JP2008268297A - Thin polarizing plate - Google Patents

Thin polarizing plate Download PDF

Info

Publication number
JP2008268297A
JP2008268297A JP2007107540A JP2007107540A JP2008268297A JP 2008268297 A JP2008268297 A JP 2008268297A JP 2007107540 A JP2007107540 A JP 2007107540A JP 2007107540 A JP2007107540 A JP 2007107540A JP 2008268297 A JP2008268297 A JP 2008268297A
Authority
JP
Japan
Prior art keywords
polarizing plate
thin polarizing
liquid crystal
thickness
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007107540A
Other languages
Japanese (ja)
Other versions
JP5021357B2 (en
Inventor
Hiroshi Yamaki
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2007107540A priority Critical patent/JP5021357B2/en
Publication of JP2008268297A publication Critical patent/JP2008268297A/en
Application granted granted Critical
Publication of JP5021357B2 publication Critical patent/JP5021357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin polarizing plate which exhibits excellent optical characteristics and has thickness less than 100 μm. <P>SOLUTION: The thin polarizing plate is characterized in that its thickness is 80 μm or less, its degree of polarization is 99.9% or more, its transmittance is 35% or more, and its reflectance is 30% or more. The thin polarizing plate comprises: a substrate 1 having grid-shaped protruding parts 1a on its surface; dielectric layers 2 mounted on regions including the grid-shaped protruding parts 1a; and metal wires 3 mounted on the dielectric layers 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、厚さが極めて薄い状態で優れた光学特性を示す薄型偏光板に関する。   The present invention relates to a thin polarizing plate that exhibits excellent optical properties in a very thin state.

近年、携帯電話のような携帯端末装置においては、薄型化・軽量化が要求されてきており、できるだけ各部材の厚さを薄くすることが要求されている。携帯端末装置の一部品である偏光板についても同様であり、必要となる光学特性を維持した状態で、できるだけ薄くすることが望まれている。   In recent years, mobile terminal devices such as mobile phones have been required to be thinner and lighter, and it has been required to reduce the thickness of each member as much as possible. The same applies to a polarizing plate which is a component of a portable terminal device, and it is desired to make it as thin as possible while maintaining necessary optical characteristics.

偏光板の代表的なものとしては、PVA(ポリビニルアルコール)樹脂にヨウ素を加えてなる吸収型偏光板がある。この吸収型偏光板は、PVAにヨウ素を加えた偏光フィルムの両側にTAC(トリアセチルセルロース)樹脂の保護フィルムを積層して構成されている。偏光フィルムにおいては、その光吸収性能を発揮させるために、ヨウ素原子が3層〜5層配置されるだけの厚さが必要であり、少なくとも厚さ20μmとなる。また、TACフィルムについては、通常厚さ40μmである。したがって、この吸収型偏光板の厚さは全体で約100μmとなる。   A typical polarizing plate is an absorptive polarizing plate formed by adding iodine to PVA (polyvinyl alcohol) resin. This absorptive polarizing plate is formed by laminating protective films of TAC (triacetyl cellulose) resin on both sides of a polarizing film obtained by adding iodine to PVA. In order to exhibit the light absorption performance, the polarizing film needs to have a thickness that allows three to five iodine atoms to be disposed, and has a thickness of at least 20 μm. Further, the TAC film is usually 40 μm in thickness. Therefore, the thickness of the absorption polarizing plate is about 100 μm as a whole.

また、特許文献1ではコレステリック液晶の選択反射やフィルムの積層による屈折率差を利用した反射偏光型の偏光板が示されているが、この偏光板についても、全体の厚さが約100μmである。
特開平04−268505号公報
In addition, Patent Document 1 discloses a reflective polarization type polarizing plate using a refractive index difference caused by selective reflection of cholesteric liquid crystal or lamination of films, and the entire thickness of this polarizing plate is about 100 μm. .
JP 04-268505 A

このように、従来の吸収型又は反射型の偏光板は、いずれも厚さが100μm以上のものであり、優れた光学特性を発揮して、しかも厚さが100μm未満のものは存在していないのが現状である。   As described above, any of the conventional absorption-type or reflection-type polarizing plates has a thickness of 100 μm or more, exhibits excellent optical characteristics, and has no thickness of less than 100 μm. is the current situation.

本発明はかかる点に鑑みてなされたものであり、優れた光学特性を発揮して、しかも厚さが100μm未満である薄型偏光板を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the thin polarizing plate which exhibits the outstanding optical characteristic and is less than 100 micrometers in thickness.

本発明の薄型偏光板は、厚さが80μm以下であり、偏光度が99.9%以上であり、透過率が35%以上であり、反射率が30%以上であることを特徴とする。   The thin polarizing plate of the present invention has a thickness of 80 μm or less, a degree of polarization of 99.9% or more, a transmittance of 35% or more, and a reflectance of 30% or more.

本発明の薄型偏光板においては、表面に格子状凸部を有する基材と、前記格子状凸部を含む領域上に設けられた誘電体層と、前記誘電体層上に設けられた金属ワイヤと、で構成されていることが好ましい。   In the thin polarizing plate of the present invention, a substrate having a grid-like convex portion on the surface, a dielectric layer provided on a region including the grid-like convex portion, and a metal wire provided on the dielectric layer It is preferable that it is comprised by these.

