JP6446497B2 - Wire grid polarizer, projection display apparatus, and method of manufacturing wire grid polarizer - Google Patents

Wire grid polarizer, projection display apparatus, and method of manufacturing wire grid polarizer Download PDF

Info

Publication number
JP6446497B2
JP6446497B2 JP2017083317A JP2017083317A JP6446497B2 JP 6446497 B2 JP6446497 B2 JP 6446497B2 JP 2017083317 A JP2017083317 A JP 2017083317A JP 2017083317 A JP2017083317 A JP 2017083317A JP 6446497 B2 JP6446497 B2 JP 6446497B2
Authority
JP
Japan
Prior art keywords
convex
wire grid
conductor
concavo
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083317A
Other languages
Japanese (ja)
Other versions
JP2017173832A (en
Inventor
泰幸 河津
泰幸 河津
尚志 小野
尚志 小野
昌治 杉村
昌治 杉村
大 杉山
大 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2017173832A publication Critical patent/JP2017173832A/en
Application granted granted Critical
Publication of JP6446497B2 publication Critical patent/JP6446497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、ワイヤグリッド偏光板、投影型映像表示機器、及びワイヤグリッド偏光板の製造方法に関する。   The present invention relates to a wire grid polarizer, a projection display apparatus, and a method for manufacturing a wire grid polarizer.

近年、液晶表示装置に、反射型偏光子が使用される機会が増加している。反射型偏光子は、特定の直線偏光成分の光を反射し、この特定の直線偏光成分と直交する成分の光を透過する。反射型偏光子としては、例えば、複屈折性樹脂の積層体からなる偏光子や、透明基板上に複数の導電体(金属細線)が平行に延在したワイヤグリッド型偏光子がある。また、直線偏光成分の光を反射ないし透過するのではなく、特定の円偏光成分の光を反射ないし透過するものとして、コレステリック相液晶からなる偏光子もある。これらの中で、高い偏光透過率をもって所望の直線偏光成分の光を得ることができ、この所望の直線偏光成分と直交する直線偏光成分の光を低偏光透過率(高偏光反射率)にできる反射型偏光子として、ワイヤグリッド型偏光子が注目されている。なお、互いに直交する2つの直線偏光成分の光の透過率の比を、透過光の消光比という。   In recent years, opportunities for using reflective polarizers in liquid crystal display devices have increased. The reflective polarizer reflects light of a specific linear polarization component and transmits light of a component orthogonal to the specific linear polarization component. Examples of the reflective polarizer include a polarizer made of a laminate of birefringent resin and a wire grid polarizer in which a plurality of conductors (metal thin wires) extend in parallel on a transparent substrate. Further, there is a polarizer made of cholesteric phase liquid crystal that reflects or transmits light of a specific circularly polarized light component instead of reflecting or transmitting light of a linearly polarized light component. Among these, light having a desired linearly polarized light component can be obtained with high polarization transmittance, and light having a linearly polarized light component orthogonal to the desired linearly polarized light component can be made to have a low polarization transmittance (high polarization reflectance). As a reflective polarizer, a wire grid polarizer has attracted attention. Note that the ratio of the light transmittance of two linearly polarized light components orthogonal to each other is referred to as the extinction ratio of the transmitted light.

ワイヤグリッド型偏光子は、一般的に金属細線のピッチが入光する光の波長よりも十分に小さい場合、入光する光のうち、金属細線の延在方向と直交する電場ベクトルを有する直線偏光成分の光は透過させ、金属細線の延在方向の電場ベクトルを有する直線偏光成分の光を反射する特性を有する。   A wire grid type polarizer is generally a linearly polarized light having an electric field vector perpendicular to the extending direction of the metal fine wire in the incident light when the pitch of the metal fine wire is sufficiently smaller than the wavelength of the incident light. The light of the component is transmitted, and the light of the linearly polarized component having the electric field vector in the extending direction of the thin metal wire is reflected.

ワイヤグリッド型偏光子を作製する方法としては、基材表面に導電体の薄膜を作製し、薄膜上にポリマ層を形成した後、干渉露光法や電子線描画法などにより作製したパターンを有する金型を用いてポリマ層上にパターンを形成し、ポリマ層のパターンを用いて導電体の薄膜をドライエッチング法等で金属細線を作製する方法(特許文献1)が知られている。また、凹凸形状基材に対し、斜め蒸着法を利用して、基材凸部の側面に導電体を蒸着する方法(特許文献2)も知られている。前者は、干渉露光、電子線描画やドライエッチング等に必要な、高価な製造装置が必要であり、また、低生産性といった問題を有していた。一方で、後者の製造方法は、工程を簡易なものとすることができるために高生産性とすることができ、また、基材凸部の側面に導電体が蒸着されるため、導電体と基材凸部の接触面積を大きくでき、外力等による導電体の欠損を少なくできる。このようなワイヤグリッド型偏光子を、以下、ワイヤグリッド偏光板という。   As a method of manufacturing a wire grid polarizer, a thin film of a conductor is formed on the surface of a substrate, a polymer layer is formed on the thin film, and then a gold having a pattern formed by an interference exposure method or an electron beam drawing method is used. There is known a method (Patent Document 1) in which a pattern is formed on a polymer layer using a mold, and a thin metal film is formed by a dry etching method or the like using the pattern of the polymer layer. In addition, a method (Patent Document 2) is also known in which a conductor is vapor-deposited on the side surface of a convex portion of a base material by using an oblique vapor deposition method on a concave-convex base material. The former requires an expensive manufacturing apparatus necessary for interference exposure, electron beam drawing, dry etching, and the like, and has a problem of low productivity. On the other hand, since the latter manufacturing method can simplify a process, it can be made highly productive, and since a conductor is vapor-deposited on the side surface of a base material convex part, a conductor and The contact area of the substrate convex portion can be increased, and the loss of the conductor due to external force or the like can be reduced. Such a wire grid polarizer is hereinafter referred to as a wire grid polarizer.

ワイヤグリッド偏光板は、高偏光反射率にできる反射型偏光子であるため、光のリサイクルによる高輝度化が可能となり、また、光の吸収から生じる熱の発生が小さいという点で、液晶表示装置に適している。   Since the wire grid polarizer is a reflective polarizer capable of high polarization reflectivity, it is possible to increase the brightness by recycling the light, and the generation of heat caused by the absorption of light is small. Suitable for

特開2006−084776号公報JP 2006-084776 A 特開2001−330728号公報JP 2001-330728 A

近年、液晶表示機器において放送技術や画像技術の進歩に伴い、より高画質が求められるようになっている。このため、ワイヤグリッド偏光板についてもより高画質化への貢献が求められている。   In recent years, with the advancement of broadcasting technology and image technology in liquid crystal display devices, higher image quality has been demanded. For this reason, the wire grid polarizing plate is also required to contribute to higher image quality.

本発明は、かかる点に鑑みてなされたものであり、より高画質な液晶表示装置を提供することができるワイヤグリッド偏光板、投影型映像表示機器、及びワイヤグリッド偏光板の製造方法を提供することを目的の一つとする。   This invention is made | formed in view of this point, and provides the manufacturing method of the wire grid polarizing plate which can provide a higher-quality liquid crystal display device, a projection type video display apparatus, and a wire grid polarizing plate. One of the purposes.

本発明のワイヤグリッド偏光板は、特定方向に延在する凹凸構造を表面上に有する基材と、前記凹凸構造の凸部の一方側面に偏在するように設けられた導電体とを有したワイヤグリッド偏光板であって、前記導電体あるいは凹凸構造の延在方向と垂直な断面(以下、断面視ともいう。)において、隣接する2つの前記凸部の間隔であるピッチP1は120nm以下であり、且つ、前記凸部の最高部から凹部の最低部までの高さの差である凸部高さHがピッチP1の0.8倍から1.3倍であり、前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の最高部から前記凹部の最低部までの高さの差である前記凸部高さHの9/10Hの位置を第一の高さ位置としたときに、前記第一の高さ位置から前記凸部の最高部までの間における前記導電体の水平方向の厚みが20nm以上であり、前記導電体は、前記凹凸構造の概略最低部から最高部に伸び、且つ、少なくとも前記導電体の一部が、前記凹凸構造の前記凸部の最高部より上方に設けられており、前記導電体は、前記凸部高さHの1/10Hの位置での水平方向の厚みが、前記凸部高さHの9/10Hの位置での水平方向の厚みより厚く、前記導電体の最高部における水平方向の厚みが前記凸部の最高部における水平方向の厚みよりも薄いことを特徴とする。 The wire grid polarizing plate of the present invention includes a base material having a concavo-convex structure extending in a specific direction on the surface, and a conductor provided so as to be unevenly distributed on one side surface of the convex portion of the concavo-convex structure. a grid polarizer, the extending direction perpendicular to the cross section of the conductor or uneven structure (hereinafter, also referred to as cross-sectional view.) in the pitch P1 is an interval between adjacent two of the protrusions is at 120nm or less And the convex part height H which is the difference in height from the highest part of the convex part to the lowest part of the concave part is 0.8 to 1.3 times the pitch P1, and the extending direction of the concavo-convex structure in vertical cross section for, when the highest portion of the height difference of at least part of the location of the 9 / 10H first height position of the convex height H of the concave portion of the convex portion And between the first height position and the highest portion of the convex portion. Kicking Der horizontal thickness 20nm or more of the conductors is, the conductor extends to the highest portion from the outline lowest portion of the concave-convex structure, and at least a portion of the conductor, the said uneven structure It is provided above the highest part of the convex part, and the conductor has a thickness in the horizontal direction at a position of 1 / 10H of the convex part height H and a position at 9 / 10H of the convex part height H. The horizontal thickness at the highest portion of the conductor is smaller than the horizontal thickness at the highest portion of the convex portion .

本発明の投影型映像表示機器は、先述したワイヤグリッド偏光板と、光源と、反射型液晶表示素子とを有する投影型映像表示機器であって、前記光源から出光した光が、前記ワイヤグリッド偏光板を透過又は反射して前記反射型液晶表示素子に入光し、前記反射型液晶表示素子により変調された光が前記ワイヤグリッド偏光板で反射又は透過して映像を投影することを特徴とする。   The projection-type image display apparatus of the present invention is a projection-type image display apparatus having the above-described wire grid polarizing plate, a light source, and a reflective liquid crystal display element, wherein light emitted from the light source is the wire grid polarization. Light is transmitted through or reflected by a plate to enter the reflective liquid crystal display element, and light modulated by the reflective liquid crystal display element is reflected or transmitted by the wire grid polarizing plate to project an image. .

本発明のワイヤグリッド偏光板の製造方法は、基材表面に特定方向に延在する凹凸構造を形成する工程と、前記凹凸構造の凸部の一方側面に偏在するように導電体を形成する工程と、を有するワイヤグリッド偏光板の製造方法であって、前記凹凸構造を形成する工程は、前記凹凸構造の延在方向に対する垂直方向の断面視において、隣接する2つの前記凸部の間隔であるピッチP1を120nm以下に形成し、且つ、前記凸部の最高部から凹部の最低部までの高さの差である凸部高さHをピッチP1の0.8倍から1.3倍に形成し、前記導電体を形成する工程は、前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の最高部から前記凹部の最低部までの高さの差である前記凸部高さHの9/10Hの位置を第一の高さ位置としたときに、前記第一の高さ位置から前記凸部の最高部までの間における前記導電体の水平方向の厚みが20nm以上となるように前記導電体を形成し、前記凹凸構造の概略最低部から最高部に伸び、且つ、少なくとも前記導電体の一部が、前記凹凸構造の前記凸部の最高部より上方に設けられるように前記導電体を形成し、前記凸部高さHの1/10Hの位置での水平方向の厚みが、前記凸部高さHの9/10Hの位置での水平方向の厚みより厚く、前記導電体の最高部における水平方向の厚みが前記凸部の最高部における水平方向の厚みよりも薄くなるように前記導電体を形成することを特徴とする。 The method for producing a wire grid polarizing plate of the present invention includes a step of forming a concavo-convex structure extending in a specific direction on a substrate surface, and a step of forming a conductor so as to be unevenly distributed on one side surface of the convex portion of the concavo-convex structure. When a method of manufacturing a wire grid polarizer having the step of forming the uneven structure is in the cross-sectional view in the vertical direction with respect to the extending direction of the uneven structure is the distance between adjacent two of said protrusions The pitch P1 is formed to be 120 nm or less, and the convex height H, which is the difference in height from the highest part of the convex part to the lowest part of the concave part, is 0.8 times to 1.3 times the pitch P1. and, the step of forming the conductor, said in the cross-sectional view in the vertical direction with respect to the extending direction of the convex-concave structure, the convex portion height is the height difference from the highest part to the lowest part of the concave portion of the convex portion 9 / 10H of height H is the first height position And when the horizontal thickness of the conductor between the first height position to the highest portion of the convex portion forming the conductor so that the above 20 nm, outline of the convex-concave structure The conductor is formed so as to extend from the lowest part to the highest part, and at least a part of the conductor is provided above the highest part of the convex part of the concavo-convex structure. The horizontal thickness at the position of 1 / 10H is larger than the horizontal thickness at the position of 9 / 10H of the height H of the convex portion, and the horizontal thickness at the highest portion of the conductor is the height of the convex portion. The conductor is formed so as to be thinner than the horizontal thickness at the highest portion .

本発明によれば、より高画質で液晶表示装置を提供することができる。   According to the present invention, it is possible to provide a liquid crystal display device with higher image quality.

本実施の形態に係るワイヤグリッド偏光板の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the wire grid polarizing plate which concerns on this Embodiment. 本実施の形態に係る投影型映像表示機器の一例を示す概念図である。It is a conceptual diagram which shows an example of the projection type video display apparatus concerning this Embodiment. 本発明の実施例に係るワイヤグリッド偏光板の断面視におけるSEM写真である。It is a SEM photograph in the cross sectional view of the wire grid polarizing plate which concerns on the Example of this invention. 本発明の実施例に係るワイヤグリッド偏光板の平行透過率及び直交透過率の関係を示すグラフである。It is a graph which shows the relationship between the parallel transmittance | permeability and orthogonal transmittance | permeability of the wire grid polarizing plate which concerns on the Example of this invention.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

<ワイヤグリッド偏光板の光学対称性と画質との関係>
本発明者らは、上記課題を解決するために鋭意検討した結果、ワイヤグリッド偏光板が、断面視において、導電体と基材凸部とからなる構造の非対称性に起因して、その光学対称性が強い非対称性を示し、これが目視する角度によって映像状態に変化を生じさせるため、ワイヤグリッド偏光板を用いた液晶表示装置の画質向上に悪影響を及ぼす可能性があることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
<Relationship between optical symmetry of wire grid polarizer and image quality>
As a result of intensive studies to solve the above problems, the present inventors have found that the wire grid polarizing plate is optically symmetric due to the asymmetry of the structure composed of the conductor and the substrate convex portion in a sectional view. Since this shows a strong asymmetry and this changes the image state depending on the viewing angle, it has been found that there is a possibility of adversely affecting the image quality improvement of the liquid crystal display device using the wire grid polarizing plate. It came to be completed. That is, the present invention is as follows.

本発明のワイヤグリッド偏光板は、特定方向に延在する凹凸構造を表面上に有する基材と、前記凹凸構造の凸部の一方側面に偏在するように設けられた導電体とを有したワイヤグリッド偏光板において、ワイヤグリッド偏光板の垂直方向を0度としたときに、波長555nmの光の入光角度−45度及び+45度における平行透過率(Tp)の差が4%以下であることを特徴とする。4%を超える平行透過率の差異がある場合、目視する角度によって映像状態、具体的には、明るさの変化を観察者が認識できるため、不適となる。   The wire grid polarizing plate of the present invention includes a base material having a concavo-convex structure extending in a specific direction on the surface, and a conductor provided so as to be unevenly distributed on one side surface of the convex portion of the concavo-convex structure. In the grid polarizing plate, when the vertical direction of the wire grid polarizing plate is 0 degree, the difference in parallel transmittance (Tp) at the incident angles of −45 degrees and +45 degrees of the light having a wavelength of 555 nm is 4% or less. It is characterized by. If there is a difference in parallel transmittance exceeding 4%, it is not suitable because the viewer can recognize the image state, specifically the change in brightness, depending on the viewing angle.

このような構成により、本発明のワイヤグリッド偏光板は、様々な方向から目視される液晶表示装置に好適に使用することが可能となる。   With such a configuration, the wire grid polarizer of the present invention can be suitably used for a liquid crystal display device that is viewed from various directions.

