WO2020017052A1 - Complex power source - Google Patents

Complex power source Download PDF

Info

Publication number
WO2020017052A1
WO2020017052A1 PCT/JP2018/027386 JP2018027386W WO2020017052A1 WO 2020017052 A1 WO2020017052 A1 WO 2020017052A1 JP 2018027386 W JP2018027386 W JP 2018027386W WO 2020017052 A1 WO2020017052 A1 WO 2020017052A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
battery
main power
discharge
predicted value
Prior art date
Application number
PCT/JP2018/027386
Other languages
French (fr)
Japanese (ja)
Inventor
直芳 可知
壽 塚本
Original Assignee
Connexx Systems株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Connexx Systems株式会社 filed Critical Connexx Systems株式会社
Priority to PCT/JP2018/027386 priority Critical patent/WO2020017052A1/en
Publication of WO2020017052A1 publication Critical patent/WO2020017052A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a composite power supply capable of responding to a sudden change in power demand or power supply.
  • Secondary batteries are widely used to stably respond to power demand or power supply.
  • the secondary battery has an internal impedance, if an excessively large charge / discharge current flows compared to the capacity, the output voltage of the secondary battery may decrease or the electrode plate may be deteriorated. It was necessary to suppress the charge / discharge current within a certain limit and to design the capacity of the secondary battery to be extremely large.
  • Patent Literature 1 discloses a backup battery circuit that causes an auxiliary power supply having a secondary battery to discharge when an output potential of a main power supply by a primary battery drops.
  • the auxiliary power supply includes a switch circuit that is turned off when the main power supply outputs a normal voltage, and that is turned on when the potential of the main power supply drops.
  • the backup battery circuit of Patent Document 1 raises the output potential of the auxiliary power supply to, for example, 5 volts, which is the operating voltage of the load circuit, when the output potential of the main power supply drops to, for example, 3 volts or less due to the exhaustion of the primary battery. Since the power is supplied, there is a problem that an electronic device connected to the main power supply may malfunction at a voltage lower than the operating voltage. In addition, since an instantaneous interruption occurs when the power supply source for the load circuit is switched from the main power supply to the auxiliary power supply, there is a problem that an electronic device connected to the main power supply may malfunction due to the instantaneous interruption. Furthermore, since the power of the auxiliary power supply is supplied only after the output potential of the main power supply drops, there is a problem that it is impossible to follow a sudden change in power demand or power supply.
  • the present invention has been made in view of such conventional problems, and an object of the present invention is to prevent malfunction of an electronic device connected to a main power supply, and to reduce sudden power demand or power supply.
  • An object of the present invention is to provide a composite power supply capable of coping with fluctuations.
  • Another object of the present invention is to provide, in addition to the above objects, a composite power source that can be used safely at least as much as conventional power sources.
  • the inventor of the present invention has conducted intensive studies in order to achieve the above object, and as a result, first has a main power supply constantly connected to a load, an output power capability larger than the main power supply, and an internal impedance smaller than the main power supply. And an auxiliary power supply connected in parallel to form a composite power supply, and at least one of a predicted value of a discharge current after a predetermined time of the main power supply and a predicted value of a discharge voltage after a predetermined time of the main power supply due to a sudden large current discharge.
  • the present inventor predicts and calculates the predicted value of the discharge current after a predetermined time from the increase rate of the discharge current of the main power supply, and calculates the predicted value of the discharge voltage after the predetermined time from the change decrease rate of the discharge voltage of the main power supply.
  • a main power supply always connected to a load, an auxiliary power supply connected in parallel to the main power supply, and a power supply connected in series to the auxiliary power supply to supply power from the auxiliary power supply to the load.
  • An open / close switch for switching whether or not the main power supply is selected from the group consisting of a fuel cell, an air cell, a secondary cell, a primary cell, and a composite cell in which at least two of them are connected to each other.
  • the auxiliary power supply is a secondary battery having an output power capability larger than the main power supply and an internal impedance smaller than the main power supply.
  • the predicted value of the discharge current after the predetermined time is predicted and calculated from the increase rate of the discharge current of the main power supply, and the predicted value of the discharge voltage after the predetermined time is calculated by the decrease rate of the discharge voltage of the main power supply.
  • a safety switch is connected in series to the composite power supply and switches whether or not to supply power to the load from the composite power supply. The safety switch is always closed, and a sudden large current discharge occurs, thereby causing a discharge current of the main power supply. It is preferable to open only when at least one of the predicted value and the predicted value of the discharge voltage exceeds the respective allowable range and at least one of the discharge current and the discharge voltage of the auxiliary power source exceeds the respective allowable range.
  • the primary battery preferably includes one selected from the group consisting of a manganese dry battery, an alkaline dry battery, a lithium primary battery, an alkaline button battery, a silver oxide battery, and a zinc-air battery.
  • a main power supply always connected to an external power supply, an auxiliary power supply connected in parallel to the main power supply, and a series connection to the auxiliary power supply are used to supply power from the external power supply to the auxiliary power supply.
  • An open / close switch for switching whether to perform or not wherein the main power source is selected from the group consisting of a fuel cell, an air battery, a secondary battery, and a composite battery in which at least two of them are connected to each other.
  • the auxiliary power source is a secondary battery having an input power capability larger than that of the main power source and an internal impedance smaller than that of the main power source.
  • the power supply is closed, and the rapid high-current charging is terminated.
  • Both fine charging voltage is to provide a combined power supply to open when recovered in each of the allowable range.
  • the predicted value of the charging current after a predetermined time is predicted and calculated from the increasing speed of the charging current of the main power supply, and the predicted value of the charging voltage after the predetermined time is calculated based on the increasing speed of the charging voltage of the main power supply.
  • a safety switch is connected in series to the composite power supply and switches whether or not to supply power to the composite power supply from an external power supply.
  • the safety switch is always closed, and the main power supply is charged by suddenly charging a large current.
  • it opens only when at least one of the predicted value of the current and the predicted value of the charging voltage exceeds the respective allowable range, and at least one of the charging current and the charging voltage of the auxiliary power source exceeds the respective allowable range.
  • the main power supply is further always connected to the load, and the on / off switch further switches whether to supply power to the load from the auxiliary power supply, and the auxiliary power supply further has a larger output power capability than the main power supply.
  • the on / off switch is further configured to allow at least one of a predicted value of a discharge current after a predetermined time of the main power supply and a predicted value of a discharge voltage after a predetermined time of the main power supply to generate an abrupt large current discharge. It is preferable to close when the range is exceeded and to open when both the discharge current and the discharge voltage have recovered to their respective allowable ranges due to termination of the sudden large current discharge.
  • the fuel cell is selected from the group consisting of a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell.
  • the air battery includes one selected from the group consisting of a zinc air battery, an air iron battery, an air aluminum battery, an air magnesium battery, a shuttle battery (registered trademark), and the secondary battery includes , A lead-acid battery, a nickel-cadmium battery, a nickel-metal hydride battery, a lithium-ion secondary battery, a lithium polymer secondary battery, and an all-solid-state battery.
  • ADVANTAGE OF THE INVENTION According to this invention, malfunction of the electronic device connected to the main power supply can be prevented, and it can respond to the rapid fluctuation
  • FIG. 2 is a block diagram illustrating a combined power supply according to first and second embodiments of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a shuttle battery (registered trademark).
  • FIG. 1 is a block diagram showing a combined power supply according to the first and second embodiments of the present invention.
  • the composite power supply 10a includes a main power supply 12a, an auxiliary power supply 14a, and an open / close switch 16a.
  • the main power supply 12a is one selected from the group consisting of a fuel cell, an air cell, a secondary cell, a primary cell, and a composite cell in which at least two of them are connected to each other, and is always connected to the load 18.
  • the auxiliary power supply 14a is a secondary battery having an output power capability larger than that of the main power supply 12a and an internal impedance smaller than that of the main power supply 12a, and is connected in parallel to the main power supply 12a.
  • the open / close switch 16a is connected in series to the auxiliary power supply 14a, and switches whether to supply power from the auxiliary power supply 14a to the load 18.
  • the on / off switch 16a is configured such that at least one of a predicted value of a discharge current after a predetermined time and a predicted value of a discharge voltage after a predetermined time of the main power supply 12a is in an allowable range due to the occurrence of a sudden large current discharge. Is closed, the power supply from the auxiliary power supply 14a to the load 18 is started. The open / close switch 16a is opened when both the discharge current and the discharge voltage recover within the respective allowable ranges due to the termination of the rapid large current discharge, and stops the power supply from the auxiliary power supply 14a to the load 18.
  • the open / close switch 16a may be opened / closed based on either the predicted value of the discharge current of the main power supply 12a after a predetermined time or the predicted value of the discharge voltage after a predetermined time.
  • the main power supply 12a is a rechargeable battery
  • the battery is charged during normal use.
  • the auxiliary power source 14a is a rechargeable battery
  • the battery is charged at the same time when the completely discharged main power source 12a is replaced or when the main power source 12a is rechargeable, when the main power source 12a is charged.
  • the open / close switch 16a is open during normal use.
  • the external power supply 22 may not be connected to the composite power supply 10a.
  • “always” in the present invention means a normal time excluding an emergency, and the predetermined time means several hundred milliseconds to several tens of seconds.
  • the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
  • the predicted value of the discharge current after a predetermined time in the composite power supply 10a of the first embodiment of the present invention is predicted and calculated from the increase rate of the discharge current of the main power supply 12a, and the predicted value of the discharge voltage after the predetermined time is It may be predicted and calculated from the rate of decrease of the discharge voltage of the power supply 12a. For example, when the lower limit of the allowable range of the discharge current is set to 100%, the current value of the discharge current is set to 75%, the rate of increase of the discharge current is set to 10% per second, and the predetermined time is set to 3 seconds.
  • the discharge current reaches the lower limit of the allowable range after 2.5 seconds, the predicted value of the discharge current after a predetermined time becomes 105%, and exceeds the lower limit of 100% of the allowable range of the discharge current. Can be predicted. Therefore, if the open / close switch 16a is closed at a timing corresponding to the timing, the power supply from the auxiliary power supply 14a to the load 18 can be started while the main power supply 12a keeps a safe state. Further, the rate of increase of the discharge current of the main power supply 12a and the rate of decrease of the discharge voltage may be approximated more finely by a quadratic equation or an exponential function. With such a configuration, the composite power supply of the present invention calculates a predicted value after a predetermined time in advance based on the speed of change, and thus can respond to a sudden fluctuation in power demand or power supply.
  • the composite power supply 10a may further include a safety switch 20a.
  • the safety switch 20a is connected in series to the composite power supply 10a, and switches whether to supply power to the load 18 from the composite power supply 10a.
  • the safety switch 20a is always closed, the power supply from the composite power supply 10a to the load 18 is continued, and a sudden large current discharge occurs, whereby the predicted value of the discharge current of the main power supply 12a and the prediction of the discharge voltage are calculated.
  • the primary battery constituting the composite power supply 10a according to the first embodiment of the present invention is one selected from the group consisting of a manganese dry battery, an alkaline dry battery, a lithium primary battery, an alkaline button battery, a silver oxide battery, and an air zinc battery. May be included.