本発明の液晶表示装置は、液晶パネルと、前記液晶パネルに光を照射する照明手段と、前記液晶パネルと前記照明手段との間に配置された上記薄型偏光板と、を具備することを特徴とする。   The liquid crystal display device of the present invention comprises a liquid crystal panel, illumination means for irradiating the liquid crystal panel with light, and the thin polarizing plate disposed between the liquid crystal panel and the illumination means. And

本発明の薄型偏光板によれば、厚さが80μm以下であり、偏光度が99.9%以上であり、透過率が35%以上であり、反射率が30%以上であるので、優れた光学特性を発揮して、しかも厚さが100μm未満である薄型偏光板を実現することができる。   According to the thin polarizing plate of the present invention, the thickness is 80 μm or less, the degree of polarization is 99.9% or more, the transmittance is 35% or more, and the reflectance is 30% or more. A thin polarizing plate that exhibits optical characteristics and has a thickness of less than 100 μm can be realized.

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
図1は、本発明の実施の形態に係る薄型偏光板の一部を示す断面図である。この薄型偏光板は、表面に格子状凸部1aを有する基材1と、基材1上に設けられた誘電体層2と、誘電体層2上に立設された金属ワイヤ3とから主に構成されている。なお、誘電体層2は必ずしも設けなくても良い。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a part of a thin polarizing plate according to an embodiment of the present invention. This thin polarizing plate is mainly composed of a base material 1 having a lattice-like convex portion 1a on the surface, a dielectric layer 2 provided on the base material 1, and a metal wire 3 standing on the dielectric layer 2. It is configured. The dielectric layer 2 is not necessarily provided.

基材1に用いる素材は、可視光領域で実質的に透明な素材であれば良いが、加工性に優れた樹脂であることが好ましい。例えば、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィン樹脂(COP)、架橋ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂などの非晶性熱可塑性樹脂や、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂などの結晶性熱可塑性樹脂や、アクリル系、エポキシ系、ウレタン系などの紫外線硬化性樹脂や熱硬化性樹脂が挙げられる。また、基材1として、紫外線硬化性樹脂や熱硬化性樹脂と、ガラスなどの無機基板、上記熱可塑性樹脂、トリアセテート樹脂とを組み合わせた複合基材を用いても良い。   The material used for the substrate 1 may be a material that is substantially transparent in the visible light region, but is preferably a resin excellent in workability. For example, polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin (COP), cross-linked polyethylene resin, polyvinyl chloride resin, polyarylate resin, polyphenylene ether resin, modified polyphenylene ether resin, polyetherimide resin, polyether Amorphous thermoplastic resins such as sulfone resin, polysulfone resin, polyether ketone resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polybutylene terephthalate resin, aromatic polyester resin, polyacetal Examples thereof include crystalline thermoplastic resins such as resins and polyamide resins, and ultraviolet curable resins and thermosetting resins such as acrylics, epoxies, and urethanes. Moreover, you may use the composite base material which combined the ultraviolet curable resin and the thermosetting resin, inorganic substrates, such as glass, the said thermoplastic resin, and a triacetate resin as the base material 1. FIG.

基材1の格子状凸部1aのピッチpは、可視光領域の広帯域にわたる偏光特性を考慮すると、150nm以下であり、好ましくは80nmから120nmである。ピッチpが小さくなるほど偏光特性が良くなるが、可視光に対しては80nmから120nmのピッチpで十分な偏光特性が得られる。400nm近傍の短波長光の偏光特性を重視しない場合は、ピッチpを150nm程度まで大きくしても良い。   The pitch p of the lattice-like convex portions 1a of the substrate 1 is 150 nm or less, preferably 80 nm to 120 nm in consideration of polarization characteristics over a wide band in the visible light region. The smaller the pitch p, the better the polarization characteristics. However, for visible light, sufficient polarization characteristics can be obtained at a pitch p of 80 to 120 nm. If the polarization characteristics of the short wavelength light in the vicinity of 400 nm are not important, the pitch p may be increased to about 150 nm.

本発明において、基材1の格子状凸部1aのピッチpと、誘電体層2のピッチと、金属ワイヤ3のピッチとは、本発明のワイヤグリッドのピッチとほぼ等しく、同じピッチをとることができる。   In the present invention, the pitch p of the grid-like convex portions 1a of the substrate 1, the pitch of the dielectric layer 2, and the pitch of the metal wires 3 are substantially equal to the pitch of the wire grid of the present invention, and take the same pitch. Can do.

