JP6467811B2 - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP6467811B2
JP6467811B2 JP2014165343A JP2014165343A JP6467811B2 JP 6467811 B2 JP6467811 B2 JP 6467811B2 JP 2014165343 A JP2014165343 A JP 2014165343A JP 2014165343 A JP2014165343 A JP 2014165343A JP 6467811 B2 JP6467811 B2 JP 6467811B2
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
transmitted
subject
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014165343A
Other languages
Japanese (ja)
Other versions
JP2016042039A (en
Inventor
有史 岡本
有史 岡本
森 大輔
大輔 森
兼重 健一
健一 兼重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014165343A priority Critical patent/JP6467811B2/en
Publication of JP2016042039A publication Critical patent/JP2016042039A/en
Application granted granted Critical
Publication of JP6467811B2 publication Critical patent/JP6467811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は超音波探傷方法に関し、特に水や油等の接触媒質を使用しない非接触式の超音波探傷方法に関するものである。 The present invention relates to an ultrasonic flaw detection method , and more particularly to a non-contact ultrasonic flaw detection method that does not use a contact medium such as water or oil.

被検体内に生じた欠陥を超音波で検出する超音波探傷においては、超音波を被検体内に効率的に入射させあるいは被検体内から効率的に出射させるために、超音波発振器や超音波受振器と被検体表面との間に通常は水や油等の接触媒質を介在させる。しかし、高温の被検体や高速移動する被検体等では接触媒質を介在させることが難しく、上記発振器や受振器を被検体から離間させてこれらの間に空気層を介在させた、いわゆる非接触式の超音波探傷を行う必要がある。   In ultrasonic flaw detection in which a defect generated in a subject is detected with ultrasonic waves, an ultrasonic oscillator or ultrasonic wave is used to efficiently cause the ultrasonic wave to enter or exit from the subject. Usually, a contact medium such as water or oil is interposed between the geophone and the subject surface. However, it is difficult to interpose a contact medium in a high-temperature subject or a fast-moving subject, and the so-called non-contact type in which the oscillator and the geophone are separated from the subject and an air layer is interposed therebetween. It is necessary to perform ultrasonic flaw detection.

なお、特許文献1には、非接触式の超音波探傷において、空気層で超音波が減衰することによる探傷精度の低下を防止する工夫が開示されている。   Patent Document 1 discloses a device for preventing a decrease in flaw detection accuracy due to attenuation of ultrasonic waves in an air layer in non-contact ultrasonic flaw detection.

特開2008−128965JP2008-128965

しかし、発明者等の知見によれば、非接触式の超音波探傷において、通常使用されている超音波を焦点へ収束させるようにしたフォーカスプローブ等を用いると、往々にして欠陥の有無が正確に判定できないことがあった。   However, according to the knowledge of the inventors, in the case of non-contact ultrasonic flaw detection, the use of a focus probe or the like that converges normally used ultrasonic waves to the focal point often reveals the presence or absence of defects. Sometimes it was impossible to judge.

そこで、本発明はこのような課題を解決するもので、非接触式の超音波探傷において正確な欠陥検出ができる超音波探傷方法および超音波探傷方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an ultrasonic flaw detection method and an ultrasonic flaw detection method that can accurately detect defects in non-contact ultrasonic flaw detection.

非接触式超音波探傷において欠陥の有無が正確に判定できない理由について鋭意検討を加えた結果、発明者等は以下の理由を見出した。すなわち、空気層での音速が被検体内の音速に比して非常に遅いことによって、スネルの法則により、入射角が小さい場合でも被検体内で超音波は大きく屈折する。この際、縦波はその屈折角が速やかに臨界角以上となって被検体の表面でその殆どが反射するが、被検体への入射時に生じる横波は反射することなく屈折波となって被検体の側面等で反射し、この反射波(ノイズ反射波)が被検体内を透過する透過波に干渉することによって、欠陥の有無の判定を行うに際して誤判定を招くのである。   As a result of intensive studies on the reason why the presence or absence of defects cannot be accurately determined in non-contact ultrasonic flaw detection, the inventors have found the following reasons. That is, since the sound velocity in the air layer is much slower than the sound velocity in the subject, the ultrasonic wave is refracted greatly in the subject even when the incident angle is small according to Snell's law. At this time, the longitudinal wave has a refraction angle of more than the critical angle and almost reflects off the surface of the subject. However, the transverse wave generated upon incidence on the subject becomes a refraction wave without being reflected. This reflected wave (noise reflected wave) interferes with the transmitted wave transmitted through the subject, thereby causing an erroneous determination when determining the presence or absence of a defect.