  • a manganese dry battery is a primary battery in which manganese dioxide is used as a positive electrode and depolarizer, zinc is used in a negative electrode, and starch paste zinc chloride or ammonium chloride is used in an electrolytic solution.
  • An alkaline dry battery is a primary battery in which manganese dioxide and graphite powder are used for a positive electrode, zinc is used for a negative electrode, and a potassium hydroxide aqueous solution is used for an electrolytic solution.
  • Lithium primary battery uses one of graphite fluoride, manganese dioxide, thionyl chloride, iron sulfide, and copper oxide for positive electrode, lithium for negative electrode, and non-aqueous organic electrolyte for electrolyte It is a primary battery.
  • the alkaline button battery is a button-type primary battery using manganese dioxide for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte.
  • a silver oxide battery is a button-type primary battery using silver oxide for a positive electrode, zinc for a negative electrode, and an alkaline aqueous solution for an electrolytic solution.
  • the zinc-air battery is a button-type primary battery using oxygen for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte.
  • the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
  • the fuel cell constituting the composite power supply 10a is selected from the group consisting of a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell. It may include one that has been done.
  • a polymer electrolyte fuel cell is a fuel cell using a solid polymer membrane (electrolyte) having ion conductivity between a fuel electrode (negative electrode) and an air electrode (positive electrode).
  • a phosphoric acid fuel cell is a fuel cell that uses a separator in which a phosphoric acid aqueous solution is impregnated (electrolyte) between a fuel electrode (negative electrode) and an air electrode (positive electrode).
  • a molten carbonate fuel cell uses a fuel cell in which a molten carbonate such as lithium carbonate or potassium carbonate is impregnated in a separator between a fuel electrode (negative electrode) and an air electrode (positive electrode) (electrolyte). It is.
  • a solid oxide fuel cell is a fuel cell that uses ion-conductive ceramics (electrolyte) such as stabilized zirconia, lanthanum, and gallium perovskite oxide between the fuel electrode (negative electrode) and the air electrode (positive electrode). is there.
  • the air battery that constitutes the composite power supply 10a according to the first embodiment of the present invention is one selected from the group consisting of a zinc-air battery, an iron-iron battery, an aluminum-air battery, a magnesium-air battery, and a shuttle battery (registered trademark). May be included.
  • a zinc-air battery is an air battery in which oxygen in the air is used for a positive electrode, zinc is used for a negative electrode, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used for an electrolyte.
  • An air iron battery is an air battery in which oxygen in the air is used for a positive electrode, iron is used for a negative electrode, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used for an electrolyte.
  • An air aluminum battery is an air battery in which oxygen in the air is used for a positive electrode, aluminum is used for a negative electrode, and a saline solution, an aqueous solution of potassium hydroxide, or the like is used for an electrolytic solution.
  • An air magnesium battery is an air battery using oxygen in the air for a positive electrode, using magnesium for a negative electrode, and using a saline solution for an electrolyte.
  • the secondary battery constituting the composite power supply 10a according to the first embodiment of the present invention is selected from the group consisting of a lead storage battery, a NiCd battery, a nickel-metal hydride battery, a lithium ion secondary battery, a lithium polymer secondary battery, and an all-solid battery. It may include one that has been done.
  • a lead storage battery is a secondary battery that uses lead dioxide for the positive electrode, spongy lead for the negative electrode, and dilute sulfuric acid for the electrolyte.
  • the NiCd battery is a secondary battery using nickel oxyhydroxide for the positive electrode, cadmium for the negative electrode, and an aqueous solution of potassium hydroxide for the electrolyte.
  • a nickel-metal hydride battery is a secondary battery in which nickel oxyhydroxide is used for a positive electrode, hydrogen or a hydrogen storage alloy is used for a negative electrode, and a potassium hydroxide aqueous solution is used for an electrolytic solution.
  • a lithium ion secondary battery is a secondary battery using a lithium transition metal composite oxide for a positive electrode, a carbon material for a negative electrode, and a non-aqueous electrolyte for an electrolyte.
  • a lithium polymer secondary battery is a secondary battery using a lithium transition metal composite oxide for a positive electrode, a carbon material for a negative electrode, and a gel non-aqueous electrolyte polymer for an electrolyte.
  • the all-solid-state battery is a secondary battery using a lithium transition metal composite oxide for a positive electrode, a carbon material for a negative electrode, and an inorganic solid electrolyte for an electrolyte.
  • FIG. 2 is a block diagram showing a configuration of the shuttle battery (registered trademark).
  • the shuttle battery (registered trademark) 30 of FIG. 2 is included in an air battery in terms of classification, and has an electrode assembly 32, a negative electrode fuel substance body 34, a heater (not shown), and a sealed container 36.
  • the electrode assembly 32 includes an air-tight solid electrolyte body 32a, a positive electrode 32b (also referred to as an air electrode and a cathode), and a negative electrode 32c (also referred to as a fuel electrode and an anode), and includes a positive electrode lead 32p and a negative electrode lead 32n.
  • the closed container 36 includes the solid electrolyte member 32a or the negative electrode 32c as a part of the wall surface, and seals the negative electrode fuel substance member 34.
  • the solid electrolyte member 32a conducts oxygen ions
  • the positive electrode 32b reduces oxygen in the air to oxygen ions
  • the negative electrode 32c oxidizes hydrogen gas to water vapor.
  • the anode fuel material body 34 is, for example, iron particles, reacts with water vapor to generate hydrogen gas, and turns itself into an oxide. Due to the reaction at the time of the discharge, a current flows from the positive electrode 32b to the negative electrode 32c through the positive electrode lead 32p, the load, and the negative electrode lead 32n in this order.
  • the heater is for heating and maintaining the solid electrolyte body 32a and the anode fuel substance body 34 at a predetermined temperature or higher.
  • the predetermined temperature is, for example, a temperature required to execute a conduction reaction of oxygen ions in the solid electrolyte body 32a or an oxidation-reduction reaction between iron particles and hydrogen gas at a constant rate.
  • the temperature is preferably 400 ° C. or higher.
  • the composite power supply according to the first embodiment of the present invention is basically configured as described above. With such a configuration, the composite power supply of the present invention can prevent malfunction of an electronic device connected to the main power supply, and can respond to a sudden change in power demand or power supply, It can be used more safely than before.
  • the composite power supply according to the second embodiment is an example of a composite power supply that can cope with a sudden change in power supply.
  • the composite power supply 10b according to the second embodiment of the present invention includes a main power supply 12b, an auxiliary power supply 14b, and an open / close switch 16b.
  • the main power supply 12 b is one selected from the group consisting of a fuel cell, an air battery, a secondary battery, and a composite battery in which at least two of them are connected to each other, and is always connected to the external power supply 22.
  • the auxiliary power supply 14b is a secondary battery having an input power capability larger than that of the main power supply 12b and an internal impedance smaller than that of the main power supply 12b, and is connected in parallel to the main power supply 12b.
  • the open / close switch 16b is connected in series to the auxiliary power supply 14b, and switches whether to supply power from the external power supply 22 to the auxiliary power supply 14b.
  • the on / off switch 16b is configured such that at least one of the predicted value of the charging current after a predetermined time of the main power supply 12b and the predicted value of the charging voltage after the predetermined time due to the occurrence of a sudden large current charge is within an allowable range. Is closed, the power supply from the external power supply 22 to the auxiliary power supply 14b is started. The open / close switch 16b is opened when both the charging current and the charging voltage recover within the respective allowable ranges due to the end of the rapid large-current charging, and stops the power supply from the external power supply 22 to the auxiliary power supply 14b.
  • the open / close switch 16b may be opened / closed based on either the predicted value of the charging current after a predetermined time of the main power supply 12b or the predicted value of the charging voltage after the predetermined time.
  • the load 18 may not be connected to the composite power supply 10b.
  • the fuel cell, the air battery, and the secondary battery that constitute the composite power supply 10b of the second embodiment of the present invention are the fuel cell, the air battery, and the secondary battery that constitute the composite power supply 10a of the first embodiment of the present invention. Since they are the same as the following batteries, their description is omitted. With such a configuration, the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
  • the predicted value of the charging current after a predetermined time in the composite power supply 10b according to the second embodiment of the present invention is predicted and calculated from the increase rate of the charging current of the main power supply 12b, and the predicted value of the charging voltage after the predetermined time is It may be predicted and calculated from the rising speed of the charging voltage of the power supply 12b.
  • the lower limit of the allowable range of the charging current is 100%
  • the current value of the charging current is 75%
  • the rate of increase of the charging current is 10% per second
  • the predetermined time is 3 seconds
  • the charging current reaches the lower limit of the allowable range after 2.5 seconds
  • the predicted value of the charging current after a predetermined time becomes 105%, and exceeds the lower limit of 100% of the allowable range of the charging current.
  • the composite power supply of the present invention calculates a predicted value after a predetermined time in advance based on the speed of change, and thus can respond to a sudden fluctuation in power demand or power supply.
  • the composite power supply 10b according to the second embodiment of the present invention may further include a safety switch 20b.
  • the safety switch 20b is connected in series to the composite power supply 10b, and switches whether to supply power from the external power supply 22 to the composite power supply 10b. More specifically, the safety switch 20b is always closed to continuously supply power from the external power supply 22 to the composite power supply 10b, and a sudden large current charge occurs, so that the predicted value of the charge current of the main power supply 12b and the charge voltage Open only when at least one of the predicted values exceeds the respective allowable range and at least one of the charging current and the charging voltage of the auxiliary power supply 14b exceeds the respective allowable range, and power is supplied from the external power supply 22 to the composite power supply 10b. To stop. With such a configuration, the composite power supply of the present invention can be used safely.
  • the main power supply 12b, the auxiliary power supply 14b, the open / close switch 16b, and the safety switch 20b constituting the composite power supply 10b according to the second embodiment of the present invention are the main power supply 12a constituting the composite power supply 10a according to the first embodiment of the present invention.
  • the auxiliary power supply 14a, the open / close switch 16a, and the safety switch 20a can have all other functions except that the main power supply 12a includes a primary battery.
  • the composite power supply according to the second embodiment of the present invention is basically configured as described above. With such a configuration, the composite power supply of the present invention can prevent malfunction of an electronic device connected to the main power supply, and can respond to a sudden change in power demand or power supply, It can be used more safely than before.
  • the combined power supply of the present invention has the effect of preventing malfunctions of electronic devices connected to the main power supply, and being able to respond to sudden fluctuations in power demand or power supply, as well as being safer than conventional devices. There is also an effect that it can be used, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a complex power source for making it possible to prevent an erroneous operation of an electronic device connected to a main power source and for making it possible to deal with a sudden fluctuation of power demand or power supply. A complex power source 10a has a main power source 12a, an auxiliary power source 14a, and an opening/closing switch 16a. The main power source 12a is one selected from the group consisting of fuel batteries, air batteries, secondary batteries, primary batteries, and complex batteries obtained by connecting at least two of these batteries with each other, and is constantly connected to a load 18. The auxiliary power source 14a is a secondary battery having an output power capacity greater than that of the main power source 12a and internal impedance lower than that of the main power source 12a, and is connected in parallel to the main power source 12a. The opening/closing switch 16a is connected in series to the auxiliary power source 14a, and is closed to start power supply from the auxiliary power source 14a to the load 18 when at least one of a predicted value of discharge current of the main power source 12a after a predetermined time period and a predicted value of discharge voltage of the main power source 12a after a predetermined time period, exceeds an allowable range because of generation of sudden large current discharge.

