JP6446884B2 - Transport system for automated guided vehicles - Google Patents

Transport system for automated guided vehicles Download PDF

Info

Publication number
JP6446884B2
JP6446884B2 JP2014147775A JP2014147775A JP6446884B2 JP 6446884 B2 JP6446884 B2 JP 6446884B2 JP 2014147775 A JP2014147775 A JP 2014147775A JP 2014147775 A JP2014147775 A JP 2014147775A JP 6446884 B2 JP6446884 B2 JP 6446884B2
Authority
JP
Japan
Prior art keywords
battery
capacitor
regeneration
guided vehicle
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014147775A
Other languages
Japanese (ja)
Other versions
JP2016025723A (en
Inventor
憲哉 角田
憲哉 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014147775A priority Critical patent/JP6446884B2/en
Publication of JP2016025723A publication Critical patent/JP2016025723A/en
Application granted granted Critical
Publication of JP6446884B2 publication Critical patent/JP6446884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、無人搬送車の搬送システムに関するものである。   The present invention relates to a transport system for an automatic guided vehicle.

無人搬送車の搬送システムは、無人搬送車を予め定められた走行路を走行させるものである。一方、ハイブリッド自動車においては、回生電力を多く確保することは燃費の向上につながる大切な要素である。通常ハイブリッド車は、バッテリの充電率(SOC)を動作範囲のほぼ中央(例えば50%)になるように制御する。しかし、大きな回生電力を回収しようとした場合、減速前のSOCが制御値の中央であると、使用できるSOC範囲が小さい。特許文献1には、電気自動車のハイブリッドシステムにおいて、バッテリとコンデンサを有しており、回生制動時にバッテリへの充電を制限してコンデンサに充電の分担を大きくしている。   The conveyance system of an automatic guided vehicle makes an automatic guided vehicle travel on a predetermined traveling path. On the other hand, in a hybrid vehicle, securing a large amount of regenerative power is an important factor that leads to improved fuel efficiency. Normally, a hybrid vehicle controls the battery charge rate (SOC) so that it is approximately in the middle of the operating range (for example, 50%). However, when trying to collect a large amount of regenerative power, if the SOC before deceleration is at the center of the control value, the usable SOC range is small. Patent Document 1 has a battery and a capacitor in a hybrid system of an electric vehicle, and restricts charging of the battery at the time of regenerative braking to increase the share of charging to the capacitor.

特開平5−30608号公報JP-A-5-30608

ところで、コンテナを積んで走行する大型無人搬送車においては、車両重量(積載物を含む)が非積載時には20トンぐらいであり、コンテナ積載時では最大60トンぐらいになり、非積載時とコンテナ積載時では約3倍異なる。これは、自動車とは大きく異なる点である。車両重量ごとに減速中の回生電力量も異なってくるため、バッテリの充電率(SOC)の変動幅が大きく変化する。すると、バッテリの寿命を決める電流量の2乗値が大きくなり、寿命が短くなる要因となる。また、回生量が大きくバッテリの充電率が上限(例えば80%)まで使用した場合、不可逆反応が進行する等によりバッテリの劣化を促進する領域を使用することになってしまう。一方、特許文献1に開示の技術を利用してバッテリに対しキャパシタを並列接続可能に構成し、回生電流が大きい時にはキャパシタ側に回収させる構成とする場合には、大電流を検出してからスイッチを切り替えることになる。このようにすると大電流検出からスイッチング動作完了までに遅れが生じ、この遅れに起因してバッテリに大電流が流れてしまいバッテリ寿命に悪影響を及ぼしてしまう。   By the way, in a large automatic guided vehicle traveling with containers loaded, the vehicle weight (including the load) is about 20 tons when not loaded, and is about 60 tons when loaded with containers. Sometimes it is about 3 times different. This is a very different point from automobiles. Since the amount of regenerative electric power during deceleration varies depending on the vehicle weight, the fluctuation range of the battery charge rate (SOC) changes greatly. Then, the square value of the amount of current that determines the life of the battery becomes large, which becomes a factor of shortening the life. Further, when the regenerative amount is large and the battery charge rate is used up to an upper limit (for example, 80%), an area that promotes battery deterioration is used due to the progress of an irreversible reaction or the like. On the other hand, when the technology disclosed in Patent Document 1 is used so that a capacitor can be connected in parallel to the battery, and when the regenerative current is large, the capacitor is recovered. Will be switched. If this is done, there will be a delay between the detection of the large current and the completion of the switching operation, and this delay will cause a large current to flow through the battery, adversely affecting the battery life.

本発明の目的は、無人搬送車に搭載したバッテリの長寿命化を図ることができる無人搬送車の搬送システムを提供することにある。   The objective of this invention is providing the conveyance system of the automatic guided vehicle which can aim at the lifetime improvement of the battery mounted in the automatic guided vehicle.

請求項1に記載の発明では、走行モータ、および、前記走行モータの駆動用のバッテリを搭載した無人搬送車を、予め定められた走行路を走行させる無人搬送車の搬送システムにおいて、前記無人搬送車に搭載され、前記走行モータで制動する時に発生する回生電流を分岐可能に配したキャパシタまたは抵抗と、前記無人搬送車に搭載され、回生電流を前記キャパシタまたは抵抗に分岐させるためのスイッチと、前記無人搬送車の回生前に、回生時の最大電流および回生時の前記バッテリの充電率の少なくとも一方を算出する算出手段と、前記算出手段により算出された前記回生時の最大電流および回生時の前記バッテリの充電率の少なくとも一方が閾値より大きいか否か判定して大きいと回生前に回生電流を前記キャパシタまたは抵抗に分岐させるべく前記スイッチを予め切り替えるスイッチ切替手段と、を備えたことを要旨とする。   According to the first aspect of the present invention, in the transport system for an automatic guided vehicle that travels a predetermined traveling path, the automatic guided vehicle equipped with a traveling motor and a battery for driving the traveling motor is provided. A capacitor or a resistor that is mounted on the vehicle and is arranged so as to be able to branch a regenerative current that is generated when braking by the traveling motor; a switch that is mounted on the automatic guided vehicle and that branches the regenerative current to the capacitor or the resistor; Before regeneration of the automatic guided vehicle, calculation means for calculating at least one of a maximum current during regeneration and a charging rate of the battery during regeneration, and a maximum current during regeneration and a value during regeneration calculated by the calculation means It is determined whether or not at least one of the charging rates of the battery is greater than a threshold value, and if it is greater, the regenerative current is divided into the capacitor or resistor before regeneration. And switch changeover means for switching said switch beforehand in order to be summarized as further comprising a.

