP6776144B2 (en) Ultrasonic probe
JP2006194763A (en) Ultrasonic flaw detection method
JP6248536B2 (en) Ultrasonic defect determination method
KR101543872B1 (en) Laser ultrasonic apparatus having multiple laser interferometers and method of managing signal using thereof
JP6467811B2 (en) Ultrasonic flaw detection method
JP7102726B2 (en) How to determine the flaw detection range of an ultrasonic flaw detector
Reitinger et al. Rejection of crosstalk and noise by a quasi balanced CFPI for remote ultrasound detection
JP2023008511A (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6446888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150