Description

複合電源Combined power supply
 本発明は、急激な電力需要又は電力供給の変動に対応することが可能な複合電源に関する。 (4) The present invention relates to a composite power supply capable of responding to a sudden change in power demand or power supply.
 電力需要又は電力供給に安定的に対応するために、二次電池が広く使用されている。しかしながら、二次電池には内部インピーダンスが存在するため、容量に比べて過大な充放電電流を流すと二次電池の出力電圧の低下や極板の劣化を招く恐れがあり、これを防ぐために、充放電電流をある限度内に抑えたり、二次電池の容量を極めて大きく設計したりする必要があった。 二 Secondary batteries are widely used to stably respond to power demand or power supply. However, since the secondary battery has an internal impedance, if an excessively large charge / discharge current flows compared to the capacity, the output voltage of the secondary battery may decrease or the electrode plate may be deteriorated. It was necessary to suppress the charge / discharge current within a certain limit and to design the capacity of the secondary battery to be extremely large.
 一方、特許文献1には、一次電池による主電源の出力電位が降下した時に、二次電池を有する補助電源から放電を行わせるバックアップバッテリ回路が開示されている。この補助電源は、主電源が正常電圧を出力している時にオフ状態となり、かつ主電源の電位が降下するとオン状態となるスイッチ回路を備えている。 On the other hand, Patent Literature 1 discloses a backup battery circuit that causes an auxiliary power supply having a secondary battery to discharge when an output potential of a main power supply by a primary battery drops. The auxiliary power supply includes a switch circuit that is turned off when the main power supply outputs a normal voltage, and that is turned on when the potential of the main power supply drops.
特開平7-245887JP-A-7-245887
 特許文献1のバックアップバッテリ回路は、一次電池が消耗して主電源の出力電位が例えば3ボルト以下に降下した時に、補助電源の出力電位を負荷回路の作動電圧である例えば5ボルトに昇圧して供給するので、主電源に接続された電子機器が作動電圧よりも低い電圧で誤動作する恐れがあるという問題があった。また、負荷回路に対する電力供給源を主電源から補助電源に切り換える時に瞬断が発生するので、主電源に接続された電子機器がその瞬断によって誤動作する恐れがあるという問題があった。さらに、主電源の出力電位が降下した後にようやく補助電源の電力を供給するので、急激な電力需要又は電力供給の変動に追従できないという問題があった。 The backup battery circuit of Patent Document 1 raises the output potential of the auxiliary power supply to, for example, 5 volts, which is the operating voltage of the load circuit, when the output potential of the main power supply drops to, for example, 3 volts or less due to the exhaustion of the primary battery. Since the power is supplied, there is a problem that an electronic device connected to the main power supply may malfunction at a voltage lower than the operating voltage. In addition, since an instantaneous interruption occurs when the power supply source for the load circuit is switched from the main power supply to the auxiliary power supply, there is a problem that an electronic device connected to the main power supply may malfunction due to the instantaneous interruption. Furthermore, since the power of the auxiliary power supply is supplied only after the output potential of the main power supply drops, there is a problem that it is impossible to follow a sudden change in power demand or power supply.
 本発明は、従来のこのような問題点に鑑みてなされたものであり、本発明の目的は、主電源に接続された電子機器の誤動作を防止すること、及び急激な電力需要又は電力供給の変動に対応することが可能な複合電源を提供することにある。
 また、本発明の他の目的は、上記目的に加え、従来と同等以上に安全に使用することが可能な複合電源を提供することにある。
The present invention has been made in view of such conventional problems, and an object of the present invention is to prevent malfunction of an electronic device connected to a main power supply, and to reduce sudden power demand or power supply. An object of the present invention is to provide a composite power supply capable of coping with fluctuations.
Another object of the present invention is to provide, in addition to the above objects, a composite power source that can be used safely at least as much as conventional power sources.
 本発明者は、上記目的を達成するために、鋭意研究を重ねた結果、まず、負荷に常時接続された主電源と、主電源よりも大きい出力電力能力及び主電源よりも小さい内部インピーダンスを備えた補助電源と、を並列接続して複合電源を構成し、急激な大電流放電が生じることによって主電源の所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に、補助電源から負荷に電力供給を開始し、急激な大電流放電が終わった時に、その電力供給を停止することによって、主電源に接続された電子機器の誤動作を防止することができることを見出した。 The inventor of the present invention has conducted intensive studies in order to achieve the above object, and as a result, first has a main power supply constantly connected to a load, an output power capability larger than the main power supply, and an internal impedance smaller than the main power supply. And an auxiliary power supply connected in parallel to form a composite power supply, and at least one of a predicted value of a discharge current after a predetermined time of the main power supply and a predicted value of a discharge voltage after a predetermined time of the main power supply due to a sudden large current discharge. When the power supply exceeds the respective allowable ranges, the power supply from the auxiliary power supply to the load is started, and when the sudden large-current discharge ends, the power supply is stopped, so that the electronic equipment connected to the main power supply can be stopped. It has been found that malfunction can be prevented.
 また、本発明者は、所定時間後の放電電流の予測値を主電源の放電電流の増加速度から予測計算し、所定時間後の放電電圧の予測値を主電源の放電電圧の変化低下速度から予測計算することによって、急激な電力需要又は電力供給の変動に対応することができることを見出し、本発明に至ったものである。 Further, the present inventor predicts and calculates the predicted value of the discharge current after a predetermined time from the increase rate of the discharge current of the main power supply, and calculates the predicted value of the discharge voltage after the predetermined time from the change decrease rate of the discharge voltage of the main power supply The present inventors have found that it is possible to cope with sudden fluctuations in power demand or power supply by performing predictive calculation, and have reached the present invention.
 即ち、本発明の第1の実施形態は、負荷に常時接続された主電源と、主電源に並列接続された補助電源と、補助電源に直列接続され、補助電源から負荷に電力を供給するか否かを切り換える開閉スイッチと、を有し、主電源は、燃料電池、空気電池、二次電池、一次電池、及びそれらの内の少なくとも2つを互いに接続した複合電池から成る群から選択された1つであり、補助電源は、主電源よりも大きい出力電力能力と、主電源よりも小さい内部インピーダンスと、を備えた二次電池であり、開閉スイッチは、急激な大電流放電が生じることによって主電源の所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じ、急激な大電流放電が終わることによって放電電流及び放電電圧の両方がそれぞれの許容範囲内に回復した時に開く複合電源を提供するものである。 That is, in the first embodiment of the present invention, a main power supply always connected to a load, an auxiliary power supply connected in parallel to the main power supply, and a power supply connected in series to the auxiliary power supply to supply power from the auxiliary power supply to the load. An open / close switch for switching whether or not the main power supply is selected from the group consisting of a fuel cell, an air cell, a secondary cell, a primary cell, and a composite cell in which at least two of them are connected to each other. The auxiliary power supply is a secondary battery having an output power capability larger than the main power supply and an internal impedance smaller than the main power supply. It closes when at least one of the predicted value of the discharge current of the main power supply after a predetermined time and the predicted value of the discharge voltage after a predetermined time exceeds the respective allowable range, and ends the discharge when a sudden large current discharge ends. And there is provided a combined power supply to open when both of the discharge voltage is restored within the respective tolerance range.
 ここで、上記においては、所定時間後の放電電流の予測値は、主電源の放電電流の増加速度から予測計算され、所定時間後の放電電圧の予測値は、主電源の放電電圧の低下速度から予測計算されるのが好ましい。
 さらに、複合電源に直列接続され、複合電源から負荷に電力を供給するか否かを切り換える安全スイッチを有し、安全スイッチは、常時閉じ、急激な大電流放電が生じることによって主電源の放電電流の予測値及び放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過し、かつ補助電源の放電電流及び放電電圧の少なくとも一方がそれぞれの許容範囲を超過した時だけ開くのが好ましい。
 一次電池は、マンガン乾電池、アルカリ乾電池、リチウム一次電池、アルカリボタン電池、酸化銀電池、空気亜鉛電池から成る群から選択された1つを含むのが好ましい。
Here, in the above, the predicted value of the discharge current after the predetermined time is predicted and calculated from the increase rate of the discharge current of the main power supply, and the predicted value of the discharge voltage after the predetermined time is calculated by the decrease rate of the discharge voltage of the main power supply. Is preferably calculated from
Furthermore, a safety switch is connected in series to the composite power supply and switches whether or not to supply power to the load from the composite power supply. The safety switch is always closed, and a sudden large current discharge occurs, thereby causing a discharge current of the main power supply. It is preferable to open only when at least one of the predicted value and the predicted value of the discharge voltage exceeds the respective allowable range and at least one of the discharge current and the discharge voltage of the auxiliary power source exceeds the respective allowable range.
The primary battery preferably includes one selected from the group consisting of a manganese dry battery, an alkaline dry battery, a lithium primary battery, an alkaline button battery, a silver oxide battery, and a zinc-air battery.
 即ち、本発明の第2の実施形態は、外部電源に常時接続された主電源と、主電源に並列接続された補助電源と、補助電源に直列接続され、外部電源から補助電源に電力を供給するか否かを切り換える開閉スイッチと、を有し、主電源は、燃料電池、空気電池、二次電池、及びそれらの内の少なくとも2つを互いに接続した複合電池から成る群から選択された1つであり、補助電源は、主電源よりも大きい入力電力能力と、主電源よりも小さい内部インピーダンスと、を備えた二次電池であり、開閉スイッチは、急激な大電流充電が生じることによって主電源の所定時間後の充電電流の予測値及び所定時間後の充電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じ、急激な大電流充電が終わることによって充電電流及び充電電圧の両方がそれぞれの許容範囲内に回復した時に開く複合電源を提供するものである。 That is, in the second embodiment of the present invention, a main power supply always connected to an external power supply, an auxiliary power supply connected in parallel to the main power supply, and a series connection to the auxiliary power supply are used to supply power from the external power supply to the auxiliary power supply. An open / close switch for switching whether to perform or not, wherein the main power source is selected from the group consisting of a fuel cell, an air battery, a secondary battery, and a composite battery in which at least two of them are connected to each other. The auxiliary power source is a secondary battery having an input power capability larger than that of the main power source and an internal impedance smaller than that of the main power source. When at least one of the predicted value of the charging current after a predetermined time of the power supply and the predicted value of the charging voltage after the predetermined time exceeds the respective allowable ranges, the power supply is closed, and the rapid high-current charging is terminated. Both fine charging voltage is to provide a combined power supply to open when recovered in each of the allowable range.
 ここで、上記においては、所定時間後の充電電流の予測値は、主電源の充電電流の増加速度から予測計算され、所定時間後の充電電圧の予測値は、主電源の充電電圧の上昇速度から予測計算されるのが好ましい。
 さらに、複合電源に直列接続され、外部電源から複合電源に電力を供給するか否かを切り換える安全スイッチを有し、安全スイッチは、常時閉じ、急激な大電流充電が生じることによって主電源の充電電流の予測値及び充電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過し、かつ補助電源の充電電流及び充電電圧の少なくとも一方がそれぞれの許容範囲を超過した時だけ開くのが好ましい。