請求項1に記載の発明によれば、キャパシタまたは抵抗が走行モータで制動する時に発生する回生電流を分岐可能に配され、スイッチにより回生電流をキャパシタまたは抵抗に分岐させることができる。算出手段において、無人搬送車の回生前に、回生時の最大電流および回生時のバッテリの充電率の少なくとも一方が算出される。そして、スイッチ切替手段において、算出された回生時の最大電流および回生時のバッテリの充電率の少なくとも一方が閾値より大きいか否か判定されて大きいと回生前に回生電流をキャパシタまたは抵抗に分岐させるべくスイッチが切り替えられる。その結果、大きな回生電流が流れようとする場合には予めスイッチが切り替えられるので、回生電流がキャパシタまたは抵抗に分岐され、無人搬送車に搭載したバッテリの長寿命化を図ることができる。   According to the first aspect of the present invention, the regenerative current generated when the capacitor or the resistor is braked by the traveling motor is arranged to be able to branch, and the regenerative current can be branched to the capacitor or the resistor by the switch. In the calculating means, before the regeneration of the automatic guided vehicle, at least one of the maximum current during regeneration and the charging rate of the battery during regeneration is calculated. Then, in the switch switching means, it is determined whether or not at least one of the calculated maximum current during regeneration and the charging rate of the battery during regeneration is larger than a threshold value, and if so, the regeneration current is branched to a capacitor or a resistor before regeneration. The switch is switched accordingly. As a result, when a large regenerative current is about to flow, the switch is switched in advance, so that the regenerative current is branched into a capacitor or a resistor, and the life of the battery mounted on the automatic guided vehicle can be extended.

請求項2に記載のように、請求項1に記載の無人搬送車の搬送システムにおいて、前記算出手段により算出された前記回生時の最大電流が閾値より大きい時において前記キャパシタまたは抵抗への分岐を終了すべく前記スイッチを切り替えるタイミングと、回生時の前記バッテリの充電率が閾値より大きい時において前記キャパシタまたは抵抗への分岐を終了すべく前記スイッチを切り替えるタイミングとが異なるとよい。   According to a second aspect of the present invention, in the conveyance system for the automatic guided vehicle according to the first aspect, when the maximum current at the time of regeneration calculated by the calculation unit is larger than a threshold value, the branching to the capacitor or the resistor is performed. The timing for switching the switch to be terminated may be different from the timing for switching the switch to terminate branching to the capacitor or resistor when the charging rate of the battery during regeneration is greater than a threshold value.

請求項3に記載のように、請求項2に記載の無人搬送車の搬送システムにおいて、前記算出手段により算出された前記回生時の最大電流が閾値より大きく、かつ、回生時の前記バッテリの充電率が閾値より大きい時には、回生時の前記バッテリの充電率が閾値より大きい時のタイミングで前記スイッチを前記キャパシタまたは抵抗への分岐を終了すべく切り替えるとよい。   In the transport system of the automatic guided vehicle according to claim 2, the maximum current at the time of regeneration calculated by the calculation unit is larger than a threshold value and the battery is charged at the time of regeneration. When the rate is greater than the threshold, the switch may be switched to end the branch to the capacitor or resistor at the timing when the charge rate of the battery during regeneration is greater than the threshold.

請求項4に記載のように、請求項1〜3のいずれか1項に記載の無人搬送車の搬送システムにおいて、前記キャパシタには電荷が消費される駆動源が接続されているとよい。
請求項5に記載のように、請求項4に記載の無人搬送車の搬送システムにおいて、回生時に前記キャパシタに電流を流す前に予め前記キャパシタを放電するようにするとよい。
According to a fourth aspect of the present invention, in the conveyance system for the automatic guided vehicle according to any one of the first to third aspects, the capacitor may be connected to a drive source that consumes electric charges.
As described in claim 5, in the transport system of the automatic guided vehicle according to claim 4, it is preferable that the capacitor is discharged in advance before current is passed through the capacitor during regeneration.

本発明によれば、無人搬送車に搭載したバッテリの長寿命化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the lifetime improvement of the battery mounted in the automatic guided vehicle can be achieved.

実施形態の無人搬送車の搬送システムが用いられるコンテナターミナルの概略平面図。The schematic plan view of the container terminal in which the conveyance system of the automatic guided vehicle of embodiment is used. 無人搬送車の構成を示す図。The figure which shows the structure of an automatic guided vehicle. 無人搬送車の搬送システムの作用を説明するためのフローチャート。The flowchart for demonstrating an effect | action of the conveyance system of an automatic guided vehicle. (a)は車両速度についての時系列データ、(b)は電流についての時系列データ、(c)は充電率についての時系列データ、(d),(e)はスイッチの動作を説明するための説明図。(A) is time-series data regarding vehicle speed, (b) is time-series data regarding current, (c) is time-series data regarding charging rate, and (d) and (e) are for explaining the operation of the switch. FIG. (a),(b),(c)は無人搬送車の搬送システムの動作説明のための電気的構成図。(A), (b), (c) is an electrical block diagram for operation | movement description of the conveyance system of an automatic guided vehicle. 車両速度、電流についてのタイムチャート。Time chart for vehicle speed and current. 車両速度、電流についてのタイムチャート。Time chart for vehicle speed and current. (a),(b)は別例の無人搬送車の搬送システムの動作説明のための電気的構成図。(A), (b) is an electrical block diagram for operation | movement description of the conveyance system of another example of an automatic guided vehicle.

以下、本発明を具体化した一実施形態を図面に従って説明する。
本実施形態では、無人搬送車の搬送システムは港湾のコンテナターミナルにおける無人搬送車の運行管理を行う場合に適用している。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
In this embodiment, the conveyance system of the automatic guided vehicle is applied when performing the operation management of the automatic guided vehicle at the container terminal of the port.

図1は、港湾におけるコンテナターミナルの概略平面を示しており、コンテナターミナルにおいて、無人搬送車30が周回コース(図1中、白抜き矢印で示す反時計回りの周回コース)を走行する。無人搬送車30は、駆動に関しハイブリッドシステムを有している。コンテナ船S1からコンテナがガントリークレーン50で積み降ろされる。ガントリークレーン50で積み降ろされたコンテナが無人搬送車30に搭載される。   FIG. 1 shows a schematic plan view of a container terminal in a harbor. In the container terminal, the automatic guided vehicle 30 travels on a circuit course (counterclockwise circuit course indicated by a white arrow in FIG. 1). The automated guided vehicle 30 has a hybrid system for driving. Containers are loaded and unloaded by the gantry crane 50 from the container ship S1. The container loaded and unloaded by the gantry crane 50 is mounted on the automatic guided vehicle 30.