さらに、上記のような特性を有する本発明のワイヤグリッド偏光板の具体的構造で特定すると、例えば、特定方向に延在する凹凸構造を表面上に有する基材と、前記凹凸構造の凸部の一方側面に偏在するように設けられた導電体とを有したワイヤグリッド偏光板であって、前記凹凸構造の延在方向に対する垂直方向の断面視において、隣接する2つの凸部の間隔であるピッチP1は120nm以下であり、且つ、前記凸部の最高部から凹部の最低部までの高さの差である凸部高さHがピッチP1の0.8倍から1.3倍である。   Furthermore, when the specific structure of the wire grid polarizer of the present invention having the above-described characteristics is specified, for example, a substrate having a concavo-convex structure extending in a specific direction on the surface, and a convex portion of the concavo-convex structure On the other hand, a wire grid polarizing plate having a conductor provided so as to be unevenly distributed on the side surface, and a pitch that is an interval between two adjacent convex portions in a cross-sectional view perpendicular to the extending direction of the concavo-convex structure P1 is 120 nm or less, and the convex height H, which is the difference in height from the highest portion of the convex portion to the lowest portion of the concave portion, is 0.8 to 1.3 times the pitch P1.

本発明のワイヤグリッド偏光板が適用可能な映像表示装置としては、例えば、液晶表示装置や、投影型映像表示機器である透過型液晶プロジェクターや反射型液晶プロジェクター等を挙げることができる。   Examples of the video display device to which the wire grid polarizing plate of the present invention can be applied include a liquid crystal display device, a transmissive liquid crystal projector that is a projection video display device, a reflective liquid crystal projector, and the like.

以下に、本発明の実施の形態について、添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<ワイヤグリッド偏光板>
図1は、本発明の実施の形態に係るワイヤグリッド偏光板の断面模式図である。なお、図1においては、ワイヤグリッド偏光板10の基材11の凹凸構造の延在方向(凸部と凹部がそれぞれ延在する図1の紙面奥行き方向)に対する垂直断面における模式図を示している。
<Wire grid polarizer>
FIG. 1 is a schematic cross-sectional view of a wire grid polarizer according to an embodiment of the present invention. In addition, in FIG. 1, the schematic diagram in the perpendicular | vertical cross section with respect to the extending direction (the paper surface depth direction of FIG. 1 where a convex part and a recessed part each extend) of the uneven structure of the base material 11 of the wire grid polarizing plate 10 is shown. .

図1に示すように、本実施の形態に係るワイヤグリッド偏光板10は、特定方向に延在する凹凸構造を表面に有する基材11と、基材11の表面の凸部11aの側面11bの一方に偏在するように設けられた導電体12とを有する。基材11の凹凸構造は、複数の凸部11aと複数の凹部11dとが繰り返されて構成される。   As shown in FIG. 1, the wire grid polarizing plate 10 according to the present embodiment includes a base material 11 having a concavo-convex structure extending in a specific direction on the surface, and side surfaces 11b of the convex portions 11a on the surface of the base material 11. And a conductor 12 provided so as to be unevenly distributed on one side. The concavo-convex structure of the base material 11 is configured by repeating a plurality of convex portions 11a and a plurality of concave portions 11d.

ワイヤグリッド偏光板10は、導電体12のピッチが入光する光の波長よりも十分に小さい場合、入光する光のうち、導電体12の延在方向と直交する電場ベクトルを有する直線偏光成分の光は透過させ、導電体12の延在方向の電場ベクトルを有する直線偏光成分の光を反射する特性を有する。なお、導電体12の延在方向と直交する電場ベクトルを有する直線偏光成分の光の透過率を平行透過率といい、導電体12の延在方向の電場ベクトルを有する直線偏光成分の光の透過率を直交透過率という。直交透過率に対する平行透過率の割合として表現される透過光の消光比を高くするためには、平行透過率を高くし、直交透過率を低くすることが重要となる。   When the pitch of the conductor 12 is sufficiently smaller than the wavelength of incident light, the wire grid polarizer 10 has a linearly polarized light component having an electric field vector orthogonal to the extending direction of the conductor 12 in the incident light. Is transmitted, and the light of the linearly polarized light component having the electric field vector in the extending direction of the conductor 12 is reflected. The light transmittance of the linearly polarized light component having an electric field vector orthogonal to the extending direction of the conductor 12 is referred to as parallel transmittance, and the light of the linearly polarized light component having an electric field vector in the extending direction of the conductor 12 is transmitted. The rate is called orthogonal transmittance. In order to increase the extinction ratio of transmitted light expressed as the ratio of the parallel transmittance to the orthogonal transmittance, it is important to increase the parallel transmittance and lower the orthogonal transmittance.

次に、本実施の形態に係るワイヤグリッド偏光板10の凹凸構造の構成について詳細に説明する。なお、以下の説明においては、基材11の表面の断面視において、隣接する2つの凸部11aの間隔をピッチP1とし、凸部11aの側面11bの一方(以下、「一方側面」と記す)に偏在した導電体12の間隔をピッチP2とする。また、凸部11aの最高部11cから凹部11dの最低部11eまでの高さの差を凸部高さHとし、凹凸構造の凸部11aの半値幅(半値全幅)をWとする。   Next, the configuration of the concavo-convex structure of the wire grid polarizer 10 according to the present embodiment will be described in detail. In the following description, in the cross-sectional view of the surface of the base material 11, the interval between two adjacent convex portions 11a is defined as a pitch P1, and one of the side surfaces 11b of the convex portion 11a (hereinafter referred to as “one side surface”). The pitch between the conductors 12 that are unevenly distributed is defined as a pitch P2. The difference in height from the highest portion 11c of the convex portion 11a to the lowest portion 11e of the concave portion 11d is defined as a convex portion height H, and the half width (full width at half maximum) of the convex portion 11a of the concavo-convex structure is defined as W.

本実施の形態に係るワイヤグリッド偏光板10は、断面視において、特定方向に延在する凹凸構造を表面上に有する基材11と、凹凸構造の凸部11aの一方側面に偏在するように設けられた導電体12とを有し、隣接する2つの凸部11aの間隔であるピッチP1が120nm以下であり、且つ、凸部11aの最高部11cから凹部11dの最低部11eまでの高さの差である凸部高さHがピッチP1の0.8倍から1.3倍となるように構成される。導電体12を凹凸構造の凸部11aの一方側面11bに偏在するように設ける場合、同じ凸部11aのもう一方側面には偏在しないように設けることよって、平行透過率の向上が可能となるため、好ましい。   The wire grid polarizer 10 according to the present embodiment is provided so as to be unevenly distributed on one side surface of the base material 11 having a concavo-convex structure extending in a specific direction on the surface and the convex portion 11a of the concavo-convex structure in a cross-sectional view. The pitch P1, which is the distance between two adjacent convex portions 11a, is 120 nm or less, and the height from the highest portion 11c of the convex portion 11a to the lowest portion 11e of the concave portion 11d. The height H, which is the difference, is configured to be 0.8 to 1.3 times the pitch P1. When the conductor 12 is provided so as to be unevenly distributed on the one side surface 11b of the convex portion 11a having the concavo-convex structure, the parallel transmittance can be improved by providing the conductor 12 so as not to be unevenly distributed on the other side surface of the same convex portion 11a. ,preferable.

本発明のワイヤグリッド偏光板10の導電体12は、断面視において、隣り合う2つの凸部11aの非対向面となる凸部11aの一方側面11bに偏在するよう設けられるため、凸部11aのピッチP1と導電体12のピッチP2とは概略同一の間隔で配列されることとなる。ナノメートルオーダーの微小なピッチP2をもって配列する導電体12は、ピッチP2が小さくなるほど、幅広い波長領域で良好な偏光特性を示す。本実施の形態に係るワイヤグリッド偏光板10においては、導電体12が空気(屈折率1.0)と接するため、導電体12のピッチP2を入射光(可視光)の1/4〜1/3とすることで、実用的に十分な偏光特性を示すことが可能となる。但し、光学対称性を考慮すると、ピッチP1を120nm以下とすることが好ましく、さらに、100nm以下とすることが好ましい。一方で、導電体12の形状の観点から、ピッチP1は80nm以上にすることが好ましい。こうすることにより、導電体12が、凹凸構造の概略最低部から最高部に伸びるように設けられ、さらに、基材11の凸部11aの頂部より上方に存在させることを達成することが容易となる。   Since the conductor 12 of the wire grid polarizing plate 10 of the present invention is provided so as to be unevenly distributed on the one side surface 11b of the convex portion 11a which is a non-opposing surface of the two adjacent convex portions 11a in a cross-sectional view, the conductor 12 of the convex portion 11a. The pitch P1 and the pitch P2 of the conductor 12 are arranged at substantially the same interval. The conductors 12 arranged with a minute pitch P2 on the order of nanometers exhibit better polarization characteristics in a wider wavelength region as the pitch P2 becomes smaller. In the wire grid polarizing plate 10 according to the present embodiment, since the conductor 12 is in contact with air (refractive index 1.0), the pitch P2 of the conductor 12 is set to 1/4 to 1/1 of incident light (visible light). By setting it to 3, it becomes possible to show practically sufficient polarization characteristics. However, considering the optical symmetry, the pitch P1 is preferably 120 nm or less, and more preferably 100 nm or less. On the other hand, from the viewpoint of the shape of the conductor 12, the pitch P1 is preferably 80 nm or more. By carrying out like this, it is easy to achieve that the conductor 12 is provided so as to extend from the substantially lowest part of the concavo-convex structure to the highest part, and further exists above the top of the convex part 11a of the base material 11. Become.

また、断面視において、凸部高さHをピッチP1の0.8倍から1.3倍とすることにより、導電体12が垂直方向(凸部方向)に伸び、且つ、十分に高い消光比を与える高さを備えた導電体12を有するワイヤグリッド偏光板10の作製を容易なものとすることができるため、好ましい。斜め蒸着法を用いて導電体12を形成する場合、凸部11aの遮蔽効果によっては、導電体12の成長方向が断面視における斜め方向となり、隣接する他の導電体12と連結してしまうことがある。導電体12の形成時における導電体12同士の連結は、平行透過率の低下をもたらし、特に、ピッチP1を120nm以下にすると、隣接する2つの凸部11aの狭ピッチ化が、導電体12形成時における導電体12同士の連結を発生させ易くするため、凸部11aの遮蔽効果の制御は重要となる。   Further, in the sectional view, by setting the convex portion height H to 0.8 to 1.3 times the pitch P1, the conductor 12 extends in the vertical direction (the convex portion direction) and has a sufficiently high extinction ratio. This is preferable because the wire grid polarizing plate 10 having the conductor 12 having a height that provides the above can be easily manufactured. When the conductor 12 is formed by using the oblique vapor deposition method, depending on the shielding effect of the convex portion 11a, the growth direction of the conductor 12 becomes an oblique direction in a cross-sectional view, and the conductor 12 is connected to another adjacent conductor 12. There is. The connection between the conductors 12 at the time of forming the conductors 12 causes a decrease in parallel transmittance. In particular, when the pitch P1 is set to 120 nm or less, the narrowing of the pitch between the two adjacent protrusions 11a causes the formation of the conductors 12. In order to facilitate the connection of the conductors 12 at the time, it is important to control the shielding effect of the convex portions 11a.

ここで、凸部高さHをピッチP1の1.3倍以下とすることにより、斜め蒸着法による導電体12形成時の遮蔽効果を適度なものとすることができ、導電体12を垂直方向に成長させることができる。これにより、導電体12は、断面視において垂直方向に伸びた形状となるため、隣接する導電体12の連結による低透過率化を防止できる。また、隣接する導電体12間に占める凸部11aの面積が十分に小さくなるため、断面視における導電体12の形状が概略左右対称となり、光学対称性が高くなる。また、凸部高さHをピッチP1の1.3倍以下とすることに伴う、隣接する導電体12間に占める凸部11aの面積の小サイズ化が、反射光の消光比の向上に寄与するといった効果を奏する。   Here, by setting the height H of the convex portion to 1.3 times or less of the pitch P1, the shielding effect when forming the conductor 12 by the oblique deposition method can be made moderate, and the conductor 12 can be arranged in the vertical direction. Can grow into. Thereby, since the conductor 12 becomes a shape extended in the perpendicular direction in the cross-sectional view, it is possible to prevent the low transmittance due to the connection of the adjacent conductors 12. Moreover, since the area of the convex part 11a which occupies between the adjacent conductors 12 becomes sufficiently small, the shape of the conductor 12 in a cross-sectional view is substantially bilaterally symmetric, and the optical symmetry is increased. In addition, the reduction in the area of the convex portion 11a occupying the adjacent conductors 12 due to the convex portion height H being 1.3 times or less of the pitch P1 contributes to the improvement of the extinction ratio of the reflected light. There is an effect such as.

ただし、凸部高さHを過度に小さくした場合、蒸着量に対する導電体12の高さが高くなる割合は低くなる。導電体12の高さは反射光の消光比に影響するが、導電体12の高さが十分に高いワイヤグリッド偏光板10を効率良く作製するためには、凸部高さHをピッチP1の0.8倍以上とすることが好ましい。つまり、断面視において、凸部高さHをピッチP1の0.8倍から1.3倍とすることにより、光学対称性が高く、透過光の消光比が高いワイヤグリッド偏光板10を作製できる。   However, when the height H of the convex portion is excessively reduced, the rate at which the height of the conductor 12 is increased with respect to the deposition amount is reduced. Although the height of the conductor 12 affects the extinction ratio of the reflected light, in order to efficiently produce the wire grid polarizer 10 having a sufficiently high height of the conductor 12, the height H of the protrusion is set to a pitch P1. It is preferably 0.8 times or more. That is, the wire grid polarizer 10 having high optical symmetry and high extinction ratio of transmitted light can be manufactured by setting the height H of the convex portion from 0.8 times to 1.3 times the pitch P1 in a sectional view. .

また、断面視において、凸部11aの最高部から凹部11dの最低部までの高さの差である凸部高さHの概略9/10Hの位置を第一の高さ位置(T1)とし、概略1/10Hの位置を第二の高さ位置(T2)としたときに、第一の高さ位置(T1)における凸部11aの幅を、第二の高さ位置(T2)における凸部11aの幅の0.5倍以上1.0倍以下とすることが好ましい。なお、高さ位置は、凹部11dの底部を基準としている。また、凹凸構造の凸部11aの半値幅の値を、ピッチP1の0.05倍から0.5倍とすることが好ましい。   Further, in a cross-sectional view, a position of approximately 9 / 10H of the convex height H that is a difference in height from the highest portion of the convex portion 11a to the lowest portion of the concave portion 11d is defined as a first height position (T1). When the position of approximately 1 / 10H is the second height position (T2), the width of the convex portion 11a at the first height position (T1) is set to the convex portion at the second height position (T2). The width is preferably 0.5 times or more and 1.0 times or less the width of 11a. The height position is based on the bottom of the recess 11d. Moreover, it is preferable that the value of the half width of the convex portion 11a of the concavo-convex structure is 0.05 times to 0.5 times the pitch P1.

第一の高さ位置(T1)における凸部11aの幅を、第二の高さ位置(T2)における凸部11aの幅の0.5倍以上1.0倍以下とし、凸部11aの半値幅の値を、ピッチP1の0.05倍から0.5倍とすることにより、凸部11aは、底部から頂部にかけて概略垂直方向に伸び、且つ、ピッチP1に比較して十分に細くなる。これにより、断面視において、隣接する導電体12間に占める凸部面積を効果的に低減することができるため、高い光学対称性を有したワイヤグリッド偏光板10を得ることができる。   The width of the convex portion 11a at the first height position (T1) is 0.5 to 1.0 times the width of the convex portion 11a at the second height position (T2). By setting the value width to 0.05 to 0.5 times the pitch P1, the convex portion 11a extends in the substantially vertical direction from the bottom to the top and is sufficiently thinner than the pitch P1. Thereby, since the convex part area which occupies between the adjacent conductors 12 can be effectively reduced in a cross-sectional view, the wire grid polarizing plate 10 having high optical symmetry can be obtained.

また、導電体12は、凹凸構造の概略最低部11eから最高部11cに伸びていて、且つ、少なくともその一部が凹凸構造の凸部11aの最高部11cより上方に設けられることが好ましい。これにより、導電体12の高さを高くでき、断面視における導電体12の断面積を大きくできる。つまり、断面視における導電体12の断面積の増大に伴い、隣接する導電体12間に占める凸部11aの面積は、相対的に小さくなり、光学対称性の向上に寄与するばかりでなく、反射光の消光比が高いワイヤグリッド偏光板10とすることができる。その他、凸部11aと導電体12の接触面積を大きくできるため、導電体12の脱離・剥離を小さくでき、つまり、外力等による導電体12の欠損を少なくできるといった効果を奏する。   Moreover, it is preferable that the conductor 12 is extended from the substantially lowest part 11e of the concavo-convex structure to the highest part 11c, and at least a part thereof is provided above the highest part 11c of the convex part 11a of the concavo-convex structure. Thereby, the height of the conductor 12 can be increased, and the sectional area of the conductor 12 in a sectional view can be increased. That is, as the cross-sectional area of the conductor 12 increases in cross-sectional view, the area of the convex portion 11a occupying between the adjacent conductors 12 becomes relatively small, which not only contributes to an improvement in optical symmetry but also reflects light. It can be set as the wire grid polarizing plate 10 with a high extinction ratio of light. In addition, since the contact area between the convex portion 11a and the conductor 12 can be increased, the detachment / separation of the conductor 12 can be reduced, that is, the loss of the conductor 12 due to an external force or the like can be reduced.