基材1の格子状凸部1aの断面形状に制限はない。これらの断面形状は、例えば、台形、矩形、方形、プリズム状や、半円状などの正弦波状を挙げることができる。ここで、正弦波状とは凹部と凸部の繰り返しからなる曲線部をもつことを意味する。なお、曲線部は湾曲した曲線であればよく、例えば、凸部にくびれがある形状も正弦波状に含める。また、基材1の格子状凸部1a及びその側面の少なくとも一部を誘電体が覆いやすくする観点から、前記形状の端部又は頂点、谷は緩やかな曲率をもって湾曲していることが好ましい。また、基材1と誘電体層2との密着強度を高くする観点から、これらの断面形状は正弦波状であることがより好ましい。   There is no restriction | limiting in the cross-sectional shape of the grid-like convex part 1a of the base material 1. FIG. Examples of the cross-sectional shape include a trapezoidal shape, a rectangular shape, a square shape, a prism shape, and a sine wave shape such as a semicircular shape. Here, the sinusoidal shape means that it has a curved portion formed by repetition of a concave portion and a convex portion. In addition, the curved part should just be a curved curve, for example, the shape which has a constriction in a convex part is also included in a sine wave form. Further, from the viewpoint of facilitating covering of the lattice-like convex portion 1a of the substrate 1 and at least a part of its side surface with the dielectric, it is preferable that the end portion, vertex, or valley of the shape is curved with a gentle curvature. Further, from the viewpoint of increasing the adhesion strength between the substrate 1 and the dielectric layer 2, it is more preferable that these cross-sectional shapes are sinusoidal.

基材1に格子状凸部を設ける方法としては、表面にピッチが150nm以下の格子状凸部を有する型を用いて、基材の表面に格子状凸部を転写して成型する方法が挙げられる。ここで、表面にピッチが150nm以下の格子状凸部を有する型は、電子線ビーム描画法や干渉露光法により得た、ピッチが150nm以下の格子状凸部を有するレジストパタンを、順に導電化処理、メッキ処理、基材の除去処理を施すことで作製することができる。   As a method of providing the grid-like convex portions on the substrate 1, there is a method in which a mold having a grid-like convex portion having a pitch of 150 nm or less on the surface is used to transfer and mold the grid-like convex portions on the surface of the substrate. It is done. Here, the mold having a grid-like convex part with a pitch of 150 nm or less on the surface is made conductive in order by a resist pattern having a grid-like convex part with a pitch of 150 nm or less, obtained by electron beam lithography or interference exposure. It can be produced by performing a treatment, a plating treatment, and a substrate removal treatment.

誘電体層2を構成する誘電体は、可視光領域で実質的に透明な誘電体であれば良い。基材1を構成する材料及び金属ワイヤ3を構成する金属との間の密着性が強い誘電体材料を好適に用いることができる。例えば、珪素(Si)の酸化物、窒化物、ハロゲン化物、炭化物の単体又はその複合物や、アルミニウム(Al)、クロム(Cr)、イットリウム(Y)、ジルコニア(Zr)、タンタル(Ta)、チタン(Ti)、バリウム(Ba)、インジウム(In)、錫(Sn)、亜鉛(Zn)、マグネシウム(Mg)、カルシウム(Ca)、セリウム(Ce)、銅(Cu)などの金属の酸化物、窒化物、ハロゲン化物、炭化物の単体又はそれらの複合物(誘電体単体に他の元素、単体又は化合物が混ざった誘電体)を用いることができる。   The dielectric constituting the dielectric layer 2 may be a dielectric that is substantially transparent in the visible light region. A dielectric material having strong adhesion between the material constituting the substrate 1 and the metal constituting the metal wire 3 can be suitably used. For example, silicon (Si) oxide, nitride, halide, carbide alone or a composite thereof, aluminum (Al), chromium (Cr), yttrium (Y), zirconia (Zr), tantalum (Ta), Metal oxides such as titanium (Ti), barium (Ba), indium (In), tin (Sn), zinc (Zn), magnesium (Mg), calcium (Ca), cerium (Ce), copper (Cu) , Nitrides, halides, carbides or composites thereof (dielectrics in which other elements, simple substances, or compounds are mixed in a dielectric substance) can be used.

誘電体層2を、格子状凸部1aを有する基材1の格子状凸部を含んだ領域上に形成する方法としては、誘電体層2を構成する材料により適宜選択する。例えば、スパッタリング法、真空蒸着法などの物理的蒸着法を好適に用いることができる。密着強度の観点からスパッタリング法が好ましい。   The method for forming the dielectric layer 2 on the region including the lattice-shaped protrusions of the substrate 1 having the lattice-shaped protrusions 1 a is appropriately selected depending on the material constituting the dielectric layer 2. For example, a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method can be suitably used. The sputtering method is preferable from the viewpoint of adhesion strength.

金属ワイヤ3を構成する金属としては、可視光領域で光の反射率が高く、誘電体層2を構成する材料との間の密着性のよいものであることが好ましい。例えば、アルミニウム(Al)や銀(Ag)又はその合金で構成されていることが好ましい。コストの観点から、Al又はAl合金で構成されていることがさらに好ましい。   The metal constituting the metal wire 3 is preferably a metal having high light reflectance in the visible light region and good adhesion to the material constituting the dielectric layer 2. For example, it is preferably made of aluminum (Al), silver (Ag), or an alloy thereof. From the viewpoint of cost, it is more preferable that it is made of Al or an Al alloy.