コンテナターミナルには無人搬送車の走行路40,41が設定されている。走行路40,41を無人搬送車30がコンテナを積んで走行する。無人搬送車30は目的地となるラバータイヤクレーン60まで走行路40を通って走行する。ラバータイヤクレーン60で無人搬送車30からコンテナが降ろされる。コンテナが降ろされ空荷となった無人搬送車30は走行路41を通って走行してガントリークレーン50に戻る。無人搬送車30を走行させる際においては、直線はスピードを出すが、カーブは中程度の速度で通過する。   Travel paths 40 and 41 for automatic guided vehicles are set in the container terminal. The automatic guided vehicle 30 travels on the traveling paths 40 and 41 with containers. The automatic guided vehicle 30 travels through the travel path 40 to the rubber tire crane 60 as a destination. The container is unloaded from the automatic guided vehicle 30 by the rubber tire crane 60. The automatic guided vehicle 30 that is unloaded with the container unloaded travels through the traveling path 41 and returns to the gantry crane 50. When the automatic guided vehicle 30 is run, the straight line speeds up, but the curve passes at a medium speed.

次に、図2を用いて無人搬送車30の構成について説明する。
無人搬送車の車体31は4つの車輪32を有している。車体31には走行用のエンジンEnに加えて、走行モータ33、減速機34、インバータ36、バッテリ(蓄電装置)35、車載コンピュータ(ECU)37、充電率検出部(バッテリECU)38、無線通信機器39等が搭載されている。そして、エンジンEnと走行モータ33などによりシリーズハイブリッドシステムを構成している。エンジンEnは、ディーゼルエンジンでもガソリンエンジンでもよい。バッテリ35の電力はインバータ36を介して走行モータ33に供給され、この電力供給に伴う走行モータ33の駆動により減速機34を介して2つの車輪32aが回転駆動される。また、無人搬送車30の減速時には、走行モータ33及びインバータ36から回生による電力が発生し、発生した電力はバッテリ35に充電される。バッテリ35として、ニッケル水素二次電池、リチウムイオン二次電池、鉛蓄電池等を挙げることができる。このように、無人搬送車30は、走行モータ33、および、走行モータ33の駆動用のバッテリ35が搭載されている。
Next, the configuration of the automatic guided vehicle 30 will be described with reference to FIG.
The vehicle body 31 of the automatic guided vehicle has four wheels 32. The vehicle body 31 includes a travel motor 33, a speed reducer 34, an inverter 36, a battery (power storage device) 35, an in-vehicle computer (ECU) 37, a charge rate detection unit (battery ECU) 38, wireless communication, in addition to the travel engine En. A device 39 and the like are mounted. A series hybrid system is configured by the engine En and the traveling motor 33. The engine En may be a diesel engine or a gasoline engine. The electric power of the battery 35 is supplied to the traveling motor 33 via the inverter 36, and the two wheels 32a are rotationally driven via the speed reducer 34 by the driving of the traveling motor 33 accompanying this power supply. Further, when the automatic guided vehicle 30 is decelerated, electric power is generated by regeneration from the traveling motor 33 and the inverter 36, and the generated electric power is charged in the battery 35. Examples of the battery 35 include a nickel metal hydride secondary battery, a lithium ion secondary battery, and a lead storage battery. Thus, the automatic guided vehicle 30 is equipped with the traveling motor 33 and the battery 35 for driving the traveling motor 33.

充電率検出部38はバッテリ35の充電率(SOC)を検出する。充電率検出部38によるバッテリ35の充電率(SOC)の検出結果は車載コンピュータ37に送られる。
無人搬送車30にはキャパシタ80、スイッチ81、ファンモータ82、スイッチ83が搭載されている。キャパシタ80とスイッチ81が直列に接続され、この直列回路の両端がバッテリ35の正負の端子に接続されている。また、ファンモータ82とスイッチ83が直列に接続され、この直列回路の両端がキャパシタ80の両端子に接続されている。キャパシタ80は、走行モータ33で制動する時に発生する回生電流を分岐可能に配したものである。スイッチ81は、回生電流をキャパシタ80に分岐させるためのものである。
The charge rate detection unit 38 detects the charge rate (SOC) of the battery 35. The detection result of the charging rate (SOC) of the battery 35 by the charging rate detection unit 38 is sent to the in-vehicle computer 37.
The automatic guided vehicle 30 is equipped with a capacitor 80, a switch 81, a fan motor 82, and a switch 83. A capacitor 80 and a switch 81 are connected in series, and both ends of this series circuit are connected to the positive and negative terminals of the battery 35. A fan motor 82 and a switch 83 are connected in series, and both ends of the series circuit are connected to both terminals of the capacitor 80. The capacitor 80 is provided so that the regenerative current generated when braking by the traveling motor 33 can be branched. The switch 81 is for branching the regenerative current to the capacitor 80.

車載コンピュータ37はインバータ36、スイッチ(リレースイッチ)81,83等を制御する。スイッチ81が閉じられるとインバータ36からの回生電流が分岐されてキャパシタ80に供給される。つまり、通常はスイッチ81が開いており、インバータ36からの回生電流がバッテリ35に供給されるが、スイッチ81を閉じることによりインバータ36からの回生電流がキャパシタ80にも供給される。一方、キャパシタ80に蓄えられた電荷はスイッチ83を閉じることによりファンモータ82の駆動用に供され、ファンモータ82の駆動に伴い冷却ファン84が回転して冷却風が冷却対象(エンジンEn、走行モータ33、バッテリ35等)に送られる。無線通信機器39は外部の管制塔70(図1参照)と通信する。   The in-vehicle computer 37 controls the inverter 36, switches (relay switches) 81, 83, and the like. When the switch 81 is closed, the regenerative current from the inverter 36 is branched and supplied to the capacitor 80. That is, normally, the switch 81 is open and the regenerative current from the inverter 36 is supplied to the battery 35, but the regenerative current from the inverter 36 is also supplied to the capacitor 80 by closing the switch 81. On the other hand, the electric charge stored in the capacitor 80 is used for driving the fan motor 82 by closing the switch 83, and the cooling fan 84 rotates as the fan motor 82 is driven, so that the cooling air is cooled (engine En, traveling). Motor 33, battery 35, etc.). The wireless communication device 39 communicates with an external control tower 70 (see FIG. 1).

図1に示すように、無人搬送車の搬送システム10の構成として、管制塔70を備えている。管制塔70はデータサーバを有する。そして、管制塔70は、データサーバから、無人搬送車30を予め定められた走行路40,41を走行させるときの積載重量の情報(次の無人搬送車の走行の際の荷重情報等)および無人搬送車30の位置情報(次の無人搬送車の走行の際の位置情報)を取得する。   As shown in FIG. 1, a control tower 70 is provided as a configuration of the transport system 10 of the automatic guided vehicle. The control tower 70 has a data server. Then, the control tower 70 receives, from the data server, information on the load weight when the automatic guided vehicle 30 travels on the predetermined traveling paths 40 and 41 (load information when the next automatic guided vehicle travels), and The position information of the automatic guided vehicle 30 (the positional information when the next automatic guided vehicle travels) is acquired.

