JP6987554B2 - Non-destructive inspection equipment and its method - Google Patents

Non-destructive inspection equipment and its method Download PDF

Info

Publication number
JP6987554B2
JP6987554B2 JP2017138739A JP2017138739A JP6987554B2 JP 6987554 B2 JP6987554 B2 JP 6987554B2 JP 2017138739 A JP2017138739 A JP 2017138739A JP 2017138739 A JP2017138739 A JP 2017138739A JP 6987554 B2 JP6987554 B2 JP 6987554B2
Authority
JP
Japan
Prior art keywords
ultrasonic
inspected
receiver
transmitter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017138739A
Other languages
Japanese (ja)
Other versions
JP2019020250A (en
Inventor
祥希 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2017138739A priority Critical patent/JP6987554B2/en
Publication of JP2019020250A publication Critical patent/JP2019020250A/en
Application granted granted Critical
Publication of JP6987554B2 publication Critical patent/JP6987554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波を用いて物体内部の欠陥、密度ムラ、その他の異常等を非破壊で検出する非破壊検査装置及びその方法に関する。 The present invention relates to a non-destructive inspection device and a method thereof for non-destructively detecting defects, density unevenness, other abnormalities, etc. inside an object using ultrasonic waves.

従来、超音波を利用して、非破壊で検査を行う超音波探傷検査が知られている。超音波探傷検査は、超音波のパルス信号を金属材料等の表面や内部に伝播させることにより、音響的に不連続な部分からの反射信号や反射強度、伝搬時間などにより、材料内部の傷や長さ、形状などを非破壊で評価し、その良否判定を検査規格などにより良否判定する技術である。超音波は物体内部を伝播し、亀裂などの欠陥部にて反射をする。そして、この反射波(エコー)を受信することで欠陥の有無、位置の特定を行うパルス反射法が超音波探傷検査の中で主流として使用されている。 Conventionally, ultrasonic flaw detection inspection, which uses ultrasonic waves to perform non-destructive inspection, is known. In ultrasonic flaw detection inspection, ultrasonic pulse signals are propagated to the surface or inside of a metal material, etc., and the reflected signal from acoustically discontinuous parts, reflection intensity, propagation time, etc., cause scratches inside the material. It is a technology that evaluates length, shape, etc. non-destructively and judges the quality of the product according to inspection standards. Ultrasonic waves propagate inside an object and are reflected by defects such as cracks. The pulse reflection method, which identifies the presence or absence of defects and the position by receiving this reflected wave (echo), is mainly used in ultrasonic flaw detection inspection.

超音波の反射は「音響インピーダンス」が大きく異なる部分の界面にて起きる。音響インピーダンスは、「物体の密度ρ」×「物体中の音速c」で定義される物性値である。例えば、鉄の音響インピーダンスは46.4×10Nsm−3であり乾燥空気の音響インピーダンスは、428.6Nsm−3である。従来の超音波エコーでは、欠陥のある界面において音波が反射することを用いた検査方法であるため、例えば密度ムラのような音響インピーダンスがわずかにしか変化しない欠陥を検出することは困難であった。 Ultrasonic reflection occurs at the interface where the "acoustic impedance" differs greatly. The acoustic impedance is a physical characteristic value defined by "density ρ of an object" x "sound velocity c in an object". For example, the acoustic impedance of iron is 46.4 × 10 6 Nsm -3 and the acoustic impedance of dry air is 428.6 Nsm -3 . In the conventional ultrasonic echo, since the inspection method uses the reflection of sound waves at the interface with defects, it is difficult to detect defects such as density unevenness in which the acoustic impedance changes only slightly. ..

超音波により微小欠陥を検出するため、入射波に対する透過波の波形を周波数分析して基本波と高調波を求め、基本波の振幅と高調波の振幅の比より微小欠陥の有無を判定することが知られ、特許文献1に記載されている。 In order to detect minute defects by ultrasonic waves, the waveform of the transmitted wave with respect to the incident wave is frequency-analyzed to obtain the fundamental wave and harmonics, and the presence or absence of minute defects is determined from the ratio of the amplitude of the fundamental wave to the amplitude of the harmonics. Is known and is described in Patent Document 1.

また、従来の方法では明確でない亀裂は、超音波が通過するため通常の方法での検出は難しい。そのため、連続的なパルスの超音波信号を被検査対象に投射し、亀裂を通過させると、超音波の基本周波数成分に加え高調波成分や分数調波成分が条件によって観測される。この観測によって通常の方法では困難な亀裂の検出が試みられている。 In addition, cracks that are not clear by conventional methods are difficult to detect by ordinary methods because ultrasonic waves pass through them. Therefore, when an ultrasonic signal of a continuous pulse is projected onto the object to be inspected and passed through a crack, a harmonic component and a fractional wave component are observed in addition to the fundamental frequency component of the ultrasonic wave depending on the conditions. This observation attempts to detect cracks that are difficult to detect by ordinary methods.

さらに、連続パルスの超音波を発生させるには特殊な装置が必要である。また、連続パルスの超音波は、多層部材など多くの反射波が発生する場合には波の干渉が生じ、正しい解析ができない。そのため、被検査対象物の内部に入った単一超音波パルスを受信部で受信し、受信した単一超音波パルスの減衰波形の瞬時周波数とその時間変化(時間的な移り変わり)を求める。そして、従来の単一超音波パルス信号を用いた方法では見つけることができないような異常な状況を発見し、反射波の干渉を受けにくく、周波数変化のわずかな量を捉えることが特許文献2に記載されている。 Furthermore, a special device is required to generate continuous pulse ultrasonic waves. In addition, continuous pulse ultrasonic waves interfere with waves when many reflected waves are generated, such as in a multilayer member, and correct analysis cannot be performed. Therefore, the single ultrasonic pulse that has entered the inside of the object to be inspected is received by the receiving unit, and the instantaneous frequency of the decay waveform of the received single ultrasonic pulse and its time change (change over time) are obtained. Then, Patent Document 2 discloses an abnormal situation that cannot be found by a conventional method using a single ultrasonic pulse signal, is less susceptible to interference of reflected waves, and captures a small amount of frequency change. Has been described.

特開2004−340807号公報Japanese Unexamined Patent Publication No. 2004-340807 特許第5105384号公報Japanese Patent No. 5105384

上記従来技術である特許文献2に記載の方法では、受信した単一超音波パルス信号の減衰波形を、減衰波形の包絡線と位相とから表される近似式で近似し、近似式中の位相から瞬時角周波数を求める。そして、瞬時角周波数の時間変化に基づいて、被検査対象物の状態を診断する必要があり、その手順が複雑である。また、密度ムラのような音響インピーダンスがわずかにしか変化しない欠陥を検出することは困難であった。 In the method described in Patent Document 2 which is the above-mentioned prior art, the decay waveform of the received single ultrasonic pulse signal is approximated by an approximate expression represented by the envelope and the phase of the decay waveform, and the phase in the approximate expression is approximated. Obtain the instantaneous angular frequency from. Then, it is necessary to diagnose the state of the object to be inspected based on the time change of the instantaneous angular frequency, and the procedure is complicated. In addition, it has been difficult to detect defects such as density unevenness in which the acoustic impedance changes only slightly.