本発明は以上の知見に基づいてなされたもので、本発明の超音波探傷方法では、被検体の一方の面に空気層を介して、発振面が発振超音波を収束させるような曲率半径の円弧面となっている超音波発振器を対向させるとともに、前記被検体の他方の面に空気層を介して超音波受振器を対向させ、前記超音波発振器から発振された縦波発振波が前記被検体を透過した透過波を前記超音波受振器で受振し、この際の前記超音波発振器の発振面の中心部から縦波として出射された超音波からなる縦波の透過波と、前記超音波発振器の発振面の中心部から離れた端部から縦波として出射された超音波から生じた横波屈折波とにおいて、前記縦波の透過波の強度検知を当該縦波の透過波の到達から前記横波屈折波からなるノイズ反射波が到達する時以前までの間に制限して、検知時間内に受振された前記縦波の透過波の強度より前記被検体内の欠陥の有無を判定する。 The present invention has been made based on the above knowledge, and in the ultrasonic flaw detection method of the present invention, the radius of curvature is such that the oscillation surface converges the oscillating ultrasonic wave via an air layer on one surface of the subject . An ultrasonic oscillator having an arc surface is opposed to the ultrasonic wave receiver, and an ultrasonic wave receiver is opposed to the other surface of the subject via an air layer so that a longitudinal oscillation wave oscillated from the ultrasonic oscillator is generated. The transmitted wave that has passed through the specimen is received by the ultrasonic wave receiver, and the transmitted wave of the longitudinal wave composed of the ultrasonic wave emitted as the longitudinal wave from the center of the oscillation surface of the ultrasonic oscillator at this time, and the ultrasonic wave in a transverse wave refraction wave generated from the ultrasonic wave emitted as a longitudinal wave from the end remote from the center of the oscillation surface of the oscillator, the intensity detection of the transmitted wave of the longitudinal wave from the arrival of the transmitted wave of the longitudinal wave previously when noise reflected wave consisting of transverse wave refraction wave arrives And limited between at determines the presence of a defect in the subject than the intensity of the transmitted wave of the longitudinal wave is received oscillation within the detection time.

本発明においては、透過波の強度検知をする時間を、透過波の到達からノイズ反射波が到達する時以前までの間に制限しているから、透過波にノイズ反射波が干渉する前に透過波の強度検知が行われる。したがって、透過波に対するノイズ反射波の影響が排除されて、透過波の強度より正確に被検体内の欠陥の有無を判定することができる。 In the present invention , the time for detecting the intensity of the transmitted wave is limited between the arrival of the transmitted wave and before the time when the reflected noise wave arrives. Therefore, the transmission is performed before the reflected noise wave interferes with the transmitted wave. Wave intensity detection is performed. Therefore, the influence of the noise reflected wave on the transmitted wave is eliminated, and the presence or absence of a defect in the subject can be determined more accurately than the intensity of the transmitted wave.

以上のように、本発明によれば、非接触式の超音波探傷においてノイズ反射波の影響を受けない正確な欠陥検出をすることができる。   As described above, according to the present invention, it is possible to accurately detect defects that are not affected by noise reflected waves in non-contact ultrasonic flaw detection.