金属ワイヤ3を形成するために金属を基材1又は誘電体層2上に被着する方法としては、基材1又は誘電体層2を構成する材料と金属ワイヤ3とを構成する金属との間で十分な密着性が得られる方法であれば特に限定されない。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などの物理的蒸着法を好適に用いることができる。中でも、金属を誘電体層2の凸部に選択的に、又は誘電体層2の凸部の一方の側面に偏って選択積層できるような方法が好ましい。そのような方法として、例えば、真空蒸着法が挙げられる。   As a method of depositing metal on the substrate 1 or the dielectric layer 2 to form the metal wire 3, the material constituting the substrate 1 or the dielectric layer 2 and the metal constituting the metal wire 3 are used. The method is not particularly limited as long as sufficient adhesion can be obtained. For example, a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method can be suitably used. Among them, a method is preferable in which the metal can be selectively stacked on the convex portion of the dielectric layer 2 selectively or biased to one side surface of the convex portion of the dielectric layer 2. An example of such a method is a vacuum deposition method.

上記構成を有する薄型偏光板においては、ベース領域と、このベース領域上に設けられた偏光領域とを有する。ベース領域の厚さHは、基本的に基材1の厚さとなるので、約5μm〜約80μm程度である。また、偏光領域の厚さhは、格子状凸部1a、誘電体層2及び金属ワイヤ3を合わせて1μm以下である。したがって、この薄型偏光板の全体の厚さは80μm以下となる。   The thin polarizing plate having the above configuration includes a base region and a polarizing region provided on the base region. Since the thickness H of the base region is basically the thickness of the substrate 1, it is about 5 μm to about 80 μm. Further, the thickness h of the polarizing region is 1 μm or less including the lattice-like convex portion 1a, the dielectric layer 2, and the metal wire 3. Therefore, the total thickness of the thin polarizing plate is 80 μm or less.

上記構成を有する薄型偏光板においては、ワイヤグリッド偏光板の偏光領域を有するので、偏光度が99.9%以上、透過率が35%以上、反射率が30%以上である。   The thin polarizing plate having the above configuration has a polarization region of a wire grid polarizing plate, so that the degree of polarization is 99.9% or more, the transmittance is 35% or more, and the reflectance is 30% or more.

次に、本発明に係る薄型偏光板を液晶表示装置に用いた場合について説明する。図2は、本発明の実施の形態に係る薄型偏光板を用いた液晶表示装置を示す図である。   Next, the case where the thin polarizing plate according to the present invention is used in a liquid crystal display device will be described. FIG. 2 is a diagram showing a liquid crystal display device using a thin polarizing plate according to an embodiment of the present invention.

図2に示す液晶表示装置は、光を発光するバックライトのような照明装置11と、この照明装置11上に配置された薄型偏光板12と、薄型偏光板12上に配置された液晶パネル132及び偏光板133とから主に構成される。すなわち、本発明に係る薄型偏光板12は、液晶パネル132と照明装置11との間に配置される。   The liquid crystal display device shown in FIG. 2 includes a lighting device 11 such as a backlight that emits light, a thin polarizing plate 12 disposed on the lighting device 11, and a liquid crystal panel 132 disposed on the thin polarizing plate 12. And the polarizing plate 133. That is, the thin polarizing plate 12 according to the present invention is disposed between the liquid crystal panel 132 and the lighting device 11.

液晶パネル132は、透過型液晶パネルであり、ガラスや透明樹脂基板間に液晶材料などを挟持して構成されている。なお、図2の液晶表示装置中において、通常使用されている偏光板保護フィルム、位相差フィルム、拡散板、配向膜、透明電極、カラーフィルターなどの各種光学素子については説明を省略する。   The liquid crystal panel 132 is a transmissive liquid crystal panel, and is configured by sandwiching a liquid crystal material or the like between glass and a transparent resin substrate. In the liquid crystal display device of FIG. 2, description of various optical elements such as a polarizing plate protective film, a retardation film, a diffusion plate, an alignment film, a transparent electrode, and a color filter that are usually used is omitted.

このような構成の液晶表示装置においては、照明装置11から出射された光が薄型偏光板12の基材1の基部側から入射し、ワイヤ側から液晶パネル132を通過して外界に出射される(図中の矢印方向)。この場合において、薄型偏光板12が可視光領域において優れた偏光度を発揮するので、コントラストの高い表示を得ることが可能となる。また、さらに高いコントラストが要求される場合には、偏光板133の外側、すなわち照明装置11と反対の方向から入射する(外)光が、液晶パネル132を透過して薄型偏光板12により反射され、再び液晶パネル132の外側に戻るのを防止するために、薄型偏光板12と液晶パネル132との間に、ヨウ素や液晶などの二色性偏光素材を用いた吸収型の偏光板131を、薄型偏光板12と偏光軸を合わせて挿入することが好ましい。この場合、吸収型の偏光板は透過率が高いものが好ましく、偏光度は低いものであっても良い。   In the liquid crystal display device having such a configuration, the light emitted from the illumination device 11 is incident from the base side of the substrate 1 of the thin polarizing plate 12 and is emitted from the wire side through the liquid crystal panel 132 to the outside. (Arrow direction in the figure). In this case, since the thin polarizing plate 12 exhibits an excellent degree of polarization in the visible light region, a display with high contrast can be obtained. Further, when higher contrast is required, light (external) incident from the outside of the polarizing plate 133, that is, from the direction opposite to the lighting device 11, is transmitted through the liquid crystal panel 132 and reflected by the thin polarizing plate 12. In order to prevent returning to the outside of the liquid crystal panel 132 again, an absorption type polarizing plate 131 using a dichroic polarizing material such as iodine or liquid crystal is interposed between the thin polarizing plate 12 and the liquid crystal panel 132. It is preferable to insert the thin polarizing plate 12 with the polarization axis aligned. In this case, the absorption type polarizing plate preferably has a high transmittance and may have a low degree of polarization.

次に、本発明の効果を明確にするために行った実施例について説明する。
(格子状凸部を有する基材の作製)
・微細凹凸格子形状の作成
ガラス上にフォトレジストを塗布した基板に、電子線ビーム描画法を用いて、微細凹凸格子を形成した。このレジストパタンの表面と断面を、電界放出型走査型電子顕微鏡(FE−SEM)にて観察したところ、微細凹凸格子のピッチと高さがそれぞれ、115nm/130nm(ピッチ/高さ)であり、その断面形状がほぼ台形形状で、上面からの形状が縞状格子状となっており凸部の幅が45nmで谷部の幅が70nmであることが分かった。
Next, examples performed for clarifying the effects of the present invention will be described.
(Preparation of a substrate having a grid-like convex part)
-Creation of fine concavo-convex lattice shape A fine concavo-convex lattice was formed on a substrate coated with a photoresist on glass by using an electron beam drawing method. When the surface and cross section of this resist pattern were observed with a field emission scanning electron microscope (FE-SEM), the pitch and height of the fine concavo-convex grating were 115 nm / 130 nm (pitch / height), respectively. It was found that the cross-sectional shape was a substantially trapezoidal shape, the shape from the upper surface was a striped lattice shape, the width of the convex portion was 45 nm, and the width of the valley portion was 70 nm.

・ニッケルスタンパ作製
得られた、115nmピッチのレジストパタン表面に、導電化処理として金をスパッタリングにより30nm被覆した後、ニッケルを電気メッキし、厚さ0.3mmの微細凹凸格子を表面に有するニッケルスタンパを作製した。
Nickel stamper fabrication The obtained resist pattern surface with a 115 nm pitch was coated with 30 nm of gold as a conductive treatment by sputtering, and then electroplated with nickel, and a nickel stamper having a fine concavo-convex grating with a thickness of 0.3 mm on the surface. Was made.

・紫外線硬化性樹脂を用いた格子状凸部転写フィルムの作製
厚さ40μmのポリエチレンテレフタレート樹脂フィルム(以下、PETフィルム)に紫外線硬化性樹脂(東洋合成株式会社製PAK01)を約1μm塗布し、塗布面を下にして上記115nmピッチの微細凹凸格子を表面に有するニッケルスタンパ上に、それぞれ端部からニッケルスタンパとPETフィルムとの間に空気が入らないように載せ、PETフィルム側から中心波長365nmの紫外線ランプを用いて紫外線を1000mJ/cm2照射し、ニッケルスタンパの微細凹凸格子を転写した。得られた格子状凸部転写フィルムをFE−SEMにより観察し、その断面形状がほぼ台形形状で、上面からの形状が縞状格子状となっていることを確認した。
・ Preparation of lattice-shaped convex transfer film using UV curable resin Apply about 1 μm of UV curable resin (PAK01 manufactured by Toyo Gosei Co., Ltd.) to a 40 μm thick polyethylene terephthalate resin film (hereinafter referred to as PET film). On the nickel stamper having the 115 nm pitch fine concavo-convex grating on the surface with the surface facing down, air is placed between the nickel stamper and the PET film from each end, and the central wavelength of 365 nm is from the PET film side. Ultraviolet rays were irradiated at 1000 mJ / cm 2 using an ultraviolet lamp to transfer the fine uneven lattice of the nickel stamper. The obtained lattice-like convex transfer film was observed by FE-SEM, and it was confirmed that the cross-sectional shape was substantially trapezoidal and the shape from the upper surface was a striped lattice.

(高偏光度を持つ偏光板の作製:実施例)
・スパッタリング法を用いた誘電体層の形成
上記のように紫外線硬化性樹脂を用いて作製した格子状凸部転写フィルムに、スパッタリング法を用い誘電体を被覆した。本実施例では、誘電体として窒化珪素を用いた場合について説明する。Arガス圧力0.67Pa、スパッタリングパワー4W/cm2、被覆速度0.22nm/sにて誘電体の被覆を行った。層厚み比較用サンプルとして表面が平滑なガラス基板を格子状凸部転写フィルムと同時に装置に挿入し、平滑ガラス基板への誘電体積層厚みが5nmとなるように成膜を行った。
(Preparation of polarizing plate with high degree of polarization: Examples)
Formation of Dielectric Layer Using Sputtering Method A lattice-shaped convex transfer film produced using an ultraviolet curable resin as described above was coated with a dielectric using a sputtering method. In this embodiment, a case where silicon nitride is used as a dielectric will be described. The dielectric was coated at an Ar gas pressure of 0.67 Pa, a sputtering power of 4 W / cm 2 , and a coating speed of 0.22 nm / s. As a layer thickness comparison sample, a glass substrate having a smooth surface was inserted into the apparatus simultaneously with the lattice-shaped convex transfer film, and film formation was performed so that the dielectric laminate thickness on the smooth glass substrate was 5 nm.

・真空蒸着法を用いた金属の蒸着
格子状凸部転写フィルムに誘電体層を形成した後、電子ビーム真空蒸着法(EB蒸着法)を用いて金属ワイヤを形成した。本実施例では、金属としてアルミニウム(Al)を用いた。真空度2.5×10-3Pa、蒸着速度20nm/s、基板温度は常温として蒸着を行った。層厚み比較用サンプルとして表面が平滑なガラス基板を誘電体積層格子状凸部転写フィルムと同時に装置に挿入し、平滑基板へのAl蒸着厚みが170nmとなるように蒸着を行った。なお、格子の長手方向と垂直に交わる平面内において基材面の法線と蒸着源とのなす角度θは20°とした。
-Metal deposition using vacuum deposition method After forming a dielectric layer on the lattice-shaped convex transfer film, a metal wire was formed using an electron beam vacuum deposition method (EB deposition method). In this example, aluminum (Al) was used as the metal. Deposition was performed with a degree of vacuum of 2.5 × 10 −3 Pa, a deposition rate of 20 nm / s, and a substrate temperature of room temperature. As a layer thickness comparison sample, a glass substrate having a smooth surface was inserted into the apparatus at the same time as the dielectric laminated lattice-shaped convex transfer film, and vapor deposition was performed so that the Al deposition thickness on the smooth substrate was 170 nm. Note that the angle θ formed by the normal of the substrate surface and the evaporation source in a plane perpendicular to the longitudinal direction of the lattice was 20 °.

・エッチングによる不要金属の除去
格子状凸部転写フィルムに誘電体及びAlを積層した後、フィルムを室温下の0.1重量%水酸化ナトリウム水溶液中で、処理時間を30秒〜120秒の間において10秒間隔で変えながら洗浄(エッチング)し、すぐに水洗してエッチングを停止させた。フィルムを乾燥させて薄型偏光板を得た。フィルムの厚さは41μmであった。
・ Elimination of unnecessary metal by etching After laminating dielectric and Al on the lattice-shaped convex transfer film, the film is treated in a 0.1 wt% sodium hydroxide aqueous solution at room temperature for a treatment time of 30 seconds to 120 seconds. In FIG. 1, the substrate was washed (etched) while changing at intervals of 10 seconds, and immediately washed with water to stop the etching. The film was dried to obtain a thin polarizing plate. The film thickness was 41 μm.

(分光光度計による偏光性能評価)
得られた実施例の薄型偏光板について、分光光度計を用い偏光度及び光線透過率を測定した。ここでは、直線偏光に対する平行ニコル、直交ニコル状態での透過光強度を測定し、偏光度、光線透過率は下記式より算出した。また、測定波長域は可視光として400nm〜700nmとした。
偏光度=[(Imax−Imin)/(Imax+Imin)]×100 %
光線透過率=[(Imax+Imin)/2] ×100 %
ここで、Imaxは平行ニコル時の透過光強度であり、Iminは直交ニコル時の透過光強度である。
その結果、90秒エッチング処理をした薄型偏光板の偏光度は99.91%であり、光線透過率は41.9%であった。
(Evaluation of polarization performance by spectrophotometer)
About the thin polarizing plate of the obtained Example, the degree of polarization and the light transmittance were measured using the spectrophotometer. Here, the transmitted light intensity in a parallel Nicols state and a crossed Nicols state with respect to linearly polarized light was measured, and the degree of polarization and the light transmittance were calculated from the following equations. The measurement wavelength range was 400 nm to 700 nm as visible light.
Polarization degree = [(Imax−Imin) / (Imax + Imin)] × 100%
Light transmittance = [(Imax + Imin) / 2] × 100%
Here, Imax is the transmitted light intensity at the time of parallel Nicols, and Imin is the transmitted light intensity at the time of crossed Nicols.
As a result, the degree of polarization of the thin polarizing plate etched for 90 seconds was 99.91%, and the light transmittance was 41.9%.

(反射率評価)
得られた実施例の薄型偏光板について、分光光度計を用いワイヤグリッド面に入射角度8度で入光したときの反射率を測定したところ41.3%であった。
(Reflectance evaluation)
About the thin polarizing plate of the obtained Example, when the light incident on the wire grid surface at an incident angle of 8 degrees was measured using a spectrophotometer, it was 41.3%.

(薄型偏光板の作製:比較例1)
ヨウ素含有PVAフィルムを薄層化して厚さ10μmとし、この両側に厚さ20μmのTACフィルムを積層して吸収型偏光板を作製した。この吸収型偏光板について、上記のようにして、偏光度、光線透過率を調べた。その結果、偏光度が96.5%であり、光線透過率が46.8%であった。このため、この吸収型偏光板は、十分な光学性能を発揮していなかった。特に、偏光度については、偏光性能を発揮するために十分なヨウ素量がないために低い値になったと考えられる。
(Preparation of thin polarizing plate: Comparative Example 1)
The iodine-containing PVA film was thinned to a thickness of 10 μm, and an TAC film having a thickness of 20 μm was laminated on both sides to prepare an absorption type polarizing plate. About this absorption type polarizing plate, the polarization degree and the light transmittance were investigated as described above. As a result, the degree of polarization was 96.5% and the light transmittance was 46.8%. For this reason, this absorption-type polarizing plate did not exhibit sufficient optical performance. In particular, the degree of polarization is considered to be a low value because there is not enough iodine to exhibit polarization performance.

(薄型偏光板の作製:比較例2)
輝度向上フィルム(積層型反射偏光フィルム:DBEF)を半分の厚みの部分で積層を剥がすことで薄層化して厚さ50μmとした。この反射型偏光板について、上記のようにして、偏光度、光線透過率及び反射率を調べた。その結果、偏光度が90.2%であり、光線透過率が53.1%であり、反射率が45.2%であった。このため、十分な光学性能を発揮していなかった。
(Preparation of thin polarizing plate: Comparative Example 2)
The brightness enhancement film (laminated reflective polarizing film: DBEF) was thinned by peeling off the laminate at a half thickness portion to a thickness of 50 μm. About this reflection type polarizing plate, polarization degree, light transmittance, and reflectance were investigated as mentioned above. As a result, the degree of polarization was 90.2%, the light transmittance was 53.1%, and the reflectance was 45.2%. For this reason, sufficient optical performance was not exhibited.

本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態における寸法、材質などは例示的なものであり、適宜変更して実施することが可能である。また、上記実施の形態における偏光板については、板状の部材である必要はなく、必要に応じてシート状、フィルム状であっても良い。その他、本発明の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the embodiment described above, and can be implemented with various modifications. For example, the dimensions, materials, and the like in the above-described embodiment are illustrative, and can be changed as appropriate. Moreover, the polarizing plate in the said embodiment does not need to be a plate-shaped member, and may be a sheet form and a film form as needed. In addition, various modifications can be made without departing from the scope of the present invention.

本発明の実施の形態に係る薄型偏光板の一部を示す断面図である。It is sectional drawing which shows a part of thin-type polarizing plate which concerns on embodiment of this invention. 本発明の実施の形態に係る薄型偏光板を用いた液晶表示装置を示す図である。It is a figure which shows the liquid crystal display device using the thin-shaped polarizing plate which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 基材
1a 格子状凸部
2 誘電体層
3 金属ワイヤ
11 照明装置
12 薄型偏光板
131,133 偏光板
132 液晶パネル
DESCRIPTION OF SYMBOLS 1 Base material 1a Lattice-like convex part 2 Dielectric layer 3 Metal wire 11 Illuminating device 12 Thin polarizing plate 131,133 Polarizing plate 132 Liquid crystal panel

Claims (3)

厚さが80μm以下であり、偏光度が99.9%以上であり、透過率が35%以上であり、反射率が30%以上であることを特徴とする薄型偏光板。   A thin polarizing plate having a thickness of 80 μm or less, a degree of polarization of 99.9% or more, a transmittance of 35% or more, and a reflectance of 30% or more. 表面に格子状凸部を有する基材と、前記格子状凸部を含む領域上に設けられた誘電体層と、前記誘電体層上に設けられた金属ワイヤと、で構成されていることを特徴とする請求項1記載の薄型偏光板。   It is comprised by the base material which has a grid | lattice-like convex part on the surface, the dielectric material layer provided on the area | region containing the said grid-like convex part, and the metal wire provided on the said dielectric material layer. The thin polarizing plate according to claim 1. 液晶パネルと、前記液晶パネルに光を照射する照明手段と、前記液晶パネルと前記照明手段との間に配置された請求項1又は請求項2記載の薄型偏光板と、を具備することを特徴とする液晶表示装置。   A liquid crystal panel, an illuminating means for irradiating the liquid crystal panel with light, and the thin polarizing plate according to claim 1 or 2 disposed between the liquid crystal panel and the illuminating means. A liquid crystal display device.
JP2007107540A 2007-04-16 2007-04-16 Thin polarizing plate Active JP5021357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107540A JP5021357B2 (en) 2007-04-16 2007-04-16 Thin polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107540A JP5021357B2 (en) 2007-04-16 2007-04-16 Thin polarizing plate

Publications (2)

Publication Number Publication Date
JP2008268297A true JP2008268297A (en) 2008-11-06
JP5021357B2 JP5021357B2 (en) 2012-09-05

Family

ID=40047928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107540A Active JP5021357B2 (en) 2007-04-16 2007-04-16 Thin polarizing plate

Country Status (1)

Country Link
JP (1) JP5021357B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250289A (en) * 2009-03-25 2010-11-04 Asahi Kasei E-Materials Corp Wire grid polarizing plate and method of manufacturing the same, and liquid crystal display
JP2013174861A (en) * 2012-01-25 2013-09-05 Fujifilm Corp Polarizing plate and manufacturing method thereof, and liquid crystal display device
JP2015061754A (en) * 2013-08-22 2015-04-02 富士フイルム株式会社 Optical film, polarizer, manufacturing method of polarizer, and image display unit
JP2018022197A (en) * 2011-12-06 2018-02-08 キヤノン株式会社 Rotary force transmission unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664693A (en) * 1992-08-10 1994-03-08 Tatsuno Co Ltd Oil feeder
JP2003502708A (en) * 1999-06-22 2003-01-21 モックステック Broadband wire grid polarizer for the visible spectrum
JP2005128228A (en) * 2003-10-23 2005-05-19 Hitachi Maxell Ltd Polarizer, polarizer production method, and projection type liquid crystal display device
JP2006003447A (en) * 2004-06-15 2006-01-05 Sony Corp Polarized light separating element and manufacturing method thereof
JP2006517307A (en) * 2003-02-10 2006-07-20 ナノオプト コーポレーション General-purpose broadband polarizer, device including the same, and manufacturing method thereof
JP2007024974A (en) * 2005-07-12 2007-02-01 Sekisui Chem Co Ltd Wire grid polarizing element
JP2007058106A (en) * 2005-08-26 2007-03-08 Nippon Zeon Co Ltd Polarized light separating film, method of manufacturing polarized light separating film and liquid crystal display apparatus
JP2007069604A (en) * 2005-08-10 2007-03-22 Toray Ind Inc Pattern forming method, pattern forming sheet and optically functional sheet formed using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664693A (en) * 1992-08-10 1994-03-08 Tatsuno Co Ltd Oil feeder
JP2003502708A (en) * 1999-06-22 2003-01-21 モックステック Broadband wire grid polarizer for the visible spectrum
JP2006517307A (en) * 2003-02-10 2006-07-20 ナノオプト コーポレーション General-purpose broadband polarizer, device including the same, and manufacturing method thereof
JP2005128228A (en) * 2003-10-23 2005-05-19 Hitachi Maxell Ltd Polarizer, polarizer production method, and projection type liquid crystal display device
JP2006003447A (en) * 2004-06-15 2006-01-05 Sony Corp Polarized light separating element and manufacturing method thereof
JP2007024974A (en) * 2005-07-12 2007-02-01 Sekisui Chem Co Ltd Wire grid polarizing element
JP2007069604A (en) * 2005-08-10 2007-03-22 Toray Ind Inc Pattern forming method, pattern forming sheet and optically functional sheet formed using it
JP2007058106A (en) * 2005-08-26 2007-03-08 Nippon Zeon Co Ltd Polarized light separating film, method of manufacturing polarized light separating film and liquid crystal display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250289A (en) * 2009-03-25 2010-11-04 Asahi Kasei E-Materials Corp Wire grid polarizing plate and method of manufacturing the same, and liquid crystal display
JP2018022197A (en) * 2011-12-06 2018-02-08 キヤノン株式会社 Rotary force transmission unit
US10635045B2 (en) 2011-12-06 2020-04-28 Canon Kabushiki Kaisha Cartridge detachably mountable to main assembly of electrophotographic image forming apparatus, assembling method for drive transmitting device for photosensitive drum, and electrophotographic image forming apparatus
US11163259B2 (en) 2011-12-06 2021-11-02 Canon Kabushiki Kaisha Cartridge detachably mountable to main assembly of electrophotographic image forming apparatus, assembling method for drive transmitting device for photosensitive drum, and electrophotographic image forming apparatus
US11619905B2 (en) 2011-12-06 2023-04-04 Canon Kabushiki Kaisha Cartridge detachably mountable to main assembly of electrophotographic image forming apparatus, assembling method for drive transmitting device for photosensitive drum, and electrophotographic image forming apparatus
JP2013174861A (en) * 2012-01-25 2013-09-05 Fujifilm Corp Polarizing plate and manufacturing method thereof, and liquid crystal display device
JP2015061754A (en) * 2013-08-22 2015-04-02 富士フイルム株式会社 Optical film, polarizer, manufacturing method of polarizer, and image display unit

Also Published As

Publication number Publication date
JP5021357B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4275692B2 (en) Wire grid polarizer and liquid crystal display using the same
JP5139829B2 (en) Wire grid type polarizing element and display device using the same
JP6063386B2 (en) Wire grid polarizer and projection display device
EP2090909A1 (en) Wire grid polarizer and manufacturing method of the same
JP2010085990A (en) Wire grid polarizing plate
EP2128667A1 (en) Grid polarizer
JP2010231896A (en) Backlight unit and display device using the same
JP2005037900A (en) Polarizing optical element and display device using the element
WO2006064693A1 (en) Polarizing plate, method of producing the polarizing plate, and liquid crystal display device using the polarizing plate
JP2010048999A (en) Wire grid polarizer and display using the same
JP5069037B2 (en) Laminated wire grid polarizer
JP5021357B2 (en) Thin polarizing plate
JP2012118237A (en) Wire grid polarization plate for infrared ray
JP5139830B2 (en) Wire grid type polarizing element
JP5069036B2 (en) Polarizing plate with high degree of polarization
JP5420859B2 (en) Composite wire grid polarizer and manufacturing method thereof
JP2011257678A (en) Wire grid polarizing plate and liquid crystal display device using the wire grid polarizing plate
JP5291424B2 (en) Absorption-type wire grid polarizer and liquid crystal display device
JP2010049017A (en) Method for producing absorptive wire grid polarizer
JP5619586B2 (en) Projection display equipment
JP5368011B2 (en) Absorption type wire grid polarizer
JP5833320B2 (en) Polarized illumination device and projection display device
JP5291435B2 (en) Wire grid polarizer and manufacturing method thereof
JP2012155163A (en) Wire grid polarizing plate
JP5291425B2 (en) Absorption-type wire grid polarizer and liquid crystal display device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350