本発明の目的は、上記従来技術の課題を解決し、簡単な構成で音響インピーダンスがわずかにしか変化しない欠陥(例えば、密度ムラなど)を検出する非破壊検査方法及び装置を得ることにある。 An object of the present invention is to solve the above-mentioned problems of the prior art and to obtain a non-destructive inspection method and apparatus for detecting defects (for example, density unevenness) in which the acoustic impedance changes only slightly with a simple configuration.

上記目的を達成するため、本発明の非破壊検査装置は、超音波送信器により被検査物に超音波を伝播して超音波受信器で前記超音波を受信し、伝播時間の変化により前記被検査物の欠陥を検知する非破壊検査装置において、第1の周波数の超音波を送信する超音波送信器1と、前記第1の周波数とは異なる第2の周波数の超音波を送信する超音波送信器2と、前記超音波送信器1及び前記超音波送信器2から送信した超音波を受信する前記超音波受信器と、を備え、前記超音波受信器で受信されたうなり波形に基づいて前記被検査物の欠陥の有無を判定するものである。 In order to achieve the above object, the non-destructive inspection apparatus of the present invention propagates ultrasonic waves to an object to be inspected by an ultrasonic transmitter, receives the ultrasonic waves by an ultrasonic receiver, and receives the ultrasonic waves by a change in propagation time. In a non-destructive inspection device that detects defects in an inspection object, an ultrasonic transmitter 1 that transmits ultrasonic waves of a first frequency and ultrasonic waves that transmit ultrasonic waves of a second frequency different from the first frequency. The transmitter 2 is provided with the ultrasonic transmitter 1 and the ultrasonic receiver for receiving the ultrasonic waves transmitted from the ultrasonic transmitter 1, based on the humming waveform received by the ultrasonic receiver. It is for determining the presence or absence of defects in the inspected object.

これにより、超音波受信器で受信する超音波はうなり波形となり、わずかな伝播時間の遅延であっても、うなり波形の位相は大きく変化するので、被検査物の密度ムラなど音響インピーダンスの大きく変化しない欠陥であっても検知が可能となる。 As a result, the ultrasonic waves received by the ultrasonic receiver become beat waveforms, and even with a slight delay in propagation time, the phase of the beat waveform changes significantly, resulting in large changes in acoustic impedance such as uneven density of the inspected object. Even defects that do not exist can be detected.

また、上記のものにおいて、前記超音波送信器1及び前記超音波送信器2は前記被検査物の片面に、前記超音波受信器は前記被検査物の他面に正対して配置され、前記超音波は前記被検査物の内部を透過して前記超音波受信器へ伝播されることが望ましい。 Further, in the above, the ultrasonic transmitter 1 and the ultrasonic transmitter 2 are arranged on one side of the object to be inspected, and the ultrasonic receiver is arranged on the other surface of the object to be inspected. It is desirable that the ultrasonic waves pass through the inside of the object to be inspected and propagate to the ultrasonic receiver.

さらに、上記のものにおいて、前記超音波送信器1、前記超音波送信器2及び前記超音波受信器は前記被検査物の片面に配置され、前記超音波は前記被検査物の内部で反射されて前記超音波受信器へ伝播されることが望ましい。 Further, in the above, the ultrasonic transmitter 1, the ultrasonic transmitter 2, and the ultrasonic receiver are arranged on one side of the object to be inspected, and the ultrasonic wave is reflected inside the object to be inspected. It is desirable that the sound is propagated to the ultrasonic receiver.

さらに、上記のものにおいて、前記第2の周波数に対して前記第1の周波数は、0.3〜3%異なることが望ましい。 Further, in the above, it is desirable that the first frequency differs from the second frequency by 0.3 to 3%.

さらに、上記のものにおいて、前記超音波送信器1あるいは前記超音波送信器2のいずれか一方の周波数を290〜310kHzとし、他方の周波数は前記一方の周波数に対して1〜10kHzの周波数差としたことが望ましい。 Further, in the above, the frequency of either the ultrasonic transmitter 1 or the ultrasonic transmitter 2 is set to 290 to 310 kHz, and the other frequency has a frequency difference of 1 to 10 kHz with respect to the one frequency. It is desirable to do.

さらに、上記のものにおいて、前記うなり波形のエンベロープの山数を前記被検査物の内部で1〜3山とすることが望ましい。 Further, in the above, it is desirable that the number of ridges of the envelope of the beat waveform is 1 to 3 inside the object to be inspected.

さらに、上記のものにおいて、前記超音波送信器1あるいは前記超音波送信器2による前記超音波は、送信継続時間が有限な超音波バースト波とされたことが望ましい。 Further, in the above, it is desirable that the ultrasonic wave produced by the ultrasonic transmitter 1 or the ultrasonic transmitter 2 is an ultrasonic burst wave having a finite transmission duration.

さらに、本発明の非破壊検査方法は、超音波送信器により被検査物に超音波を伝播して超音波受信器で前記超音波を受信し、伝播時間の変化により前記被検査物の欠陥を検知する非破壊検査方法であって、超音波送信器1から第1の周波数の超音波を送信すると共に、超音波送信器2から前記第1の周波数とは異なる第2の周波数の超音波を送信し、前記被検査物の内部を伝播した前記超音波送信器1及び前記超音波送信器2から送信した超音波を前記超音波受信器でうなり波形として受信し、前記超音波受信器で受信されたうなり波形に基づいて前記被検査物の欠陥の有無を判定することを特徴とする。 Further, in the non-destructive inspection method of the present invention, an ultrasonic wave is propagated to an inspected object by an ultrasonic transmitter, the ultrasonic wave is received by an ultrasonic receiver, and a defect of the inspected object is detected by a change in propagation time. This is a non-destructive inspection method for detecting, in which ultrasonic waves having a first frequency are transmitted from the ultrasonic transmitter 1 and ultrasonic waves having a second frequency different from the first frequency are transmitted from the ultrasonic transmitter 2 from the ultrasonic transmitter 2. The ultrasonic waves transmitted from the ultrasonic transmitter 1 and the ultrasonic transmitter 2 propagating inside the object to be inspected are received as a growl waveform by the ultrasonic receiver and received by the ultrasonic receiver. It is characterized in that the presence or absence of a defect in the object to be inspected is determined based on the swelling waveform.

また、上記において、前記超音波送信器1及び前記超音波送信器2を前記被検査物の片面に、前記超音波受信器を前記被検査物の他面に正対して配置し、前記超音波は前記被検査物の内部を透過して前記超音波受信器へ伝播されることが望ましい。 Further, in the above, the ultrasonic transmitter 1 and the ultrasonic transmitter 2 are arranged on one side of the object to be inspected, and the ultrasonic receiver is arranged so as to face the other surface of the object to be inspected. Is desirable to pass through the inside of the object to be inspected and propagate to the ultrasonic receiver.

さらに、上記において、前記超音波送信器1、前記超音波送信器2及び前記超音波受信器を前記被検査物の片面に配置し、前記超音波は前記被検査物の内部で反射されて前記超音波受信器へ伝播されることが望ましい。 Further, in the above, the ultrasonic transmitter 1, the ultrasonic transmitter 2, and the ultrasonic receiver are arranged on one side of the object to be inspected, and the ultrasonic waves are reflected inside the object to be inspected. It is desirable to propagate to the ultrasonic receiver.