本発明の一実施形態を説明する概略断面図である。It is a schematic sectional drawing explaining one Embodiment of this invention. 透過波の進行経路を示すシミュレーションモデルを示す図である。It is a figure which shows the simulation model which shows the advancing path | route of a transmitted wave. ノイズ反射波の進行経路を示すシミュレーションモデルを示す図である。It is a figure which shows the simulation model which shows the advancing path | route of a noise reflected wave. 本発明の強度検知時間を設定した受振波形の一例を示す図である。It is a figure which shows an example of the received waveform which set the intensity | strength detection time of this invention. 超音波探傷の走査経路を示す被検体の概略平面図である。It is a schematic plan view of a subject showing a scanning path of ultrasonic flaw detection. 本発明の強度検知時間で得られる透過波の強度分布を示す図である。It is a figure which shows intensity distribution of the transmitted wave obtained by the intensity detection time of this invention. 従来の強度検知時間を設定した受振波形の一例を示す図である。It is a figure which shows an example of the receiving waveform which set the conventional intensity | strength detection time. 従来の強度検知時間で得られる透過波の強度分布を示す図である。It is a figure which shows intensity distribution of the transmitted wave obtained by the conventional intensity detection time.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

図1には非接触式超音波探傷によって被検体内の欠陥検出を行う場合の例を示す。図1において、一定厚の板状の被検体1に対し、一方の板面1aには間隔をおいて超音波発振器2を対向させ、被検体1の他方の板面1bには間隔をおいて超音波受振器3を対向させてある。したがって、超音波発振器2から発振された超音波(図中の太矢印)は空気層を経て被検体1の板面1aから被検体1内に入射し、被検体1内を透過して板面1bから出射して空気層を経て超音波受振器3に受振される。被検体1内に欠陥があると、超音波受振器3で受振される透過波の強度が低下するため、これを検出することで欠陥の有無を判定できる。   FIG. 1 shows an example in which a defect in a subject is detected by non-contact ultrasonic flaw detection. In FIG. 1, an ultrasonic oscillator 2 is opposed to a plate-like subject 1 having a constant thickness with an interval on one plate surface 1 a and an interval is provided on the other plate surface 1 b of the subject 1. The ultrasonic geophone 3 is opposed. Therefore, the ultrasonic wave (thick arrow in the figure) oscillated from the ultrasonic oscillator 2 enters the subject 1 from the plate surface 1a of the subject 1 through the air layer, passes through the subject 1, and passes through the plate surface. The light is emitted from 1b and is received by the ultrasonic receiver 3 through the air layer. If there is a defect in the subject 1, the intensity of the transmitted wave received by the ultrasonic receiver 3 is reduced, so that the presence or absence of the defect can be determined by detecting this.

このような非接触式超音波探傷のシミュレーションモデルを図2、図3で考える。図2、図3において、超音波発振器2はその発振面2aが発振超音波を収束させるような曲率半径Rの円弧面となっている。超音波受振器3もその受振面3aが上記発振面2aと同様の円弧面となっている。   A simulation model of such a non-contact type ultrasonic flaw detection is considered with reference to FIGS. 2 and 3, the ultrasonic oscillator 2 has an arc surface having a radius of curvature R so that the oscillation surface 2a converges the oscillation ultrasonic wave. The ultrasonic receiver 3 also has a vibration receiving surface 3a having a circular arc surface similar to the oscillation surface 2a.

超音波発振器2の発振面2aの中心部から縦波として出射された超音波は図2の太矢印で示すように、距離Aの空気層を経て幅2Xの被検体1の一方の面1aの中央にほぼ垂直に入射し(入射角ゼロ)縦波のまま厚さYの被検体1内を透過する。縦波の透過波は被検体1の他方の面1bの中央から再び距離Aの空気層を経て超音波受振器3に入射する。   The ultrasonic wave emitted as a longitudinal wave from the central portion of the oscillation surface 2a of the ultrasonic oscillator 2 passes through an air layer of a distance A as shown by a thick arrow in FIG. The light enters the center substantially perpendicularly (incident angle is zero) and passes through the subject 1 having a thickness Y as a longitudinal wave. The longitudinal transmitted wave is incident on the ultrasonic receiver 3 through the air layer at a distance A from the center of the other surface 1b of the subject 1 again.