また、断面視において、凹凸構造の凸部11aの断面形状が、概略矩形形状であることが好ましい。これにより、隣接する導電体12間に占める凸部11aの面積を小さくすることができる。   Moreover, it is preferable that the cross-sectional shape of the convex part 11a of a concavo-convex structure is a substantially rectangular shape in cross-sectional view. Thereby, the area of the convex part 11a which occupies between the adjacent conductors 12 can be made small.

また、断面視において、凸部11aの最高部11cから導電体12の最高部までの高さを50nm以上とすることが好ましい。これにより、ワイヤグリッド偏光板10の透過光の消光比を高くすることができる。   Further, in a cross-sectional view, the height from the highest portion 11c of the convex portion 11a to the highest portion of the conductor 12 is preferably 50 nm or more. Thereby, the extinction ratio of the transmitted light of the wire grid polarizer 10 can be increased.

また、断面視において、第一の高さ位置(T1)から凸部11aの概略最高部11cまでの間における導電体12の水平方向の厚みを20nm以上とすることが好ましい。これにより、ワイヤグリッド偏光板10の透過光及び反射光の消光比を高くすることができる。   Further, in the cross-sectional view, it is preferable that the horizontal thickness of the conductor 12 between the first height position (T1) and the approximate highest portion 11c of the convex portion 11a is 20 nm or more. Thereby, the extinction ratio of the transmitted light and reflected light of the wire grid polarizer 10 can be increased.

また、凸部11aの概略9/10Hの位置(第一の高さ位置(T1))における幅を15nm以上とすることが好ましい。反射型偏光子として好適な、高平行透過率と高直交反射率を実現するためには、導電体12の概略最高部11cの水平方向の厚みを厚くすることが好ましい。優れた量産性を有する斜め蒸着法で導電体12を形成する場合、凸部11aの最高部11cより上方の導電体12の断面形状と、凸部11a上部の断面形状は相似形状になり易く、凸部11a上部の水平方向の厚みを厚くすることが好ましいこととなる。   Moreover, it is preferable that the width | variety in the position (1st height position (T1)) of about 9 / 10H of the convex part 11a shall be 15 nm or more. In order to realize a high parallel transmittance and a high orthogonal reflectance suitable as a reflective polarizer, it is preferable to increase the thickness in the horizontal direction of the substantially highest portion 11c of the conductor 12. When the conductor 12 is formed by an oblique vapor deposition method having excellent mass productivity, the cross-sectional shape of the conductor 12 above the highest portion 11c of the convex portion 11a and the cross-sectional shape of the upper portion of the convex portion 11a are likely to be similar, It is preferable to increase the thickness in the horizontal direction of the upper portion of the convex portion 11a.

(基材)
基材11としては、例えば、ガラスなどの無機材料や樹脂材料を用いることができる。中でも樹脂材料を用いて基材11を形成することにより、ロールプロセスが可能になる、ワイヤグリッド偏光板10にフレキシブル性(屈曲性)を持たすことができる、等のメリットがあるため好ましい。基材11として用いることができる樹脂としては、例えば、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィン樹脂(COP)、架橋ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂などの非晶性熱可塑性樹脂や、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂などの結晶性熱可塑性樹脂や、アクリル系、エポキシ系、ウレタン系などの紫外線(UV)硬化型樹脂や熱硬化型樹脂が挙げられる。また、UV硬化型樹脂や熱硬化型樹脂と、ガラスなどの無機基板、先述の熱可塑性樹脂、トリアセテート樹脂とを組み合わせたり、単独で用いて基材11を構成させたりすることもできる。また、基材11と導電体12の密着性を向上させるための薄膜を、基材11の表面に備えても構わない。
(Base material)
As the substrate 11, for example, an inorganic material such as glass or a resin material can be used. Among these, it is preferable to form the base material 11 using a resin material because there are merits such that a roll process is possible and the wire grid polarizing plate 10 can have flexibility (flexibility). Examples of the resin that can be used as the substrate 11 include polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin (COP), crosslinked polyethylene resin, polyvinyl chloride resin, polyacrylate resin, polyphenylene ether resin, Amorphous thermoplastic resins such as modified polyphenylene ether resin, polyetherimide resin, polyether sulfone resin, polysulfone resin, polyether ketone resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin , Crystalline thermoplastic resins such as polybutylene terephthalate resin, aromatic polyester resin, polyacetal resin, polyamide resin, acrylic, epoxy, urethane, etc. Ultraviolet (UV) curable resins and thermosetting resins. Further, the base material 11 can be configured by combining a UV curable resin or a thermosetting resin with an inorganic substrate such as glass, the above-described thermoplastic resin, or triacetate resin, or by using them alone. Further, a thin film for improving the adhesion between the base material 11 and the conductor 12 may be provided on the surface of the base material 11.

基材11の表面の凹凸構造は、断面視において、矩形形状であることが好ましい。矩形形状とは、凹部11dと凸部11aの繰り返しからなり、それは、台形形状、矩形形状、方形形状を含む。また、断面視における凹凸構造の輪郭を関数と見なした場合の変曲点前後が、放物線のようになだらかに曲率が変化する曲線部を有することもでき、凸部11aにくびれがある形状も含むことができる。凹凸構造の形状により、基材11の表面にある凹凸形状の凸部11aの側面11b及び凹部11dの底部に、斜め蒸着法で連続した導電体12を形成することが容易となる。   The concavo-convex structure on the surface of the substrate 11 is preferably rectangular when viewed in cross section. The rectangular shape includes repetition of the concave portion 11d and the convex portion 11a, and includes a trapezoidal shape, a rectangular shape, and a rectangular shape. In addition, before and after the inflection point when the contour of the concavo-convex structure in a cross-sectional view is regarded as a function, it is possible to have a curved portion where the curvature changes gently like a parabola, and the convex portion 11a has a constricted shape. Can be included. Due to the shape of the concavo-convex structure, it becomes easy to form the continuous conductor 12 by the oblique deposition method on the side surface 11b of the concavo-convex convex portion 11a on the surface of the substrate 11 and the bottom of the concave portion 11d.

また、基材11は目的とする波長領域において、実質的に透明であればよい。なお、所定の方向に延在するとは、凹凸構造が所定の方向に実質的に延在していればよく、凹凸構造の凹部11dと凸部11aの各々が厳密に平行に延在している必要はない。また凹凸構造のピッチP1は、120nm以下が好ましく、等間隔であることが好ましい。なお、等間隔であるとは、実質的に等間隔であればよく、±10%程度までのばらつきは許容できる。凹凸構造のピッチP1のばらつきが一定範囲で許容されるのと同様に、断面視における凸部高さHや凸部11aの幅等も一定範囲(例えば、±10%程度までのばらつきまで)許容される。   Moreover, the base material 11 should just be substantially transparent in the target wavelength range. It should be noted that extending in a predetermined direction is sufficient if the concavo-convex structure extends substantially in the predetermined direction, and each of the concave portion 11d and the convex portion 11a of the concavo-convex structure extends strictly in parallel. There is no need. Further, the pitch P1 of the concavo-convex structure is preferably 120 nm or less, and preferably at regular intervals. Note that “equal intervals” may be substantially equal intervals, and variations up to about ± 10% are acceptable. Just as the variation in the pitch P1 of the concavo-convex structure is allowed in a certain range, the height H of the convex portion and the width of the convex portion 11a in the cross-sectional view are also allowed in a certain range (for example, up to ± 10% variation). Is done.

表面に凹凸構造を有する基材11の製造方法は特に限定されない。例えば、本件出願人の出願による特許第4147247号公報に記載の製造方法を挙げることができる。特許第4147247号公報によれば、干渉露光法を用いて作製した凹凸構造を有する金属スタンパを用いて、凹凸構造を熱可塑性樹脂に熱転写し、凹凸構造を付与した熱可塑性樹脂の凹凸構造の延在方向と平行な方向に自由端一軸延伸加工を施す。その結果、熱可塑性樹脂に転写された凹凸構造のピッチが縮小され、微細な凹凸構造を有する樹脂版(延伸済み)が得られる。前記樹脂版(延伸済み)から、電解メッキ法などを用いて、微細な凹凸構造を有する金属スタンパを作製できる。この金属スタンパにより、基材11の表面に微細な凹凸構造を転写、形成することで、凹凸構造を有する基材11を得ることが可能となる。   The manufacturing method of the base material 11 which has an uneven structure on the surface is not specifically limited. For example, the manufacturing method described in Japanese Patent No. 4147247 filed by the present applicant can be given. According to Japanese Patent No. 4147247, by using a metal stamper having a concavo-convex structure produced by an interference exposure method, the concavo-convex structure is thermally transferred to a thermoplastic resin, and the concavo-convex structure of the thermoplastic resin provided with the concavo-convex structure is extended. Free end uniaxial stretching is performed in a direction parallel to the existing direction. As a result, the pitch of the concavo-convex structure transferred to the thermoplastic resin is reduced, and a resin plate (stretched) having a fine concavo-convex structure is obtained. From the resin plate (stretched), a metal stamper having a fine concavo-convex structure can be produced using an electrolytic plating method or the like. By transferring and forming a fine concavo-convex structure on the surface of the base material 11 with this metal stamper, the base material 11 having the concavo-convex structure can be obtained.

その他、金属スタンパを用いた基材11の製造方法として、微細な凹凸構造を半導体製造のフォトリソグラフィ技術の応用により作製したシリコン系基板等を用いる方法がある。微細な凹凸構造を有するシリコン系基板を鋳型として、微細な凹凸構造を表面に有する樹脂版を作製する。続いて、得られた微細な凹凸構造を表面に有する樹脂版から、電解メッキ法などを用いて、微細な凹凸構造を有する金属スタンパを作製することも可能である。   In addition, as a method of manufacturing the base material 11 using a metal stamper, there is a method of using a silicon-based substrate or the like in which a fine concavo-convex structure is manufactured by application of photolithography technology for semiconductor manufacturing. Using a silicon-based substrate having a fine concavo-convex structure as a mold, a resin plate having a fine concavo-convex structure on the surface is prepared. Subsequently, it is also possible to produce a metal stamper having a fine concavo-convex structure from the obtained resin plate having the fine concavo-convex structure on the surface using an electrolytic plating method or the like.

ここで、微細な凹凸構造を半導体製造のフォトリソグラフィ技術の応用により作製したシリコン系基板等に、可視光を照射するとムラが観察される場合がある。前記シリコン系基板等表面の凹凸構造の作製手法の一つとして、隙間をあけることなくレチクルのパターンを隣接させるように順次、転写(露光)する方法を挙げることができるが、先述した手法で作製されたシリコン系基板等表面のムラ(以下、露光ムラともいう。)は、隣接する露光領域の境界(継ぎ目)周辺に観察されることがあり、これは、特定の一方向に凹凸構造が整列し、且つ、隣接する凸部11aの間隔が150nm以下である凹凸構造を作製する場合に、特に生じ易い。この露光ムラを解消するためには、露光位置を高精度に制御することが重要であるが、例えば、シリコン系基板、あるいは当該シリコン系基板の凹凸構造を転写したものの、凹凸構造を有する面に、例えば、反応性イオンエッチング等の表面処理を施すことによっても、軽減ないし解消できる。   Here, unevenness may be observed when visible light is irradiated onto a silicon-based substrate or the like in which a fine concavo-convex structure is produced by application of photolithography technology for semiconductor manufacturing. As one of the methods for producing the concavo-convex structure on the surface of the silicon-based substrate, a method of sequentially transferring (exposure) so that the pattern of the reticle is adjacent without leaving a gap can be given. The unevenness of the surface of the silicon-based substrate (hereinafter, also referred to as exposure unevenness) may be observed around the boundary (joint) of adjacent exposure regions, and this is because the uneven structure is aligned in a specific direction. In addition, it is particularly likely to occur when producing a concavo-convex structure in which the interval between adjacent convex portions 11a is 150 nm or less. In order to eliminate this uneven exposure, it is important to control the exposure position with high accuracy.For example, a silicon substrate or a concavo-convex structure of the silicon substrate is transferred to a surface having a concavo-convex structure. For example, it can be reduced or eliminated by performing a surface treatment such as reactive ion etching.

先述した金属スタンパは、基材11の表面に微細な凹凸構造が転写、形成できさえすれば、その外形に制限は無く、平板状、円筒状あるいはその他の形状とすることができる。量産性を考慮すると、円筒状が好ましく、これにより、円筒状の金属スタンパを版材として版胴に備え、凹凸形状を連続して形成するロールプロセスが可能となる。   The metal stamper described above is not limited as long as a fine concavo-convex structure can be transferred and formed on the surface of the substrate 11, and can have a flat plate shape, a cylindrical shape, or other shapes. In consideration of mass productivity, a cylindrical shape is preferable, and this enables a roll process in which a cylindrical metal stamper is provided in a plate cylinder as a plate material to continuously form an uneven shape.

円筒状の金属スタンパを作製する方法としては、例えば、平板状の金属スタンパを円筒状に丸め、端部を接合する手法を挙げることができる。ここで、接合部の表面が粗い場合、ロールプロセスで凹凸形状が形成された基材表面のうち、接合部表面が転写された部分は粗面となってしまい、前記凹凸形状が形成された基材は巻いてロール状にされるが、粗面部分が重畳する巻内側及び巻外側の基材を局部的に強く押してしまう。なお、ここでいう接合部の表面が粗いとは、うねり、凹凸及び/又は段差がある様を意味し、目視した場合、(表面が粗いために)反射が不均一な(鏡面ではない)様を意味する。   As a method for producing the cylindrical metal stamper, for example, a method of rounding a flat metal stamper into a cylindrical shape and joining the end portions can be cited. Here, when the surface of the bonding portion is rough, the portion of the substrate surface on which the uneven shape has been formed by the roll process becomes a rough surface, and the substrate on which the uneven shape is formed is formed. Although the material is wound into a roll shape, the substrate on the inner side and the outer side where the rough surface portion overlaps is locally strongly pressed. In addition, the surface of a junction part here means that there exists a wave | undulation, an unevenness | corrugation, and / or a level | step difference, and when visually observed (because the surface is rough), reflection is not uniform (it is not a mirror surface). Means.

本発明に係るワイヤグリッド偏光板の凹凸構造は、ピッチP1が120nm以下と非常に微細であるため、粗面部分が重畳する基材を局部的に強く押してしまうと、凹凸構造は変形してしまい、欠陥となってしまうことがある。このような欠点を防止するためには、ロールの巻き圧力の調整や、間紙や層間材の利用、基材の硬度調整等を挙げることができるが、特に、円筒状の金属スタンパの接合部表面を研磨することが好ましい。接合部表面を、鏡面となるように滑らかにすることにより、凹凸構造の変形を防止できる他、凹凸構造形成時の基材と金属スタンパの密着性が向上するため、欠陥の発生を低減できる。   The concavo-convex structure of the wire grid polarizing plate according to the present invention is very fine with a pitch P1 of 120 nm or less, and therefore the concavo-convex structure is deformed when the substrate on which the rough surface portion overlaps is strongly pressed locally. , May become defective. In order to prevent such drawbacks, adjustment of the winding pressure of the roll, use of a slip sheet or an interlayer material, adjustment of the hardness of the base material, etc. can be mentioned, but in particular, the joint portion of the cylindrical metal stamper It is preferable to polish the surface. By smoothing the surface of the joint so as to be a mirror surface, deformation of the concavo-convex structure can be prevented, and the adhesion between the base material and the metal stamper at the time of forming the concavo-convex structure is improved, so that the occurrence of defects can be reduced.

(導電体)
導電体12は、基材11の凹凸構造面に設けられる。先述したように、導電体12は、凸部11aの一方側面11bに接し、凹凸構造の概略最低部11eから最高部11cに伸びるように設けることが好ましく、また、導電体12の少なくとも一部が、凹凸構造の凸部11aの最高部11cより上方に設けることが好ましい。
(conductor)
The conductor 12 is provided on the concavo-convex structure surface of the substrate 11. As described above, the conductor 12 is preferably provided so as to be in contact with the one side surface 11b of the convex portion 11a and extend from the substantially lowest portion 11e to the highest portion 11c of the concavo-convex structure, and at least a part of the conductor 12 is provided. It is preferable to provide the projections 11a above the concavo-convex structure above the highest portion 11c.