本発明によれば、超音波受信器で受信する超音波はうなり波形となり、わずかな伝播時間の遅延であっても、うなり波形の位相は大きく変化するので、比較的に簡単な構成で被検査物の密度ムラなど音響インピーダンスの大きく変化しない欠陥の検知が可能となる。 According to the present invention, the ultrasonic wave received by the ultrasonic receiver becomes a beat waveform, and the phase of the beat waveform changes greatly even with a slight delay in propagation time. Therefore, the test is performed with a relatively simple configuration. It is possible to detect defects such as uneven density of objects that do not significantly change the acoustic impedance.

本発明による一実施形態に係る非破壊検査装置の基本構成図Basic configuration diagram of the non-destructive inspection device according to the embodiment according to the present invention. 一実施形態における超音波受信器による受信波形を示す時間対振幅のグラフA graph of time vs. amplitude showing the waveform received by the ultrasonic receiver in one embodiment. 従来の非破壊検査装置の基本構成図Basic configuration diagram of conventional non-destructive inspection equipment 従来において検出困難な欠陥がある場合を示す構成図Configuration diagram showing the case where there is a defect that is difficult to detect in the past 他の実施形態に係る非破壊検査装置の基本構成図Basic configuration diagram of non-destructive inspection device according to other embodiments 大気中での実験の構成を示す図Figure showing the composition of the experiment in the atmosphere 大気中での実験の結果を示すグラフGraph showing the results of experiments in the atmosphere

以下、本発明の実施形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

超音波探傷検査としてパルス反射法と透過式が知られている。パルス反射法は、超音波のパルス信号を金属材料等の表面や内部に伝播させることにより、音響的に不連続な部分からの反射信号や反射強度、伝搬時間などにより、材料内部の傷や長さ、形状などを良否判定する。そして、被検査物に対して超音波送信器より超音波(波の振動方向が波の進行方向と同じ縦波)を垂直に伝播させ、その一部が内部の欠陥に反射して超音波送信器に戻ることで欠陥を検知する。 The pulse reflection method and the transmission method are known as ultrasonic flaw detection inspections. The pulse reflection method propagates an ultrasonic pulse signal to the surface or inside of a metal material, etc., and causes scratches or length inside the material due to the reflected signal from acoustically discontinuous parts, reflection intensity, propagation time, etc. The shape and the like are judged as good or bad. Then, ultrasonic waves (longitudinal waves whose vibration direction is the same as the traveling direction of the waves) are propagated vertically from the ultrasonic transmitter to the object to be inspected, and a part of them is reflected by internal defects and transmitted. Defects are detected by returning to the vessel.

また、透過式は、被検査物の片面に超音波送信器、他面に超音波受信器を置いて被検査物の内部に伝播された超音波を受信することで、材料内部の欠陥により透過する伝播時間の変化により、欠陥の存在を知る。 In the transmission type, an ultrasonic transmitter is placed on one side of the object to be inspected and an ultrasonic receiver is placed on the other side to receive the ultrasonic waves propagated inside the object to be inspected. The existence of defects is known from the change in propagation time.

超音波の送信・受信には超音波素子が用いられ、超音波素子は電気エネルギを印加して超音波を発生、又は超音波振動エネルギを電気信号に変換する素子で、通常超音波センサには圧電現象を利用したチタン酸バリウム振動素子を用いる。圧電素子は交流電圧を加えると素子が振動し、固有の周波数を持ち、その周波数と同じ周波数の交流電圧を加えることで効率良く振動する。 An ultrasonic element is used for transmitting and receiving ultrasonic waves. The ultrasonic element is an element that generates ultrasonic waves by applying electric energy or converts ultrasonic vibration energy into an electric signal. A barium titanate vibrating element that utilizes the piezoelectric phenomenon is used. The piezoelectric element vibrates when an AC voltage is applied, has a unique frequency, and vibrates efficiently by applying an AC voltage of the same frequency as that frequency.

図1は、本発明の一実施形態に係る非破壊検査装置の基本構成図である。図2は、超音波受信器3による受信波形を示す時間対振幅のグラフ、図3は、従来の非破壊検査装置の基本構成図、図4は、従来において検出困難な欠陥がある場合を示す構成図である。図1に示す構成は、被検査物4の片面に超音波送信器1及び2、他面に超音波受信器3を正対して配置している。したがって、透過式の超音波探傷検査に相当する。 FIG. 1 is a basic configuration diagram of a non-destructive inspection device according to an embodiment of the present invention. FIG. 2 is a time-to-amplitude graph showing a waveform received by the ultrasonic receiver 3, FIG. 3 is a basic configuration diagram of a conventional non-destructive inspection device, and FIG. 4 shows a case where there is a defect that is difficult to detect in the past. It is a block diagram. In the configuration shown in FIG. 1, the ultrasonic transmitters 1 and 2 are arranged on one side of the object 4 to be inspected, and the ultrasonic receiver 3 is arranged on the other side. Therefore, it corresponds to a transmission type ultrasonic flaw detection inspection.

被検査物4は、矢印5方向に移動し、超音波送信器1、2及び超音波受信器3は固定される。あるいは逆に被検査物4を固定し、超音波送信器1、2及び超音波受信器3を移動する。超音波送信器1及び2は、それぞれが異なる周波数の超音波を同時に発生する。つまり、超音波送信器1は第1の周波数、超音波送信器2は第2の周波数を発生し、超音波送信器1及び2からの伝播超音波1及び2を超音波受信器3で受信することで、被検査物4の欠陥により透過する伝播時間の変化により、欠陥を検知する。超音波送信器1及び2と超音波受信器3とは被検査物4を挟むように配置すれば良い。 The object 4 to be inspected moves in the direction of the arrow 5, and the ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 are fixed. Alternatively, conversely, the object 4 to be inspected is fixed, and the ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 are moved. The ultrasonic transmitters 1 and 2 simultaneously generate ultrasonic waves having different frequencies. That is, the ultrasonic transmitter 1 generates the first frequency, the ultrasonic transmitter 2 generates the second frequency, and the propagating ultrasonic waves 1 and 2 from the ultrasonic transmitters 1 and 2 are received by the ultrasonic receiver 3. By doing so, the defect is detected by the change in the propagation time transmitted by the defect of the object 4 to be inspected. The ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 may be arranged so as to sandwich the object to be inspected 4.

超音波送信器1及び2は、それぞれ異なる周波数の超音波が伝播超音波1、2として被検査物4の内部を伝播するため、超音波受信器3は、二つの超音波が重なりあった波、うなり波形を受信する。伝播超音波1、2は、互いに異なる経路を通り、超音波受信器3に到達する。 In the ultrasonic transmitters 1 and 2, ultrasonic waves of different frequencies propagate inside the object 4 as the propagating ultrasonic waves 1 and 2, so that the ultrasonic receiver 3 is a wave in which two ultrasonic waves overlap. , Receives a growl waveform. Propagation ultrasonic waves 1 and 2 follow different paths to reach the ultrasonic receiver 3.