管制塔70は無人搬送車30の無線通信機器39と無線通信を行って管制塔70から無人搬送車30の無線通信機器39を介して車載コンピュータ37に走行指令が送られる。この走行指令に従って無人搬送車30の車載コンピュータ37は無人搬送車30を予め定められた走行路40,41を速度、加速度等を制御しつつ走行させる。   The control tower 70 performs wireless communication with the wireless communication device 39 of the automatic guided vehicle 30, and a traveling command is sent from the control tower 70 to the in-vehicle computer 37 via the wireless communication device 39 of the automatic guided vehicle 30. In accordance with this travel command, the in-vehicle computer 37 of the automatic guided vehicle 30 causes the automatic guided vehicle 30 to travel on predetermined travel paths 40 and 41 while controlling speed, acceleration, and the like.

また、管制塔70は、ガントリークレーン50に指令を送り所望の動作(荷役作業)を行わせる。管制塔70は、ラバータイヤクレーン60に指令を送り所望の動作(荷役作業)を行わせる。   Further, the control tower 70 sends a command to the gantry crane 50 to perform a desired operation (loading work). The control tower 70 sends a command to the rubber tire crane 60 to perform a desired operation (loading work).

無人搬送車30の車載コンピュータ37は、次の無人搬送車30の走行の際の回生時の電流を計算するとともに次の無人搬送車30の走行の際のバッテリ35の充電率(SOC)を計算する。   The in-vehicle computer 37 of the automated guided vehicle 30 calculates the current during regeneration of the next automated guided vehicle 30 and calculates the charging rate (SOC) of the battery 35 when the automated guided vehicle 30 travels. To do.

次に、無人搬送車の搬送システム10の作用について説明する。
図3は作用説明のためのフローチャートであり、図4(a),(b),(c)は作用説明のための車両速度、回生電流、バッテリの充電率(SOC)についての時系列データであり、図4(d),(e)はスイッチ81の動作を説明するための説明図である。図5はキャパシタ80側の動作説明図である。
Next, the operation of the transport system 10 for the automatic guided vehicle will be described.
FIG. 3 is a flowchart for explaining the operation, and FIGS. 4A, 4B, and 4C are time series data on the vehicle speed, the regenerative current, and the battery charge rate (SOC) for explaining the operation. FIG. 4D and FIG. 4E are explanatory diagrams for explaining the operation of the switch 81. FIG. 5 is an operation explanatory diagram on the capacitor 80 side.

図4(a)において、t1のタイミングで車両速度が上昇してt2のタイミングで定速走行に移行してt3のタイミングに減速が開始され、t4のタイミングで定速走行に移行したものとする。つまり、t3〜t4の期間に回生が行われ、t3のタイミング以前が回生前であり、t4のタイミング以降が回生後である。   In FIG. 4A, it is assumed that the vehicle speed increases at the timing of t1, shifts to constant speed travel at the timing of t2, starts deceleration at the timing of t3, and shifts to constant speed travel at the timing of t4. . That is, regeneration is performed during the period from t3 to t4, before the timing of t3 is before regeneration, and after the timing of t4 is after regeneration.

通常時は図5(a)に示すように、インバータ36からの電流はバッテリ35に供給され、バッテリ35が充電される。
キャパシタ80の使用時は、図5(b)に示すようにスイッチ83を閉じてキャパシタ80に蓄えられた電荷でファンモータ82を駆動して冷却ファン84で使用する。
At normal times, as shown in FIG. 5A, the current from the inverter 36 is supplied to the battery 35, and the battery 35 is charged.
When the capacitor 80 is used, as shown in FIG. 5B, the switch 83 is closed and the fan motor 82 is driven by the electric charge stored in the capacitor 80 to be used by the cooling fan 84.

大電流回生時は、図5(c)に示すように、スイッチ81を閉じて充電電流をキャパシタ80側にも送る。つまり、減速初期の大電流回生時には回生電流をキャパシタ80側にも分岐してバッテリ35の負荷を低減する。   During large current regeneration, as shown in FIG. 5C, the switch 81 is closed and the charging current is also sent to the capacitor 80 side. That is, at the time of large current regeneration in the early stage of deceleration, the regenerative current is also branched to the capacitor 80 side to reduce the load on the battery 35.

減速前、即ち、回生前において車載コンピュータ37は、回生時の最大電流および回生時のバッテリ35の充電率を算出して、算出された回生時の最大電流および回生時のバッテリ35の充電率の少なくとも一方が閾値より大きいか否か判定して大きいと回生前に回生電流をキャパシタ80に分岐させるべくスイッチ81を予め切り替える。   Before deceleration, that is, before regeneration, the in-vehicle computer 37 calculates the maximum current during regeneration and the charging rate of the battery 35 during regeneration, and calculates the calculated maximum current during regeneration and the charging rate of the battery 35 during regeneration. It is determined whether at least one is larger than the threshold value, and if it is larger, the switch 81 is switched in advance to branch the regenerative current to the capacitor 80 before regeneration.

図4(a)のt3〜t4の期間の減速時に回生電流が発生する。比較例としてバッテリにしか回生電流を送らなかった場合には許容値を超えてしまう。即ち、電流が許容値を超えて大きいと電流の2乗和でバッテリの負荷が大きくなり、バッテリ寿命が短くなる要因となる。これに対し本実施形態では回生電流でバッテリ35とキャパシタ80において充電される。これにより比較例としてバッテリにしか回生電流を送らなかった場合には許容値を超えてしまうが分岐させることにより許容値を超えることが回避される。よって、バッテリに加わる電流負荷を低減して長寿命化が図られる。   A regenerative current is generated during deceleration during the period from t3 to t4 in FIG. As a comparative example, when the regenerative current is sent only to the battery, the allowable value is exceeded. In other words, if the current exceeds a permissible value, the load on the battery increases due to the sum of squares of the current, causing a reduction in battery life. In contrast, in the present embodiment, the battery 35 and the capacitor 80 are charged with a regenerative current. As a result, when the regenerative current is sent only to the battery as a comparative example, the allowable value is exceeded, but it is avoided that the allowable value is exceeded by branching. Therefore, the current load applied to the battery can be reduced and the life can be extended.

バッテリの充電率(SOC)についても、比較例ではSOCの上限付近を使用することとなり、バッテリ寿命が短くなる要因となる。本実施形態では分岐させることにより、図4(c)に示すように、寿命のためには使用を控えるべき領域A2,A3を外して、積極的に使用して良い領域A1を制御域とすることができる。その結果、バッテリのSOC変動を低減して劣化を防止して長寿命化を図ることができる。   Regarding the charging rate (SOC) of the battery, the comparative example uses the vicinity of the upper limit of the SOC, which becomes a factor of shortening the battery life. In the present embodiment, by branching, as shown in FIG. 4C, the areas A2 and A3 that should not be used for the lifetime are removed, and the area A1 that can be actively used is set as the control area. be able to. As a result, it is possible to reduce the SOC fluctuation of the battery, prevent deterioration, and extend the life.