導電体12は、所定の方向に延在する基材11の表面の凹凸構造の凸部11aと概略平行に所定のピッチP2をもって直線状に形成されるが、この直線状の導電体12の周期が可視光の波長よりも小さい場合、導電体12に対して平行方向に振幅する偏光成分を反射し、垂直方向に振幅する偏光成分は透過する偏光分離部材となる。導電体12としては、アルミニウム、銀、銅、白金、金又はこれらの各金属を主成分とする合金を使用することができ、斜めスパッタリング法や斜め蒸着法により形成することができる。特に、アルミニウムもしくは銀を用いて導電体12を形成することにより、可視域光の吸収損失を小さくすることができるため、好ましい。   The conductor 12 is formed in a straight line with a predetermined pitch P2 substantially in parallel with the projections 11a of the concavo-convex structure on the surface of the base material 11 extending in a predetermined direction. The period of the linear conductor 12 is Is smaller than the wavelength of visible light, the polarized light component that reflects in the parallel direction with respect to the conductor 12 is reflected, and the polarized light component that is amplified in the vertical direction is transmitted through the polarized light separating member. As the conductor 12, aluminum, silver, copper, platinum, gold, or an alloy containing these metals as main components can be used, and the conductor 12 can be formed by an oblique sputtering method or an oblique evaporation method. In particular, it is preferable to form the conductor 12 using aluminum or silver because the absorption loss of visible light can be reduced.

<導電体形成方法>
導電体12の形成方法は、生産性や光学特性等を考慮し、凹凸構造を有した基材11の表面の垂直方向に対して傾斜した方向から蒸着を行う、斜め蒸着法を用いることが好ましい。斜め蒸着法とは、基材11の断面視において、蒸着源が基材11の表面の垂直方向に対して、所定の入射角度を持ちながら金属を蒸着、積層させていく方法である。入射角度は、凹凸構造の凸部11aと作製する導電体12の断面形状から好ましい範囲が決まり、一般には、5度〜45度が好ましく、より好ましくは5度〜35度である。さらに、蒸着中に積層した金属の射影効果を考慮しながら、入射角度を徐々に減少又は増加させることは、導電体12の高さなど断面形状を制御する上で好適である。なお、基材11の表面が湾曲している場合には、基材11の表面の法線方向に対して傾斜した方向から蒸着を行うこととしてもよい。
<Conductor formation method>
As a method for forming the conductor 12, it is preferable to use an oblique deposition method in which deposition is performed from a direction inclined with respect to the vertical direction of the surface of the substrate 11 having a concavo-convex structure in consideration of productivity and optical characteristics. . The oblique vapor deposition method is a method in which, in a cross-sectional view of the substrate 11, a vapor deposition source deposits and laminates a metal while having a predetermined incident angle with respect to a direction perpendicular to the surface of the substrate 11. The preferable range of the incident angle is determined from the cross-sectional shape of the convex portion 11a having the concavo-convex structure and the conductor 12 to be manufactured, and is generally preferably 5 ° to 45 °, more preferably 5 ° to 35 °. Furthermore, it is preferable to control the cross-sectional shape such as the height of the conductor 12 by gradually decreasing or increasing the incident angle while considering the projection effect of the metal laminated during the vapor deposition. In addition, when the surface of the base material 11 is curving, it is good also as performing vapor deposition from the direction inclined with respect to the normal line direction of the surface of the base material 11. FIG.

具体的には、特定方向に所定のピッチP1をもって概略平行に延在する凹凸構造を表面に有した基材11の表面の被蒸着領域の中心における垂直方向に対して5度以上45度未満となる方向に蒸着源の中心を設け、凹凸構造上に導電体12を形成する。さらに好ましくは、基材11の表面の被蒸着領域の中心における垂直方向に対して5度以上35度未満となる角度方向に蒸着源の中心を設けることである。これにより、導電体12を、基材11の表面の凹凸構造の凸部11aのいずれか一方側面11bに選択的に設けることが可能となる。なお、基材11を搬送しながら蒸着する場合には、ある瞬間における被蒸着領域の中心と蒸着源の中心が先述した条件となるように蒸着を行ってもよい。   Specifically, it is 5 degrees or more and less than 45 degrees with respect to the vertical direction at the center of the deposition area on the surface of the base material 11 having a concavo-convex structure extending substantially in parallel with a predetermined pitch P1 in a specific direction. In this direction, the center of the vapor deposition source is provided, and the conductor 12 is formed on the concavo-convex structure. More preferably, the center of the evaporation source is provided in an angular direction that is 5 degrees or more and less than 35 degrees with respect to the vertical direction at the center of the deposition area on the surface of the substrate 11. Thereby, the conductor 12 can be selectively provided on any one side surface 11 b of the convex portion 11 a of the concavo-convex structure on the surface of the base material 11. In the case of vapor deposition while transporting the substrate 11, vapor deposition may be performed so that the center of the deposition area and the center of the vapor deposition source at a certain moment satisfy the above-described conditions.

先述した斜め蒸着法を用いた場合、凹凸構造の凸部11aと導電体12の延在方向は等しくなる。本実施の形態におけるワイヤグリッド偏光板の導電体12の形状を達成するための金属蒸着量は、凹凸構造の凸部11aの形状によって決まるが、一般には、平均蒸着厚みは50nmから200nm程度である。ここでいう平均厚みとは、平滑ガラス基板上にガラス面に垂直方向から物質を蒸着させたと仮定した時の蒸着物の厚みのことを指し、金属蒸着量の目安として使用する。   When the above-described oblique vapor deposition method is used, the extending direction of the convex portion 11a of the concavo-convex structure and the conductor 12 becomes equal. The amount of metal vapor deposition for achieving the shape of the conductor 12 of the wire grid polarizer in the present embodiment is determined by the shape of the convex portion 11a of the concavo-convex structure, but generally the average vapor deposition thickness is about 50 nm to 200 nm. . The average thickness here refers to the thickness of the deposited material on the assumption that the material is deposited on the smooth glass substrate from the direction perpendicular to the glass surface, and is used as a measure of the metal deposition amount.

また、光学特性の観点から、不要な導電体12はエッチングにより除去することが好ましい。エッチング方法は、基材11や後述する誘電体層に悪影響を及ぼさず、導電体12部分が選択的に除去できる方法であれば特に限定は無い。生産性の観点及び導電体12の形状制御の観点からは、等方性エッチングが好ましく、例えば、アルカリ性の水溶液に浸漬させるエッチング方法が好ましい。また、等方性エッチングを用いた場合、露光ムラを有したシリコン系基板から作製したワイヤグリッド偏光板の、露光ムラが原因の外見上の欠点を軽減ないし解消できる。本実施の形態におけるワイヤグリッド偏光板10のピッチP2は小さいため、シリコン系基板を利用する場合には、先述した露光ムラの問題が生じやすく、したがって、露光ムラが原因の欠点を軽減ないし解消できる等方性エッチングを用いることは、非常に好適となる。   Further, from the viewpoint of optical characteristics, it is preferable to remove the unnecessary conductor 12 by etching. The etching method is not particularly limited as long as it does not adversely affect the base material 11 and a dielectric layer described later and can selectively remove the conductor 12 portion. From the viewpoint of productivity and the viewpoint of controlling the shape of the conductor 12, isotropic etching is preferable, and for example, an etching method of immersing in an alkaline aqueous solution is preferable. Further, when isotropic etching is used, it is possible to reduce or eliminate the apparent defects caused by the uneven exposure of the wire grid polarizer manufactured from the silicon-based substrate having the uneven exposure. Since the pitch P2 of the wire grid polarizer 10 in the present embodiment is small, when using a silicon substrate, the above-described problem of exposure unevenness is likely to occur, and therefore the defects caused by exposure unevenness can be reduced or eliminated. The use of isotropic etching is very suitable.

(誘電体)
本実施の形態で示すワイヤグリッド偏光板10において、基材11を構成する材料と導電体12との密着性向上のため、両者の間に両者と密着性が高い誘電体材料を含んでなる誘電体層を好適に用いることができる。例えば、二酸化珪素などの珪素(Si)の酸化物、窒化物、ハロゲン化物、炭化物の単体又はその複合物(誘電体単体に他の元素、単体又は化合物が混じった誘電体)や、アルミニウム(Al)、クロム(Cr)、イットリウム(Y)、ジルコニア(Zr)、タンタル(Ta)、チタン(Ti)、バリウム(Ba)、インジウム(In)、錫(Sn)、亜鉛(Zn)、マグネシウム(Mg)、カルシウム(Ca)、セリウム(Ce)、銅(Cu)などの金属の酸化物、窒化物、ハロゲン化物、炭化物の単体又はそれらの複合物を用いることができる。誘電体材料としては、透過偏光性能を得ようとする波長領域において実質的に透明な材料であればよい。誘電体材料の積層方法には特に限定は無く、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などの物理的蒸着法を好適に用いることができる。
(Dielectric)
In the wire grid polarizer 10 shown in the present embodiment, in order to improve the adhesion between the material constituting the substrate 11 and the conductor 12, a dielectric comprising a dielectric material having high adhesion between the two is provided. A body layer can be used suitably. For example, silicon dioxide (Si) oxides, nitrides, halides, carbides or their composites (dielectrics in which other elements, simple substances, or compounds are mixed in a simple substance), aluminum (Al ), Chromium (Cr), yttrium (Y), zirconia (Zr), tantalum (Ta), titanium (Ti), barium (Ba), indium (In), tin (Sn), zinc (Zn), magnesium (Mg) ), Calcium (Ca), cerium (Ce), copper (Cu) and other metal oxides, nitrides, halides, carbides alone or a composite thereof. The dielectric material may be any material that is substantially transparent in the wavelength region where transmission polarization performance is desired. There are no particular limitations on the method of laminating the dielectric material, and physical vapor deposition methods such as vacuum vapor deposition, sputtering, and ion plating can be suitably used.

(支持基板)
凹凸構造を有する基材11を保持するものとして、支持基板を用いることも可能である。支持基板としては、ガラスなどの無機材料や樹脂材料を用いることができるが、ロールプロセスによるワイヤグリッド偏光板の製造が可能であり、他光学部材との接着が容易な平板状の樹脂材料を用いることが好ましい。また、支持基板により基材11を保持する方法としては、特に制限はなく、例えば、接着性物質の使用や、加熱による融着などを挙げることができる。
(Support substrate)
A support substrate can be used as the substrate 11 having the concavo-convex structure. As the support substrate, an inorganic material such as glass or a resin material can be used, but a wire grid polarizing plate can be manufactured by a roll process, and a flat resin material that can be easily bonded to other optical members is used. It is preferable. Moreover, there is no restriction | limiting in particular as a method of hold | maintaining the base material 11 with a support substrate, For example, use of an adhesive substance, the melt | fusion by heating, etc. can be mentioned.

樹脂材料としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィン樹脂(COP)、架橋ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂、トリアセチルセルロース樹脂(TAC)等や、アクリル系、エポキシ系、ウレタン系などの紫外線(UV)硬化型樹脂や熱硬化型樹脂が挙げられる。また、UV硬化型樹脂や熱硬化型樹脂と、ガラスなどの無機基板、熱可塑性樹脂等を組み合わせたり、単独で用いたりしてもよい。   Examples of the resin material include polymethyl methacrylate resin (PMMA), polycarbonate resin, polystyrene resin, cycloolefin resin (COP), cross-linked polyethylene resin, polyvinyl chloride resin, polyacrylate resin, polyphenylene ether resin, and modified polyphenylene ether resin. , Polyetherimide resin, polyether sulfone resin, polysulfone resin, polyether ketone resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polybutylene terephthalate resin, aromatic polyester resin, polyacetal resin , Polyamide resin, triacetyl cellulose resin (TAC), etc., and ultraviolet (UV) curable resin such as acrylic, epoxy, urethane Thermosetting resins. Further, a UV curable resin or a thermosetting resin and an inorganic substrate such as glass, a thermoplastic resin, or the like may be combined or used alone.

支持基板の面内位相差は、偏光度低下を避けるため、所定の波長における面内位相差値を低くすることが好ましく、例えば、可視光の利用を考えるのであれば、波長550nmにおける位相差値を30nm以下とすることが好ましい。さらに好ましくは、15nm以下である。また、ワイヤグリッド偏光板10が与える偏光の偏光度の面内ムラ発生を防止するため、支持基板面内の任意の2点における位相差値管理が必要であり、例えば、可視光の利用を考えるのであれば、波長550nmにおける面内位相差値差が10nm以下であることが好ましく、さらに好ましくは位相差値差5nm以下である。このような特性を有する支持基板としては、トリアセチルセルロース樹脂(TAC)、シクロオレフィンポリマー樹脂(COP)、ポリカーボネート樹脂(PC)、ポリメタクリル酸メチル樹脂(PMMA)などがあり、これらの樹脂材料を用いることが好ましい。   The in-plane retardation of the support substrate is preferably a low in-plane retardation value at a predetermined wavelength in order to avoid a decrease in the degree of polarization. For example, if use of visible light is considered, the retardation value at a wavelength of 550 nm Is preferably 30 nm or less. More preferably, it is 15 nm or less. Further, in order to prevent the occurrence of in-plane unevenness in the degree of polarization of the polarized light provided by the wire grid polarizer 10, it is necessary to manage the phase difference values at two arbitrary points on the surface of the support substrate. For example, use of visible light is considered. In this case, the in-plane retardation value difference at a wavelength of 550 nm is preferably 10 nm or less, and more preferably 5 nm or less. Examples of the supporting substrate having such characteristics include triacetyl cellulose resin (TAC), cycloolefin polymer resin (COP), polycarbonate resin (PC), polymethyl methacrylate resin (PMMA), and the like. It is preferable to use it.

(保護フィルム)
本実施の形態のワイヤグリッド偏光板10の導電体12を有する面には、搬送時の外力による導電体12の欠損等を防止する保護フィルムの貼合が可能である。保護フィルムは、粘着性を示す粘着層とベース基材から構成される。粘着層に制限は無く、例えば、アクリル系、シリコーン系、ウレタン系等の粘着剤を用いることができる。また、ベース基材にも制限は無く、例えば、PETフィルム等を用いることができるが、好ましくは、粘着層、ベース基材ともに、光学的に透明であることが好ましい。光学的に透明とは、少なくとも、可視光波長範囲で透過率が高いことを意味し、これにより、貼合したワイヤグリッド偏光板10の状態観察が容易なものとなる。
(Protective film)
The surface of the wire grid polarizing plate 10 of the present embodiment having the conductor 12 can be bonded with a protective film that prevents the conductor 12 from being damaged due to an external force during conveyance. A protective film is comprised from the adhesion layer and base base material which show adhesiveness. There is no restriction | limiting in an adhesion layer, For example, adhesives, such as an acryl type, a silicone type, and a urethane type, can be used. The base substrate is not limited, and for example, a PET film can be used. Preferably, both the adhesive layer and the base substrate are preferably optically transparent. Optically transparent means that the transmittance is high at least in the visible light wavelength range, and this makes it easy to observe the state of the bonded wire grid polarizer 10.

ここで、保護フィルムの粘着層の厚みを薄くすることにより、ワイヤグリッド偏光板10の平行透過率の低下、直交透過率の上昇といった偏光分離特性の低下防止が可能となる。保護フィルムの粘着層の厚みを薄くした場合、粘着層の弾性は相対的に小さくなり、導電体との密着性は悪くなるため、偏光分離特性を低下させる導電体への粘着層成分の移行が防止できるためである。なお、極度に保護フィルムの粘着層を薄くした場合、ワイヤグリッド偏光板10の導電体12と前記粘着層との密着力は過度に低下してしまうため、粘着層の厚みとしては、2μm以上10μm以下であることが好ましい。   Here, by reducing the thickness of the adhesive layer of the protective film, it is possible to prevent the polarization separation characteristics from being lowered, such as a reduction in parallel transmittance and an increase in orthogonal transmittance of the wire grid polarizer 10. When the thickness of the adhesive layer of the protective film is reduced, the elasticity of the adhesive layer becomes relatively small, and the adhesion to the conductor deteriorates. Therefore, the migration of the adhesive layer component to the conductor reduces the polarization separation characteristics. This is because it can be prevented. In addition, when the adhesive layer of the protective film is extremely thinned, the adhesion force between the conductor 12 of the wire grid polarizer 10 and the adhesive layer is excessively reduced. Therefore, the thickness of the adhesive layer is 2 μm or more and 10 μm. The following is preferable.