Here, in the above, the predicted value of the charging current after a predetermined time is predicted and calculated from the increasing speed of the charging current of the main power supply, and the predicted value of the charging voltage after the predetermined time is calculated based on the increasing speed of the charging voltage of the main power supply. Is preferably calculated from
Furthermore, a safety switch is connected in series to the composite power supply and switches whether or not to supply power to the composite power supply from an external power supply. The safety switch is always closed, and the main power supply is charged by suddenly charging a large current. Preferably, it opens only when at least one of the predicted value of the current and the predicted value of the charging voltage exceeds the respective allowable range, and at least one of the charging current and the charging voltage of the auxiliary power source exceeds the respective allowable range.
 主電源は、さらに、負荷に常時接続され、開閉スイッチは、さらに、補助電源から負荷に電力を供給するか否かを切り換え、補助電源は、さらに、主電源よりも大きい出力電力能力を備えた二次電池であり、開閉スイッチは、さらに、急激な大電流放電が生じることによって主電源の所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じ、急激な大電流放電が終わることによって放電電流及び放電電圧の両方がそれぞれの許容範囲内に回復した時に開くのが好ましい。
 ここで、本発明の第1及び第2実施形態においては、燃料電池は、固体高分子形燃料電池、りん酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池から成る群から選択された1つを含み、空気電池は、空気亜鉛電池、空気鉄電池、空気アルミニウム電池、空気マグネシウム電池、シャトル電池(登録商標)から成る群から選択された1つを含み、二次電池は、鉛蓄電池、ニカド電池、ニッケル水素電池、リチウムイオン二次電池、リチウムポリマー二次電池、全固体電池から成る群から選択された1つを含むのが好ましい。
The main power supply is further always connected to the load, and the on / off switch further switches whether to supply power to the load from the auxiliary power supply, and the auxiliary power supply further has a larger output power capability than the main power supply. The on / off switch is further configured to allow at least one of a predicted value of a discharge current after a predetermined time of the main power supply and a predicted value of a discharge voltage after a predetermined time of the main power supply to generate an abrupt large current discharge. It is preferable to close when the range is exceeded and to open when both the discharge current and the discharge voltage have recovered to their respective allowable ranges due to termination of the sudden large current discharge.
Here, in the first and second embodiments of the present invention, the fuel cell is selected from the group consisting of a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell. The air battery includes one selected from the group consisting of a zinc air battery, an air iron battery, an air aluminum battery, an air magnesium battery, a shuttle battery (registered trademark), and the secondary battery includes , A lead-acid battery, a nickel-cadmium battery, a nickel-metal hydride battery, a lithium-ion secondary battery, a lithium polymer secondary battery, and an all-solid-state battery.
 本発明によれば、主電源に接続された電子機器の誤動作を防止すること、及び急激な電力需要又は電力供給の変動に対応することができる。
 また、本発明によれば、上記効果に加え、従来と同等以上に安全に使用することができる。
ADVANTAGE OF THE INVENTION According to this invention, malfunction of the electronic device connected to the main power supply can be prevented, and it can respond to the rapid fluctuation | variation of electric power demand or electric power supply.
Further, according to the present invention, in addition to the above-mentioned effects, it can be used more safely than conventional ones.
本発明の第1及び第2の実施形態の複合電源を示すブロック図である。FIG. 2 is a block diagram illustrating a combined power supply according to first and second embodiments of the present invention. シャトル電池(登録商標)の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a shuttle battery (registered trademark).
 以下に、本発明を添付の図面に示す好適実施形態に基づいて詳細に説明する。
 まず、本発明の第1の実施形態の複合電源について説明する。第1の実施形態の複合電源は、急激な電力需要の変動に対応することが可能な複合電源の一例である。図1は、本発明の第1及び第2の実施形態の複合電源を示すブロック図である。
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
First, the composite power supply according to the first embodiment of the present invention will be described. The composite power supply according to the first embodiment is an example of a composite power supply capable of responding to a sudden change in power demand. FIG. 1 is a block diagram showing a combined power supply according to the first and second embodiments of the present invention.
 本発明の第1の実施形態の複合電源10aは、主電源12aと補助電源14aと開閉スイッチ16aとを有する。主電源12aは、燃料電池、空気電池、二次電池、一次電池、及びそれらの内の少なくとも2つを互いに接続した複合電池から成る群から選択された1つであり、負荷18に常時接続される。補助電源14aは、主電源12aよりも大きい出力電力能力と、主電源12aよりも小さい内部インピーダンスと、を備えた二次電池であり、主電源12aに並列接続される。開閉スイッチ16aは、補助電源14aに直列接続され、補助電源14aから負荷18に電力を供給するか否かを切り換える。 The composite power supply 10a according to the first embodiment of the present invention includes a main power supply 12a, an auxiliary power supply 14a, and an open / close switch 16a. The main power supply 12a is one selected from the group consisting of a fuel cell, an air cell, a secondary cell, a primary cell, and a composite cell in which at least two of them are connected to each other, and is always connected to the load 18. You. The auxiliary power supply 14a is a secondary battery having an output power capability larger than that of the main power supply 12a and an internal impedance smaller than that of the main power supply 12a, and is connected in parallel to the main power supply 12a. The open / close switch 16a is connected in series to the auxiliary power supply 14a, and switches whether to supply power from the auxiliary power supply 14a to the load 18.
 具体的には、開閉スイッチ16aは、急激な大電流放電が生じることによって主電源12aの所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じて、補助電源14aから負荷18に電力供給を開始する。また、開閉スイッチ16aは、急激な大電流放電が終わることによって放電電流及び放電電圧の両方がそれぞれの許容範囲内に回復した時に開いて、補助電源14aから負荷18に電力供給を停止する。開閉スイッチ16aは、主電源12aの所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値のどちらか一方に基づいて開閉しても良い。主電源12aが充電可能な電池である場合には、その電池は、通常使用時に充電される。また、補助電源14aが充電可能な電池である場合には、その電池は、完全放電した主電源12aを交換する時又は主電源12aが充電可能であれば充電する時に同時に充電される。補助電源14aに充電された電力の消耗を防ぐために、開閉スイッチ16aは、通常使用時に開いている。なお、複合電源10aには、外部電源22が接続されていなくても良い。ここで、本発明の常時とは、非常時を除いた通常時を意味し、所定時間とは、数百ミリ秒~数十秒を意味する。
 このような構成とすることで、本発明の複合電源は、主電源の電圧を安定させることができるので、主電源に接続された電子機器の誤動作を防止することができる。
More specifically, the on / off switch 16a is configured such that at least one of a predicted value of a discharge current after a predetermined time and a predicted value of a discharge voltage after a predetermined time of the main power supply 12a is in an allowable range due to the occurrence of a sudden large current discharge. Is closed, the power supply from the auxiliary power supply 14a to the load 18 is started. The open / close switch 16a is opened when both the discharge current and the discharge voltage recover within the respective allowable ranges due to the termination of the rapid large current discharge, and stops the power supply from the auxiliary power supply 14a to the load 18. The open / close switch 16a may be opened / closed based on either the predicted value of the discharge current of the main power supply 12a after a predetermined time or the predicted value of the discharge voltage after a predetermined time. When the main power supply 12a is a rechargeable battery, the battery is charged during normal use. When the auxiliary power source 14a is a rechargeable battery, the battery is charged at the same time when the completely discharged main power source 12a is replaced or when the main power source 12a is rechargeable, when the main power source 12a is charged. In order to prevent the consumption of the electric power charged in the auxiliary power supply 14a, the open / close switch 16a is open during normal use. The external power supply 22 may not be connected to the composite power supply 10a. Here, “always” in the present invention means a normal time excluding an emergency, and the predetermined time means several hundred milliseconds to several tens of seconds.
With such a configuration, the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
 本発明の第1の実施形態の複合電源10aにおける所定時間後の放電電流の予測値は、主電源12aの放電電流の増加速度から予測計算され、所定時間後の放電電圧の予測値は、主電源12aの放電電圧の低下速度から予測計算されても良い。例えば、放電電流の許容範囲の下限値を100%とし、その場合の放電電流の現在値を75%とし、放電電流の増加速度を毎秒10%とし、所定時間を3秒とした時に、一次式で近似することによって、放電電流が2.5秒後に許容範囲の下限値に到達し、所定時間後の放電電流の予測値が105%となって放電電流の許容範囲の下限値100%を超過することが予測できる。従って、それに間に合うタイミングで開閉スイッチ16aを閉じれば、主電源12aが安全な状態を保ったまま、補助電源14aから負荷18に電力供給を開始することができる。また、主電源12aの放電電流の増加速度及び放電電圧の低下速度を二次式又は指数関数などでより細かく近似しても良い。
 このような構成とすることで、本発明の複合電源は、変化速度に基づいて所定時間後の予測値を事前に計算するので、急激な電力需要又は電力供給の変動に対応することができる。
The predicted value of the discharge current after a predetermined time in the composite power supply 10a of the first embodiment of the present invention is predicted and calculated from the increase rate of the discharge current of the main power supply 12a, and the predicted value of the discharge voltage after the predetermined time is It may be predicted and calculated from the rate of decrease of the discharge voltage of the power supply 12a. For example, when the lower limit of the allowable range of the discharge current is set to 100%, the current value of the discharge current is set to 75%, the rate of increase of the discharge current is set to 10% per second, and the predetermined time is set to 3 seconds. , The discharge current reaches the lower limit of the allowable range after 2.5 seconds, the predicted value of the discharge current after a predetermined time becomes 105%, and exceeds the lower limit of 100% of the allowable range of the discharge current. Can be predicted. Therefore, if the open / close switch 16a is closed at a timing corresponding to the timing, the power supply from the auxiliary power supply 14a to the load 18 can be started while the main power supply 12a keeps a safe state. Further, the rate of increase of the discharge current of the main power supply 12a and the rate of decrease of the discharge voltage may be approximated more finely by a quadratic equation or an exponential function.
With such a configuration, the composite power supply of the present invention calculates a predicted value after a predetermined time in advance based on the speed of change, and thus can respond to a sudden fluctuation in power demand or power supply.
 本発明の第1の実施形態の複合電源10aは、さらに、安全スイッチ20aを有しても良い。その場合には、安全スイッチ20aは、複合電源10aに直列接続され、複合電源10aから負荷18に電力を供給するか否かを切り換える。具体的には、安全スイッチ20aは、常時閉じて、複合電源10aから負荷18に電力供給を継続し、急激な大電流放電が生じることによって主電源12aの放電電流の予測値及び放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過し、かつ補助電源14aの放電電流及び放電電圧の少なくとも一方がそれぞれの許容範囲を超過した時だけ開いて、複合電源10aから負荷18に電力供給を停止する。
 このような構成とすることで、本発明の複合電源は、安全に使用することができる。
The composite power supply 10a according to the first embodiment of the present invention may further include a safety switch 20a. In that case, the safety switch 20a is connected in series to the composite power supply 10a, and switches whether to supply power to the load 18 from the composite power supply 10a. Specifically, the safety switch 20a is always closed, the power supply from the composite power supply 10a to the load 18 is continued, and a sudden large current discharge occurs, whereby the predicted value of the discharge current of the main power supply 12a and the prediction of the discharge voltage are calculated. Open only when at least one of the values exceeds the respective allowable range and at least one of the discharge current and the discharge voltage of the auxiliary power supply 14a exceeds the respective allowable range, and stops supplying power from the composite power supply 10a to the load 18. I do.