システムの動作としては、積載重量・走行パターンを入手した後、減速時の回生電力量を事前に推定し、回生電流量とバッテリの充電率(SOC)を考慮したバッテリ(鉛蓄電池等)の分岐制御を行う。   As system operation, after obtaining the load weight and running pattern, estimate the amount of regenerative power during deceleration in advance, and branch the battery (lead storage battery, etc.) considering the amount of regenerative current and the battery charge rate (SOC) Take control.

ここで、回生電流量が大きい場合、バッテリ寿命の指標となる電流2乗和(I^2)が大きくなるので、ベースとなるバッテリ35に加え、キャパシタ80に分岐させ、電流2乗和を低減しバッテリ寿命を延ばす。   Here, when the amount of regenerative current is large, the current sum of squares (I ^ 2), which is an indicator of battery life, increases. Therefore, in addition to the battery 35 serving as a base, it branches to the capacitor 80 to reduce the sum of current squares. Extend battery life.

また、バッテリ35の充電率(SOC)上限付近まで回生を行う場合には、バッテリ寿命の劣化を促進する領域を使うことになるので、ベースとなるバッテリ35に加え、キャパシタ80に分岐させ、バッテリ35の充電率(SOC)上限域の利用を低減しバッテリの寿命を伸ばす。   In addition, when regeneration is performed near the upper limit of the charging rate (SOC) of the battery 35, an area that promotes deterioration of the battery life is used. Therefore, in addition to the battery 35 serving as a base, the battery 80 is branched to Reduces the use of the 35 charge rate (SOC) upper limit and extends battery life.

さらに、図4(e)においてt10で示すタイミングが、回生時の最大電流が閾値より大きい時においてキャパシタ80への分岐を終了すべくスイッチ81を切り替えるタイミングであり、t10は分岐させない場合のバッテリ電流が許容値を下回るタイミングである。また、図4(d)においてt11で示すタイミングが、回生時のバッテリの充電率が閾値より大きい時においてキャパシタ80への分岐を終了すべくスイッチ81を切り替えるタイミングであり、t11において回生が終了するタイミング(=t4)である。ここで、スイッチ81を切るタイミングt10(図4(e))とタイミングt11(図4(d))とが異なる。特に、算出された回生時の最大電流が閾値より大きく、かつ、回生時のバッテリの充電率が閾値より大きい時には、回生時のバッテリの充電率が閾値より大きい時のタイミング(=t11)でスイッチ81をキャパシタ80への分岐を終了すべく切り替えるようにしている。   Further, the timing indicated by t10 in FIG. 4 (e) is a timing for switching the switch 81 to end the branching to the capacitor 80 when the maximum current during regeneration is larger than the threshold value, and t10 is the battery current when not branching. Is the timing when the value falls below the allowable value. Also, the timing indicated by t11 in FIG. 4D is the timing for switching the switch 81 to end the branching to the capacitor 80 when the charging rate of the battery at the time of regeneration is greater than the threshold, and regeneration ends at t11. Timing (= t4). Here, the timing t10 (FIG. 4E) for turning off the switch 81 is different from the timing t11 (FIG. 4D). In particular, when the calculated maximum current during regeneration is greater than a threshold and the battery charging rate during regeneration is greater than the threshold, the switch is performed at a timing (= t11) when the battery charging rate during regeneration is greater than the threshold. 81 is switched to end the branch to the capacitor 80.

また、図5(b)を用いて説明したごとく、キャパシタ80には電荷が消費される駆動源としてのファンモータ82が接続されているので、回生時にキャパシタ80に電流を流す前に予めキャパシタ80を放電して電荷が消費させることができる。   Further, as described with reference to FIG. 5B, since the capacitor 80 is connected to the fan motor 82 as a drive source that consumes charges, the capacitor 80 is preliminarily applied before the current flows through the capacitor 80 during regeneration. Can be discharged and consumed.

具体的な分岐制御ロジックについて説明する。
回生時の分岐制御は下記の手順で行われる。図3において、ステップ100〜106が回生前に行われる処理であり、ステップ107が回生時に行われる動作であり、ステップ108,109が回生後に行われる処理である。
A specific branch control logic will be described.
Branch control during regeneration is performed according to the following procedure. In FIG. 3, steps 100 to 106 are processes performed before regeneration, step 107 is an operation performed during regeneration, and steps 108 and 109 are processes performed after regeneration.

図3に示すように、回生の開始前のタイミングにおいて、ステップ100で車載コンピュータ37は、上位システムである管制塔70から、数ステップ後の荷重情報を受け取る。   As shown in FIG. 3, at the timing before the start of regeneration, the in-vehicle computer 37 receives load information after several steps from the control tower 70, which is the host system, at step 100.

ステップ101で車載コンピュータ37は、管制塔70から、数ステップ後の位置情報を受け取る。即ち、何秒後に無人搬送車30がどこを走行しているという情報を受け取る。   In step 101, the in-vehicle computer 37 receives position information after several steps from the control tower 70. That is, information indicating where the automatic guided vehicle 30 is traveling is received after how many seconds.

ステップ102で車載コンピュータ37は、数ステップ後(回生時)の電流Inを計算する。つまり、無人搬送車30の走行位置における車両速度から回生電流を求める。
ステップ103で車載コンピュータ37は、数ステップ後(回生時)のバッテリ充電率SOCnを計算する。
In step 102, the in-vehicle computer 37 calculates the current In after several steps (during regeneration). That is, the regenerative current is obtained from the vehicle speed at the travel position of the automatic guided vehicle 30.
In step 103, the in-vehicle computer 37 calculates the battery charge rate SOCn after several steps (during regeneration).

ステップ104で車載コンピュータ37は、回生時の電流Inが予め定めた許容電流量Iadjより大きい、または、回生時のバッテリ充電率SOCnが予め定めた許容値SOCadjより大きい時には、次ロジックに移る。   In step 104, the in-vehicle computer 37 proceeds to the next logic when the current In during regeneration is larger than a predetermined allowable current amount Iadj or when the battery charge rate SOCn during regeneration is larger than a predetermined allowable value SOCadj.

ステップ105で車載コンピュータ37はキャパシタ80を積極利用しておく。つまり、図5(b)に示すごとく回生時にキャパシタ80に流すべき大きな回生電流が来る前に電力を消費しておく。   In step 105, the in-vehicle computer 37 actively uses the capacitor 80. That is, as shown in FIG. 5B, power is consumed before a large regenerative current to flow through the capacitor 80 during regeneration.

ステップ106で車載コンピュータ37は、分岐用のスイッチ81をオンする(図5(c)参照)。
ステップ107で回生電流がバッテリ35とキャパシタ80に分岐(分流)される。
In step 106, the in-vehicle computer 37 turns on the branch switch 81 (see FIG. 5C).
In step 107, the regenerative current is branched (divided) into the battery 35 and the capacitor 80.