一方、従来の非破壊検査装置は、透過式の場合、図3に示すように被検査物4の片面に超音波送信器1、他面に超音波受信器3を正対して配置し、欠陥7では、超音波が遮られることで欠陥を検知していた。また、反射式では超音波送信器1のみを被検査物4の片面に配置し、超音波送信機1に超音波受信機の機能を持たせ、超音波送信器1で反射波を受信している。そして、欠陥7で超音波が早く反射して超音波送信器1へ戻ることで欠陥を検知していた。 On the other hand, in the case of the conventional non-destructive inspection device, in the case of the transmission type, the ultrasonic transmitter 1 is arranged on one side of the object 4 to be inspected and the ultrasonic receiver 3 is arranged on the other side as shown in FIG. In No. 7, the defect was detected by blocking the ultrasonic wave. Further, in the reflection type, only the ultrasonic transmitter 1 is arranged on one side of the object 4 to be inspected, the ultrasonic transmitter 1 has the function of the ultrasonic receiver, and the ultrasonic transmitter 1 receives the reflected wave. There is. Then, the defect was detected by the ultrasonic wave being quickly reflected by the defect 7 and returning to the ultrasonic transmitter 1.

図3に示すような明確な亀裂などの欠陥の場合は、従来の非破壊検査装置でも欠陥7の検知は可能であるが、図4に示すような変質部による密度ムラなど音響インピーダンスの大きく変化しない欠陥8の場合、超音波が遮られたり、反射したりすることは生じない。したがって、図4で示すように欠陥8のある部分を伝播する超音波と、欠陥8のない部分を伝播する超音波とで、超音波送信器1から超音波受信器3までの伝播時間の差はわずかであり、音響インピーダンスの大きく変化しない欠陥を検知することは極めて困難であった。 In the case of defects such as clear cracks as shown in FIG. 3, the defect 7 can be detected even with a conventional non-destructive inspection device, but there is a large change in acoustic impedance such as density unevenness due to the altered part as shown in FIG. In the case of the defect 8, the ultrasonic wave is not blocked or reflected. Therefore, as shown in FIG. 4, the difference in propagation time from the ultrasonic transmitter 1 to the ultrasonic receiver 3 between the ultrasonic wave propagating in the portion with the defect 8 and the ultrasonic wave propagating in the portion without the defect 8. Was very small, and it was extremely difficult to detect defects in which the acoustic impedance did not change significantly.

それに対して、図1に示す実施形態では、超音波送信器1から超音波受信器3までの距離と、超音波送信器2から超音波受信器3までの距離は、略同一である。そして、被検査物4が完全に同質かつ均質物体とすれば、伝播超音波1、2の二つの経路の音速に違いがない。そのため、伝播超音波1、2は、同時に超音波受信器3に到達する。 On the other hand, in the embodiment shown in FIG. 1, the distance from the ultrasonic transmitter 1 to the ultrasonic receiver 3 and the distance from the ultrasonic transmitter 2 to the ultrasonic receiver 3 are substantially the same. If the object 4 to be inspected is a completely homogeneous and homogeneous object, there is no difference in the speed of sound between the two paths of the propagating ultrasonic waves 1 and 2. Therefore, the propagating ultrasonic waves 1 and 2 reach the ultrasonic wave receiver 3 at the same time.

伝播超音波1、2が超音波受信器3に到達するまでの経路中の一方に、欠陥が存在する場合、伝播超音波1、2は欠陥を通ることで音速が変化する。そのため、伝播超音波1、2が超音波受信器3に到達するまでの伝播時間は、被検査物4が完全に同質かつ均質物体のときに比べ、わずかに異なることになる。 If a defect exists in one of the paths until the propagating ultrasonic waves 1 and 2 reach the ultrasonic receiver 3, the sound velocity of the propagating ultrasonic waves 1 and 2 changes by passing through the defect. Therefore, the propagation time until the propagating ultrasonic waves 1 and 2 reach the ultrasonic receiver 3 is slightly different from that when the inspected object 4 is a completely homogeneous and homogeneous object.

超音波受信器3で受信する超音波は、それぞれ異なる周波数の伝播超音波1、2であるので、重なり合った状態、うなり波形である。うなり波形の包絡線(エンベロープ)は二つの伝播超音波1、2の位相変化により大きく変化するため、伝播超音波1、2による伝播時間がわずかな差であっても検知することが可能となる。超音波の送信時間は、送信継続時間が有限な超音波バースト波とすることが伝播時間の違いを精度良く検知する上では望ましい。 Since the ultrasonic waves received by the ultrasonic receiver 3 are propagating ultrasonic waves 1 and 2 having different frequencies, they are in an overlapping state and a beat waveform. Since the envelope of the beat waveform changes greatly due to the phase change of the two propagating ultrasonic waves 1 and 2, it is possible to detect even a slight difference in the propagating time by the propagating ultrasonic waves 1 and 2. .. It is desirable that the ultrasonic wave transmission time be an ultrasonic burst wave having a finite transmission duration in order to accurately detect the difference in propagation time.

また、被検査物4の厚さ、つまり超音波送信器1及び2から超音波受信器3までの距離は、超音波が超音波受信器3に到達する時間がうなり波形のエンベロープの少なくとも1から3周期程度となるようにする。これにより、超音波の送信時間が長すぎて誤検知することを防ぐことができる。 Further, the thickness of the object 4 to be inspected, that is, the distance from the ultrasonic transmitters 1 and 2 to the ultrasonic receiver 3, is from at least 1 of the envelope of the beat waveform in the time it takes for the ultrasonic wave to reach the ultrasonic receiver 3. Make it about 3 cycles. This makes it possible to prevent erroneous detection due to the ultrasonic transmission time being too long.

図2は、超音波送信器1と超音波送信器2とで異なる周波数を送信することで、うなり波形が超音波受信器3で生成されたものである。下図における周波数は、上図の周波数の1.1倍である。うなり波形は、二つの伝播超音波1、2の重ね合わせであり、その形状、点線で示したエンベロープは各伝播超音波の位相、すなわち伝播時間に大きく影響を受ける。 FIG. 2 shows a beat waveform generated by the ultrasonic receiver 3 by transmitting different frequencies between the ultrasonic transmitter 1 and the ultrasonic transmitter 2. The frequency in the figure below is 1.1 times the frequency in the figure above. The beat waveform is a superposition of two propagating ultrasonic waves 1 and 2, and the shape and the envelope shown by the dotted line are greatly affected by the phase of each propagating ultrasonic wave, that is, the propagation time.

上図は、超音波送信器1から超音波受信器3までの伝播時間と、超音波送信器2から超音波受信器3までの伝播時間とで差がない場合であり、欠陥が存在しない場合である。下図は、超音波送信器2による伝播超音波2が4/6周期だけ遅く超音波受信器3へ到着した場合の受信波形である。図2に示すようにわずかな伝播時間の遅延であっても、うなり波形の位相は大きく変化する。 The above figure shows the case where there is no difference between the propagation time from the ultrasonic transmitter 1 to the ultrasonic receiver 3 and the propagation time from the ultrasonic transmitter 2 to the ultrasonic receiver 3, and there is no defect. Is. The figure below shows the received waveform when the propagating ultrasonic wave 2 by the ultrasonic transmitter 2 arrives at the ultrasonic receiver 3 with a delay of 4/6 cycle. As shown in FIG. 2, the phase of the beat waveform changes significantly even with a slight delay in propagation time.