With such a configuration, the composite power supply of the present invention can be used safely.
 本発明の第1の実施形態の複合電源10aを構成する一次電池は、マンガン乾電池、アルカリ乾電池、リチウム一次電池、アルカリボタン電池、酸化銀電池、空気亜鉛電池から成る群から選択された1つを含んでも良い。マンガン乾電池は、正極兼減極剤に二酸化マンガンを使用し、負極に亜鉛を使用し、電解液に澱粉のり状の塩化亜鉛又は塩化アンモニウムを使用した一次電池である。アルカリ乾電池は、正極に二酸化マンガンと黒鉛の粉末を使用し、負極に亜鉛を使用し、電解液に水酸化カリウム水溶液を使用した一次電池である。リチウム一次電池は、正極にフッ化黒鉛、二酸化マンガン、塩化チオニル、硫化鉄、及び酸化銅の内の1つを使用し、負極にリチウムを使用し、電解液に非水系有機電解液を使用した一次電池である。アルカリボタン電池は、正極に二酸化マンガンを使用し、負極に亜鉛を使用し、電解液にアルカリ水溶液を使用したボタン型一次電池である。酸化銀電池は、正極に酸化銀を使用し、負極に亜鉛を使用し、電解液にアルカリ水溶液を使用したボタン型一次電池である。空気亜鉛電池は、正極に酸素を使用し、負極に亜鉛を使用し、電解液にアルカリ水溶液を使用したボタン型一次電池である。
 このような構成とすることで、本発明の複合電源は、主電源の電圧を安定させることができるので、主電源に接続された電子機器の誤動作を防止することができる。
The primary battery constituting the composite power supply 10a according to the first embodiment of the present invention is one selected from the group consisting of a manganese dry battery, an alkaline dry battery, a lithium primary battery, an alkaline button battery, a silver oxide battery, and an air zinc battery. May be included. A manganese dry battery is a primary battery in which manganese dioxide is used as a positive electrode and depolarizer, zinc is used in a negative electrode, and starch paste zinc chloride or ammonium chloride is used in an electrolytic solution. An alkaline dry battery is a primary battery in which manganese dioxide and graphite powder are used for a positive electrode, zinc is used for a negative electrode, and a potassium hydroxide aqueous solution is used for an electrolytic solution. Lithium primary battery uses one of graphite fluoride, manganese dioxide, thionyl chloride, iron sulfide, and copper oxide for positive electrode, lithium for negative electrode, and non-aqueous organic electrolyte for electrolyte It is a primary battery. The alkaline button battery is a button-type primary battery using manganese dioxide for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte. A silver oxide battery is a button-type primary battery using silver oxide for a positive electrode, zinc for a negative electrode, and an alkaline aqueous solution for an electrolytic solution. The zinc-air battery is a button-type primary battery using oxygen for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte.
With such a configuration, the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
 本発明の第1の実施形態の複合電源10aを構成する燃料電池は、固体高分子形燃料電池、りん酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池から成る群から選択された1つを含んでも良い。固体高分子形燃料電池は、燃料極(負極)と空気極(正極)との間に、イオン伝導性を有する固体高分子膜(電解質)を使用した燃料電池である。りん酸形燃料電池は、燃料極(負極)と空気極(正極)との間に、リン酸水溶液をセパレータに含浸させたもの(電解質)を使用した燃料電池である。溶融炭酸塩形燃料電池は、燃料極(負極)と空気極(正極)との間に、炭酸リチウム、炭酸カリウムなどの溶融した炭酸塩をセパレータに含浸させたもの(電解質)を使用した燃料電池である。固体酸化物形燃料電池は、燃料極(負極)と空気極(正極)との間に、安定化ジルコニアやランタン、ガリウムのペロブスカイト酸化物などのイオン伝導性セラミックス(電解質)を使用した燃料電池である。 The fuel cell constituting the composite power supply 10a according to the first embodiment of the present invention is selected from the group consisting of a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell. It may include one that has been done. A polymer electrolyte fuel cell is a fuel cell using a solid polymer membrane (electrolyte) having ion conductivity between a fuel electrode (negative electrode) and an air electrode (positive electrode). A phosphoric acid fuel cell is a fuel cell that uses a separator in which a phosphoric acid aqueous solution is impregnated (electrolyte) between a fuel electrode (negative electrode) and an air electrode (positive electrode). A molten carbonate fuel cell uses a fuel cell in which a molten carbonate such as lithium carbonate or potassium carbonate is impregnated in a separator between a fuel electrode (negative electrode) and an air electrode (positive electrode) (electrolyte). It is. A solid oxide fuel cell is a fuel cell that uses ion-conductive ceramics (electrolyte) such as stabilized zirconia, lanthanum, and gallium perovskite oxide between the fuel electrode (negative electrode) and the air electrode (positive electrode). is there.
 本発明の第1の実施形態の複合電源10aを構成する空気電池は、空気亜鉛電池、空気鉄電池、空気アルミニウム電池、空気マグネシウム電池、シャトル電池(登録商標)から成る群から選択された1つを含んでも良い。空気亜鉛電池は、正極に空気中の酸素を使用し、負極に亜鉛を使用し、電解液に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を使用した空気電池である。空気鉄電池は、正極に空気中の酸素を使用し、負極に鉄を使用し、電解液に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物を使用した空気電池である。空気アルミニウム電池は、正極に空気中の酸素を使用し、負極にアルミニウムを使用し、電解液に食塩水、水酸化カリウム水溶液などを使用した空気電池である。空気マグネシウム電池は、正極に空気中の酸素を使用し、負極にマグネシウムを使用し、電解液に食塩水を使用した空気電池である。 The air battery that constitutes the composite power supply 10a according to the first embodiment of the present invention is one selected from the group consisting of a zinc-air battery, an iron-iron battery, an aluminum-air battery, a magnesium-air battery, and a shuttle battery (registered trademark). May be included. A zinc-air battery is an air battery in which oxygen in the air is used for a positive electrode, zinc is used for a negative electrode, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used for an electrolyte. An air iron battery is an air battery in which oxygen in the air is used for a positive electrode, iron is used for a negative electrode, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used for an electrolyte. An air aluminum battery is an air battery in which oxygen in the air is used for a positive electrode, aluminum is used for a negative electrode, and a saline solution, an aqueous solution of potassium hydroxide, or the like is used for an electrolytic solution. An air magnesium battery is an air battery using oxygen in the air for a positive electrode, using magnesium for a negative electrode, and using a saline solution for an electrolyte.
 本発明の第1の実施形態の複合電源10aを構成する二次電池は、鉛蓄電池、ニカド電池、ニッケル水素電池、リチウムイオン二次電池、リチウムポリマー二次電池、全固体電池から成る群から選択された1つを含んでも良い。鉛蓄電池は、正極に二酸化鉛を使用し、負極に海綿状の鉛を使用し、電解液に希硫酸を使用した二次電池である。ニカド電池は、正極にオキシ水酸化ニッケルを使用し、負極にカドミウムを使用し、電解液に水酸化カリウム水溶液を使用した二次電池である。ニッケル水素電池は、正極にオキシ水酸化ニッケルを使用し、負極に水素又は水素吸蔵合金を使用し、電解液に水酸化カリウム水溶液を使用した二次電池である。リチウムイオン二次電池は、正極にリチウム遷移金属複合酸化物、負極に炭素材料、電解質に非水溶液系電解液を使用した二次電池である。リチウムポリマー二次電池は、正極にリチウム遷移金属複合酸化物、負極に炭素材料、電解質にゲル状の非水溶液系電解質ポリマーを使用した二次電池である。全固体電池は、正極にリチウム遷移金属複合酸化物、負極に炭素材料、電解質に無機系固体電解質を使用した二次電池である。 The secondary battery constituting the composite power supply 10a according to the first embodiment of the present invention is selected from the group consisting of a lead storage battery, a NiCd battery, a nickel-metal hydride battery, a lithium ion secondary battery, a lithium polymer secondary battery, and an all-solid battery. It may include one that has been done. A lead storage battery is a secondary battery that uses lead dioxide for the positive electrode, spongy lead for the negative electrode, and dilute sulfuric acid for the electrolyte. The NiCd battery is a secondary battery using nickel oxyhydroxide for the positive electrode, cadmium for the negative electrode, and an aqueous solution of potassium hydroxide for the electrolyte. A nickel-metal hydride battery is a secondary battery in which nickel oxyhydroxide is used for a positive electrode, hydrogen or a hydrogen storage alloy is used for a negative electrode, and a potassium hydroxide aqueous solution is used for an electrolytic solution. A lithium ion secondary battery is a secondary battery using a lithium transition metal composite oxide for a positive electrode, a carbon material for a negative electrode, and a non-aqueous electrolyte for an electrolyte. A lithium polymer secondary battery is a secondary battery using a lithium transition metal composite oxide for a positive electrode, a carbon material for a negative electrode, and a gel non-aqueous electrolyte polymer for an electrolyte. The all-solid-state battery is a secondary battery using a lithium transition metal composite oxide for a positive electrode, a carbon material for a negative electrode, and an inorganic solid electrolyte for an electrolyte.
 次に、シャトル電池(登録商標)について説明する。図2は、シャトル電池(登録商標)の構成を示すブロック図である。 Next, the shuttle battery (registered trademark) will be described. FIG. 2 is a block diagram showing a configuration of the shuttle battery (registered trademark).
 図2のシャトル電池(登録商標)30は、分類上空気電池に含まれ、電極複合体32と負極燃料物質体34とヒータ(図示せず)と密閉容器36とを有する。電極複合体32は、気密性の固体電解質体32aと正極32b(空気極、カソードともいう)と負極32c(燃料極、アノードともいう)とから成り、正極リード線32pと負極リード線32nとを備える。密閉容器36は、固体電解質体32a又は負極32cを壁面の一部として備え、負極燃料物質体34を密閉する。放電時には、固体電解質体32aは、酸素イオンを伝導し、正極32bは、空気中の酸素を酸素イオンに還元し、負極32cは、水素ガスを水蒸気に酸化する。負極燃料物質体34は、例えば鉄粒子であり、水蒸気と反応して水素ガスを生成し、自らは酸化物となる。この放電時の反応によって、正極32bから正極リード線32p、負荷、負極リード線32nを順に通って負極32cに電流が流れる。ヒータは、固体電解質体32a及び負極燃料物質体34を所定の温度以上に加熱維持するためのものである。ここで、所定の温度とは、例えば、固体電解質体32aの中の酸素イオンの伝導反応、又は鉄粒子と水素ガスとの酸化還元反応を一定速度で実行させるのに必要な温度であり、約400℃以上であるのが好ましい。
 このような構成とすることで、本発明の複合電源は、主電源の電圧を安定させることができるので、主電源に接続された電子機器の誤動作を防止することができる。
The shuttle battery (registered trademark) 30 of FIG. 2 is included in an air battery in terms of classification, and has an electrode assembly 32, a negative electrode fuel substance body 34, a heater (not shown), and a sealed container 36. The electrode assembly 32 includes an air-tight solid electrolyte body 32a, a positive electrode 32b (also referred to as an air electrode and a cathode), and a negative electrode 32c (also referred to as a fuel electrode and an anode), and includes a positive electrode lead 32p and a negative electrode lead 32n. Prepare. The closed container 36 includes the solid electrolyte member 32a or the negative electrode 32c as a part of the wall surface, and seals the negative electrode fuel substance member 34. During discharge, the solid electrolyte member 32a conducts oxygen ions, the positive electrode 32b reduces oxygen in the air to oxygen ions, and the negative electrode 32c oxidizes hydrogen gas to water vapor. The anode fuel material body 34 is, for example, iron particles, reacts with water vapor to generate hydrogen gas, and turns itself into an oxide. Due to the reaction at the time of the discharge, a current flows from the positive electrode 32b to the negative electrode 32c through the positive electrode lead 32p, the load, and the negative electrode lead 32n in this order. The heater is for heating and maintaining the solid electrolyte body 32a and the anode fuel substance body 34 at a predetermined temperature or higher. Here, the predetermined temperature is, for example, a temperature required to execute a conduction reaction of oxygen ions in the solid electrolyte body 32a or an oxidation-reduction reaction between iron particles and hydrogen gas at a constant rate. The temperature is preferably 400 ° C. or higher.