回生終了ならば、ステップ108で車載コンピュータ37は、分岐用のスイッチ81をオフする(図5(a)参照)。
車載コンピュータ37はステップ109で図5(b)に示すごとくキャパシタ80を適時利用する。
If the regeneration is completed, the in-vehicle computer 37 turns off the branching switch 81 in step 108 (see FIG. 5A).
The in-vehicle computer 37 uses the capacitor 80 in a timely manner as shown in FIG.

次に、比較例として回生電流を検出してスイッチを切り替える場合と、本実施形態のように事前に予測してスイッチを切り替える場合を比較して説明する。
電流の発生をセンサで検出してコンピュータがスイッチを閉じる方式では大電流がバッテリに流れてしまう。本実施形態では、事前に車載コンピュータ37が大電流を予測し判断してスイッチ切替指令を出してスイッチ81を切り替える。よって、大電流が発生した時にはキャパシタ80に回生される。
Next, as a comparative example, the case where the switch is switched by detecting the regenerative current and the case where the switch is switched by prediction in advance as in this embodiment will be described.
In the method in which the generation of current is detected by a sensor and the computer closes the switch, a large current flows to the battery. In this embodiment, the in-vehicle computer 37 predicts and determines a large current in advance, issues a switch switching command, and switches the switch 81. Therefore, when a large current is generated, it is regenerated in the capacitor 80.

このようにしてバッテリ35の寿命(劣化)の観点から回生時にキャパシタ80に分岐させる際において、減速時の回生電力量を事前に推定する構成とすることにより、キャパシタ80の利用の際のスイッチングなどの制御面で応答遅れが発生することが回避される。   In this way, when branching to the capacitor 80 at the time of regeneration from the viewpoint of the life (deterioration) of the battery 35, a configuration in which the amount of regenerative electric power at the time of deceleration is estimated in advance, switching when using the capacitor 80, etc. The occurrence of a response delay on the control surface is avoided.

図6,7を用いて急減速の初期時に大きな回生電流(ピーク電流)が発生した場合について説明する。
図6は比較例として回生電流を検出してt20のタイミングでスイッチ(リレースイッチ)を切り替える場合であり、図7は事前に予測してt21のタイミングでスイッチ(リレースイッチ)を切り替える本実施形態である。
A case where a large regenerative current (peak current) is generated at the initial stage of rapid deceleration will be described with reference to FIGS.
FIG. 6 shows a case where a regenerative current is detected and a switch (relay switch) is switched at a timing t20 as a comparative example, and FIG. 7 shows an embodiment in which the switch (relay switch) is switched in advance at a timing t21. is there.

大電流が流れる場合は、図6,7のように初期のタイミングで大電流が発生して、図6のt20のタイミングでスイッチを切り替えると急減速時に発生する大電流でバッテリにダメージを与えて寿命に悪影響を及ぼす。   When a large current flows, a large current is generated at the initial timing as shown in FIGS. 6 and 7, and if the switch is switched at the timing of t20 in FIG. 6, the battery is damaged by the large current generated during sudden deceleration. Adversely affects lifespan.

ここで、バッテリに対しキャパシタを並列接続可能に構成し、回生電流が大きい時にはキャパシタ側に回収させる場合を考える。このとき、大電流を検出してからスイッチを切り替えると、大電流検出からスイッチング動作完了までに遅れが生じる。この遅れに起因してバッテリに大電流が流れてしまう。具体的には、大電流を判定する際に電流センサ等を付けた場合、必ずスイッチング完了までに時間がかかる。より詳しくは、大電流発生→電流センサ反応→制御機器へ通知→制御機器の判断→制御機器がスイッチ切替指令→スイッチ切替動作→キャパシタによる回生動作となり、大電流検出からのタイムラグによりバッテリに大電流が流れてしまう。図6では、急減速初期の大電流発生期間T1の大電流はバッテリが負担し、それ以降の期間T2の電流はキャパシタ(およびバッテリ)が負担する。   Here, a case is considered in which a capacitor can be connected in parallel to the battery, and when the regenerative current is large, the capacitor is recovered. At this time, if the switch is switched after detecting a large current, a delay occurs between the detection of the large current and the completion of the switching operation. Due to this delay, a large current flows through the battery. Specifically, when a current sensor or the like is attached when determining a large current, it always takes time to complete switching. More specifically, large current generation → current sensor reaction → notification to control device → control device judgment → switch switching command → switch switching operation → regenerative operation by capacitor, large current to battery due to time lag from detection of large current Will flow. In FIG. 6, the battery bears the large current during the large current generation period T1 in the early stage of sudden deceleration, and the capacitor (and the battery) bears the current during the subsequent period T2.

これに対し本実施形態では図7のt21のタイミングにおいて、大電流発生前にスイッチを切り替えることにより、急減速時における全期間T3にわたり大電流を含めてキャパシタ80(およびバッテリ35)が負担する。従って、この初期のタイミングでのスイッチ切替が大きな意味を持ち、バッテリ長寿命化に大きく貢献することができる。   On the other hand, in this embodiment, the capacitor 80 (and the battery 35) bears the large current including the large current over the entire period T3 during the rapid deceleration by switching the switch before the large current is generated at the timing of t21 in FIG. Therefore, the switch switching at the initial timing has a great meaning and can greatly contribute to the extension of the battery life.

上記実施形態によれば、以下のような効果を得ることができる。
(1)無人搬送車の搬送システム10の構成として、キャパシタ80とスイッチ81と車載コンピュータ37とを備える。算出手段としての車載コンピュータ37は、無人搬送車の回生前に、回生時の最大電流および回生時のバッテリ35の充電率を算出する。スイッチ切替手段としての車載コンピュータ37は、算出された回生時の最大電流および回生時のバッテリの充電率の少なくとも一方が閾値より大きいか否か判定して大きいと回生前に回生電流をキャパシタ80に分岐させるべくスイッチ81を予め切り替える。よって、大きな回生電流が流れようとする場合には予めスイッチ81が切り替えられるので、回生電流がキャパシタ80に分岐され、無人搬送車に搭載したバッテリ35の寿命を短くする要因を排除し、長寿命化を図ることができる。
According to the above embodiment, the following effects can be obtained.
(1) As a configuration of the transport system 10 of the automatic guided vehicle, a capacitor 80, a switch 81, and an in-vehicle computer 37 are provided. The in-vehicle computer 37 as the calculating means calculates the maximum current during regeneration and the charging rate of the battery 35 during regeneration before regeneration of the automatic guided vehicle. The in-vehicle computer 37 serving as the switch switching means determines whether or not at least one of the calculated maximum current during regeneration and the charging rate of the battery during regeneration is greater than a threshold, and if so, the regeneration current is supplied to the capacitor 80 before regeneration. The switch 81 is switched in advance to branch. Therefore, when a large regenerative current is about to flow, the switch 81 is switched in advance, so that the regenerative current is branched to the capacitor 80, eliminating the factor that shortens the life of the battery 35 mounted on the automatic guided vehicle, and has a long life Can be achieved.