うなり波形の詳細と位相の変化について説明する。伝播超音波1、2をF、Fとする。それぞれの周波数f、f、それぞれの角周波数ω、ω、それぞれの初期位相をφ、φとすると、f=2πω、f=2πωであるから、伝播超音波1、2を1とすると、F=sin(2πωt+φ)、F=sin(2πωt+φ)となる。F、Fの重ね合わせで発生するうなり波形Fは、

Figure 0006987554
として表現できる。このときcosの項はうなり波形のエンベロープを示し、sinの項はエンベロープ内部の波形を示している。 The details of the beat waveform and the change in phase will be described. Let the propagating ultrasonic waves 1 and 2 be F 1 and F 2 . Assuming that the respective frequencies f 1 and f 2 , the respective angular frequencies ω 1 and ω 2 , and the initial phases are φ 1 and φ 2 , then f 1 = 2π ω 1 and f 2 = 2 π ω 2, so that the propagating ultrasonic waves Assuming that 1 and 2 are 1, F 1 = sin (2πω 1 t + φ 1 ) and F 2 = sin (2πω 2 t + φ 2 ). The beat waveform F generated by superimposing F 1 and F 2 is
Figure 0006987554
Can be expressed as. At this time, the cos term indicates the envelope of the beat waveform, and the sin term indicates the waveform inside the envelope.

ここで伝播超音波2であるFの伝播時間がわずかに遅れ、遅れ時間をΔtとする。ただし、この遅れ時間ΔtはFの周期(1/f)以内とすれば、Fは時間tを用いて式2のように表すことができる。

Figure 0006987554
Here the propagation propagation time F 2 slightly delayed an ultrasonic 2, the delay time between Delta] t. However, the delay time Δt is if within the period of F 2 (1 / f 2) , F 2 can be expressed as Equation 2 using the time t.
Figure 0006987554

そして、生成されるうなり波形Fは式3となる。

Figure 0006987554
式3において、cosの項はうなり波形のエンベロープを示し、sinの項はエンベロープ内部の波形を示している。したがって、伝播超音波2であるFの遅れがうなり波形Fのエンベロープの位相に影響を与えていることが分かる。 Then, the generated beat waveform F is given by Equation 3.
Figure 0006987554
In Equation 3, the cos term indicates the envelope of the beat waveform, and the sin term indicates the waveform inside the envelope. Therefore, it can be seen that influence the envelope of the phase propagation ultrasonic 2. The term F 2 of delay beat waveform F.

伝播超音波1、2の周波数f、fの影響度を明確にするため、式3を変形すると、式4となる。

Figure 0006987554
In order to clarify the degree of influence of the frequencies f 1 and f 2 of the propagating ultrasonic waves 1 and 2, the equation 3 is modified into the equation 4.
Figure 0006987554

式4においても、cosの項はうなり波形のエンベロープを示しているので、伝播超音波2であるFの伝播時間がΔt遅れると、うなり波形Fのエンベロープは、
(ω/ω−ω)Δtだけ位相がずれた形状となることが分かる。仮に、伝播超音波1の周波数f=301kHz、伝播超音波2の周波数f=300kHzとした場合、うなり波形のズレは、
(ω/ω−ω)Δt=(f/f−f)Δt=300Δtとなり、伝播超音波2であるFの伝播時間がΔt遅れると300倍に拡大されて検出ができることが分かる。ここで、fとfとのずれ量は、どちらかの周波数に対して0.3〜3%とすることがうなり波形の生成と検出感度の点から望ましい。
Since the cos term also indicates the envelope of the beat waveform in Equation 4, when the propagation time of F 2 which is the propagating ultrasonic wave 2 is delayed by Δt, the envelope of the beat waveform F becomes.
It can be seen that the shape is out of phase by (ω 2 / ω 1ω 2) Δt. If the frequency f 1 of the propagating ultrasonic wave 1 = 301 kHz and the frequency f 2 of the propagating ultrasonic wave 2 = 300 kHz, the deviation of the beat waveform will be.
2 / ω 1 −ω 2 ) Δt = (f 2 / f 1 −f 2 ) Δt = 300Δt, and if the propagation time of F 2 , which is the propagating ultrasonic wave 2, is delayed by Δt, the detection is magnified 300 times. I know I can do it. Here, it is desirable that the amount of deviation between f 1 and f 2 is 0.3 to 3% with respect to either frequency from the viewpoint of beat waveform generation and detection sensitivity.

図5は、他の実施形態に係る非破壊検査装置の基本構成図である。被検査物4は、矢印5方向に移動し、超音波送信器1、2及び超音波受信器3は被検査物4の片面(上側)に固定される。あるいは逆に被検査物4を固定し、超音波送信器1、2及び超音波受信器3を移動する。超音波送信器1及び2は、それぞれ異なる周波数の超音波を同時に発生する。超音波送信器1及び2からの伝播超音波1及び2は、被検査物4の他面(下側)から反射波を超音波受信器3で受信する。 FIG. 5 is a basic configuration diagram of a non-destructive inspection device according to another embodiment. The object 4 to be inspected moves in the direction of the arrow 5, and the ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 are fixed to one side (upper side) of the object 4 to be inspected. Alternatively, conversely, the object 4 to be inspected is fixed, and the ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 are moved. The ultrasonic transmitters 1 and 2 simultaneously generate ultrasonic waves of different frequencies. The propagating ultrasonic waves 1 and 2 from the ultrasonic transmitters 1 and 2 receive the reflected wave from the other surface (lower side) of the object 4 to be inspected by the ultrasonic receiver 3.

被検査物4の内部に欠陥がある場合、伝播超音波1及び2の一部が内部の欠陥に反射して超音波送信器に戻る。そして、欠陥により透過する伝播時間の変化により、欠陥を検知する。いわゆる反射式であり、図1で説明したように、超音波送信器1及び2は、それぞれ異なる周波数の超音波が伝播超音波1、2として被検査物4の内部を伝播するため、超音波受信器3は、二つの超音波が重なりあった波、つまりうなり波形を受信する。 If there is a defect inside the object 4 to be inspected, a part of the propagating ultrasonic waves 1 and 2 is reflected by the internal defect and returns to the ultrasonic transmitter. Then, the defect is detected by the change in the propagation time transmitted by the defect. It is a so-called reflection type, and as described with reference to FIG. 1, the ultrasonic transmitters 1 and 2 are ultrasonic waves because ultrasonic waves having different frequencies propagate inside the inspected object 4 as propagating ultrasonic waves 1 and 2. The receiver 3 receives a wave in which two ultrasonic waves overlap, that is, a humming waveform.

超音波送信器1から超音波受信器3までの距離と、超音波送信器2から超音波受信器3までの距離は、略同一である。そして、被検査物4が完全に同質かつ均質物体とすれば、伝播超音波1、2の二つの経路の音速に違いがない。そのため、伝播超音波1、2は、同時に超音波受信器3に到達する。 The distance from the ultrasonic transmitter 1 to the ultrasonic receiver 3 and the distance from the ultrasonic transmitter 2 to the ultrasonic receiver 3 are substantially the same. If the object 4 to be inspected is a completely homogeneous and homogeneous object, there is no difference in the speed of sound between the two paths of the propagating ultrasonic waves 1 and 2. Therefore, the propagating ultrasonic waves 1 and 2 reach the ultrasonic wave receiver 3 at the same time.