<反射型液晶プロジェクター>
次に、本発明の実施の形態に係る投影型映像表示装置について説明する。本実施の形態に係る投影型映像表示装置であるプロジェクターとしては、反射型液晶表示素子を利用した反射型液晶プロジェクターがあり、反射型液晶プロジェクターの偏光ビームスプリッタとして、先述した本実施の形態に係るワイヤグリッド偏光板10を好適に用いることができる。
<Reflective LCD projector>
Next, a projection display apparatus according to an embodiment of the present invention will be described. As a projector that is a projection-type image display device according to the present embodiment, there is a reflection-type liquid crystal projector using a reflection-type liquid crystal display element, and the polarization beam splitter of the reflection-type liquid crystal projector is related to the above-described embodiment. The wire grid polarizing plate 10 can be used suitably.

図2を参照して、先述した本実施の形態に係るワイヤグリッド偏光板を用いた投影型映像表示装置について説明する。図2は、投影型映像表示機器の一例である反射型液晶プロジェクターの概念図である。図2に示すように、本実施の形態に係る反射型液晶プロジェクター20は、LEDなどの光源21と、偏光ビームスプリッタとしてのワイヤグリッド偏光板10と、光源光に映像情報を付加する反射型液晶表示素子22とを備える。必要に応じて、映像情報が付加された映像光を拡大投影する投射レンズ23を備えることができる。   With reference to FIG. 2, the projection type video display apparatus using the wire grid polarizing plate according to the above-described embodiment will be described. FIG. 2 is a conceptual diagram of a reflective liquid crystal projector which is an example of a projection display apparatus. As shown in FIG. 2, the reflective liquid crystal projector 20 according to the present embodiment includes a light source 21 such as an LED, a wire grid polarizing plate 10 as a polarization beam splitter, and a reflective liquid crystal that adds video information to the light source light. Display element 22. If necessary, a projection lens 23 for enlarging and projecting image light to which image information is added can be provided.

光源21から出射した光源光は、偏光ビームスプリッタであるワイヤグリッド偏光板10に入光する。光源種は、特に制限は無く、例えば、LED、高圧水銀灯等の他、レーザー等を好適に用いることができる。ワイヤグリッド偏光板10で偏光分離されて反射した偏光は、反射型液晶表示素子22に入光して変調される。反射型液晶表示素子22を出光した出射光(映像光)は、ワイヤグリッド偏光板10を透過して投射レンズ23で拡大された後、スクリーンに投影される。   The light source light emitted from the light source 21 enters the wire grid polarizer 10 which is a polarization beam splitter. There is no restriction | limiting in particular in a light source seed | species, For example, a laser etc. other than LED, a high pressure mercury lamp, etc. can be used suitably. Polarized light that has been polarized and separated by the wire grid polarizer 10 enters the reflective liquid crystal display element 22 and is modulated. The outgoing light (image light) emitted from the reflective liquid crystal display element 22 passes through the wire grid polarizing plate 10 and is enlarged by the projection lens 23, and then projected onto the screen.

また、ワイヤグリッド偏光板10は、導電体が形成されている導電体構造面が反射型液晶表示素子22と面するよう配設することが好ましい。これは、ワイヤグリッド偏光板10の導電体構造面の逆側の面は、反射率が相対的に低いため、不要な反射光の低減、つまり迷光の低減が可能となり、投影する映像光の品位を向上させることが可能となるからである。   Further, the wire grid polarizer 10 is preferably arranged so that the conductor structure surface on which the conductor is formed faces the reflective liquid crystal display element 22. This is because the surface opposite to the conductor structure surface of the wire grid polarizer 10 has a relatively low reflectivity, so that unnecessary reflected light can be reduced, that is, stray light can be reduced, and the quality of the projected image light can be reduced. It is because it becomes possible to improve.

近年、反射型液晶プロジェクターは小型化が進んでおり、光源と偏光ビームスプリッタの間の光路長を長くできず、光源光が拡散光のまま、偏光ビームスプリッタに入光することが多くなっている。反射型液晶プロジェクターの光学系としては、光源と偏光ビームスプリッタの間にプレ偏光板を配置することがあり、前記偏光ビームスプリッタとプレ偏光板の透過軸方向は直交配置とするものの、光源光が拡散光の場合、拡散した光源光の入光方向及び入光角度次第では、前記透過軸方向が見かけ上、直交とならずに鈍角で交差することとなる。ここで、偏光ビームスプリッタの反射光の消光比が低い場合、映像品位は低下するが、本発明のワイヤグリッド偏光板は反射光の消光比を高くできるため、好適に用いることができる。平行反射率に対する直交反射率の割合として表現される反射光の消光比は、50以上であることが好ましく、さらに好ましくは90以上であり、高い反射光の消光比を有したワイヤグリッド偏光板を偏光ビームスプリッタとして用いることにより、高映像品位の反射型液晶プロジェクターを提供できる。   In recent years, reflection type liquid crystal projectors have been miniaturized, and the optical path length between the light source and the polarization beam splitter cannot be increased, and the light source light is often diffused and enters the polarization beam splitter. . As an optical system of a reflection type liquid crystal projector, a pre-polarizing plate may be arranged between a light source and a polarizing beam splitter, and although the transmission axis directions of the polarizing beam splitter and the pre-polarizing plate are arranged orthogonally, In the case of diffused light, depending on the incident direction and incident angle of the diffused light source light, the transmission axis direction apparently intersects at an obtuse angle instead of being orthogonal. Here, when the extinction ratio of the reflected light of the polarizing beam splitter is low, the image quality is lowered, but the wire grid polarizer of the present invention can be preferably used because the extinction ratio of the reflected light can be increased. The extinction ratio of reflected light expressed as a ratio of orthogonal reflectivity to parallel reflectivity is preferably 50 or more, more preferably 90 or more, and a wire grid polarizing plate having a high extinction ratio of reflected light. By using it as a polarizing beam splitter, it is possible to provide a reflective liquid crystal projector with high image quality.

なお、直交透過率に対する平行透過率の割合として表現される透過光の消光比としては、映像の明暗表現の観点から、555nmの波長において、透過率85%で3000以上が好ましく、より好ましくは4000以上である。また、透過率88%においては、800以上が好ましく、より好ましくは1000以上である。   Note that the extinction ratio of transmitted light expressed as a ratio of parallel transmittance to orthogonal transmittance is preferably 3000 or more at a transmittance of 85% at a wavelength of 555 nm, more preferably 4000 from the viewpoint of light and dark expression of an image. That's it. Moreover, in the transmittance | permeability 88%, 800 or more are preferable, More preferably, it is 1000 or more.

本実施の形態に係るワイヤグリッド偏光板10は、平滑なガラス平板に貼合して用いたり、湾曲させて用いたりすることができる。例えば、平滑なガラス平板に貼合する場合には、ガラス平板の大きさを貼合するワイヤグリッド偏光板10より大きくすることにより、ワイヤグリッド偏光板10の端部に触れることなく平滑なガラス平板に貼合したワイヤグリッド偏光板10の貼合体を取り扱うことができるようになる。また、偏光ビームスプリッタとして用いる場合には、アッベ数の影響を考慮し、大きなアッベ数のものを用いることが好ましく、厚さの薄いものを用いることが好ましい。その他、導電体構造面の逆側の面にAR(アンチリフレクション)処理やモスアイ構造を付加することも可能である。   The wire grid polarizing plate 10 according to the present embodiment can be used by being bonded to a smooth glass flat plate or can be curved. For example, in the case of bonding to a smooth glass flat plate, the size of the glass flat plate is made larger than that of the wire grid polarizing plate 10 to be bonded, so that the flat glass flat plate without touching the end of the wire grid polarizing plate 10 is obtained. It becomes possible to handle the bonded body of the wire grid polarizing plate 10 bonded to the substrate. When used as a polarizing beam splitter, it is preferable to use a large Abbe number in consideration of the influence of the Abbe number, and it is preferable to use a thin one. In addition, it is also possible to add an AR (anti-reflection) process or a moth-eye structure to the surface opposite to the conductor structure surface.

なお、本実施の形態に係るワイヤグリッド偏光板10は、可視光、近赤外光、そして赤外光の領域において、光学特性を損なうことなく用いることができるため、領域を用いる映像表示用途、ピックアップ用途やセンサー用途等において好ましく用いられる。ただし、先述した本実施の形態に限定されず、種々変更して実施することができる。また、先述した本実施の形態における材質、数量などについては一例であり、適宜変更することができる。また、その他、本発明の技術的思想を逸脱しない範囲内で適宜変更して実施することができる。   The wire grid polarizing plate 10 according to the present embodiment can be used without damaging the optical characteristics in the visible light, near infrared light, and infrared light regions, so that the image display application using the regions, It is preferably used in pick-up applications and sensor applications. However, the present embodiment is not limited to the above-described embodiment, and various modifications can be made. Further, the material, quantity, and the like in the present embodiment described above are examples, and can be changed as appropriate. In addition, the present invention can be appropriately modified and implemented without departing from the technical idea of the present invention.

以下、実施例により本発明を詳しく説明するが、本発明は、これらの実施例に限定されるものではない。まず、実施例中の測定値の測定方法について説明する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples. First, the measurement method of the measured value in an Example is demonstrated.

<透過率の測定>
透過率の測定には、大塚電子株式会社製RETS−100あるいは日本分光株式会社製VAP−7070を用いた。RETS−100は、光源近傍に偏光子(以下、測定用偏光子ともいう。)と受光器近傍に検光子(以下、測定用検光子ともいう。)を備えており、測定サンプルを保持する測定サンプル台は一軸動作回転軸を有していて、測定の目的に応じて、各々を可動できる。VAP−7070は、光源近傍に測定用偏光子を備えており、測定サンプルに直線偏光の測定光を入光させて分光測定を行うことができる。
<Measurement of transmittance>
For measuring the transmittance, RETS-100 manufactured by Otsuka Electronics Co., Ltd. or VAP-7070 manufactured by JASCO Corporation was used. The RETS-100 includes a polarizer (hereinafter also referred to as a measurement polarizer) in the vicinity of a light source and an analyzer (hereinafter also referred to as a measurement analyzer) in the vicinity of a light receiver, and performs measurement for holding a measurement sample. The sample stage has a single axis rotation axis and can be moved according to the purpose of measurement. The VAP-7070 includes a measurement polarizer in the vicinity of the light source, and can perform spectroscopic measurement by allowing linearly polarized measurement light to enter the measurement sample.

<透過率及び反射率の測定>
透過率及び反射率の測定には、日立ハイテクノロジー株式会社製U−4100を用いた。U−4100は、光源近傍に測定用偏光子を備えており、測定サンプルを保持する測定サンプル台と受光器が同一の一軸動作回転軸を有していて、測定の目的に応じて、各々を可動できる。
<Measurement of transmittance and reflectance>
U-4100 manufactured by Hitachi High-Technology Corporation was used for the measurement of transmittance and reflectance. The U-4100 has a measurement polarizer in the vicinity of the light source, and the measurement sample stage holding the measurement sample and the light receiver have the same uniaxial operation rotation axis. It can move.

<面内位相差値の測定>
面内位相差値の測定機器として、平行ニコル法を利用した偏光解析装置(王子計測機器社製、KOBRA−WR)を用いた。測定光の波長を550nmとし、入光角度が0度の場合の位相差値を面内位相差値とした。
<Measurement of in-plane retardation value>
As an in-plane retardation value measuring device, an ellipsometer (KOBRA-WR, manufactured by Oji Scientific Instruments) using a parallel Nicol method was used. The phase difference value when the wavelength of the measurement light was 550 nm and the incident angle was 0 degree was defined as the in-plane retardation value.

<屈折率の測定方法>
屈折率の測定には、屈折率測定装置(メトリコン社製、レーザー屈折率測定モデル2010)を用いた。硬化型樹脂の測定を行う場合には、硬化処理を行った後に屈折率を測定した。屈折率測定装置による波長532nm、633nm及び824nmの屈折率の測定結果から、コーシーの分散式を利用して屈折率の波長分散図を求め、波長589nmの屈折率を求めた。
<Measurement method of refractive index>
A refractive index measurement device (manufactured by Metricon Corporation, laser refractive index measurement model 2010) was used for the measurement of the refractive index. When measuring the curable resin, the refractive index was measured after the curing treatment. From the measurement results of the refractive indices at wavelengths of 532 nm, 633 nm, and 824 nm using a refractive index measuring device, a wavelength dispersion diagram of the refractive index was obtained using Cauchy's dispersion formula, and a refractive index at a wavelength of 589 nm was obtained.

(ワイヤグリッド偏光板の作製方法)
次に、本実施例で用いたワイヤグリッド偏光板の作製方法について以下に説明する。
(Method for producing wire grid polarizer)
Next, a method for manufacturing the wire grid polarizer used in this example will be described below.

(金型の作製)
凹凸構造が一方向に延在し、断面視における凹凸構造のピッチP1が145nmあるいは100nmであるシリコン系基板1〜10を、フォトリソグラフィ技術により作製した。このうち、シリコン系基板1のピッチP1は145nmであり、シリコン系基板2〜5のピッチP1は100nm、シリコン系基板6〜10はピッチP1が120nmとした。シリコン系基板1の、凹凸構造の凸部の最高部から凹部の最低部までの高さは概略145nmであり、シリコン系基板2は概略150nm、シリコン系基板3は概略110nm、シリコン系基板4は概略90nm、シリコン系基板5は125nm、シリコン系基板6は85nm、シリコン系基板7は110nm、シリコン系基板8は120nm、シリコン系基板9は150nm、シリコン系基板10は170nmとした。
(Mold making)
Silicon-based substrates 1 to 10 each having a concavo-convex structure extending in one direction and having a concavo-convex structure pitch P1 of 145 nm or 100 nm in cross-sectional view were produced by a photolithography technique. Among these, the pitch P1 of the silicon substrate 1 was 145 nm, the pitch P1 of the silicon substrates 2 to 5 was 100 nm, and the pitch P1 of the silicon substrates 6 to 10 was 120 nm. The height of the silicon substrate 1 from the highest part of the convex part of the concavo-convex structure to the lowest part of the concave part is about 145 nm, the silicon type substrate 2 is about 150 nm, the silicon type substrate 3 is about 110 nm, and the silicon type substrate 4 is The thickness was approximately 90 nm, the silicon substrate 5 was 125 nm, the silicon substrate 6 was 85 nm, the silicon substrate 7 was 110 nm, the silicon substrate 8 was 120 nm, the silicon substrate 9 was 150 nm, and the silicon substrate 10 was 170 nm.

PETフィルム(A−4300、東洋紡社製)上にアクリル系UV硬化型樹脂(屈折率1.52)を約3μm塗布し、各シリコン系基板の凹凸構造面がUV硬化型樹脂と接するようにして、それぞれを重畳した。中心波長が365nmであるUVランプを用いて、PETフィルム側から1000mJ/cmのUV照射を行い、シリコン系基板の凹凸構造をPETフィルム上に転写した。PETフィルムの表面と断面視における凹凸構造をSEMで観察したところ、凹凸構造が一方向に延在し、シリコン系基板の凹凸構造が転写できていることを確認した。すなわち、転写された凹凸構造のピッチは、ピッチP1と同じピッチであった。先述したPETフィルムの凹凸構造面に、導電化処理として、スパッタリングにより白金パラジウムで凹凸構造を被覆した後、それぞれにニッケルを電気メッキし、凹凸構造を表面に有するニッケルスタンパを作製した。なお、ピッチP1が145nmであるシリコン系基板1から作製したニッケルスタンパを金型A、ピッチP1が100nmであるシリコン系基板2〜5から作製したニッケルスタンパを、それぞれ金型B、D、E及びF、ピッチP1が120nmであるシリコン系基板6〜10から作製したニッケルスタンパを、それぞれ金型GからKとする。 About 3 μm of acrylic UV curable resin (refractive index 1.52) is applied on a PET film (A-4300, manufactured by Toyobo Co., Ltd.) so that the concavo-convex structure surface of each silicon substrate is in contact with the UV curable resin. , Each superimposed. Using a UV lamp having a center wavelength of 365 nm, UV irradiation of 1000 mJ / cm 2 was performed from the PET film side, and the uneven structure of the silicon-based substrate was transferred onto the PET film. When the surface of the PET film and the concavo-convex structure in cross-sectional view were observed with an SEM, it was confirmed that the concavo-convex structure extended in one direction and the concavo-convex structure of the silicon-based substrate was transferred. That is, the pitch of the transferred concavo-convex structure was the same as the pitch P1. As a conductive treatment, the uneven structure surface of the PET film described above was coated with platinum palladium by sputtering and then electroplated with nickel to prepare a nickel stamper having the uneven structure on the surface. It should be noted that a nickel stamper produced from a silicon substrate 1 having a pitch P1 of 145 nm is a mold A, and a nickel stamper produced from silicon substrates 2 to 5 having a pitch P1 of 100 nm is a mold B, D, E, and F. Nickel stampers manufactured from silicon-based substrates 6 to 10 having a pitch P1 of 120 nm are referred to as molds G to K, respectively.