つまり、バッテリ35に対する電流負荷を抑え、バッテリ35の長寿命化を図ることができる。また、バッテリ35のSOC変動幅を制御し、使わない方がよいSOC領域を使用しないことによりバッテリの長寿命化を図ることができる。   That is, the current load on the battery 35 can be suppressed, and the life of the battery 35 can be extended. Further, by controlling the SOC fluctuation range of the battery 35 and not using the SOC region that should not be used, it is possible to extend the battery life.

(2)算出された回生時の最大電流が閾値より大きい時においてキャパシタ80への分岐を終了すべくスイッチ81を切り替えるタイミングと、回生時のバッテリ35の充電率が閾値より大きい時においてキャパシタ80への分岐を終了すべくスイッチ81を切り替えるタイミングとが異なるので、実用上好ましい。   (2) When the calculated maximum current during regeneration is greater than the threshold, the timing of switching the switch 81 to end the branching to the capacitor 80, and when the charge rate of the battery 35 during regeneration is greater than the threshold, to the capacitor 80 Since the timing of switching the switch 81 is different in order to end the branching, it is preferable in practice.

(3)算出された回生時の最大電流が閾値より大きく、かつ、回生時のバッテリの充電率が閾値より大きい時には、回生時のバッテリの充電率が閾値より大きい時のタイミングでスイッチ81をキャパシタ80への分岐を終了すべく切り替えるので、実用上好ましい。   (3) When the calculated maximum current during regeneration is greater than the threshold and the battery charging rate during regeneration is greater than the threshold, the switch 81 is connected to the capacitor at a timing when the battery charging rate during regeneration is greater than the threshold. Since it switches so that the branch to 80 may be complete | finished, it is preferable practically.

(4)キャパシタ80には電荷が消費される駆動源としてのファンモータ82が接続されているので、実用上好ましい。
(5)回生時にキャパシタ80に電流を流す前にキャパシタ80を放電する。よって、キャパシタ80で充電する上で好ましい。
(4) Since the fan motor 82 as a drive source for consuming electric charge is connected to the capacitor 80, it is practically preferable.
(5) Discharge the capacitor 80 before passing a current through the capacitor 80 during regeneration. Therefore, it is preferable for charging with the capacitor 80.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
・キャパシタ80に代わり抵抗を用いてもよい。例えば図8に示すように抵抗R1を用いる。詳しくは、バッテリ35とスイッチSW1で直列回路が構成されるとともに抵抗R1とスイッチSW2で直列回路が構成され、これらの直列回路が並列に接続されている。このように、回生用の抵抗R1を用いることにより分岐回路を形成し、回生時のバッテリ負荷を低減する。
The embodiment is not limited to the above, and may be embodied as follows, for example.
A resistor may be used instead of the capacitor 80. For example, a resistor R1 is used as shown in FIG. Specifically, a series circuit is configured by the battery 35 and the switch SW1, and a series circuit is configured by the resistor R1 and the switch SW2, and these series circuits are connected in parallel. In this way, a branch circuit is formed by using the regenerative resistor R1, and the battery load during regeneration is reduced.

図8(a)において通常時にはスイッチSW1を閉じてバッテリ35に回生電流を流す。図8(b)において大電流回生時、即ち、減速初期の大電流回生時はスイッチSW2を閉じて抵抗R1での廃熱によりバッテリ35の負荷を低減する。   In FIG. 8A, the switch SW1 is closed at normal times, and a regenerative current is supplied to the battery 35. In FIG. 8B, at the time of large current regeneration, that is, at the time of large current regeneration at the initial stage of deceleration, the switch SW2 is closed to reduce the load of the battery 35 by waste heat at the resistor R1.

よって、バッテリに対する電流負荷を抑え、バッテリを長寿命化できるとともにバッテリのSOC変動幅を制御し、バッテリを長寿命化できる。
・無人搬送車におけるハイブリッドの方式は、パラレル方式でもシリーズ方式でもシリーズパラレル方式でもよい。
Therefore, the current load on the battery can be suppressed, the battery life can be extended, the SOC fluctuation range of the battery can be controlled, and the battery life can be extended.
-The hybrid system for automated guided vehicles may be a parallel system, a series system, or a series parallel system.

・走行用のエンジンEnと走行モータ33を搭載したハイブリッド方式の無人搬送車以外にも、エンジンが無く、走行モータ33を搭載した電動式の無人搬送車に適用してもよい。   In addition to the hybrid automatic guided vehicle having the traveling engine En and the traveling motor 33 mounted thereon, the present invention may be applied to an electric automated guided vehicle having no engine and having the traveling motor 33 mounted thereon.

・スイッチの切り替えは、回生時の最大電流(回生初期の大電流)および回生時のバッテリの充電率の一方に基づいて行って回生初期の大きな電流がバッテリに流れ込むときにはキャパシタ側または抵抗側に電流を流す経路を形成してもよい。要は、無人搬送車の回生前に、回生時の最大電流および回生時のバッテリの充電率の少なくとも一方を算出して、算出された回生時の最大電流および回生時のバッテリの充電率の少なくとも一方が閾値より大きいか否か判定して大きいと回生前に回生電流をキャパシタまたは抵抗に分岐させるべくスイッチを予め切り替えるようにすればよい。   ・ Switch switching is based on one of the maximum current during regeneration (large current at the time of regeneration) and the charging rate of the battery at the time of regeneration. You may form the path | route which flows. In short, before regeneration of the automated guided vehicle, calculate at least one of the maximum current during regeneration and the battery charge rate during regeneration, and at least the calculated maximum current during regeneration and the battery charge rate during regeneration. If one of them is larger than the threshold value and it is larger, the switch may be switched in advance to branch the regenerative current to the capacitor or the resistor before regeneration.

10…無人搬送車の搬送システム、30…無人搬送車、33…走行モータ、35…バッテリ、37…車載コンピュータ、38…充電率検出部、40…走行路、41…走行路、80…キャパシタ、81…スイッチ、82…ファンモータ、R1…抵抗、SW2…スイッチ。   DESCRIPTION OF SYMBOLS 10 ... Transfer system of automatic guided vehicle, 30 ... Automatic guided vehicle, 33 ... Traveling motor, 35 ... Battery, 37 ... In-vehicle computer, 38 ... Charge rate detection part, 40 ... Traveling path, 41 ... Traveling path, 80 ... Capacitor, 81 ... switch, 82 ... fan motor, R1 ... resistor, SW2 ... switch.