伝播超音波1、2が超音波受信器3に到達するまでの経路中の一方に、欠陥が存在する場合、伝播超音波1、2は欠陥を通ることで音速が変化する。そのため、伝播超音波1、2が超音波受信器3に到達するまでの伝播時間は、被検査物4が完全に同質かつ均質物体のときに比べ、わずかに異なることになる。 If a defect exists in one of the paths until the propagating ultrasonic waves 1 and 2 reach the ultrasonic receiver 3, the sound velocity of the propagating ultrasonic waves 1 and 2 changes by passing through the defect. Therefore, the propagation time until the propagating ultrasonic waves 1 and 2 reach the ultrasonic receiver 3 is slightly different from that when the inspected object 4 is a completely homogeneous and homogeneous object.

超音波受信器3で受信する超音波は、それぞれ異なる周波数の伝播超音波1、2であるので、重なり合った状態、うなり波形である。うなり波形の包絡線(エンベロープ)は二つの伝播超音波1、2の位相変化により大きく変化するため、伝播超音波1、2による伝播時間がわずかな差であっても検知することが可能となる。 Since the ultrasonic waves received by the ultrasonic receiver 3 are propagating ultrasonic waves 1 and 2 having different frequencies, they are in an overlapping state and a beat waveform. Since the envelope of the beat waveform changes greatly due to the phase change of the two propagating ultrasonic waves 1 and 2, it is possible to detect even a slight difference in the propagating time by the propagating ultrasonic waves 1 and 2. ..

うなり波形によると、超音波の伝播時間がわずかであっても検出できる例として、実際に、大気中で行った例を説明する。図6は、大気中での実験の構成を示す図であり、超音波送信器1及び2から異なる周波数の超音波を送信し、超音波受信器3でうなり波形として受信している。超音波送信器1及び2と超音波受信器3は、大気中に置かれ、超音波送信器1の周波数が300kHz、超音波送信器2の周波数は、293kHzとして周波数差が7kHzである。あるいは超音波送信器1の周波数が293kHz、超音波送信器2の周波数は、300kHzとしても良い。 According to the beat waveform, as an example in which ultrasonic waves can be detected even if the propagation time is short, an example actually performed in the atmosphere will be described. FIG. 6 is a diagram showing the configuration of an experiment in the atmosphere, in which ultrasonic waves having different frequencies are transmitted from the ultrasonic transmitters 1 and 2 and received as a beat waveform by the ultrasonic receiver 3. The ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 are placed in the atmosphere, and the frequency of the ultrasonic transmitter 1 is 300 kHz, the frequency of the ultrasonic transmitter 2 is 293 kHz, and the frequency difference is 7 kHz. Alternatively, the frequency of the ultrasonic transmitter 1 may be 293 kHz, and the frequency of the ultrasonic transmitter 2 may be 300 kHz.

超音波送信器1及び2と超音波受信器3の距離は450mm、送信パルス時間幅は0.35msとしている。したがって、うなり波形の包絡線(エンベロープ)は約2.5山程度生じる。超音波送信器1あるいは超音波送信器2のいずれか一方の周波数を300kHz近傍、例えば290〜310kHzとし、他方の周波数は一方の周波数に対して1〜10kHzの周波数差とすること、うなり波形のエンベロープの山数を1〜3山程度とすること、が実用的である。 The distance between the ultrasonic transmitters 1 and 2 and the ultrasonic receiver 3 is 450 mm, and the transmission pulse time width is 0.35 ms. Therefore, the envelope of the beat waveform is generated by about 2.5 peaks. The frequency of either the ultrasonic transmitter 1 or the ultrasonic transmitter 2 is set to around 300 kHz, for example, 290 to 310 kHz, and the other frequency has a frequency difference of 1 to 10 kHz with respect to one frequency. It is practical to set the number of ridges of the envelope to about 1 to 3 ridges.

図7は大気中での実験の結果を示すグラフであり、超音波の送信パルス開始時刻を基準にして、受信波形を測定した結果である。そして、上図と下図は測定時刻を変えて行ったものである。横軸が時間、縦軸が超音波受信器3で受信された信号の振幅(V)である。また、大気中で実験を行ったため、測定時刻によって大気の密度がわずかに変化している。この変化が測定可能かどうかを確認する実験である。図7において、送信パルスが受信された時刻を基準線aで示している。上図と下図では、大気の密度の変化により伝播時間が異なっているので本来、受信時刻にずれが生じ基準線aでの受信波形には、ずれが生じるはずである。しかしながら、図からはその違いが分からない、またこれ以上の測定も極めて困難である。 FIG. 7 is a graph showing the results of experiments in the atmosphere, and is the result of measuring the received waveform with reference to the transmission pulse start time of ultrasonic waves. The upper and lower figures are obtained by changing the measurement time. The horizontal axis is time, and the vertical axis is the amplitude (V) of the signal received by the ultrasonic receiver 3. In addition, since the experiment was conducted in the atmosphere, the density of the atmosphere changed slightly depending on the measurement time. This is an experiment to confirm whether this change is measurable. In FIG. 7, the time when the transmission pulse is received is shown by the reference line a. In the upper and lower figures, the propagation time differs due to the change in the density of the atmosphere, so that the reception time should be different and the reception waveform at the reference line a should be different. However, the difference cannot be seen from the figure, and further measurement is extremely difficult.

それに対して、うなり波形のエンベロープを見ると、うなりの頂点の位置が上図では基準線bであり、下図では基準線cとなっている。つまり、うなり波形のエンベロープは、測定時刻による大気の密度変化に応じて大きく変化している。この場合、変化幅である基準線bと基準線cとの差は0.03msであることが確認できる。図7に示すようにわずかな伝播時間の遅延であってもうなり波形は大きく変化し、うなり波形の頂点の到達時間を検出することで、音響インピーダンスがわずかにしか変化しない欠陥(密度ムラなど)を高感度に検出可能となる。 On the other hand, looking at the envelope of the beat waveform, the position of the apex of the beat is the reference line b in the upper figure and the reference line c in the lower figure. That is, the envelope of the beat waveform changes greatly according to the change in the density of the atmosphere depending on the measurement time. In this case, it can be confirmed that the difference between the reference line b and the reference line c, which is the change width, is 0.03 ms. As shown in FIG. 7, the beat waveform changes greatly even with a slight delay in propagation time, and by detecting the arrival time of the apex of the beat waveform, the acoustic impedance changes only slightly (density unevenness, etc.). Can be detected with high sensitivity.

なお、低周波数の超音波素子は低エネルギで超音波を送信できるが、そのビーム径は大きく、40kHz程度の駆動では小さい欠陥の検出には不向きであった。さらに、小ビーム径を持つ高周波数素子は、駆動させるためにより高いエネルギを必要としており、300kHz程度の高周波数の信号を電気回路的に合成すること、高出力で歪みなく駆動することは困難であった。 Although a low-frequency ultrasonic element can transmit ultrasonic waves with low energy, its beam diameter is large and it is not suitable for detecting small defects when driven at about 40 kHz. Furthermore, high-frequency elements with a small beam diameter require higher energy to drive, and it is difficult to synthesize high-frequency signals of about 300 kHz in an electric circuit and drive them with high output without distortion. there were.