作製した金型Bを用いて、熱プレス法により厚さ0.5mmのシクロオレフィン樹脂(以下、COPと略す)板の表面に凹凸構造を転写し、表面に凹凸構造を有したCOP板Bを作製した。続いて、前記金型B表面の凹凸構造を転写したCOP板Bに対して、その凹凸構造面にUV―オゾンによる表面処理を行った。紫外線表面処理装置(Photo Surface Processor、型式:PM906N−2、セン特殊光源社製)を用いて、凹凸構造面に波長254nmの照度が34mW/cmであるUVを、COP板Bの凹凸構造を有する面に30秒間照射した。表面処理後のCOP板Bに、導電化処理として、スパッタリングにより白金パラジウムで凹凸構造を被覆した後、それぞれにニッケルを電気メッキし、ニッケルスタンパを作製した。表面処理後のCOP板Bから作製したニッケルスタンパを金型Cとする。 Using the produced mold B, a concavo-convex structure was transferred to the surface of a 0.5 mm thick cycloolefin resin (hereinafter abbreviated as COP) plate by a hot press method, and a COP plate B having a concavo-convex structure on the surface was obtained. Produced. Subsequently, the COP plate B to which the concavo-convex structure on the surface of the mold B was transferred was subjected to surface treatment with UV-ozone on the concavo-convex structure surface. Using an ultraviolet surface treatment device (Photo Surface Processor, model: PM906N-2, manufactured by Sen Special Light Company), UV with an illuminance of 34 mW / cm 2 at a wavelength of 254 nm is applied to the concavo-convex structure surface, and the concavo-convex structure of the COP plate B is applied. The surface to be irradiated was irradiated for 30 seconds. After the surface treatment, the COP plate B was covered with platinum palladium by sputtering as a conductive treatment, and then electroplated with nickel to produce a nickel stamper. A nickel stamper produced from the COP plate B after the surface treatment is used as a mold C.

(UV硬化型樹脂を用いた凹凸構造転写フィルムの作製)
先述した金型AからKを用いて、表面に凹凸構造を有する転写フィルムの作製を行った。基材は、厚み80μmのトリアセチルセルロース系樹脂からなるTACフィルム(TD80UL−H、富士フイルム社製)とし、TACフィルムの波長550nmにおける面内位相差値は3.5nmであった。TACフィルムにアクリル系UV硬化型樹脂(屈折率1.52)を約3μm塗布し、TACフィルム上に金型を重畳した。中心波長が365nmであるUVランプを操作して、TACフィルム側から1000mJ/cmのUV照射を行い、金型の凹凸構造をUV硬化型樹脂上に転写した。TACフィルムを金型から剥離し、UV硬化型樹脂からなる基材表面に凹凸構造を転写した転写フィルムを作製した。以上の操作を各金型AからKに関して行い、それぞれ、下記表1に示す転写フィルムAからKを作製した。表1に、各転写フィルムの表面と断面視における凹凸構造をSEMで観察した結果を示す。なお、表1における「ピッチP1」は隣接する2つの凸部の間隔(ピッチ)であり、「凸部高さH」は凹凸構造の凸部の最高部から凹部の最低部までの高さの差であり、「凸部幅比(I)」は、下記関係式(1)によって算出される値である。
(Preparation of concavo-convex structure transfer film using UV curable resin)
A transfer film having a concavo-convex structure on the surface was prepared using the molds A to K described above. The base material was a TAC film (TD80UL-H, manufactured by Fuji Film) made of a triacetyl cellulose resin having a thickness of 80 μm, and the in-plane retardation value at a wavelength of 550 nm of the TAC film was 3.5 nm. About 3 μm of an acrylic UV curable resin (refractive index 1.52) was applied to the TAC film, and a mold was superimposed on the TAC film. A UV lamp having a center wavelength of 365 nm was operated, and UV irradiation of 1000 mJ / cm 2 was performed from the TAC film side to transfer the uneven structure of the mold onto the UV curable resin. The transfer film was prepared by peeling the TAC film from the mold and transferring the concavo-convex structure onto the surface of the substrate made of UV curable resin. The above operations were performed for the molds A to K, and transfer films A to K shown in Table 1 below were produced. Table 1 shows the results of observing the surface of each transfer film and the concavo-convex structure in cross-sectional view with an SEM. “Pitch P1” in Table 1 is the interval (pitch) between two adjacent convex portions, and “convex height H” is the height from the highest portion of the convex portion of the concavo-convex structure to the lowest portion of the concave portion. It is a difference, and the “convex width ratio (I)” is a value calculated by the following relational expression (1).

式(1)
凸部幅比=第一の高さ位置における凸部の幅/第二の高さ位置における凸部の幅
Formula (1)
Convex part width ratio = Convex part width at first height position / Convex part width at second height position

式(1)において、第一の高さ位置は、凹凸構造の延在方向に対する垂直方向の断面視において、凸部の最高部から凹部の最低部までの高さの差である凸部高さHの概略9/10Hの位置を指し、第二の高さ位置は、概略1/10Hの位置を指す。   In the formula (1), the first height position is a height of the convex portion that is a difference in height from the highest portion of the convex portion to the lowest portion of the concave portion in a cross-sectional view perpendicular to the extending direction of the concavo-convex structure. The position of H is approximately 9 / 10H, and the second height position is approximately 1 / 10H.

Figure 0006446497
Figure 0006446497

(スパッタリング法を用いた誘電体層の形成)
次に各転写フィルムAからKの凹凸構造を有する基材表面に、スパッタリング法により誘電体層として二酸化珪素を成膜した。スパッタリング装置条件は、Arガス圧力0.2Pa、スパッタリングパワー770W/cm、被覆速度0.1nm/sとし、転写フィルム上の誘電体厚みが平膜換算で3nmとなるように成膜した。
(Formation of dielectric layer using sputtering method)
Next, silicon dioxide was formed as a dielectric layer on the surface of the base material having the concavo-convex structure of each transfer film A to K by sputtering. The sputtering apparatus conditions were an Ar gas pressure of 0.2 Pa, a sputtering power of 770 W / cm 2 , a coating speed of 0.1 nm / s, and a film was formed such that the dielectric thickness on the transfer film was 3 nm in terms of a flat film.

(斜め蒸着法を用いた導電体の形成)
次に、各転写フィルムAからKの凹凸構造を有する基材表面に、真空蒸着によりアルミニウム(Al)を成膜した。Alの蒸着条件は、常温下、真空度2.0×10−3Pa、蒸着速度40nm/sとした。断面視において、転写フィルムA、B、C、D及びEにおいては、基材の垂直方向に対する蒸着角を18度とし、Al平均厚みが110nmとなるようにAlを蒸着した。なお、Al平均厚みとは、表面が平滑なガラス基板を各転写フィルムAからKと共に蒸着装置内に挿入し、蒸着された平滑ガラス基板上のAl厚みを測定したものであり、平滑ガラス基板上に垂直方向から物質を蒸着させたと仮定した時の蒸着物の厚みのことを指し、蒸着量の目安として使用している。
(Conductor formation using oblique deposition)
Next, aluminum (Al) was formed into a film by vacuum deposition on the surface of the substrate having the uneven structure of K from each transfer film A. The deposition conditions for Al were normal temperature, a degree of vacuum of 2.0 × 10 −3 Pa, and a deposition rate of 40 nm / s. In the cross-sectional view, in the transfer films A, B, C, D, and E, Al was vapor deposited so that the vapor deposition angle with respect to the vertical direction of the substrate was 18 degrees and the Al average thickness was 110 nm. The average Al thickness is a value obtained by inserting a glass substrate having a smooth surface into the vapor deposition apparatus together with the transfer films A to K, and measuring the Al thickness on the vapor-deposited smooth glass substrate. It refers to the thickness of the deposit when it is assumed that the material is deposited from the vertical direction, and is used as a measure of the deposition amount.

(実施例1から6及び比較例1から5)
(不要Alの除去)
不要Alの除去のため、Alを蒸着した転写フィルムAからKを0.1重量%水酸化ナトリウム水溶液に室温下で浸漬し、その後すぐに水洗してフィルムを乾燥させることで、平行透過率が約86%であるワイヤグリッド偏光板A1からK1を作製した。
(Examples 1 to 6 and Comparative Examples 1 to 5)
(Removal of unnecessary Al)
In order to remove unnecessary Al, transfer films A to K on which Al is vapor-deposited are immersed in a 0.1 wt% sodium hydroxide aqueous solution at room temperature, and then washed immediately with water to dry the film. Wire grid polarizers A1 to K1 of about 86% were prepared.

各ワイヤグリッド偏光板A1からK1の断面視における凹凸構造及び導電体の形状をSEMにて観察したところ、導電体は、基材上の凹凸構造の凸部の一方側面に偏在していた(図3参照)。また、導電体は、凹凸構造の概略最低部から最高部に伸び、且つ、少なくともその一部が凹凸構造の凸部の最高部より上方に設けられていた。凸部の最高部から導電体の最高部までの高さは50nm以上あった。   When the concavo-convex structure and the shape of the conductor in the cross-sectional view of each of the wire grid polarizers A1 to K1 were observed with an SEM, the conductor was unevenly distributed on one side surface of the convex portion of the concavo-convex structure on the substrate (see FIG. 3). Moreover, the conductor extended from the substantially lowest part of the concavo-convex structure to the highest part, and at least a part thereof was provided above the highest part of the convex part of the concavo-convex structure. The height from the highest part of the convex part to the highest part of the conductor was 50 nm or more.

また、表2に、ワイヤグリッド偏光板A1からK1の「凸部厚み(II)」、「凸部形状」、「導電体厚み(III)」及び「導電体高さ(IV)」を示す。「凸部厚み(II)」とは、第一の高さ位置における凸部の幅であり、「凸部形状」とは、断面視における凹凸構造の形状を意味する。また、「導電体厚み(III)」は、第一の高さ位置から凸部の概略最高部までの間における導電体の水平方向の厚みが最も薄い部分における厚みであり、「導電体高さ(IV)」は、導電体の最低部から最高部まで高さを意味する。   Table 2 shows the “convex thickness (II)”, “convex shape”, “conductor thickness (III)” and “conductor height (IV)” of the wire grid polarizers A1 to K1. The “convex thickness (II)” is the width of the convex portion at the first height position, and the “convex shape” means the shape of the concavo-convex structure in a sectional view. Further, the “conductor thickness (III)” is a thickness at a portion where the horizontal thickness of the conductor is the thinnest part between the first height position and the approximately highest portion of the convex portion. "IV)" means the height from the lowest part to the highest part of the conductor.

Figure 0006446497
Figure 0006446497

ワイヤグリッド偏光板A1からK1の傾斜入光時の平行透過率を、大塚電子株式会社製RETS−100で測定した。平行透過率は、測定サンプル台の動作回転軸と、測定用偏光子、測定用検光子及び測定対象である各ワイヤグリッド偏光板の透過軸方向とが直交する条件で、平行透過率を測定した。各ワイヤグリッド偏光板A1からK1に入光する測定光の入光角度は、ワイヤグリッド偏光板の垂直方向を0度とし、その−45度及び+45度とした。また、測定波長は、人間の目が光を強く感じるとされる波長、555nmとした。得られた平行透過率の測定結果より、入光角度−45度と+45度における平行透過率Tp(λ=555nm)の差であるΔTp(λ=550nm)の絶対値を算出した。表3に、算出した光学対称性|ΔTp(λ=555nm)|を示す。なお、光学対称性|ΔTp(λ=555nm)|が小さい場合に、高光学対称性となる。 The parallel transmittance of the wire grid polarizers A1 to K1 at the time of inclined incident light was measured with RETS-100 manufactured by Otsuka Electronics Co., Ltd. The parallel transmittance was measured under the condition that the rotation axis of the measurement sample stage and the transmission axis directions of the measurement polarizer, the measurement analyzer, and each wire grid polarizing plate to be measured were orthogonal to each other. . The incident angle of the measurement light incident on each wire grid polarizer A1 to K1 was set to -45 degrees and +45 degrees with the vertical direction of the wire grid polarizer being 0 degrees. The measurement wavelength was 555 nm, which is the wavelength at which human eyes feel light strongly. The absolute value of ΔTp (λ = 550 nm) , which is the difference between the parallel transmittances Tp (λ = 555 nm) at the incident angles of −45 degrees and +45 degrees, was calculated from the obtained parallel transmittance measurement results. Table 3 shows the calculated optical symmetry | ΔTp (λ = 555 nm) |. When the optical symmetry | ΔTp (λ = 555 nm) | is small, high optical symmetry is obtained.

Figure 0006446497
Figure 0006446497

表3に示すように、比較例1、2、3及び5は、実施例1から6に比較し、入光角度−45度及び45度の平行透過率差が大きく、低光学対称性であった。比較例1と実施例1、2及び4の最大の違いは、ピッチP1であり、ピッチP1を小さくすることにより、光学対称性が向上した。また、比較例2、3及び5の凸部高さHはピッチP1の1.3倍より大きく、比較例3の凸部幅比(I)は0.5倍よりも小さい。したがって、断面視における隣接する導電体間に占める凸部面積が大きくなってしまい、光学対称性が低下した。ピッチP1の1.3倍以下である実施例1から6は、光学対称性が高く、好適に用いることができる。   As shown in Table 3, Comparative Examples 1, 2, 3 and 5 have a large difference in parallel transmittance at incident angles of −45 degrees and 45 degrees and low optical symmetry compared to Examples 1 to 6. It was. The largest difference between Comparative Example 1 and Examples 1, 2, and 4 is the pitch P1, and the optical symmetry was improved by reducing the pitch P1. Moreover, the convex part height H of Comparative Examples 2, 3, and 5 is larger than 1.3 times the pitch P1, and the convex part width ratio (I) of Comparative Example 3 is smaller than 0.5 times. Therefore, the convex area occupied between adjacent conductors in a cross-sectional view is increased, and the optical symmetry is lowered. Examples 1 to 6, which are 1.3 times or less of the pitch P1, have high optical symmetry and can be suitably used.

(実施例7から9並びに比較例6から9)
(不要Alの除去)
Alを蒸着した転写フィルムA、B、C、D、E、G及びHを各々複数用意し、0.1重量%水酸化ナトリウム水溶液(室温下)への浸漬時間を変化させた各ワイヤグリッド偏光板を作製した。不要Alの除去の操作は、浸漬時間以外はすべて同一とし、水酸化ナトリウム水溶液に浸漬した後すぐに水洗及び乾燥を行った。なお、得られたワイヤグリッド偏光板のうち、転写フィルムA、B、C、D、E、G及びHから得られたワイヤグリッド偏光板を、ワイヤグリッド偏光板A2、B2、C2、D2、E2、G2及びH2とする。
(Examples 7 to 9 and Comparative Examples 6 to 9)
(Removal of unnecessary Al)
Each wire grid polarization in which a plurality of transfer films A, B, C, D, E, G and H prepared by depositing Al were prepared, and the immersion time in a 0.1 wt% sodium hydroxide aqueous solution (at room temperature) was changed. A plate was made. The operation of removing unnecessary Al was the same except for the immersion time, and was immediately washed after being immersed in an aqueous sodium hydroxide solution and dried. Of the obtained wire grid polarizers, the wire grid polarizers obtained from the transfer films A, B, C, D, E, G, and H are referred to as wire grid polarizers A2, B2, C2, D2, and E2. , G2 and H2.

次に、得られたワイヤグリッド偏光板A2、B2、C2、D2、E2、G2及びH2の垂直方向から測定光を入光させた場合の平行透過率及び直交透過率を、日本分光株式会社製VAP−7070により、測定した。測定波長は、人間の目が光を強く感じるとされる波長、555nmとし、得られた平行透過率及び直交透過率の測定結果を、図4のグラフに示す。なお、ワイヤグリッド偏光板A2を比較例6、ワイヤグリッド偏光板B2を比較例7、ワイヤグリッド偏光板C2を比較例8、ワイヤグリッド偏光板D2を実施例7、ワイヤグリッド偏光板E2を実施例8、ワイヤグリッド偏光板G2を比較例9、ワイヤグリッド偏光板H2を実施例9とする。   Next, the parallel transmittance and the orthogonal transmittance when the measurement light is incident from the vertical direction of the obtained wire grid polarizers A2, B2, C2, D2, E2, G2, and H2 are manufactured by JASCO Corporation. It was measured by VAP-7070. The measurement wavelength is a wavelength at which human eyes feel light strongly, 555 nm, and the measurement results of the obtained parallel transmittance and orthogonal transmittance are shown in the graph of FIG. The wire grid polarizing plate A2 is Comparative Example 6, the wire grid polarizing plate B2 is Comparative Example 7, the wire grid polarizing plate C2 is Comparative Example 8, the wire grid polarizing plate D2 is Example 7, and the wire grid polarizing plate E2 is an Example. 8. Wire grid polarizing plate G2 is Comparative Example 9, and wire grid polarizing plate H2 is Example 9.