Claims (5)

走行モータ、および、前記走行モータの駆動用のバッテリを搭載した無人搬送車を、予め定められた走行路を走行させる無人搬送車の搬送システムにおいて、
前記無人搬送車に搭載され、前記走行モータで制動する時に発生する回生電流を分岐可能に配したキャパシタまたは抵抗と、
前記無人搬送車に搭載され、回生電流を前記キャパシタまたは抵抗に分岐させるためのスイッチと、
前記走行路を走行する前記無人搬送車の積載重量の情報及び位置情報を取得し、回生前に、回生時の最大電流および回生時の前記バッテリの充電率の少なくとも一方を算出する算出手段と、
前記算出手段により算出された前記回生時の最大電流および回生時の前記バッテリの充電率の少なくとも一方が閾値より大きいか否か判定して大きいと回生前に回生電流を前記キャパシタまたは抵抗に分岐させるべく前記スイッチを予め切り替えるスイッチ切替手段と、を備えたことを特徴とする無人搬送車の搬送システム。
In a transport system for an automated guided vehicle that travels a predetermined traveling path, a traveling motor and an automated guided vehicle equipped with a battery for driving the traveling motor,
A capacitor or a resistor mounted on the automatic guided vehicle and arranged to be able to branch a regenerative current generated when braking by the traveling motor;
A switch mounted on the automated guided vehicle for branching a regenerative current to the capacitor or resistor;
Obtaining load position information and position information of the automatic guided vehicle traveling on the traveling path, and calculating at least one of a maximum current during regeneration and a charging rate of the battery during regeneration before regeneration,
It is determined whether or not at least one of the maximum current during regeneration and the charging rate of the battery during regeneration calculated by the calculating means is greater than a threshold value, and if so, the regeneration current is branched to the capacitor or resistor before regeneration. And a switch switching means for switching the switch in advance.
前記算出手段により算出された前記回生時の最大電流が閾値より大きい時において前記キャパシタまたは抵抗への分岐を終了すべく前記スイッチを切り替えるタイミングと、回生時の前記バッテリの充電率が閾値より大きい時において前記キャパシタまたは抵抗への分岐を終了すべく前記スイッチを切り替えるタイミングとが異なることを特徴とする請求項1に記載の無人搬送車の搬送システム。   When switching the switch to finish branching to the capacitor or resistor when the maximum current during regeneration calculated by the calculation means is greater than a threshold, and when the charging rate of the battery during regeneration is greater than the threshold 2. The transport system for an automatic guided vehicle according to claim 1, wherein a timing at which the switch is switched to finish branching to the capacitor or the resistor is different. 前記算出手段により算出された前記回生時の最大電流が閾値より大きく、かつ、回生時の前記バッテリの充電率が閾値より大きい時には、回生時の前記バッテリの充電率が閾値より大きい時のタイミングで前記スイッチを前記キャパシタまたは抵抗への分岐を終了すべく切り替えることを特徴とする請求項2に記載の無人搬送車の搬送システム。   When the maximum current at the time of regeneration calculated by the calculating means is larger than a threshold value and the charging rate of the battery at the time of regeneration is larger than the threshold value, the timing at which the charging rate of the battery at the time of regeneration is larger than the threshold value. 3. The transport system for an automatic guided vehicle according to claim 2, wherein the switch is switched to end the branch to the capacitor or the resistor. 前記キャパシタには電荷が消費される駆動源が接続されていることを特徴とする請求項1〜3のいずれか1項に記載の無人搬送車の搬送システム。   The conveyance system of the automatic guided vehicle according to any one of claims 1 to 3, wherein the capacitor is connected to a drive source that consumes electric charges. 回生時に前記キャパシタに電流を流す前に予め前記キャパシタを放電するようにしたことを特徴とする請求項4に記載の無人搬送車の搬送システム。   5. The transport system for an automatic guided vehicle according to claim 4, wherein the capacitor is discharged in advance before current flows through the capacitor during regeneration.
JP2014147775A 2014-07-18 2014-07-18 Transport system for automated guided vehicles Active JP6446884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147775A JP6446884B2 (en) 2014-07-18 2014-07-18 Transport system for automated guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147775A JP6446884B2 (en) 2014-07-18 2014-07-18 Transport system for automated guided vehicles

Publications (2)

Publication Number Publication Date
JP2016025723A JP2016025723A (en) 2016-02-08
JP6446884B2 true JP6446884B2 (en) 2019-01-09

Family

ID=55272069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147775A Active JP6446884B2 (en) 2014-07-18 2014-07-18 Transport system for automated guided vehicles

Country Status (1)

Country Link
JP (1) JP6446884B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017052A1 (en) * 2018-07-20 2020-01-23 Connexx Systems株式会社 Complex power source
NO20190219A1 (en) * 2019-02-18 2020-08-19 Autostore Tech As System and a method for harvesting energy from a container handling vehicle.
JP7494754B2 (en) 2021-02-17 2024-06-04 株式会社豊田自動織機 Industrial vehicle braking control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568448B2 (en) * 2000-03-16 2004-09-22 日産ディーゼル工業株式会社 Electric vehicle power system
JP5413565B2 (en) * 2009-01-22 2014-02-12 富士電機株式会社 Motor drive device and electric vehicle
WO2012111508A1 (en) * 2011-02-14 2012-08-23 三菱電機株式会社 Regenerative power supply system
JP2014051394A (en) * 2012-08-07 2014-03-20 Sumitomo Electric Ind Ltd Industrial vehicle, and electric power unit thereof
WO2014103948A1 (en) * 2012-12-27 2014-07-03 株式会社 豊田自動織機 Drive system for automated guided vehicle

Also Published As

Publication number Publication date
JP2016025723A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
US9738173B2 (en) Charging and discharging control device, charging and discharging control method, program and vehicle traffic system
US8768553B2 (en) Method and system for controlling charging of battery for hybrid electric vehicle
KR101343963B1 (en) Control method and control device for electrical storage device
JP4932062B2 (en) Vehicle control system and automobile
JP6284921B2 (en) Power supply system, transport equipment, and power transmission method
JP7068893B2 (en) Vehicle power system
JP7081959B2 (en) Vehicle power system
JP2015076958A (en) Power storage system
JP5255086B2 (en) Power supply device and control method thereof
JP6446884B2 (en) Transport system for automated guided vehicles
US20200161874A1 (en) Charging control apparatus for vehicle
JP2013158184A (en) Vehicle control device
WO2011099193A1 (en) Vehicle system, method of controlling vehicle system, and transportation system
CN106660456B (en) The railway system
JP2017099243A (en) Power supply system, transportation device, and power transmission method
JP6989431B2 (en) Vehicle power system
JP7251357B2 (en) Control device for in-vehicle power supply
CN112441027A (en) Vehicle and method for operating a vehicle
JP6087870B2 (en) vehicle
JP7096046B2 (en) Vehicle power system
JP2010119176A (en) On-vehicle power supply apparatus
JP2019030157A (en) Unmanned transfer system
CN106183863A (en) The output control of engine power system and method for electric automobile
WO2014125670A1 (en) Target speed determination device, target speed determination method and program, vehicle control device, and vehicle
JP2016020131A (en) Carrier system for unmanned carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R151 Written notification of patent or utility model registration

Ref document number: 6446884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151