超音波発振器2の発振面2aの中心部から離れた端部から,縦波として出射された超音波は図3の太矢印で示すように、距離L1の空気層を経て被検体1の一方の面1aに入射角θ1で入射し、ここで屈折角θ2の横波屈折波を生じる。横波屈折波は被検体1内で距離L2を伝達して被検体1の側面に達しここで反射されて、ノイズ反射波として被検体1内で距離L3を伝達して図2に示した透過波に合流しこれに干渉した後、距離Aの空気層を経て超音波受振器3に入射する。   The ultrasonic wave emitted as a longitudinal wave from the end portion away from the center portion of the oscillation surface 2a of the ultrasonic oscillator 2 passes through an air layer at a distance L1 as shown by a thick arrow in FIG. The incident light enters the surface 1a at an incident angle θ1, and generates a transverse refracted wave having a refraction angle θ2. The transverse refracted wave is transmitted through the distance L2 within the subject 1 and reaches the side surface of the subject 1 and is reflected there, and is transmitted as a noise reflected wave through the distance L3 within the subject 1 and transmitted as shown in FIG. , And enters the ultrasonic geophone 3 through the air layer of the distance A.

上記距離L1、L2、L3はそれぞれ以下のように算出される。
L1=(R−(R−A)/cosθ1
L2=(X+(R−A)*tanθ1)/sinθ2
L3=((Y−(X+(R−A)*tanθ1))/tanθ2)/cosθ2
ここで、C=340m/sとし、上記被検体をアクリル樹脂とすると、Ct=2730m/s、Cs=1430m/sである。また、図2、図3における各部の値を、R=40mm、2X=30mm、Y=30mm、A=25mm、θ1=10.2°、θ2=47.59°とする。さらに、超音波として330KHzで6波のバースト波を使用し、その持続時間は18.2μsである。
The distances L1, L2, and L3 are calculated as follows.
L1 = (R− (RA) / cos θ1
L2 = (X + (R−A) * tan θ1) / sin θ2
L3 = ((Y− (X + (RA) * tan θ1)) / tan θ2) / cos θ2
Here, when C = 340 m / s and the specimen is an acrylic resin, Ct = 2730 m / s and Cs = 1430 m / s. 2 and 3 are set to R = 40 mm, 2X = 30 mm, Y = 30 mm, A = 25 mm, θ1 = 10.2 °, and θ2 = 47.59 °. Furthermore, six burst waves at 330 KHz are used as ultrasonic waves, and the duration is 18.2 μs.

そこで、上記バースト超音波の縦波が超音波発振器2から出射して図2の経路を経て透過波として超音波受振器3に入射している間に、図3の経路を経てノイズ反射波が超音波受振器3に入射するか否かを以下に計算する。   Therefore, while the longitudinal wave of the burst ultrasonic wave is emitted from the ultrasonic oscillator 2 and is incident on the ultrasonic wave receiver 3 as a transmitted wave through the path of FIG. 2, a noise reflected wave is transmitted through the path of FIG. Whether to enter the ultrasonic geophone 3 is calculated below.

図2の経路を透過波が超音波受振器に入射するまでの時間t1は下式(1)で算出される。
t1=A/C+Y/Ct+A/C=156.76(μs)…(1)
これにバースト超音波の6波分の持続時間を考慮すると、図2の経路を経て透過波が超音波受振器に入射している時間は、超音波発振器からの出射後156.76(μs)から174.94(μs)の間である。
The time t1 until the transmitted wave enters the ultrasonic wave receiver through the path of FIG. 2 is calculated by the following equation (1).
t1 = A / C + Y / Ct + A / C = 156.76 (μs) (1)
Considering the duration of six burst ultrasonic waves, the time during which the transmitted wave is incident on the ultrasonic wave receiver through the path shown in FIG. 2 is 156.76 (μs) after emission from the ultrasonic oscillator. To 174.94 (μs).