With such a configuration, the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
 本発明の第1の実施形態の複合電源は、基本的に以上のように構成される。このような構成とすることで、本発明の複合電源は、主電源に接続された電子機器の誤動作を防止すること、及び急激な電力需要又は電力供給の変動に対応することができ、また、従来と同等以上に安全に使用することができる。 複合 The composite power supply according to the first embodiment of the present invention is basically configured as described above. With such a configuration, the composite power supply of the present invention can prevent malfunction of an electronic device connected to the main power supply, and can respond to a sudden change in power demand or power supply, It can be used more safely than before.
 次に、本発明の第2の実施形態の複合電源について説明する。第2の実施形態の複合電源は、急激な電力供給の変動に対応することが可能な複合電源の一例である。
 本発明の第2の実施形態の複合電源10bは、主電源12bと補助電源14bと開閉スイッチ16bとを有する。主電源12bは、燃料電池、空気電池、二次電池、及びそれらの内の少なくとも2つを互いに接続した複合電池から成る群から選択された1つであり、外部電源22に常時接続される。補助電源14bは、主電源12bよりも大きい入力電力能力と、主電源12bよりも小さい内部インピーダンスと、を備えた二次電池であり、主電源12bに並列接続される。開閉スイッチ16bは、補助電源14bに直列接続され、外部電源22から補助電源14bに電力を供給するか否かを切り換える。
Next, a composite power supply according to a second embodiment of the present invention will be described. The composite power supply according to the second embodiment is an example of a composite power supply that can cope with a sudden change in power supply.
The composite power supply 10b according to the second embodiment of the present invention includes a main power supply 12b, an auxiliary power supply 14b, and an open / close switch 16b. The main power supply 12 b is one selected from the group consisting of a fuel cell, an air battery, a secondary battery, and a composite battery in which at least two of them are connected to each other, and is always connected to the external power supply 22. The auxiliary power supply 14b is a secondary battery having an input power capability larger than that of the main power supply 12b and an internal impedance smaller than that of the main power supply 12b, and is connected in parallel to the main power supply 12b. The open / close switch 16b is connected in series to the auxiliary power supply 14b, and switches whether to supply power from the external power supply 22 to the auxiliary power supply 14b.
 具体的には、開閉スイッチ16bは、急激な大電流充電が生じることによって主電源12bの所定時間後の充電電流の予測値及び所定時間後の充電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じて、外部電源22から補助電源14bに電力供給を開始する。また、開閉スイッチ16bは、急激な大電流充電が終わることによって充電電流及び充電電圧の両方がそれぞれの許容範囲内に回復した時に開いて、外部電源22から補助電源14bに電力供給を停止する。開閉スイッチ16bは、主電源12bの所定時間後の充電電流の予測値及び所定時間後の充電電圧の予測値のどちらか一方に基づいて開閉しても良い。なお、複合電源10bには、負荷18が接続されていなくても良い。また、本発明の第2の実施形態の複合電源10bを構成する燃料電池、空気電池、二次電池は、本発明の第1の実施形態の複合電源10aを構成する燃料電池、空気電池、二次電池とそれぞれ同一であるので、それらの説明を省略する。
 このような構成とすることで、本発明の複合電源は、主電源の電圧を安定させることができるので、主電源に接続された電子機器の誤動作を防止することができる。
More specifically, the on / off switch 16b is configured such that at least one of the predicted value of the charging current after a predetermined time of the main power supply 12b and the predicted value of the charging voltage after the predetermined time due to the occurrence of a sudden large current charge is within an allowable range. Is closed, the power supply from the external power supply 22 to the auxiliary power supply 14b is started. The open / close switch 16b is opened when both the charging current and the charging voltage recover within the respective allowable ranges due to the end of the rapid large-current charging, and stops the power supply from the external power supply 22 to the auxiliary power supply 14b. The open / close switch 16b may be opened / closed based on either the predicted value of the charging current after a predetermined time of the main power supply 12b or the predicted value of the charging voltage after the predetermined time. The load 18 may not be connected to the composite power supply 10b. Further, the fuel cell, the air battery, and the secondary battery that constitute the composite power supply 10b of the second embodiment of the present invention are the fuel cell, the air battery, and the secondary battery that constitute the composite power supply 10a of the first embodiment of the present invention. Since they are the same as the following batteries, their description is omitted.
With such a configuration, the composite power supply of the present invention can stabilize the voltage of the main power supply, so that malfunction of an electronic device connected to the main power supply can be prevented.
 本発明の第2の実施形態の複合電源10bにおける所定時間後の充電電流の予測値は、主電源12bの充電電流の増加速度から予測計算され、所定時間後の充電電圧の予測値は、主電源12bの充電電圧の上昇速度から予測計算されても良い。例えば、充電電流の許容範囲の下限値を100%とし、その場合の充電電流の現在値を75%とし、充電電流の増加速度を毎秒10%とし、所定時間を3秒とした時に、一次式で近似することによって、充電電流が2.5秒後に許容範囲の下限値に到達し、所定時間後の充電電流の予測値が105%となって充電電流の許容範囲の下限値100%を超過することが予測できる。従って、それに間に合うタイミングで開閉スイッチ16bを閉じれば、主電源12bが安全な状態を保ったまま、外部電源22から補助電源14bに電力供給を開始することができる。また、主電源12bの充電電流の増加速度及び充電電圧の上昇速度を二次式又は指数関数などでより細かく近似しても良い。
 このような構成とすることで、本発明の複合電源は、変化速度に基づいて所定時間後の予測値を事前に計算するので、急激な電力需要又は電力供給の変動に対応することができる。
The predicted value of the charging current after a predetermined time in the composite power supply 10b according to the second embodiment of the present invention is predicted and calculated from the increase rate of the charging current of the main power supply 12b, and the predicted value of the charging voltage after the predetermined time is It may be predicted and calculated from the rising speed of the charging voltage of the power supply 12b. For example, when the lower limit of the allowable range of the charging current is 100%, the current value of the charging current is 75%, the rate of increase of the charging current is 10% per second, and the predetermined time is 3 seconds, , The charging current reaches the lower limit of the allowable range after 2.5 seconds, the predicted value of the charging current after a predetermined time becomes 105%, and exceeds the lower limit of 100% of the allowable range of the charging current. Can be predicted. Therefore, if the open / close switch 16b is closed at a timing corresponding to the time, the power supply from the external power supply 22 to the auxiliary power supply 14b can be started while the main power supply 12b keeps a safe state. Further, the increasing speed of the charging current and the increasing speed of the charging voltage of the main power supply 12b may be more finely approximated by a quadratic expression or an exponential function.
With such a configuration, the composite power supply of the present invention calculates a predicted value after a predetermined time in advance based on the speed of change, and thus can respond to a sudden fluctuation in power demand or power supply.
 本発明の第2の実施形態の複合電源10bは、さらに、安全スイッチ20bを有しても良い。その場合には、安全スイッチ20bは、複合電源10bに直列接続され、外部電源22から複合電源10bに電力を供給するか否かを切り換える。具体的には、安全スイッチ20bは、常時閉じて、外部電源22から複合電源10bに電力供給を継続し、急激な大電流充電が生じることによって主電源12bの充電電流の予測値及び充電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過し、かつ補助電源14bの充電電流及び充電電圧の少なくとも一方がそれぞれの許容範囲を超過した時だけ開いて、外部電源22から複合電源10bに電力供給を停止する。
 このような構成とすることで、本発明の複合電源は、安全に使用することができる。
The composite power supply 10b according to the second embodiment of the present invention may further include a safety switch 20b. In that case, the safety switch 20b is connected in series to the composite power supply 10b, and switches whether to supply power from the external power supply 22 to the composite power supply 10b. More specifically, the safety switch 20b is always closed to continuously supply power from the external power supply 22 to the composite power supply 10b, and a sudden large current charge occurs, so that the predicted value of the charge current of the main power supply 12b and the charge voltage Open only when at least one of the predicted values exceeds the respective allowable range and at least one of the charging current and the charging voltage of the auxiliary power supply 14b exceeds the respective allowable range, and power is supplied from the external power supply 22 to the composite power supply 10b. To stop.
With such a configuration, the composite power supply of the present invention can be used safely.
 本発明の第2の実施形態の複合電源10bを構成する主電源12b、補助電源14b、開閉スイッチ16b、安全スイッチ20bは、本発明の第1の実施形態の複合電源10aを構成する主電源12a、補助電源14a、開閉スイッチ16a、安全スイッチ20aの内、主電源12aが一次電池を含むこと以外の他の全ての機能をそれぞれ併せ持つことができる。 The main power supply 12b, the auxiliary power supply 14b, the open / close switch 16b, and the safety switch 20b constituting the composite power supply 10b according to the second embodiment of the present invention are the main power supply 12a constituting the composite power supply 10a according to the first embodiment of the present invention. , The auxiliary power supply 14a, the open / close switch 16a, and the safety switch 20a can have all other functions except that the main power supply 12a includes a primary battery.
 本発明の第2の実施形態の複合電源は、基本的に以上のように構成される。このような構成とすることで、本発明の複合電源は、主電源に接続された電子機器の誤動作を防止すること、及び急激な電力需要又は電力供給の変動に対応することができ、また、従来と同等以上に安全に使用することができる。 複合 The composite power supply according to the second embodiment of the present invention is basically configured as described above. With such a configuration, the composite power supply of the present invention can prevent malfunction of an electronic device connected to the main power supply, and can respond to a sudden change in power demand or power supply, It can be used more safely than before.
 以上、本発明の複合電源について詳細に説明したが、本発明は上記記載に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしても良いのはもちろんである。 Although the composite power supply of the present invention has been described in detail above, the present invention is not limited to the above description, and it is needless to say that various improvements and changes may be made without departing from the gist of the present invention.
 本発明の複合電源は、主電源に接続された電子機器の誤動作を防止すること、及び急激な電力需要又は電力供給の変動に対応することができるという効果に加え、従来と同等以上に安全に使用することができるという効果もあるので、産業上有用である。 The combined power supply of the present invention has the effect of preventing malfunctions of electronic devices connected to the main power supply, and being able to respond to sudden fluctuations in power demand or power supply, as well as being safer than conventional devices. There is also an effect that it can be used, which is industrially useful.
 10a、10b 複合電源
 12a、12b 主電源
 14a、14b 補助電源
 16a、16b 開閉スイッチ
 18 負荷
 20a、20b 安全スイッチ
 22 外部電源
 30 シャトル電池(登録商標)
 32 電極複合体
 32a 固体電解質体
 32b 正極
 32c 負極
 32p 正極リード線
 32n 負極リード線
 34 負極燃料物質体
 36 密閉容器
10a, 10b Composite power supply 12a, 12b Main power supply 14a, 14b Auxiliary power supply 16a, 16b Open / close switch 18 Load 20a, 20b Safety switch 22 External power supply 30 Shuttle battery (registered trademark)
Reference Signs List 32 electrode composite 32a solid electrolyte body 32b positive electrode 32c negative electrode 32p positive lead 32n negative lead 34 negative fuel material 36 closed container