図4に示すように、ワイヤグリッド偏光板A2(比較例6)はピッチP1が大きいため、直交透過率が高くなり、透過光が消光比は低いものであった。ワイヤグリッド偏光板B2(比較例7)、C2(比較例8)、D2(実施例7)及びE2(実施例8)はピッチP1が100nmと小さいが、ワイヤグリッド偏光板B2(比較例7)は高直交透過率となった。これは、ピッチP1に対する凸部高さHが高いため、斜め蒸着法により形成される導電体の導電体厚み(III)が20nmよりも薄くなったためである。ピッチP1と凸部高さHを変化させることなく、導電体厚み(III)を厚くする方法の一つとして、凸部形状を正弦波形状とし、凸部の概略最高部の水平方向の厚みを薄くすることが挙げられる(ワイヤグリッド偏光板C2、比較例8)が、光学対称性の低下が生じてしまう。したがって、凸部高さHをピッチP1の1.3倍以下とすることが好ましい。   As shown in FIG. 4, since the wire grid polarizer A2 (Comparative Example 6) has a large pitch P1, the orthogonal transmittance is high, and the transmitted light has a low extinction ratio. The wire grid polarizer B2 (Comparative Example 7), C2 (Comparative Example 8), D2 (Example 7) and E2 (Example 8) have a pitch P1 as small as 100 nm, but the wire grid polarizer B2 (Comparative Example 7). Became a high orthogonal transmittance. This is because the height H of the convex portion with respect to the pitch P1 is high, so that the conductor thickness (III) of the conductor formed by the oblique deposition method is thinner than 20 nm. As one of the methods for increasing the conductor thickness (III) without changing the pitch P1 and the convex height H, the convex shape is a sine wave shape, and the horizontal thickness of the approximate highest portion of the convex portion is set. It is possible to reduce the thickness (wire grid polarizing plate C2, comparative example 8), but the optical symmetry is lowered. Therefore, it is preferable that the height H of the protrusion is 1.3 times or less of the pitch P1.

なお、ワイヤグリッド偏光板D2(実施例7)に比較して、ワイヤグリッド偏光板E2(実施例8)は高直交透過率であった。これは、凸部高さHが小さいため、斜め蒸着法により形成された導電体の高さが低くなってしまうからである。これは、ワイヤグリッド偏光板H2(実施例9)に対するG2(比較例9)も同様であるが、凸部高さHを小さくすると、光学対称性は高くなるものの、高直交透過率となってしまう。蒸着時の蒸着量を制御することで解決可能な課題であるが、蒸着量の増加は製造効率の低下を招き、高コスト化の要因となることを考慮すると、凸部高さHは、ピッチP1の0.8倍以上が好ましいこととなる。   In addition, compared with the wire grid polarizing plate D2 (Example 7), the wire grid polarizing plate E2 (Example 8) had a high orthogonal transmittance. This is because the height of the conductor formed by the oblique deposition method is low because the height H of the convex portion is small. This is the same for G2 (Comparative Example 9) with respect to the wire grid polarizing plate H2 (Example 9). However, when the height H of the convex portion is decreased, the optical symmetry is increased, but the high orthogonal transmittance is obtained. End up. Although it is a problem that can be solved by controlling the amount of vapor deposition at the time of vapor deposition, the increase in the amount of vapor deposition leads to a decrease in manufacturing efficiency, and in consideration of the fact that the cost increases, the height H of the convex portion is the pitch. This is preferably 0.8 times or more of P1.

(反射光の消光比)
ピッチP1が100nmであるワイヤグリッド偏光板C1(比較例3)、E1(実施例2)及びF1(実施例3)の導電体構造面に測定光を入光した場合の直交反射率と平行反射率を、分光光度計(日立ハイテクノロジー社製、U−4100)により測定した。測定サンプル台の動作回転軸と測定対象の各ワイヤグリッド偏光板の透過軸方向とは平行とし、測定サンプル台の動作回転軸と測定装置の光源近傍の偏光子の透過軸方向とは直交とした。各ワイヤグリッド偏光板に入射する測定光の角度は、ワイヤグリッド偏光板の垂直方向を0度として、傾斜45度とし、入光角度における波長555nmの直交反射率および平行反射率を測定した。この結果を表4に示す。測定後、平行反射率に対する直交反射率の割合(反射光の消光比)を算出したところ、ワイヤグリッド偏光板C1は19、ワイヤグリッド偏光板E1は101、ワイヤグリッド偏光板F1は51であった。
(Extinction ratio of reflected light)
Orthogonal reflectance and parallel reflection when the measurement light is incident on the conductor structure surface of the wire grid polarizer C1 (Comparative Example 3), E1 (Example 2), and F1 (Example 3) with a pitch P1 of 100 nm. The rate was measured with a spectrophotometer (manufactured by Hitachi High-Technology Corporation, U-4100). The operation rotation axis of the measurement sample stage and the transmission axis direction of each wire grid polarizing plate to be measured are parallel, and the operation rotation axis of the measurement sample stage and the transmission axis direction of the polarizer near the light source of the measurement apparatus are orthogonal to each other. . The angle of the measurement light incident on each wire grid polarizing plate was set to 45 degrees with the vertical direction of the wire grid polarizing plate being 0 degrees, and the orthogonal reflectance and parallel reflectance at a wavelength of 555 nm at the light incident angle were measured. The results are shown in Table 4. After the measurement, the ratio of the orthogonal reflectance to the parallel reflectance (the extinction ratio of the reflected light) was calculated. As a result, the wire grid polarizer C1 was 19, the wire grid polarizer E1 was 101, and the wire grid polarizer F1 was 51. .

Figure 0006446497
表4に示すように、ワイヤグリッド偏光板E1及びF1は、断面視において、凸部高さHをピッチP1の1.3倍以下とすることにより、隣接する導電体間に占める凸部の面積が十分に小さくなるため、反射光の消光比が向上した。
Figure 0006446497
As shown in Table 4, the wire grid polarizers E1 and F1 have a convex area occupied between adjacent conductors by making the convex part height H 1.3 times or less of the pitch P1 in a sectional view. Is sufficiently small, and the extinction ratio of reflected light is improved.

(実施例10から12並びに比較例10)
(保護フィルム貼合前後の光学特性)
アクリル系粘着剤1(屈折率1.47)をベース基材であるPETフィルム上に有した保護フィルム1あるいは保護フィルム2、シリコーン系粘着剤1をベース基材であるPETフィルム上に有した保護フィルム3あるいは保護フィルム4をワイヤグリッド偏光板E1の導電体を有する面に貼合し、保護フィルム貼合前後の平行透過率及び直交透過率を測定した。保護フィルム1と保護フィルム2は、アクリル系粘着剤1の層厚みのみが異なっていて、保護フィルム1の層厚みは2.5μm、保護フィルム2は10μmであった。また、保護フィルム3と保護フィルム4は、シリコン系粘着剤1の層厚みのみが異なっていて、保護フィルム3の層厚みは10μm、保護フィルム4は20μmであった。なお、光学測定は、日本分光株式会社製VAP−7070を用いた。
(Examples 10 to 12 and Comparative Example 10)
(Optical properties before and after protective film bonding)
Protective film 1 or protective film 2 having acrylic adhesive 1 (refractive index 1.47) on a PET film as a base substrate, and protection having PET adhesive 1 on a PET film as a base substrate The film 3 or the protective film 4 was bonded to the surface having the conductor of the wire grid polarizing plate E1, and the parallel transmittance and the orthogonal transmittance before and after the protective film bonding were measured. The protective film 1 and the protective film 2 differed only in the layer thickness of the acrylic adhesive 1, the layer thickness of the protective film 1 was 2.5 micrometers, and the protective film 2 was 10 micrometers. Moreover, the protective film 3 and the protective film 4 differed only in the layer thickness of the silicon adhesive 1, and the protective film 3 was 10 micrometers in thickness, and the protective film 4 was 20 micrometers. In addition, the optical measurement used JASCO Corporation VAP-7070.

保護フィルム1を用いた場合を実施例10、保護フィルム2を用いた場合を実施例11、保護フィルム3を用いた場合を実施例12、及び、保護フィルム4を用いた場合を比較例10とした。   The case where the protective film 1 is used is Example 10, the case where the protective film 2 is used is Example 11, the case where the protective film 3 is used is Example 12, and the case where the protective film 4 is used is Comparative Example 10. did.

保護フィルム貼合前に、ワイヤグリッド偏光板E1の波長555nmにおける平行透過率Tp1及び直交透過率Tc1を測定した。続いて、保護フィルムを貼合し、室温に30分静置後、貼合した保護フィルムを剥がして、ワイヤグリッド偏光板E1の波長555nmにおける平行透過率Tp2及び直交透過率Tc2を測定した。Tp1、Tp2、Tc1及びTc2から、以下式(2)を用いてΔTp及びΔTcを算出した。なお、ΔTpが小さいほど、保護フィルムによるワイヤグリッド偏光板の光学特性低下が少ないことを意味する。   Before the protective film was bonded, the parallel transmittance Tp1 and the orthogonal transmittance Tc1 at a wavelength of 555 nm of the wire grid polarizing plate E1 were measured. Then, after bonding the protective film and leaving still at room temperature for 30 minutes, the bonded protective film was peeled off and the parallel transmittance Tp2 and orthogonal transmittance Tc2 in wavelength 555nm of the wire grid polarizing plate E1 were measured. From Tp1, Tp2, Tc1 and Tc2, ΔTp and ΔTc were calculated using the following formula (2). In addition, it means that there is little optical characteristic fall of the wire grid polarizing plate by a protective film, so that (DELTA) Tp is small.

式(2)
ΔTp=|Tp1−Tp2|
ΔTc=|Tc1−Tc2|
Formula (2)
ΔTp = | Tp1-Tp2 |
ΔTc = | Tc1-Tc2 |

Figure 0006446497
Figure 0006446497

表5に示すように、比較例10に比較して、実施例12の光学特性の低下は少なかった。粘着層の厚みを薄くすることにより、ワイヤグリッド偏光板E1の平行透過率及び直交透過率の変化といった偏光分離特性の低下を防止できた。   As shown in Table 5, the optical characteristics of Example 12 were less degraded than Comparative Example 10. By reducing the thickness of the adhesive layer, it was possible to prevent a decrease in polarization separation characteristics such as a change in parallel transmittance and orthogonal transmittance of the wire grid polarizing plate E1.

なお、実施例10及び実施例11を比較すると、光学特性面においては、粘着層の厚みが薄い実施例9が好ましいが、ワイヤグリッド偏光板E1の導電体との密着性は良好とは言い難く、貼合時の気泡混入の頻度が多くなった。これは、ワイヤグリッド偏光板の導電体との密着力が過度に低下してしまったためである。したがって、粘着層の厚みとしては、2μm以上10μm以下であることが好ましい。   When Example 10 and Example 11 are compared, in terms of optical characteristics, Example 9 in which the thickness of the adhesive layer is thin is preferable, but it is difficult to say that the adhesion of the wire grid polarizer E1 to the conductor is good. , The frequency of air bubble mixing during bonding increased. This is because the adhesion of the wire grid polarizer to the conductor has been excessively reduced. Therefore, the thickness of the adhesive layer is preferably 2 μm or more and 10 μm or less.

なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。   In addition, this invention is not limited to the said embodiment, It can implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

本発明によれば、ワイヤグリッド偏光板は光学対称性に優れているので、高画質な液晶表示装置の実現のために使用することができる。   According to the present invention, since the wire grid polarizer is excellent in optical symmetry, it can be used for realizing a high-quality liquid crystal display device.

10 ワイヤグリッド偏光板
11 基材
11a 凸部
11b 一方側面
11c 最高部
11d 凹部
11e 最低部
12 導電体
H 凸部高さ
DESCRIPTION OF SYMBOLS 10 Wire grid polarizing plate 11 Base material 11a Convex part 11b One side surface 11c Highest part 11d Concave part 11e Lowest part 12 Conductor H Convex part height

Claims (12)