これに対してノイズ反射波が図3の経路を経て超音波受振器に到達入射するまでの時間t2は下式(2)で算出される。
t2=L1/C+L2/Cs+L3/Cs+A/C=170.21(μs)…(2)
これによると、図3の経路を辿るノイズ反射波は、透過波の超音波受振器3への入射中にその4.4波目辺りで到達し入射することになり、透過波とノイズ反射波が干渉して強め合い、あるいは弱め合って透過波の強度が変動して、欠陥の有無の判定を誤る可能性がある。
On the other hand, the time t2 until the noise reflected wave reaches the ultrasonic wave receiver through the path of FIG. 3 is calculated by the following equation (2).
t2 = L1 / C + L2 / Cs + L3 / Cs + A / C = 170.21 (μs) (2)
According to this, the noise reflected wave that follows the path of FIG. 3 reaches and enters around the 4.4th wave while the transmitted wave is incident on the ultrasonic wave receiver 3, and the transmitted wave and the noise reflected wave are incident. May interfere with each other and strengthen or weaken each other, and the intensity of the transmitted wave may fluctuate, and the determination of the presence or absence of a defect may be erroneous.

そこで、本実施形態では、透過波の強度を検知する時間を、透過波の到達からノイズ反射波が到達する時以前までの間に制限する。すなわち、図4に示すように、透過波の強度検知時間td1をノイズ反射波の影響を受けない透過波の先頭部(例えば透過波4波分)のみに限定する。なお、透過波の先頭部で十分な透過波強度を得るために受振感度は大きくしておく。このような設定で、図5にその平面図を示すように、被検体である矩形のアクリル板1の板面に対して上述したように超音波発振器2と超音波受振器3を対向させて、図中の矢印で示すように板面全体を走査すると、欠陥のないアクリル板では、透過波の強度分布は図6に示すように一様なものとなる。なお、図6中の濃淡は透過波の強弱を示している。ただしアクリル板周縁部の濃い部分は透過波強度が低い部分である。   Therefore, in the present embodiment, the time for detecting the intensity of the transmitted wave is limited to the time from when the transmitted wave arrives until before the noise reflected wave arrives. That is, as shown in FIG. 4, the transmitted wave intensity detection time td1 is limited to only the head part of the transmitted wave that is not affected by the noise reflected wave (for example, four transmitted waves). Note that the vibration receiving sensitivity is increased in order to obtain a sufficient transmitted wave intensity at the head of the transmitted wave. With such a setting, as shown in the plan view of FIG. 5, the ultrasonic oscillator 2 and the ultrasonic receiver 3 are opposed to the plate surface of the rectangular acrylic plate 1 as the subject as described above. When the entire plate surface is scanned as shown by the arrows in the figure, the intensity distribution of the transmitted wave is uniform as shown in FIG. In addition, the shading in FIG. 6 has shown the strength of the transmitted wave. However, the dark part of the peripheral part of the acrylic plate is a part with low transmitted wave intensity.

これに対して従来のように、透過波の強度検知時間td2を長く設定した場合(図7)には、ノイズ反射波が干渉することによって、欠陥のないアクリル板の板面全体を上記と同様に走査しても、透過波の強度分布は図8に示すように局所的に大きく変動し、欠陥の有無の判定が正確に行えない。なお、図8中の濃淡は透過波の強弱を示している。ただしアクリル板周縁部の濃い部分は透過波強度が低い部分である。   On the other hand, when the transmission wave intensity detection time td2 is set long (FIG. 7) as in the prior art, the entire surface of the acrylic board having no defect is the same as described above due to interference of noise reflected waves. Even when scanning is performed, the intensity distribution of the transmitted wave greatly fluctuates locally as shown in FIG. 8, and the presence / absence of a defect cannot be determined accurately. In addition, the shading in FIG. 8 has shown the strength of the transmitted wave. However, the dark part of the peripheral part of the acrylic plate is a part with low transmitted wave intensity.

1…被検体、2…超音波発振器、3…超音波受振器。  1 ... Subject, 2 ... Ultrasonic oscillator, 3 ... Ultrasonic geophone.