そこで、超音波送信器1、2は、超音波を送信するため、超音波素子を高電圧のオンオフ信号、つまり矩形波でパルス的に駆動するスイッチ回路で所定時間だけ連続する超音波バースト波として送信することが望ましい。 Therefore, in order to transmit ultrasonic waves, the ultrasonic transmitters 1 and 2 use a high-voltage on / off signal, that is, a switch circuit that drives the ultrasonic element in a pulsed manner with a rectangular wave, as an ultrasonic burst wave that is continuous for a predetermined time. It is desirable to send.

そして、超音波受信器3で得られた信号は解析装置でサンプリングしてA/D変換され、メモリに記録する。さらに、受信されたうなり波形から伝播時間の違いにより欠陥の有無を判定することが良い。 Then, the signal obtained by the ultrasonic receiver 3 is sampled by the analysis device, A / D converted, and recorded in the memory. Furthermore, it is good to determine the presence or absence of defects from the received beat waveform based on the difference in propagation time.

超音波送信器1、超音波送信器2を矩形波であるパルス信号を生成して、周波数を300kHz近傍で送信することとすれば、ビームサイズを小さくでき、欠陥の検出感度を向上できる。また、スイッチ回路で矩形波でパルス的に駆動すれば、振幅歪みが問題になるようなアナログ信号を増幅する訳でないので、従来のように周波数を40kHz程度としたものと比べても駆動回路自体で無駄な消費電力を必要としない。 If the ultrasonic transmitter 1 and the ultrasonic transmitter 2 generate a pulse signal which is a square wave and transmit the frequency in the vicinity of 300 kHz, the beam size can be reduced and the defect detection sensitivity can be improved. Also, if the switch circuit is driven in a pulsed manner with a square wave, it does not amplify the analog signal that causes amplitude distortion, so the drive circuit itself is compared to the conventional one with a frequency of about 40 kHz. Does not require unnecessary power consumption.

また、超音波送信器1、2の二つでそれぞれ異なる周波数で送信することで超音波受信器3でうなり波形とするので、一つの超音波送信器1で電気的に合成されたうなり波形を送信する場合と比べて、アナログ信号を増幅することにはならない。 Further, since the ultrasonic receiver 3 produces a beat waveform by transmitting the ultrasonic transmitters 1 and 2 at different frequencies, the beat waveform electrically synthesized by one ultrasonic transmitter 1 can be obtained. It does not amplify the analog signal as compared to the case of transmission.

さらに、超音波を発生することの構成が簡素化され、無駄な消費電力を必要としない。そして、コストを抑制すると共に、より高精度化を省エネルギで達成することができる。さらに、超音波受信器3で受信された信号は、帯域外のノイズの除去、増幅等を経て分析すれば良い。 Furthermore, the configuration for generating ultrasonic waves is simplified, and wasteful power consumption is not required. Then, it is possible to suppress the cost and achieve higher accuracy with energy saving. Further, the signal received by the ultrasonic receiver 3 may be analyzed after removing noise outside the band, amplifying the signal, and the like.

1 超音波送信器1
2 超音波送信器2
3 超音波受信器
4 被検査物
5 矢印
6 うなり波形
7 欠陥(亀裂等の欠陥)
8 欠陥(密度ムラなどの欠陥)
a、b、c 基準線
1 ultrasonic transmitter 1
2 ultrasonic transmitter 2
3 Ultrasonic receiver 4 Inspected object 5 Arrow 6 Beat waveform 7 Defects (defects such as cracks)
8 Defects (defects such as uneven density)
a, b, c reference line

Claims (10)