Claims (9)

  1.  負荷に常時接続された主電源と、
     前記主電源に並列接続された補助電源と、
     前記補助電源に直列接続され、前記補助電源から前記負荷に電力を供給するか否かを切り換える開閉スイッチと、を有し、
     前記主電源は、燃料電池、空気電池、二次電池、一次電池、及びそれらの内の少なくとも2つを互いに接続した複合電池から成る群から選択された1つであり、
     前記補助電源は、前記主電源よりも大きい出力電力能力と、前記主電源よりも小さい内部インピーダンスと、を備えた二次電池であり、
     前記開閉スイッチは、急激な大電流放電が生じることによって前記主電源の所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じ、前記急激な大電流放電が終わることによって前記放電電流及び前記放電電圧の両方がそれぞれの前記許容範囲内に回復した時に開く複合電源。
    A main power supply always connected to the load,
    An auxiliary power supply connected in parallel to the main power supply;
    An open / close switch that is connected in series to the auxiliary power supply and switches whether to supply power to the load from the auxiliary power supply,
    The main power source is one selected from the group consisting of a fuel cell, an air battery, a secondary battery, a primary battery, and a composite battery in which at least two of them are connected to each other;
    The auxiliary power supply is a secondary battery having an output power capability greater than the main power supply and an internal impedance smaller than the main power supply,
    The open / close switch is configured such that when a sudden large current discharge occurs, at least one of a predicted value of a discharge current after a predetermined time of the main power supply and a predicted value of a discharge voltage after a predetermined time exceeds respective allowable ranges. A combined power supply that closes and opens when both the discharge current and the discharge voltage have returned to within their respective tolerances due to the termination of the sudden high current discharge.
  2.  前記所定時間後の放電電流の予測値は、前記主電源の放電電流の増加速度から予測計算され、前記所定時間後の放電電圧の予測値は、前記主電源の放電電圧の低下速度から予測計算される請求項1に記載の複合電源。 The predicted value of the discharge current after the predetermined time is predicted and calculated from the rate of increase of the discharge current of the main power supply, and the predicted value of the discharge voltage after the predetermined time is predicted and calculated from the rate of decrease of the discharge voltage of the main power supply. The composite power supply according to claim 1, wherein:
  3.  さらに、前記複合電源に直列接続され、前記複合電源から前記負荷に電力を供給するか否かを切り換える安全スイッチを有し、
     前記安全スイッチは、常時閉じ、前記急激な大電流放電が生じることによって前記主電源の前記放電電流の予測値及び前記放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過し、かつ前記補助電源の放電電流及び放電電圧の少なくとも一方がそれぞれの許容範囲を超過した時だけ開く請求項1又は2に記載の複合電源。
    Further, a safety switch is connected in series to the composite power supply, and switches whether to supply power to the load from the composite power supply,
    The safety switch is normally closed and at least one of the predicted value of the discharge current and the predicted value of the discharge voltage of the main power supply exceeds the respective allowable range due to the sudden large current discharge, and the auxiliary switch The composite power supply according to claim 1 or 2, wherein the composite power supply is opened only when at least one of a discharge current and a discharge voltage of the power supply exceeds respective allowable ranges.
  4.  前記一次電池は、マンガン乾電池、アルカリ乾電池、リチウム一次電池、アルカリボタン電池、酸化銀電池、空気亜鉛電池から成る群から選択された1つを含む請求項1~3のいずれか1項に記載の複合電源。 The battery according to any one of claims 1 to 3, wherein the primary battery includes one selected from the group consisting of a manganese dry battery, an alkaline dry battery, a lithium primary battery, an alkaline button battery, a silver oxide battery, and an air zinc battery. Composite power supply.
  5.  外部電源に常時接続された主電源と、
     前記主電源に並列接続された補助電源と、
     前記補助電源に直列接続され、前記外部電源から前記補助電源に電力を供給するか否かを切り換える開閉スイッチと、を有し、
     前記主電源は、燃料電池、空気電池、二次電池、及びそれらの内の少なくとも2つを互いに接続した複合電池から成る群から選択された1つであり、
     前記補助電源は、前記主電源よりも大きい入力電力能力と、前記主電源よりも小さい内部インピーダンスと、を備えた二次電池であり、
     前記開閉スイッチは、急激な大電流充電が生じることによって前記主電源の所定時間後の充電電流の予測値及び所定時間後の充電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じ、前記急激な大電流充電が終わることによって前記充電電流及び前記充電電圧の両方がそれぞれの前記許容範囲内に回復した時に開く複合電源。
    A main power supply that is always connected to an external power supply,
    An auxiliary power supply connected in parallel to the main power supply;
    An open / close switch that is connected in series to the auxiliary power supply and switches whether to supply power to the auxiliary power supply from the external power supply,
    The main power source is one selected from the group consisting of a fuel cell, an air battery, a secondary battery, and a composite battery in which at least two of them are connected to each other;
    The auxiliary power source is a secondary battery including an input power capability larger than the main power source and an internal impedance smaller than the main power source,
    The open / close switch is provided when at least one of a predicted value of a charging current after a predetermined time of the main power supply and a predicted value of a charging voltage after a predetermined time of the main power supply exceeds a respective allowable range due to a sudden large current charging. A combined power supply that closes and opens when both the charging current and the charging voltage are restored to within their respective tolerances due to termination of the rapid high current charging.
  6.  前記所定時間後の充電電流の予測値は、前記主電源の充電電流の増加速度から予測計算され、前記所定時間後の充電電圧の予測値は、前記主電源の充電電圧の上昇速度から予測計算される請求項5に記載の複合電源。 The predicted value of the charging current after the predetermined time is predicted and calculated from the increasing speed of the charging current of the main power supply, and the predicted value of the charging voltage after the predetermined time is predicted and calculated from the rising speed of the charging voltage of the main power supply. The combined power supply according to claim 5, wherein
  7.  さらに、前記複合電源に直列接続され、前記外部電源から前記複合電源に電力を供給するか否かを切り換える安全スイッチを有し、
     前記安全スイッチは、常時閉じ、前記急激な大電流充電が生じることによって前記主電源の前記充電電流の予測値及び前記充電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過し、かつ前記補助電源の充電電流及び充電電圧の少なくとも一方がそれぞれの許容範囲を超過した時だけ開く請求項5又は6に記載の複合電源。
    Further, a safety switch that is connected in series to the composite power supply and switches whether to supply power to the composite power supply from the external power supply,
    The safety switch is normally closed and at least one of the predicted value of the charging current and the predicted value of the charging voltage of the main power supply exceeds the respective allowable range due to the sudden large current charging, and the auxiliary switch 7. The composite power supply according to claim 5, wherein the power supply is opened only when at least one of a charging current and a charging voltage of the power supply exceeds respective allowable ranges.
  8.  前記主電源は、さらに、負荷に常時接続され、
     前記開閉スイッチは、さらに、前記補助電源から前記負荷に電力を供給するか否かを切り換え、
     前記補助電源は、さらに、前記主電源よりも大きい出力電力能力を備えた二次電池であり、
     前記開閉スイッチは、さらに、急激な大電流放電が生じることによって前記主電源の所定時間後の放電電流の予測値及び所定時間後の放電電圧の予測値の少なくとも一方がそれぞれの許容範囲を超過する場合に閉じ、前記急激な大電流放電が終わることによって前記放電電流及び前記放電電圧の両方がそれぞれの前記許容範囲内に回復した時に開く請求項5~7のいずれか1項に記載の複合電源。
    The main power supply is further always connected to a load,
    The open / close switch further switches whether to supply power to the load from the auxiliary power supply,
    The auxiliary power supply is a secondary battery further having an output power capability greater than the main power supply,
    The open / close switch further includes a sudden large current discharge that causes at least one of a predicted value of a discharge current of the main power supply after a predetermined time and a predicted value of a discharge voltage after a predetermined time to exceed respective allowable ranges. The combined power supply according to any one of claims 5 to 7, wherein the composite power supply is closed when the discharge current and the discharge voltage both recover within the respective allowable ranges due to termination of the rapid high-current discharge. .
  9.  前記燃料電池は、固体高分子形燃料電池、りん酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池から成る群から選択された1つを含み、
     前記空気電池は、空気亜鉛電池、空気鉄電池、空気アルミニウム電池、空気マグネシウム電池、シャトル電池(登録商標)から成る群から選択された1つを含み、
     前記二次電池は、鉛蓄電池、ニカド電池、ニッケル水素電池、リチウムイオン二次電池、リチウムポリマー二次電池、全固体電池から成る群から選択された1つを含む請求項1~8のいずれか1項に記載の複合電源。
    The fuel cell includes one selected from the group consisting of a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell,
    The air battery includes one selected from the group consisting of a zinc-air battery, an iron-air battery, an aluminum-air battery, a magnesium-air battery, and a shuttle battery (registered trademark);
    The battery according to any one of claims 1 to 8, wherein the secondary battery includes one selected from the group consisting of a lead storage battery, a NiCd battery, a nickel-metal hydride battery, a lithium ion secondary battery, a lithium polymer secondary battery, and an all solid state battery. The combined power supply according to claim 1.
PCT/JP2018/027386 2018-07-20 2018-07-20 Complex power source WO2020017052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027386 WO2020017052A1 (en) 2018-07-20 2018-07-20 Complex power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027386 WO2020017052A1 (en) 2018-07-20 2018-07-20 Complex power source