特定方向に延在する凹凸構造を表面上に有する基材と、前記凹凸構造の凸部の一方側面に偏在するように設けられた導電体とを有したワイヤグリッド偏光板であって、
前記凹凸構造の延在方向に対する垂直方向の断面視において、隣接する2つの前記凸部の間隔であるピッチP1は120nm以下であり、且つ、前記凸部の最高部から凹部の最低部までの高さの差である凸部高さHがピッチP1の0.8倍から1.3倍であり、
前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の最高部から前記凹部の最低部までの高さの差である前記凸部高さHの9/10Hの位置を第一の高さ位置としたときに、前記第一の高さ位置から前記凸部の最高部までの間における前記導電体の水平方向の厚みが20nm以上であり、
前記導電体は、前記凹凸構造の概略最低部から最高部に伸び、且つ、少なくとも前記導電体の一部が、前記凹凸構造の前記凸部の最高部より上方に設けられており、
前記導電体は、前記凸部高さHの1/10Hの位置での水平方向の厚みが、前記凸部高さHの9/10Hの位置での水平方向の厚みより厚く、前記導電体の最高部における水平方向の厚みが前記凸部の最高部における水平方向の厚みよりも薄いことを特徴とするワイヤグリッド偏光板。
A wire grid polarizing plate having a base material having a concavo-convex structure extending in a specific direction on the surface, and a conductor provided so as to be unevenly distributed on one side surface of the convex portion of the concavo-convex structure,
In the cross-sectional view in the vertical direction with respect to the extending direction of the convex-concave structure, the pitch P1 is an interval between adjacent two of the protrusions is at 120nm or less, and a high from the highest portion of the convex portion to the lowest portion of the recess The height H of the convex portion, which is the difference in thickness, is 0.8 to 1.3 times the pitch P1,
Wherein in the cross-sectional view in the vertical direction with respect to the extending direction of the concavo-convex structure, said difference in height is the position of 9 / 10H of the convex height H from the highest portion of the convex portion to the lowest portion of the concave first of when the height position state, and are horizontal thickness 20nm or more of the conductors between the said first height position to a maximum portion of the convex portion,
The conductor extends from the lowest part of the concavo-convex structure to the highest part, and at least a part of the conductor is provided above the highest part of the convex part of the concavo-convex structure,
The conductor has a thickness in a horizontal direction at a position of 1 / 10H of the height H of the convex portion is larger than a thickness in a horizontal direction at a position of 9 / 10H of the height H of the convex portion. The wire grid polarizing plate characterized in that the horizontal thickness at the highest portion is thinner than the horizontal thickness at the highest portion of the convex portion .
前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の最高部から前記凹部の最低部までの高さの差である前記凸部高さHの9/10Hの位置を前記第一の高さ位置とし、1/10Hの位置を第二の高さ位置としたときに、前記第一の高さ位置における前記凸部の幅が、前記第二の高さ位置における前記凸部の幅の0.5倍以上1.0倍以下であって、前記凹凸構造の前記凸部の半値幅の値が、前記ピッチP1の0.05倍から0.5倍であることを特徴とする請求項1に記載のワイヤグリッド偏光板。 In the cross-sectional view in the vertical direction with respect to the extending direction of the concave and convex structure, the position of the 9 / 10H of the convex height H is the height difference of at least part of the recess from the highest portion of the convex portion first The width of the convex portion at the first height position is the convex portion at the second height position when the height position is one and the position of 1 / 10H is the second height position. a is below 1.0 times 0.5 times the width, the value of the half width of the convex portion of the concavo-convex structure, and characterized by a 0.5-fold from 0.05 times the pitch P1 The wire grid polarizing plate according to claim 1. 前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凹凸構造の前記凸部の断面形状が、概略矩形形状であることを特徴とする請求項1または請求項2に記載のワイヤグリッド偏光板。 The wire grid polarization according to claim 1 or 2, wherein a cross-sectional shape of the convex portion of the concavo-convex structure is a substantially rectangular shape in a cross-sectional view perpendicular to the extending direction of the concavo-convex structure. Board. 前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の最高部から前記導電体の最高部までの高さが50nm以上であることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 In the cross-sectional view in the vertical direction with respect to the extending direction of the convex-concave structure of claims 1 to 3, the height of the highest portion of the convex portion to the highest portion of the conductor, characterized in that at 50nm or more The wire grid polarizing plate in any one. 前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の9/10Hの前記第一の高さ位置における幅が15nm以上であることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 In the cross-sectional view in the vertical direction with respect to the extending direction of the convex-concave structure, claim 1, the width in the first height position of 9 / 10H of the convex portions is equal to or is 15nm or more claims 4 The wire grid polarizing plate in any one. 前記導電体は、等方性エッチングによりエッチングされたものであることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 6. The wire grid polarizer according to any one of claims 1 to 5 , wherein the conductor is etched by isotropic etching. 前記凹凸構造は、表面に凹凸構造を有したシリコン系基板を原版として、転写して作製されたものであることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 The wire grid polarizer according to any one of claims 1 to 6 , wherein the concavo-convex structure is produced by transferring a silicon-based substrate having a concavo-convex structure on the surface as an original plate. . 前記導電体を保護する保護フィルムを有し、前記保護フィルムの粘着層の厚みが、2μm以上10μm以下であることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 The wire grid polarizing plate according to any one of claims 1 to 7 , further comprising a protective film for protecting the conductor, wherein a thickness of the adhesive layer of the protective film is 2 µm or more and 10 µm or less. . 前記凹凸構造の延在方向に対する垂直方向の断面視において、前記ワイヤグリッド偏光板の垂直方向を0度としたときに、波長555nmの光の入光角度−45度及び+45度における平行透過率(Tp)の差が4%以下である請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 In a cross-sectional view perpendicular to the extending direction of the concavo-convex structure, the parallel transmittance at a light incident angle of −45 degrees and +45 degrees when the vertical direction of the wire grid polarizing plate is 0 degree is ( The wire grid polarizing plate according to any one of claims 1 to 8 , wherein a difference in Tp) is 4% or less. 請求項1記載のワイヤグリッド偏光板と、光源と、反射型液晶表示素子とを有する投影型映像表示機器であって、
前記光源から出光した光が、前記ワイヤグリッド偏光板を透過又は反射して前記反射型液晶表示素子に入光し、前記反射型液晶表示素子により変調された光が前記ワイヤグリッド偏光板で反射又は透過して映像を投影することを特徴とする投影型映像表示機器。
1 SL and mounting of the wire grid polarizer according to claim, a projection type image display apparatus having a light source and a reflective liquid crystal display device,
The light emitted from the light source is transmitted or reflected by the wire grid polarizer and enters the reflective liquid crystal display element, and the light modulated by the reflective liquid crystal display element is reflected by the wire grid polarizer or A projection-type image display device that projects an image through transmission.
前記ワイヤグリッド偏光板の導電体構造面が、前記反射型液晶表示素子と面するよう配設されていることを特徴とする請求項10に記載の投影型映像表示機器。 11. The projection display apparatus according to claim 10 , wherein a conductor structure surface of the wire grid polarizing plate is disposed so as to face the reflective liquid crystal display element. 基材表面に特定方向に延在する凹凸構造を形成する工程と、前記凹凸構造の凸部の一方側面に偏在するように導電体を形成する工程と、を有するワイヤグリッド偏光板の製造方法であって、
前記凹凸構造を形成する工程は、前記凹凸構造の延在方向に対する垂直方向の断面視において、隣接する2つの前記凸部の間隔であるピッチP1を120nm以下に形成し、且つ、前記凸部の最高部から凹部の最低部までの高さの差である凸部高さHをピッチP1の0.8倍から1.3倍に形成し、
前記導電体を形成する工程は、前記凹凸構造の延在方向に対する垂直方向の断面視において、前記凸部の最高部から前記凹部の最低部までの高さの差である前記凸部高さHの9/10Hの位置を第一の高さ位置としたときに、前記第一の高さ位置から前記凸部の最高部までの間における前記導電体の水平方向の厚みが20nm以上となるように前記導電体を形成し、前記凹凸構造の概略最低部から最高部に伸び、且つ、少なくとも前記導電体の一部が、前記凹凸構造の前記凸部の最高部より上方に設けられるように前記導電体を形成し、前記凸部高さHの1/10Hの位置での水平方向の厚みが、前記凸部高さHの9/10Hの位置での水平方向の厚みより厚く、前記導電体の最高部における水平方向の厚みが前記凸部の最高部における水平方向の厚みよりも薄くなるように前記導電体を形成することを特徴とするワイヤグリッド偏光板の製造方法。
A method of manufacturing a wire grid polarizer comprising: a step of forming a concavo-convex structure extending in a specific direction on a substrate surface; and a step of forming a conductor so as to be unevenly distributed on one side surface of the convex portion of the concavo-convex structure. There,
The step of forming the uneven structure is in the cross-sectional view in the vertical direction with respect to the extending direction of the convex-concave structure, the pitch P1 is an interval between adjacent two of the convex portion is formed in 120nm or less, the protrusions The convex part height H, which is the difference in height from the highest part to the lowest part of the concave part, is formed from 0.8 times to 1.3 times the pitch P1,
The step of forming the conductor, said in the cross-sectional view in the vertical direction with respect to the extending direction of the convex-concave structure, the convex height H from the highest part which is the difference in height to the lowest portion of the concave portion of the convex portion When the position of 9 / 10H is set to the first height position, the horizontal thickness of the conductor between the first height position and the highest portion of the convex portion is 20 nm or more. Forming the conductor , extending from a substantially lowest part of the concavo-convex structure to the highest part, and at least a part of the conductor is provided above the highest part of the convex part of the concavo-convex structure. A conductor is formed, and the thickness in the horizontal direction at a position of 1 / 10H of the height H of the protrusion is larger than the thickness in the horizontal direction at a position of 9 / 10H of the height H of the protrusion. The horizontal thickness at the highest part of the projection is horizontal at the highest part of the convex part. Method of manufacturing a wire grid polarizer, which comprises forming the conductor to be thinner than the thickness of the direction.
JP2017083317A 2011-10-14 2017-04-20 Wire grid polarizer, projection display apparatus, and method of manufacturing wire grid polarizer Active JP6446497B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011226736 2011-10-14
JP2011226736 2011-10-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015185924A Division JP2016027418A (en) 2011-10-14 2015-09-18 Wire grid polarizing plate and projection type image display apparatus

Publications (2)

Publication Number Publication Date
JP2017173832A JP2017173832A (en) 2017-09-28
JP6446497B2 true JP6446497B2 (en) 2018-12-26

Family

ID=48081945

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013538595A Active JP6063386B2 (en) 2011-10-14 2012-10-12 Wire grid polarizer and projection display device
JP2015185924A Pending JP2016027418A (en) 2011-10-14 2015-09-18 Wire grid polarizing plate and projection type image display apparatus
JP2017083317A Active JP6446497B2 (en) 2011-10-14 2017-04-20 Wire grid polarizer, projection display apparatus, and method of manufacturing wire grid polarizer

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2013538595A Active JP6063386B2 (en) 2011-10-14 2012-10-12 Wire grid polarizer and projection display device
JP2015185924A Pending JP2016027418A (en) 2011-10-14 2015-09-18 Wire grid polarizing plate and projection type image display apparatus

Country Status (7)

Country Link
US (1) US9726929B2 (en)
JP (3) JP6063386B2 (en)
KR (2) KR101867192B1 (en)
CN (1) CN103842862B (en)
DE (1) DE112012004296B4 (en)
TW (1) TWI499812B (en)
WO (1) WO2013054900A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276108B2 (en) * 2014-05-02 2018-02-07 旭化成株式会社 Manufacturing method of wire grid polarizer
CN104297835B (en) * 2014-10-17 2017-03-08 京东方科技集团股份有限公司 A kind of preparation method of wire grid polarizer
CN104483733B (en) 2014-12-30 2017-11-21 京东方科技集团股份有限公司 A kind of wire grid polarizer and preparation method thereof, display device
CN104459865A (en) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 Wire grid polarizer, manufacturing method of wire grid polarizer and display device
KR20160143443A (en) * 2015-06-05 2016-12-14 코오롱인더스트리 주식회사 Wire Grid Polarizer And Liquid Crystal Display Device Including The Same
KR20170017557A (en) * 2015-08-07 2017-02-15 코오롱인더스트리 주식회사 Wire Grid Polarizer And Liquid Crystal Display Device Including The Same
KR20170079671A (en) * 2015-12-30 2017-07-10 코오롱인더스트리 주식회사 Wire Grid Polarizer And Liquid Crystal Display Device Including The Same
CN105467500A (en) * 2016-02-02 2016-04-06 京东方科技集团股份有限公司 Wire grid polarizer, manufacturing method and display device
KR102255039B1 (en) * 2016-03-18 2021-05-21 에네오스 가부시키가이샤 Optical retardation member, composite optical member including optical retardation member, and manufacturing method of optical retardation member
CN105700058A (en) * 2016-04-05 2016-06-22 武汉华星光电技术有限公司 Metal wire grating brightness enhance film for display backlight and preparation method for metal wire grating brightness enhance film
WO2018062962A1 (en) * 2016-09-30 2018-04-05 코오롱인더스트리 주식회사 Wire grid polarizer and display device comprising same
TWI702424B (en) * 2017-10-24 2020-08-21 日商旭化成股份有限公司 Image display device, wire grid polarizer and its manufacturing method, observation method of wire grid polarizer, and method of estimating the direction of polarization axis of wire grid polarizer
CN108062181B (en) 2018-01-02 2021-08-17 京东方科技集团股份有限公司 Substrate, manufacturing method thereof and electronic equipment
KR102559836B1 (en) 2018-01-31 2023-07-27 삼성디스플레이 주식회사 Polarizer, optical apparatus comprising the polarizer, display apparus comprising the polarizer and method for preparing the polarizer
JP6826073B2 (en) * 2018-05-31 2021-02-03 デクセリアルズ株式会社 Polarizing plate and its manufacturing method, and optical equipment
US11226483B2 (en) * 2018-06-07 2022-01-18 Facebook Technologies, Llc Reverse-order crossed pancake lens with a shaped polarizer
WO2021114176A1 (en) * 2019-12-12 2021-06-17 京东方科技集团股份有限公司 Display panel and manufacturing method therefor, and display device
JP7203187B2 (en) * 2020-12-28 2023-01-12 デクセリアルズ株式会社 WIRE GRID POLARIZATION ELEMENT, METHOD FOR MANUFACTURING WIRE GRID POLARIZATION ELEMENT, PROJECTION DISPLAY DEVICE, AND VEHICLE
US20240036241A1 (en) * 2020-12-28 2024-02-01 Dexerials Corporation Wire grid polarizing element, method for manufacturing wire grid polarizing element, projection display device, and vehicle
EP4443203A1 (en) 2021-12-24 2024-10-09 Dexerials Corporation Wire grid polarizer, method for manufacturing wire grid polarizer, projection display device, and vehicle

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330728A (en) 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
US6672721B2 (en) * 2001-06-11 2004-01-06 3M Innovative Properties Company Projection system having low astigmatism
JP2003202629A (en) * 2001-11-05 2003-07-18 Sharp Corp Projection optical apparatus
CN1603886A (en) * 2003-09-29 2005-04-06 台达电子工业股份有限公司 Projection light machine with reflecting light valve and projected display
JP2005172955A (en) 2003-12-08 2005-06-30 Hitachi Maxell Ltd Polarizer, manufacturing method thereof, and projection type liquid crystal display device
JP2006084776A (en) 2004-09-16 2006-03-30 Lg Electronics Inc Wire-grid polarizer and its manufacturing method
KR100642003B1 (en) * 2005-06-02 2006-11-02 엘지전자 주식회사 Wire grid polarizer, method for fabricating the same and back light unit
US7894019B2 (en) * 2005-10-17 2011-02-22 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and liquid crystal display device using the same
US7854864B2 (en) * 2006-04-28 2010-12-21 Konica Minolta Opto, Inc. Method for manufacturing an optical film having a convexoconcave structure
JP4520445B2 (en) 2006-10-11 2010-08-04 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP2008268940A (en) * 2007-03-27 2008-11-06 Toray Ind Inc Reflection type polarizing plate and liquid crystal display device using same
JP5076604B2 (en) 2007-04-04 2012-11-21 東レ株式会社 Reflective polarizing plate and liquid crystal display device using the same
US8027086B2 (en) * 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
JP5365626B2 (en) * 2008-04-08 2013-12-11 旭硝子株式会社 Manufacturing method of wire grid type polarizer
JP5203784B2 (en) * 2008-04-11 2013-06-05 旭化成イーマテリアルズ株式会社 Wire grid polarizer and laminate using the same
JP2010085990A (en) 2008-09-03 2010-04-15 Asahi Kasei E-Materials Corp Wire grid polarizing plate
JP5205186B2 (en) 2008-09-10 2013-06-05 旭化成イーマテリアルズ株式会社 Laminate storage method
JP4824068B2 (en) * 2008-10-29 2011-11-24 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP2010204626A (en) * 2009-02-05 2010-09-16 Asahi Glass Co Ltd Wire grid polarizer and manufacturing method therefor
JP2010256553A (en) 2009-04-23 2010-11-11 Asahi Kasei E-Materials Corp Wire grid polarizing film
JPWO2010126110A1 (en) * 2009-04-30 2012-11-01 旭硝子株式会社 Wire grid polarizer and method of manufacturing the same
KR20120106923A (en) * 2009-07-01 2012-09-27 아사히 가라스 가부시키가이샤 Method for producing article having fine recessed and projected structure on surface, and method for producing wire grid polarizer
JP5442344B2 (en) 2009-07-17 2014-03-12 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP2011059370A (en) * 2009-09-10 2011-03-24 Asahi Kasei E-Materials Corp Wire grid polarizer and method of preparing the same
JP5590039B2 (en) * 2009-10-08 2014-09-17 旭硝子株式会社 Wire grid polarizer and method of manufacturing the same
JP2011090141A (en) * 2009-10-22 2011-05-06 Asahi Glass Co Ltd Wire grid type polarizer and method for manufacturing the same
JP5619586B2 (en) * 2009-12-09 2014-11-05 旭化成イーマテリアルズ株式会社 Projection display equipment
JP5379709B2 (en) 2010-01-28 2013-12-25 旭化成イーマテリアルズ株式会社 Manufacturing method of wire grid polarizer
JP5833320B2 (en) * 2010-02-18 2015-12-16 旭化成イーマテリアルズ株式会社 Polarized illumination device and projection display device
JP5330314B2 (en) * 2010-05-24 2013-10-30 旭化成イーマテリアルズ株式会社 Manufacturing method of wire grid polarizing plate
JP6006479B2 (en) 2010-07-30 2016-10-12 旭化成株式会社 Polarized beam splitter and projection display device
JP2012108468A (en) 2010-10-25 2012-06-07 Asahi Kasei E-Materials Corp Wire grid polarization plate

Also Published As

Publication number Publication date
JPWO2013054900A1 (en) 2015-12-10
KR101622056B1 (en) 2016-05-17
KR20140067067A (en) 2014-06-03
JP2017173832A (en) 2017-09-28
WO2013054900A1 (en) 2013-04-18
CN103842862B (en) 2017-04-05
JP6063386B2 (en) 2017-01-18
KR20160042146A (en) 2016-04-18
KR101867192B1 (en) 2018-06-12
JP2016027418A (en) 2016-02-18
CN103842862A (en) 2014-06-04
TWI499812B (en) 2015-09-11
US9726929B2 (en) 2017-08-08
DE112012004296T5 (en) 2014-07-10
DE112012004296B4 (en) 2021-01-07
US20140293142A1 (en) 2014-10-02
TW201329536A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
JP6446497B2 (en) Wire grid polarizer, projection display apparatus, and method of manufacturing wire grid polarizer
US7894019B2 (en) Wire grid polarizer and liquid crystal display device using the same
JP4275692B2 (en) Wire grid polarizer and liquid crystal display using the same
JP5303928B2 (en) Reflective polarizing plate, method for producing the same, and liquid crystal display device using the same
TWI467252B (en) Wire grid type polarizer and manufacturing method thereof
JP2012108468A (en) Wire grid polarization plate
EP1775607A1 (en) Wire grid polarizer and manufacturing method of the same
JPWO2008084856A1 (en) Polarizing plate and liquid crystal display device using the same
JP6180089B2 (en) Optical element and projection-type image display device using the same
JP6057606B2 (en) Optical element and manufacturing method thereof
JP2010085990A (en) Wire grid polarizing plate
JP2003302532A (en) Polarizing plate and method for manufacturing the same
JP5069037B2 (en) Laminated wire grid polarizer
JP5619586B2 (en) Projection display equipment
JP5833320B2 (en) Polarized illumination device and projection display device
JP2011257678A (en) Wire grid polarizing plate and liquid crystal display device using the wire grid polarizing plate
JP6006479B2 (en) Polarized beam splitter and projection display device
JP6049302B2 (en) Optical function member
JP2010091621A (en) Absorptive wire-grid polarizer
JP2011227243A (en) Wire grid polarization plate and its manufacturing method
JP6144481B2 (en) Video display device
JP2008268297A (en) Thin polarizing plate
JP2010256553A (en) Wire grid polarizing film
JP2015222444A (en) Manufacturing method of wire grid polarizing plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150