Claims (1)

被検体の一方の面に空気層を介して、発振面が発振超音波を収束させるような曲率半径の円弧面となっている超音波発振器を対向させるとともに、前記被検体の他方の面に空気層を介して超音波受振器を対向させ、前記超音波発振器から発振された縦波発振波が前記被検体を透過した透過波を前記超音波受振器で受振し、この際の前記超音波発振器の発振面の中心部から縦波として出射された超音波からなる縦波の透過波と、前記超音波発振器の発振面の中心部から離れた端部から縦波として出射された超音波から生じた横波屈折波とにおいて、前記縦波の透過波の強度検知を当該縦波の透過波の到達から前記横波屈折波からなるノイズ反射波が到達する時以前までの間に制限して、検知時間内に受振された前記縦波の透過波の強度より前記被検体内の欠陥の有無を判定することを特徴とする超音波探傷方法。 An ultrasonic oscillator having an arc surface with a radius of curvature that causes the oscillation surface to converge the oscillating ultrasonic wave is opposed to one surface of the subject via an air layer, and air is opposed to the other surface of the subject. The ultrasonic oscillator is opposed to each other through the layer, and the transmitted wave in which the longitudinal oscillation wave oscillated from the ultrasonic oscillator passes through the subject is received by the ultrasonic receiver, and the ultrasonic oscillator at this time Generated from a longitudinal transmitted wave composed of an ultrasonic wave emitted as a longitudinal wave from the central portion of the oscillation surface and an ultrasonic wave emitted as a longitudinal wave from an end portion away from the central portion of the oscillation surface of the ultrasonic oscillator. The longitudinal wave transmitted wave intensity detection is limited to the time between the arrival of the longitudinal wave transmitted wave and the time before the arrival of the reflected noise wave composed of the transverse wave refracted wave. from the foregoing intensity of the transmitted wave of the longitudinal wave is received oscillation within Ultrasonic flaw detection method characterized by determining the presence or absence of a defect in the specimen.
JP2014165343A 2014-08-15 2014-08-15 Ultrasonic flaw detection method Active JP6467811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014165343A JP6467811B2 (en) 2014-08-15 2014-08-15 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014165343A JP6467811B2 (en) 2014-08-15 2014-08-15 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2016042039A JP2016042039A (en) 2016-03-31
JP6467811B2 true JP6467811B2 (en) 2019-02-13

Family

ID=55591856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165343A Active JP6467811B2 (en) 2014-08-15 2014-08-15 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP6467811B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2169307C (en) * 1994-12-12 2003-10-14 David A. Hutchins Non-contact characterization and inspection of materials using wideband air coupled ultrasound
JP3603805B2 (en) * 2001-03-29 2004-12-22 Jfeスチール株式会社 Internal defect detection method
JP4903032B2 (en) * 2006-11-24 2012-03-21 ジャパンプローブ株式会社 Aerial ultrasonic flaw detection system

Also Published As

Publication number Publication date
JP2016042039A (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP5419592B2 (en) Ultrasonic inspection probe and ultrasonic inspection device
US10444198B2 (en) Piping inspection apparatus
JP6761331B2 (en) Ultrasonic flaw detectors and methods for composite materials
JP6797788B2 (en) Ultrasonic probe
JP6467811B2 (en) Ultrasonic flaw detection method
JP5609540B2 (en) Defect detection method and defect detection apparatus using leaky surface acoustic wave
JP5810873B2 (en) Ultrasonic flaw detection method
JP6776144B2 (en) Ultrasonic probe
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
JP7074488B2 (en) Ultrasonic probe
JP6731863B2 (en) Inspection method
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP6761780B2 (en) Defect evaluation method
JP6167706B2 (en) Ultrasonic flaw detection method
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
JP6850275B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection program and ultrasonic flaw detection method
WO2020250583A1 (en) Inspection system
JP6446888B2 (en) Ultrasonic flaw detection method for round bars
JP2006177872A (en) Apparatus and method for ultrasonic flaw detection
JP2006105892A (en) Ultrasonic probe, and ultrasonic flaw detection method and apparatus
JPS58151555A (en) Ultrasonic flaw detecting method
JPH07181170A (en) Evaluation method of congested cracks on surface of solid by ultrasonic waves
JP5645428B2 (en) Ultrasonic flaw detection method
JP2013036927A (en) Surface defect detection device and surface defect detection method
JP2005315766A (en) Ultrasonic flaw detection method and ultrasonic flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6467811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150