超音波送信器により被検査物に超音波を伝播させて超音波受信器で前記超音波を受信し、伝播時間の変化により前記被検査物の欠陥を検知する非破壊検査装置において、
第1の周波数の超音波を送信する超音波送信器1と、
前記第1の周波数とは異なる第2の周波数の超音波を送信する超音波送信器2と、
前記超音波送信器1及び前記超音波送信器2からの伝播超音波を受信する前記超音波受信器と、
を備え、
前記超音波送信器1及び前記超音波送信器2は前記超音波を同時に発生し、前記超音波受信器はそれぞれ異なる周波数の前記伝播超音波が重なり合った状態のうなり波形を受信し、前記うなり波形に基づいて前記被検査物の欠陥の有無を判定することを特徴とする非破壊検査装置。
In a non-destructive inspection device that propagates ultrasonic waves to an inspected object by an ultrasonic transmitter, receives the ultrasonic waves by an ultrasonic receiver, and detects defects in the inspected object by a change in propagation time.
An ultrasonic transmitter 1 that transmits ultrasonic waves of the first frequency,
An ultrasonic transmitter 2 that transmits an ultrasonic wave having a second frequency different from the first frequency,
The ultrasonic receiver 1 for receiving the propagating ultrasonic waves from the ultrasonic transmitter 1 and the ultrasonic transmitter 2 and the ultrasonic receiver.
Equipped with
The ultrasonic transmitter 1 and the ultrasonic transmitter 2 simultaneously generate the ultrasonic waves, and the ultrasonic receiver receives a beat waveform in which the propagating ultrasonic waves having different frequencies are overlapped with each other, and the beat waveform is received. A non-destructive inspection apparatus for determining the presence or absence of defects in the inspected object based on the above.
前記超音波送信器1及び前記超音波送信器2は前記被検査物の片面に、前記超音波受信器は前記被検査物の他面に正対して配置され、前記超音波は前記被検査物の内部を透過して前記超音波受信器へ伝播されることを特徴とする請求項1に記載の非破壊検査装置。 The ultrasonic transmitter 1 and the ultrasonic transmitter 2 are arranged on one side of the object to be inspected, the ultrasonic receiver is arranged facing the other surface of the object to be inspected, and the ultrasonic wave is the object to be inspected. The non-destructive inspection apparatus according to claim 1, wherein the ultrasonic wave receiver is transmitted through the inside of the ultrasonic wave receiver. 前記超音波送信器1、前記超音波送信器2及び前記超音波受信器は前記被検査物の片面に配置され、前記超音波は前記被検査物の内部で反射されて前記超音波受信器へ伝播されることを特徴とする請求項1に記載の非破壊検査装置。 The ultrasonic transmitter 1, the ultrasonic transmitter 2, and the ultrasonic receiver are arranged on one side of the object to be inspected, and the ultrasonic waves are reflected inside the object to be inspected to the ultrasonic receiver. The non-destructive inspection apparatus according to claim 1, wherein the non-destructive inspection device is characterized by being propagated. 前記第2の周波数に対して前記第1の周波数は、0.3〜3%異なることを特徴とする請求項1から3のいずれか1項に記載の非破壊検査装置。 The nondestructive inspection apparatus according to any one of claims 1 to 3, wherein the first frequency differs from the second frequency by 0.3 to 3%. 前記超音波送信器1あるいは前記超音波送信器2のいずれか一方の周波数を290〜310kHzとし、他方の周波数は前記一方の周波数に対して1〜10kHzの周波数差としたことを特徴とする請求項1から4のいずれか1項に記載の非破壊検査装置。 A claim characterized in that the frequency of either the ultrasonic transmitter 1 or the ultrasonic transmitter 2 is 290 to 310 kHz, and the frequency of the other is a frequency difference of 1 to 10 kHz with respect to the one frequency. Item 4. The non-destructive inspection apparatus according to any one of Items 1 to 4. 前記うなり波形のエンベロープの山数を前記被検査物の内部で1〜3山とすること特徴とする請求項1から5のいずれか1項に記載の非破壊検査装置。 The non-destructive inspection apparatus according to any one of claims 1 to 5, wherein the number of peaks of the envelope of the beat waveform is 1 to 3 inside the object to be inspected. 前記超音波送信器1あるいは前記超音波送信器2による前記超音波は、送信継続時間が有限な超音波バースト波とされたことを特徴とする請求項1から6のいずれか1項に記載の非破壊検査装置。 The method according to any one of claims 1 to 6, wherein the ultrasonic wave produced by the ultrasonic transmitter 1 or the ultrasonic transmitter 2 is an ultrasonic burst wave having a finite transmission duration. Non-destructive inspection equipment. 超音波送信器により被検査物に超音波を伝播させて超音波受信器で前記超音波を受信し、伝播時間の変化により前記被検査物の欠陥を検知する非破壊検査方法であって、
第1の周波数の超音波を送信する超音波送信器1と、
前記第1の周波数とは異なる第2の周波数の超音波を送信する超音波送信器2と、
前記超音波送信器1及び前記超音波送信器2からの伝播超音波を受信する前記超音波受信器と、を備え
前記超音波送信器1及び前記超音波送信器2は前記超音波を同時に発生し、前記超音波受信器はそれぞれ異なる周波数の前記伝播超音波が重なり合った状態のうなり波形を受信し、前記うなり波形に基づいて前記被検査物の欠陥の有無を判定することを特徴とする非破壊検査方法。
A non-destructive inspection method in which an ultrasonic wave is propagated to an inspected object by an ultrasonic transmitter, the ultrasonic wave is received by an ultrasonic receiver, and a defect in the inspected object is detected by a change in propagation time.
An ultrasonic transmitter 1 that transmits ultrasonic waves of the first frequency,
An ultrasonic transmitter 2 that transmits an ultrasonic wave having a second frequency different from the first frequency,
The ultrasonic receiver 1 and the ultrasonic receiver for receiving the propagating ultrasonic waves from the ultrasonic transmitter 2 are provided .
The ultrasonic transmitter 1 and the ultrasonic transmitter 2 simultaneously generate the ultrasonic waves, and the ultrasonic receiver receives a beat waveform in which the propagating ultrasonic waves having different frequencies are overlapped with each other, and the beat waveform is received. A non-destructive inspection method comprising determining the presence or absence of defects in the object to be inspected based on the above.
前記超音波送信器1及び前記超音波送信器2を前記被検査物の片面に、前記超音波受信器を前記被検査物の他面に正対して配置し、前記超音波は前記被検査物の内部を透過して前記超音波受信器へ伝播されることを特徴とする請求項8に記載の非破壊検査方法。 The ultrasonic transmitter 1 and the ultrasonic transmitter 2 are arranged on one side of the object to be inspected, and the ultrasonic receiver is arranged facing the other surface of the object to be inspected, and the ultrasonic wave is the object to be inspected. The non-destructive inspection method according to claim 8, wherein the ultrasonic wave is transmitted through the inside of the ultrasonic wave receiver. 前記超音波送信器1、前記超音波送信器2及び前記超音波受信器を前記被検査物の片面に配置し、前記超音波は前記被検査物の内部で反射されて前記超音波受信器へ伝播されることを特徴とする請求項8に記載の非破壊検査方法。 The ultrasonic transmitter 1, the ultrasonic transmitter 2, and the ultrasonic receiver are arranged on one side of the object to be inspected, and the ultrasonic waves are reflected inside the object to be inspected and sent to the ultrasonic receiver. The non-destructive inspection method according to claim 8, wherein the transmission is performed.
JP2017138739A 2017-07-18 2017-07-18 Non-destructive inspection equipment and its method Active JP6987554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017138739A JP6987554B2 (en) 2017-07-18 2017-07-18 Non-destructive inspection equipment and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138739A JP6987554B2 (en) 2017-07-18 2017-07-18 Non-destructive inspection equipment and its method

Publications (2)

Publication Number Publication Date
JP2019020250A JP2019020250A (en) 2019-02-07
JP6987554B2 true JP6987554B2 (en) 2022-01-05

Family

ID=65353858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138739A Active JP6987554B2 (en) 2017-07-18 2017-07-18 Non-destructive inspection equipment and its method

Country Status (1)

Country Link
JP (1) JP6987554B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214714A (en) * 1983-05-20 1984-12-04 Agency Of Ind Science & Technol Ultrasonic wave flowmeter
JP2002014166A (en) * 2000-06-30 2002-01-18 Nippon Soken Inc Sound-wave measuring apparatus
US7854701B2 (en) * 2003-07-24 2010-12-21 Stergios Stergiopoulos Non-invasive monitoring of intracranial dynamic effects and brain density fluctuations
US8386118B2 (en) * 2009-08-04 2013-02-26 The Boeing Company System and method for detecting an anomaly in a hidden layer of a multi-layer structure

Also Published As

Publication number Publication date
JP2019020250A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5237923B2 (en) Adhesion evaluation apparatus and method
CN101413926A (en) A kind of sound, supersonic damage-free detection method
JP5105384B2 (en) Nondestructive inspection method and apparatus
TW201001440A (en) Nuclear reactor vibration surveillance system and its method
JPS6323505B2 (en)
JP6987554B2 (en) Non-destructive inspection equipment and its method
JP2000241397A (en) Method and apparatus for detecting surface defect
JP2011047763A (en) Ultrasonic diagnostic device
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JPS63247608A (en) Method for measuring thickness and internal cracking position of concrete
WO2019150953A1 (en) Ultrasonic probe
WO2019150952A1 (en) Defect detecting method
Battaglini et al. The use of pulse compression and frequency modulated continuous wave to improve ultrasonic non destructive evaluation of highly-scattering materials
JP6731863B2 (en) Inspection method
JP2006194763A (en) Ultrasonic flaw detection method
RU2614195C2 (en) Methods of measuring ultrasonic signal parameters in presence of interference
JP2004191133A (en) Ultrasonic flaw detector
Kazakov A nonlinear effect-based ultrasonic flaw detector for detecting cracks
Kazakov Detection of a Crack and Determination of Its Position in a Plate by the Nonlinear Modulation Method Using Lamb Waves
RU2613567C1 (en) Method for ultrasonic nondestructive inspection
JPS62156558A (en) Ultrasonic flaw detector
JPH0328757A (en) High-damping probe
JP6446888B2 (en) Ultrasonic flaw detection method for round bars
JP2002122575A (en) Method and apparatus for angle beam method
Rosli et al. Analysis of Rayleigh wave interactions for surface crack characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6987554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150