Publications (1)

Publication Number Publication Date
WO2020017052A1 true WO2020017052A1 (en) 2020-01-23

Family

ID=69163821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027386 WO2020017052A1 (en) 2018-07-20 2018-07-20 Complex power source

Country Status (1)

Country Link
WO (1) WO2020017052A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179242A (en) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd Fuel cell system
JP2006285539A (en) * 2005-03-31 2006-10-19 Denso Wave Inc Portable information reader
JP2016025723A (en) * 2014-07-18 2016-02-08 株式会社豊田自動織機 Conveyance system of unmanned carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179242A (en) * 2004-12-21 2006-07-06 Nissan Motor Co Ltd Fuel cell system
JP2006285539A (en) * 2005-03-31 2006-10-19 Denso Wave Inc Portable information reader
JP2016025723A (en) * 2014-07-18 2016-02-08 株式会社豊田自動織機 Conveyance system of unmanned carrier

Similar Documents

Publication Publication Date Title
Besenhard Handbook of battery materials
JP5100008B2 (en) Operation method of fuel cell system and fuel cell system
JP6690414B2 (en) Trickle charging power system
CA2902908C (en) Low temperature battery with molten sodium-fsa electrolyte
US20130115528A1 (en) Rechargeable anion battery cell using a molten salt electrolyte
Morris et al. Comparison of rechargeable battery technologies
CN101582517A (en) Charging and discharging battery pack and control method thereof
JPH08509835A (en) Sealed rechargeable battery
CN102545322B (en) Battery module, power supply system and battery power supply control method
JP5705046B2 (en) Power system
EP2973838B1 (en) Low temperature secondary cell with sodium intercalation electrode
CN109617193A (en) A kind of lithium battery management system and aerial work platform
US11101485B2 (en) Flow battery
WO2020017052A1 (en) Complex power source
RU124842U1 (en) LITHIUM ION BATTERY
CN209448456U (en) A kind of lithium battery management system and aerial work platform
JP6055246B2 (en) Power supply
CN115053377A (en) Sodium ion battery pack
Samanta et al. Battery Storage Technologies: A Review
USH1721H (en) Aqueous rechargeable battery
Morris et al. Survey of rechargeable batteries for robotic applications
CN214590692U (en) Power supply system and electronic equipment
JP7081982B2 (en) Metal-air battery modules, metal-air battery systems and how to charge metal-air batteries
KR20090082761A (en) Charging method and battery charging circuit
Dudley Lithium-ion batteries for space

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP