JP4520445B2 - Wire grid polarizer - Google Patents

Wire grid polarizer Download PDF

Info

Publication number
JP4520445B2
JP4520445B2 JP2006278114A JP2006278114A JP4520445B2 JP 4520445 B2 JP4520445 B2 JP 4520445B2 JP 2006278114 A JP2006278114 A JP 2006278114A JP 2006278114 A JP2006278114 A JP 2006278114A JP 4520445 B2 JP4520445 B2 JP 4520445B2
Authority
JP
Japan
Prior art keywords
protective film
layer
wire grid
lattice
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006278114A
Other languages
Japanese (ja)
Other versions
JP2008096677A (en
Inventor
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2006278114A priority Critical patent/JP4520445B2/en
Publication of JP2008096677A publication Critical patent/JP2008096677A/en
Application granted granted Critical
Publication of JP4520445B2 publication Critical patent/JP4520445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Description

本発明は、150nm以下のピッチの微細凹凸格子を有するワイヤグリッド偏光板に関する。   The present invention relates to a wire grid polarizer having a fine concavo-convex grating with a pitch of 150 nm or less.

近年のフォトリソグラフィー技術の発達により、非常に狭いピッチのパターンを形成することができるようになってきている。このように狭いピッチ、特に光の波長レベルのピッチのパターンを形成することができると、このような狭ピッチパターンを有する部材や製品は、半導体分野だけでなく、光学分野においても利用することができる。特に、光学分野においては、150nm以下のピッチの微細凹凸格子を有する部材や製品は、利用範囲が広く、このような部材や製品に対する要求が高くなってきている。   With the recent development of photolithography technology, it has become possible to form patterns with a very narrow pitch. If a pattern having such a narrow pitch, particularly a light wavelength level pitch, can be formed, members and products having such a narrow pitch pattern can be used not only in the semiconductor field but also in the optical field. it can. In particular, in the optical field, members and products having a fine concavo-convex lattice with a pitch of 150 nm or less have a wide range of applications, and there is an increasing demand for such members and products.

例えば、光学分野においては、金属線間の間隔を光の波長よりもかなり小さくすることができれば、反射型偏光板として利用することが考えられる。このような偏光板は、透過しない光を反射して再利用することができるので、光の有効利用の点からも望ましいものである。しかしながら、150nm以下のピッチの微細凹凸格子を実現することができないのが現状であった。   For example, in the optical field, if the distance between metal lines can be made considerably smaller than the wavelength of light, it can be considered to be used as a reflective polarizing plate. Such a polarizing plate is desirable also from the viewpoint of effective use of light because it can reflect and reuse light that does not transmit. However, at present, it is impossible to realize a fine concavo-convex lattice having a pitch of 150 nm or less.

近年、非常に狭いピッチの微細凹凸格子を有するワイヤグリッド偏光子が開発されている(特許文献1)。このワイヤグリッド偏光子は、複数の凸部を有するガラス基板の凸部上に、透明誘電体膜を介して導電素子を形成することにより構成されている。しかしながら、上述したワイヤグリッド偏光子は、非常に狭いピッチの微細凹凸格子を有するので、取り扱いにおいて微細凹凸格子に何かが触れてしまうと微細凹凸格子が変形してしまい、偏光子としての光学的特性に影響を及ぼしてしまうことが考えられる。   In recent years, a wire grid polarizer having a fine concavo-convex grating with a very narrow pitch has been developed (Patent Document 1). This wire grid polarizer is configured by forming a conductive element on a convex portion of a glass substrate having a plurality of convex portions via a transparent dielectric film. However, since the above-described wire grid polarizer has a fine concavo-convex grid with a very narrow pitch, if something touches the fine concavo-convex grid in handling, the fine concavo-convex grid is deformed, and the optical as a polarizer It is possible that the characteristics will be affected.

そこで、微細凹凸格子を保護する目的で、埋め込み型のワイヤグリッド偏光子として、ワイヤ間の空間の屈折率を低く保ったまま、表面をガラスなどの保護板で覆うことが検討されている(特許文献2)。
特表2003−502708号公報 特表2003−519818号公報
Therefore, for the purpose of protecting the fine concavo-convex grating, it has been studied to cover the surface with a protective plate such as glass while keeping the refractive index of the space between the wires low as an embedded wire grid polarizer (patent) Reference 2).
Special table 2003-502708 gazette Special Table 2003-519818

しかしながら、上述したような埋め込み型のワイヤグリッド偏光子は、埋め込みによる偏光性能の低下が大きく、最適に使用するためには構成上の制約がある。また、ワイヤと保護板の間の結合方法については何ら開示されていない。   However, the embedded wire grid polarizer as described above has a large decrease in polarization performance due to the embedded, and there are structural limitations in order to use it optimally. In addition, there is no disclosure about a method for coupling between the wire and the protective plate.

本発明はかかる点に鑑みてなされたものであり、150nm以下のピッチの微細凹凸格子を有し、構成上の制約がなく、しかも可視光領域の広帯域にわたって優れた偏光度を発揮すると共に、微細凹凸格子を保護することができるワイヤグリッド偏光板及びそれを用いた液晶表示装置を提供することを目的とする。   The present invention has been made in view of such points, has a fine concavo-convex grating with a pitch of 150 nm or less, has no structural limitation, exhibits an excellent degree of polarization over a wide band in the visible light region, and is fine. It is an object of the present invention to provide a wire grid polarizing plate capable of protecting an uneven grating and a liquid crystal display device using the same.

本発明のワイヤグリッド偏光板は、格子状凸部を有する透明な基材と、前記基材の前記格子状凸部を含む領域上に設けられた金属ワイヤ層と、前記金属ワイヤ層の先端部と密着する粘着剤層を有する保護フィルムと、を具備し、前記基材のピッチが150nm以下であり、前記粘着剤層の前記金属ワイヤ層に対する密着力が平滑面に対する180度方向の剥離力で0.02N/25mm〜1N/25mmであり、前記粘着剤層は波長500nmの直線偏光に対する直交ニコル時の透過光強度が、前記保護フィルムを設けない場合の2倍以下となるような流動性を有する弾性材料で構成されていることを特徴とする。 The wire grid polarizing plate of the present invention includes a transparent base material having a grid-like convex portion, a metal wire layer provided on a region of the base material including the grid-like convex portion, and a tip portion of the metal wire layer A protective film having a pressure-sensitive adhesive layer that is in close contact with the substrate, wherein the pitch of the base material is 150 nm or less, and the adhesive force of the pressure-sensitive adhesive layer to the metal wire layer is a peel force in a direction of 180 degrees with respect to a smooth surface. 0.02 N / 25 mm to 1 N / 25 mm, and the pressure-sensitive adhesive layer has a fluidity such that the transmitted light intensity at the time of crossed Nicols with respect to linearly polarized light having a wavelength of 500 nm is twice or less that when the protective film is not provided. It is comprised with the elastic material which has .

本発明のワイヤグリッド偏光板においては、前記弾性材料は、架橋したシリコーンゴムもしくはアクリル系粘着剤であることが好ましい。 In the wire grid polarizer of the present invention, before Symbol elastic material is preferably a crosslinked silicone rubber or acrylic adhesive.

本発明のワイヤグリッド偏光板においては、前記粘着剤層の厚さが1μmから10μmであることが好ましい。 In the wire grid polarizing plate of the present invention, the pressure-sensitive adhesive layer preferably has a thickness of 1 μm to 10 μm.

本発明のワイヤグリッド偏光板においては、前記保護フィルムは、20nm又はそれ以下の位相差を有することが好ましい。   In the wire grid polarizing plate of the present invention, the protective film preferably has a phase difference of 20 nm or less.

本発明のワイヤグリッド偏光板においては、前記保護フィルムは、80nm又はそれ以上の位相差を有し、前記保護フィルムが位相差フィルムを兼ねることが好ましい。また、本発明のワイヤグリッド偏光板においては、前記保護フィルムが、COP、PC、PS、TAC、PETからなる群から選択されることが好ましい。また、本発明のワイヤグリッド偏光板においては、前記粘着剤層の前記金属ワイヤ層に対する密着力が、0.02N/25mm〜1N/25mmであることが好ましい。 In the wire grid polarizing plate of the present invention, it is preferable that the protective film has a retardation of 80 nm or more, and the protective film also serves as a retardation film. Moreover, in the wire grid polarizing plate of this invention, it is preferable that the said protective film is selected from the group which consists of COP, PC, PS, TAC, and PET. Moreover, in the wire grid polarizing plate of this invention, it is preferable that the adhesive force with respect to the said metal wire layer of the said adhesive layer is 0.02N / 25mm-1N / 25mm.

本発明によれば、格子状凸部を有する透明な基材と、前記基材の前記格子状凸部を含む領域上に設けられた金属ワイヤ層と、前記金属ワイヤ層の先端部と密着する粘着剤層を有する保護フィルムと、を具備するので、150nm以下のピッチの微細凹凸格子を有し、構成上の制約がなく、しかも可視光領域の広帯域にわたって優れた偏光度を発揮すると共に、微細凹凸格子を保護することができるワイヤグリッド偏光板を得ることができる。   According to the present invention, the transparent base material having the lattice-shaped convex portions, the metal wire layer provided on the region including the lattice-shaped convex portions of the base material, and the tip portion of the metal wire layer are in close contact with each other. And a protective film having a pressure-sensitive adhesive layer, so that it has a fine concavo-convex lattice with a pitch of 150 nm or less, has no structural restrictions, exhibits an excellent degree of polarization over a wide band in the visible light region, and is fine. A wire grid polarizing plate that can protect the uneven grating can be obtained.

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
図1は、本発明の実施の形態に係るワイヤグリッド偏光板の一部を示す概略断面図である。図1に示すワイヤグリッド偏光板は、格子状凸部1aを有する透明な基材1と、この基材1の格子状凸部1aを含む領域上に設けられた金属ワイヤ層2と、この金属ワイヤ層2の先端部と接触する粘着剤層3bを有する保護フィルム基材3aを備えた保護フィルム3とから主に構成されている。ここでは、基材1は、ベース基材11と、ベース基材11上に、格子状凸部1aを有するように設けられた紫外線硬化型樹脂層12とから構成されている。なお、基材1は、金属ワイヤ層2を設けるための格子状凸部1aを有するものであれば、単層で構成されていても良く、樹脂基材、ガラス基板などを好適に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view showing a part of a wire grid polarizer according to an embodiment of the present invention. The wire grid polarizing plate shown in FIG. 1 includes a transparent base material 1 having a grid-like convex portion 1a, a metal wire layer 2 provided on a region of the base material 1 including the grid-like convex portion 1a, and the metal It is mainly comprised from the protective film 3 provided with the protective film base material 3a which has the adhesive layer 3b which contacts the front-end | tip part of the wire layer 2. FIG. Here, the base material 1 is comprised from the base base material 11 and the ultraviolet curable resin layer 12 provided on the base base material 11 so that it may have the grid | lattice-like convex part 1a. In addition, if the base material 1 has the grid | lattice-shaped convex part 1a for providing the metal wire layer 2, you may be comprised by the single layer and using a resin base material, a glass substrate, etc. suitably. it can.

ベース基材11を構成するものとしては、PET(ポリエチレンテレフタレート)樹脂、PMMA(ポリメタクリル酸メチル)樹脂、PC(ポリカーボネート)樹脂、PS(ポリスチレン)樹脂、COP(シクロオレフィンポリマー)などの熱可塑性樹脂やTAC(トリアセチルセルロース)樹脂などの樹脂、ガラスなどを挙げることができる。紫外線硬化型樹脂層12を構成する紫外線硬化型樹脂としては、アクリル系、エポキシ系、ウレタン系などの紫外線硬化型樹脂を用いることができる。   The base substrate 11 is composed of a thermoplastic resin such as PET (polyethylene terephthalate) resin, PMMA (polymethyl methacrylate) resin, PC (polycarbonate) resin, PS (polystyrene) resin, COP (cycloolefin polymer). And resin such as TAC (triacetyl cellulose) resin, glass and the like. As the ultraviolet curable resin constituting the ultraviolet curable resin layer 12, an ultraviolet curable resin such as acrylic, epoxy, or urethane can be used.

基材1を単層で構成する場合、基材1を構成するものとしては、PET樹脂、PMMA樹脂、PC樹脂、PS樹脂、COPなどの熱可塑性樹脂やTAC樹脂などの樹脂、ガラスなどを挙げることができる。   When the base material 1 is constituted by a single layer, examples of the base material 1 include thermoplastic resins such as PET resin, PMMA resin, PC resin, PS resin, and COP, resins such as TAC resin, and glass. be able to.

紫外線硬化型樹脂に格子状凸部1aを設ける場合には、例えば、熱可塑性樹脂基材に格子状凸部形状を付与した後に基材に延伸加工を施して、150nm以下のピッチを有する格子状凸部を有する基材を得る。そして、このようにして得られた格子状凸部を有する基材を用いて型を作製し、その型を紫外線硬化型樹脂に押し当てながら紫外線硬化型樹脂を紫外線硬化して、型の格子状凸部を紫外線硬化型樹脂に転写して格子状凸部1aを設ける。   In the case where the grid-like convex portions 1a are provided on the ultraviolet curable resin, for example, a grid-like convex shape having a pitch of 150 nm or less is obtained by applying a grid-like convex shape to the thermoplastic resin substrate and then stretching the substrate. A base material having a convex portion is obtained. Then, a mold is produced using the base material having the grid-like convex portions obtained in this manner, and the UV-curable resin is UV-cured while pressing the mold against the UV-curable resin, and the mold lattice The convex portion is transferred to the ultraviolet curable resin to provide the lattice-shaped convex portion 1a.

また、熱可塑性樹脂に格子状凸部1aを設け、単層の基材とする場合には、150nm以下のピッチを有する格子状凸部を有する型を用いて熱可塑性樹脂に格子状凸部形状を熱転写するか、熱可塑性樹脂に延伸加工を施して、150nm以下のピッチを有する基材を得る方法が挙げられる。なお、このような熱可塑性樹脂基材の延伸については、本出願人の特願2006−2100号に記載されている。この内容はすべてここに含めておく。また、ガラス基板などに格子状凸部1aを設ける場合には、例えばフォトリソグラフィー、エッチングなどの通常のパターニング方法を用いればよい。   In addition, when the lattice-shaped convex portion 1a is provided on the thermoplastic resin to form a single-layer substrate, the shape of the lattice-shaped convex portion is formed on the thermoplastic resin using a mold having a lattice-shaped convex portion having a pitch of 150 nm or less. Or a method of obtaining a base material having a pitch of 150 nm or less by subjecting the thermoplastic resin to thermal transfer or stretching the thermoplastic resin. Such stretching of the thermoplastic resin substrate is described in Japanese Patent Application No. 2006-2100 of the present applicant. All this content is included here. Moreover, when providing the grid | lattice-like convex part 1a in a glass substrate etc., normal patterning methods, such as photolithography and an etching, may be used, for example.

基材1の格子状凸部1aのピッチは、可視光領域の広帯域にわたる偏光特性を考慮すると、120nm以下であり、好ましくは80nm〜120nmである。ピッチが小さくなるほど偏光特性が良くなるが、可視光に対しては80nm〜120nmのピッチで十分な偏光特性が得られる。また、400nm近傍の短波長光の偏光特性を重視しない場合は、ピッチを150nm程度まで大きくすることもできる。格子状凸部1aのピッチは、熱可塑性樹脂を基材1に用いた場合、基材1に格子状凸部形状を付与した後に施す延伸加工の条件を調整することにより制御することができる。   The pitch of the grid-like convex portions 1a of the substrate 1 is 120 nm or less, preferably 80 nm to 120 nm, considering polarization characteristics over a wide band in the visible light region. The smaller the pitch is, the better the polarization characteristics are. However, for visible light, sufficient polarization characteristics can be obtained at a pitch of 80 nm to 120 nm. If the polarization characteristics of short wavelength light in the vicinity of 400 nm are not important, the pitch can be increased to about 150 nm. When the thermoplastic resin is used for the base material 1, the pitch of the grid-like convex parts 1 a can be controlled by adjusting the conditions of the stretching process to be performed after the lattice-like convex part shape is imparted to the base material 1.

また、格子状凸部1a上に誘電体層を設けてもよい。特に、基材として樹脂基材を用いる場合、誘電体層を設けることが好ましい。誘電体層が格子状凸部1aの側面を覆うことにより、格子状凸部1aと誘電体層との間の接触面積が増加する。これにより、格子状凸部1aと誘電体層との間の密着性を向上させることができる。そして、このように格子状凸部1aと誘電体層との間の密着性が向上することにより、金属ワイヤ層2を強固に格子状凸部1a上に立設することができるので、金属ワイヤ層2を厚く設けてワイヤ全体(格子状凸部1a+金属ワイヤ層2)の高さを高くしても、ワイヤの外力に対する強度を高く保つことが可能となる。格子状凸部1aの高さは、誘電体層との密着強度を高め、誘電体層を格子状凸部1a上に選択的に高く積層することを考慮すると、格子状凸部間のピッチの0.5〜1.5倍、特に、格子状凸部間のピッチの0.8〜1.5倍であることが好ましい。格子状凸部1aと誘電体層の合計の高さは、強度、偏光性能などを考慮すると、100nm〜300nmであることが好ましく、特に、150nm〜250nmであることが好ましい。   In addition, a dielectric layer may be provided on the lattice-shaped convex portion 1a. In particular, when a resin substrate is used as the substrate, it is preferable to provide a dielectric layer. When the dielectric layer covers the side surface of the lattice-shaped convex portion 1a, the contact area between the lattice-shaped convex portion 1a and the dielectric layer is increased. Thereby, the adhesiveness between the grid | lattice-like convex part 1a and a dielectric material layer can be improved. Since the adhesion between the grid-like convex portion 1a and the dielectric layer is improved as described above, the metal wire layer 2 can be firmly erected on the grid-like convex portion 1a. Even if the layer 2 is provided thick and the height of the entire wire (lattice-shaped convex portion 1a + metal wire layer 2) is increased, the strength against the external force of the wire can be kept high. The height of the lattice-shaped convex portion 1a increases the adhesion strength with the dielectric layer, and considering the selective stacking of the dielectric layer on the lattice-shaped convex portion 1a, the pitch between the lattice-shaped convex portions is It is preferably 0.5 to 1.5 times, and particularly preferably 0.8 to 1.5 times the pitch between the lattice-shaped convex portions. The total height of the lattice-shaped convex portion 1a and the dielectric layer is preferably 100 nm to 300 nm, and particularly preferably 150 nm to 250 nm in consideration of strength, polarization performance, and the like.

金属ワイヤ層2を構成する金属としては、光の反射率が高い素材が好ましく、アルミニウム、銀などを挙げることができる。金属ワイヤ層2の高さは、偏光度、透過率などを考慮すると、120nm〜220nm、特に、140nm〜200nmであることが好ましい。また、ワイヤの幅は、偏光度、透過率などを考慮すると、格子状凸部間のピッチの35%〜60%であることが好ましい。ワイヤの高さと幅の比(アスペクト比)としては2〜5が好ましく、特に2〜3.5が好ましい。なお、金属ワイヤ層2を形成する方法としては、金属ワイヤ層2を構成する材料と基材を構成する材料とを考慮して適宜選択する。例えば、真空蒸着法などを用いることができる。   The metal constituting the metal wire layer 2 is preferably a material having a high light reflectance, and examples thereof include aluminum and silver. The height of the metal wire layer 2 is preferably 120 nm to 220 nm, particularly 140 nm to 200 nm, in consideration of the degree of polarization, transmittance, and the like. In addition, the width of the wire is preferably 35% to 60% of the pitch between the lattice-shaped convex portions in consideration of the degree of polarization, transmittance, and the like. The ratio between the height and width (aspect ratio) of the wire is preferably 2 to 5, and particularly preferably 2 to 3.5. The method for forming the metal wire layer 2 is appropriately selected in consideration of the material constituting the metal wire layer 2 and the material constituting the substrate. For example, a vacuum deposition method or the like can be used.

格子状凸部1aや、複数の格子状凸部によって形成される微細凹凸格子の凹部の断面形状に制限はない。これらの断面形状は、例えば台形、矩形、方形、プリズム状や、半円状などの正弦波状であってもよい。ここで、正弦波状とは凹部と凸部の繰り返しからなる曲線部をもつことを意味する。なお、曲線部は湾曲した曲線であればよく、例えば、凸部にくびれがある形状も正弦波状に含める。   There is no limitation on the cross-sectional shape of the concave portions of the fine concavo-convex lattice formed by the lattice-like convex portions 1a and the plurality of lattice-like convex portions. These cross-sectional shapes may be sinusoidal, such as trapezoidal, rectangular, square, prismatic, and semicircular. Here, the sinusoidal shape means that it has a curved portion formed by repetition of a concave portion and a convex portion. In addition, the curved part should just be a curved curve, for example, the shape which has a constriction in a convex part is also included in a sine wave form.

基材が樹脂基材である場合、基材と金属層との間に誘電体層を設けることが好ましく、格子状凸部及びその側面の少なくとも一部を誘電体層が覆い易くする観点から、前記断面形状の端部、頂点、谷は相対的に大きな曲率を持つ緩やかな湾曲形状を有することが好ましい。また、樹脂基材を用いた場合、樹脂基材と誘電体層との間の密着強度を高くする観点から、前記断面形状は正弦波状であることがより好ましい。   When the base material is a resin base material, it is preferable to provide a dielectric layer between the base material and the metal layer, from the viewpoint of facilitating the dielectric layer to cover at least part of the lattice-shaped convex portions and the side surfaces thereof, It is preferable that the end portion, apex, and valley of the cross-sectional shape have a gently curved shape having a relatively large curvature. When a resin base material is used, the cross-sectional shape is more preferably a sine wave shape from the viewpoint of increasing the adhesion strength between the resin base material and the dielectric layer.

保護フィルム3の粘着剤層3bは、金属ワイヤ層2と保護フィルム基材3aとを結合するために必要な結合力を有すると共に、金属ワイヤ層2のワイヤの頂部の形状に追従してワイヤの頂部に選択的に接触する。すなわち、粘着剤層3bは、保護フィルム3を金属ワイヤ層2上に設ける際に、金属ワイヤ層2のワイヤ間に入り込むことなしに、金属ワイヤ層2と密着し、保護フィルム3を金属ワイヤ層2から外す際に、金属ワイヤ層2のワイヤを基材1から剥離させることなしに、保護フィルム3を外す機能を持つ。また、粘着剤層3bは、このような機能により長時間放置しても、金属ワイヤ層2との間の密着態様が変わらない性質を持つ。したがって、粘着剤層3bの金属ワイヤ層2に対する密着力は、保護フィルム3を設けた際に保護フィルム3を確実に固定するために十分な力であり、粘着剤層3bの金属ワイヤ層2からの剥離力は、格子状凸部1a上に形成された金属ワイヤ層2に影響を与えることなく、例えばワイヤを変形させたり、ワイヤを基材1から剥離させることなく、金属ワイヤ層2から離すために十分な力である。例えば、粘着剤層3bの金属ワイヤ層2に対する密着力は、ガラスのような平滑面に対する180度方向の剥離値で0.02N/25mm〜1N/25mm、好ましくは、0.03N/25mm〜0.5N/25mmである。これにより、本発明のワイヤグリッド偏光板においては、金属ワイヤ層2を有する基材1上に対して保護フィルム3を多数回にわたって貼付・剥離することが可能となる。   The pressure-sensitive adhesive layer 3b of the protective film 3 has a bonding force necessary for bonding the metal wire layer 2 and the protective film substrate 3a, and follows the shape of the top of the wire of the metal wire layer 2 to follow the wire. Selectively contacts the top. That is, when the protective film 3 is provided on the metal wire layer 2, the pressure-sensitive adhesive layer 3b is in close contact with the metal wire layer 2 without entering between the wires of the metal wire layer 2, and the protective film 3 is attached to the metal wire layer. When removing from 2, the metal wire layer 2 has a function of removing the protective film 3 without causing the wires of the metal wire layer 2 to peel off from the substrate 1. In addition, the pressure-sensitive adhesive layer 3b has such a property that the adhesion state with the metal wire layer 2 does not change even if it is left for a long time due to such a function. Therefore, the adhesive force of the pressure-sensitive adhesive layer 3b to the metal wire layer 2 is sufficient to securely fix the protective film 3 when the protective film 3 is provided, and from the metal wire layer 2 of the pressure-sensitive adhesive layer 3b. The peeling force does not affect the metal wire layer 2 formed on the lattice-shaped convex portion 1a, for example, it is separated from the metal wire layer 2 without deforming the wire or peeling the wire from the substrate 1. There is enough power to. For example, the adhesive strength of the pressure-sensitive adhesive layer 3b to the metal wire layer 2 is 0.02 N / 25 mm to 1 N / 25 mm, preferably 0.03 N / 25 mm to 0 in terms of a peel value in the direction of 180 degrees with respect to a smooth surface such as glass. .5 N / 25 mm. Thereby, in the wire grid polarizing plate of this invention, it becomes possible to stick and peel the protective film 3 on the base material 1 which has the metal wire layer 2 many times.

このような粘着剤層3bを構成する材料としては、かなり低い流動性を有する弾性材料が挙げられる。ここで、かなり低い流動性とは、保護フィルム3を金属ワイヤ層2上に設けた際に、粘着剤層3bを構成する材料がワイヤ間に入り込まない程度の流動性をいう。このようないわゆる低流動性弾性材料としては、低流動性ゴム系弾性材料が挙げられる。具体的には、ポリアクリル酸エステルを主成分とするアクリル系粘着剤、架橋したシリコーンゴム(ポリオルガノシロキサン)、天然ゴム、ポリイソブチレンなどが挙げられる。また、このような粘着剤層3bを構成する材料は、低分子量成分(揮発成分)が少ないことが好ましい。このようなゴム系材料に、本発明の効果を損なわない質的、量的範囲内で、粘着性付与剤、オイル、ガラス転移温度シフト剤などの添加剤を付与しても良い。このような材料で構成された粘着剤層3bは、金属ワイヤ層2と主にファンデルワールス力で結合する。これにより、上述したように、金属ワイヤ層2を有する基材1上に対して保護フィルム3を多数回にわたって貼付・剥離することが可能となる。   Examples of the material constituting the pressure-sensitive adhesive layer 3b include an elastic material having a considerably low fluidity. Here, the considerably low fluidity refers to fluidity that prevents the material constituting the pressure-sensitive adhesive layer 3b from entering between the wires when the protective film 3 is provided on the metal wire layer 2. Examples of such so-called low-flowing elastic materials include low-flowing rubber-based elastic materials. Specifically, an acrylic pressure-sensitive adhesive mainly composed of a polyacrylic acid ester, a crosslinked silicone rubber (polyorganosiloxane), natural rubber, polyisobutylene and the like can be mentioned. Moreover, it is preferable that the material which comprises such an adhesive layer 3b has few low molecular weight components (volatile component). Additives such as tackifiers, oils, and glass transition temperature shift agents may be added to such rubber materials within the qualitative and quantitative ranges that do not impair the effects of the present invention. The pressure-sensitive adhesive layer 3b made of such a material is bonded to the metal wire layer 2 mainly by van der Waals force. Thereby, as above-mentioned, it becomes possible to stick and peel the protective film 3 many times with respect to the base material 1 which has the metal wire layer 2. FIG.

上記のような粘着剤層3bを有する保護フィルム3を、金属ワイヤ層2を有する基材1上に設けた際には、波長500nmの直線偏光に対する直交ニコル時の透過光強度が、保護フィルム3を設けない場合の2倍以下であることが好ましい。これにより、視感度が低下する400nm程度までのより短波長可視光に対し、実用上の性能低下を防ぐことができる。例えば、金属ワイヤ層2のワイヤ間の空間において、空気などの屈折率が1.0に近い媒体が介在することにより、500nm程度の短波長の光に対しても高い偏光度を示して金属ワイヤ層2の偏光性能を十分に発揮させることが可能となる。このため、粘着剤層3bの流動性をできるだけ低くして粘着剤層3bがワイヤ間の空間に入り込まなくすることが、500nm程度以下の短波長の光に対して高い偏光度を保持するために必要である。特にワイヤピッチが大きい場合、ワイヤ間の空間に粘着剤層3bが入り込み易くなるのを防ぐため、粘着剤層3bの流動性をより低くすることが好ましい。また、金属ワイヤ層2のワイヤは、150nm以下のピッチを有するので、可視光領域の広帯域にわたって優れた偏光度を発揮することができる。さらに、保護フィルム3を設けているので、金属ワイヤ層2が露出せずに、保護フィルム3により保護される。   When the protective film 3 having the pressure-sensitive adhesive layer 3b as described above is provided on the substrate 1 having the metal wire layer 2, the transmitted light intensity at the time of orthogonal Nicol with respect to linearly polarized light having a wavelength of 500 nm is It is preferable that it is 2 times or less of the case where no is provided. As a result, it is possible to prevent a practical performance degradation with respect to visible light having a shorter wavelength up to about 400 nm where the visibility is lowered. For example, in the space between the wires of the metal wire layer 2, a medium having a refractive index close to 1.0 such as air is present, so that the metal wire exhibits a high degree of polarization even for light having a short wavelength of about 500 nm The polarization performance of the layer 2 can be sufficiently exhibited. For this reason, the flowability of the pressure-sensitive adhesive layer 3b is made as low as possible so that the pressure-sensitive adhesive layer 3b does not enter the space between the wires in order to maintain a high degree of polarization with respect to light having a short wavelength of about 500 nm or less. is necessary. In particular, when the wire pitch is large, it is preferable to lower the fluidity of the pressure-sensitive adhesive layer 3b in order to prevent the pressure-sensitive adhesive layer 3b from easily entering the space between the wires. Moreover, since the wire of the metal wire layer 2 has a pitch of 150 nm or less, it can exhibit an excellent degree of polarization over a wide band in the visible light region. Furthermore, since the protective film 3 is provided, the metal wire layer 2 is not exposed and is protected by the protective film 3.

粘着剤層3bの厚さは、金属ワイヤ層2のワイヤの頂部を通る仮想面の凹凸形状(ワイヤグリッドの微細構造を含まないマクロな偏光板の表面凹凸形状)、基材1のベース基材11の剛性(厚さ、弾性率)、金属ワイヤ層2と保護フィルム3との間に必要とされる結合力、低流動性弾性材料がワイヤの頂部を追従して接触することなどを考慮して、適宜決定する。例えば、前記仮想面が平坦である場合や、ベース基材11が10μm又はそれ以下の厚さを有するように比較的薄い場合などには、粘着剤層3bの厚さは、1μm〜10μmであることが好ましく、ベース基材11の厚さが10μm又はそれ以上の場合には、5μmから50μmであることが好ましい。   The thickness of the pressure-sensitive adhesive layer 3b is such that the concavo-convex shape of the virtual surface passing through the top of the wire of the metal wire layer 2 (the surface concavo-convex shape of the macro polarizing plate not including the fine structure of the wire grid), the base substrate of the substrate 1 11 rigidity (thickness, elastic modulus), bonding force required between the metal wire layer 2 and the protective film 3, low fluid elastic material follows the top of the wire and comes into contact. Determine as appropriate. For example, when the virtual surface is flat or when the base substrate 11 is relatively thin so as to have a thickness of 10 μm or less, the thickness of the pressure-sensitive adhesive layer 3b is 1 μm to 10 μm. In the case where the thickness of the base substrate 11 is 10 μm or more, it is preferably 5 μm to 50 μm.

保護フィルム基材3aは、透明であり、金属ワイヤ層2のワイヤを保護するために十分な剛性を有する。このような保護フィルム基材3aを構成する材料としては、COP、PC、PS、TACなどを挙げることができる。また、保護フィルム3は、液晶表示デバイスに組み込まれることを考慮すると、複屈折が少ないことが好ましく、位相差が20nm又はそれ以下であることが好ましい。一方で、保護フィルム3は、位相差フィルムを兼ねる構成とすることができ、この場合、保護フィルム3の位相差は80nm又はそれ以上であることが好ましい。このように保護フィルム3が位相差フィルムを兼ねることにより、構成部材を少なくして液晶表示デバイスなどの薄型化を図ることができる。   The protective film substrate 3a is transparent and has sufficient rigidity to protect the wires of the metal wire layer 2. Examples of the material constituting the protective film substrate 3a include COP, PC, PS, and TAC. Further, considering that the protective film 3 is incorporated into a liquid crystal display device, it is preferable that the birefringence is small, and the phase difference is preferably 20 nm or less. On the other hand, the protective film 3 can be configured to double as a retardation film. In this case, the retardation of the protective film 3 is preferably 80 nm or more. Thus, when the protective film 3 also serves as a retardation film, the number of constituent members can be reduced and the liquid crystal display device or the like can be thinned.

次に、本発明の効果を明確にするために行った実施例について説明する。
(格子状凸部の形成)
まず、本出願人の特願2006−2100号に記載された方法を用いて、ピッチが230nmで、微細凹凸格子の高さが350nmである微細凹凸格子から、表面の微細凹凸格子のピッチと高さが140nm/162nmで、厚さ0.3mm、縦300mm、横180mmのニッケルスタンパを作製した。
Next, examples performed for clarifying the effects of the present invention will be described.
(Formation of grid-shaped convex part)
First, using the method described in Japanese Patent Application No. 2006-2100 of the present applicant, the pitch and height of the fine concavo-convex lattice on the surface are changed from the fine concavo-convex lattice having a pitch of 230 nm and the fine concavo-convex lattice height of 350 nm. A nickel stamper having a thickness of 140 nm / 162 nm, a thickness of 0.3 mm, a length of 300 mm, and a width of 180 mm was produced.

・紫外線硬化樹脂を用いた格子状凸部転写フィルムの作製
厚さ100μmのCOPフィルム(JSR株式会社製、アートン)に中心波長173nmの紫外線を100mJ/cm2照射し、シランカップリング剤(信越化学工業株式会社製、KBM-5103)0.5重量%、酢酸0.1重量%、水20重量%、エタノール89.7重量%からなるシランカップリング剤溶液をスピンコートして乾燥した。その後、紫外線硬化樹脂(東洋合成工業株式会社製、PAK01)を約0.03mm塗布し、塗布面を下にして上記140nmピッチの微細凹凸格子を有するニッケルスタンパ上に、それぞれ端部からニッケルスタンパとフィルム間に空気が入らないように載せ、PETフィルム側から中心波長365nmの紫外線ランプを用いて紫外線を1000mJ/cm2照射して紫外線硬化樹脂を硬化させた。そして、ニッケルスタンパからCOPフィルムを剥離し、縦300mm、横180mmの格子状凸部転写フィルムを作製した。
-Production of lattice-shaped convex transfer film using ultraviolet curable resin A COP film (Arton) with a thickness of 100 μm was irradiated with 100 mJ / cm 2 of ultraviolet light having a central wavelength of 173 nm to produce a silane coupling agent (Shin-Etsu Chemical). Kogyo Co., Ltd., KBM-5103) A silane coupling agent solution consisting of 0.5 wt%, acetic acid 0.1 wt%, water 20 wt%, ethanol 89.7 wt% was spin-coated and dried. Thereafter, an ultraviolet curable resin (Toyo Gosei Kogyo Co., Ltd., PAK01) was applied by about 0.03 mm, and the nickel stamper was applied from the end to the nickel stamper having the fine concavo-convex grating with the 140 nm pitch with the coating surface down. The film was placed so that air did not enter between the films, and the ultraviolet curable resin was cured by irradiating with 1000 mJ / cm 2 of ultraviolet rays from the PET film side using an ultraviolet lamp having a central wavelength of 365 nm. Then, the COP film was peeled from the nickel stamper to produce a lattice-shaped convex transfer film having a length of 300 mm and a width of 180 mm.

(ワイヤグリッド偏光板の作製)
・スパッタリング法を用いた誘電体層の形成
得られた紫外線硬化樹脂格子状凸部転写フィルムに、スパッタリング法を用い無機透明誘電体を被着した。本実施例では、無機透明誘電体としてSi34を用い、上記方法で作製した格子状凸部転写フィルムにSi34を被着した。この場合、層厚み比較用サンプルとして、表面が平滑なガラス基板を格子状凸部転写フィルムと共に装置に挿入し、Arガス圧力0.70Pa、スパッタリングパワー4W/cm2、積層速度0.20nm/sにて平滑ガラス基板へのSi34積層厚みが7nmとなるように成膜を行った。
(Production of wire grid polarizer)
-Formation of dielectric layer using sputtering method An inorganic transparent dielectric material was applied to the obtained ultraviolet curable resin lattice-shaped convex transfer film using a sputtering method. In this example, Si 3 N 4 was used as the inorganic transparent dielectric, and Si 3 N 4 was deposited on the lattice-shaped convex transfer film produced by the above method. In this case, as a layer thickness comparison sample, a glass substrate having a smooth surface is inserted into the apparatus together with a lattice-shaped convex transfer film, Ar gas pressure is 0.70 Pa, sputtering power is 4 W / cm 2 , and lamination speed is 0.20 nm / s. The film was formed so that the Si 3 N 4 lamination thickness on the smooth glass substrate was 7 nm.

・真空蒸着法を用いた金属の蒸着
格子状凸部転写フィルムにSi34を積層した後、電子ビーム真空蒸着法(EB蒸着法)を用いて金属を被着した。本実施例では、金属としてアルミニウム(Al)を用い、真空度2.5×10-3Pa、蒸着速度4nm/s、常温下においてアルミニウムを蒸着した。この場合、層厚み比較用サンプルとして、表面が平滑なガラス基板を格子状凸部転写フィルムと共に装置に挿入し、平滑ガラス基板へのアルミニウム蒸着厚みが200nmとなるように蒸着を行った。
-Metal vapor deposition using vacuum vapor deposition After laminating Si 3 N 4 on the grid-like convex transfer film, metal was deposited using electron beam vacuum vapor deposition (EB vapor deposition). In this example, aluminum (Al) was used as a metal, and aluminum was deposited at a vacuum degree of 2.5 × 10 −3 Pa, a deposition rate of 4 nm / s, and at room temperature. In this case, as a layer thickness comparison sample, a glass substrate having a smooth surface was inserted into the apparatus together with a lattice-shaped convex transfer film, and vapor deposition was performed so that the aluminum deposition thickness on the smooth glass substrate was 200 nm.

・エッチングによる不要金属の除去
格子状凸部転写フィルムにAlを被着した後、フィルムを室温下の0.1重量%水酸化ナトリウム水溶液中で55秒及び80秒の2条件で洗浄し、すぐに水洗してエッチングを停止させた。その後、フィルムを乾燥して、金属ワイヤ層を有する格子状凸部転写フィルムを作製した。この格子状凸部転写フィルムの大きさは、縦300mm、横180mmであった。格子状凸部転写フィルムの断面を、電界放出型走査型電子顕微鏡にて観察したところ、格子状凸部のピッチ、形成したアルミニウムの高さ、及び幅はそれぞれ、140nm/162nm/63nm、140nm/130nm/55nmであった。
・ Elimination of unnecessary metal by etching After depositing Al on the lattice-shaped convex transfer film, the film was washed in 0.1 wt% sodium hydroxide aqueous solution at room temperature under two conditions of 55 seconds and 80 seconds, and immediately The etching was stopped by washing with water. Thereafter, the film was dried to produce a lattice-shaped convex transfer film having a metal wire layer. The size of the lattice-shaped convex transfer film was 300 mm long and 180 mm wide. When the cross section of the lattice-shaped convex portion transfer film was observed with a field emission scanning electron microscope, the pitch of the lattice-shaped convex portions, the height of the formed aluminum, and the width were 140 nm / 162 nm / 63 nm, 140 nm / It was 130 nm / 55 nm.

(保護フィルムの作製)
実施例1,4に用いるPET基材保護フィルムは、厚さ50μmのPET製基材に、厚さ25μmのシリコーンゴム製の粘着剤層を設けたフィルム(フジコピアン株式会社製、FIXFILM HG2)を、ヘキサン中に1時間浸漬した後、80℃の熱風乾燥機中で3時間乾燥し、低分子量溶出物を取り除くことにより作製した。
(Preparation of protective film)
The PET base material protective film used in Examples 1 and 4 is a film (Fujiko Pian Co., Ltd., FIXFILM HG2) provided with a 25 μm thick silicone rubber adhesive layer on a 50 μm thick PET base material. After being immersed in hexane for 1 hour, it was dried in a hot air dryer at 80 ° C. for 3 hours to remove the low molecular weight eluate.

実施例2,5に用いるCOP基材保護フィルムは、厚さ100μmのCOPフィルム(JSR株式会社製、アートン)に、中心波長173nmの紫外線を100mJ/cm2照射し、シランカップリング剤(信越化学工業株式会社製、KBM-5103)0.5重量%、酢酸0.1重量%、水20重量%、エタノール89.7重量%からなるシランカップリング剤溶液をスピンコートして乾燥し、ポリオルガノシロキサン(信越化学工業株式会社製、KNS−316)98重量%、触媒(信越化学工業株式会社製、PL−50T)2重量%からなる溶液をグラビアコータで25μm塗布し、150℃で3分間加熱してシリコーンゴムを架橋させることにより、保護フィルム基材上に粘着剤層を形成した後、PET基材保護フィルムと同様に低分子量溶出物を取り除くことにより作製した。 The COP base material protective film used in Examples 2 and 5 was irradiated with 100 mJ / cm 2 of ultraviolet light having a center wavelength of 173 nm on a COP film having a thickness of 100 μm (manufactured by JSR Corporation, Arton), and a silane coupling agent (Shin-Etsu Chemical Co., Ltd.). Kogyo Co., Ltd., KBM-5103) A silane coupling agent solution consisting of 0.5% by weight, acetic acid 0.1% by weight, water 20% by weight and ethanol 89.7% by weight is spin-coated and dried, and polyorgano A solution consisting of 98% by weight of siloxane (manufactured by Shin-Etsu Chemical Co., Ltd., KNS-316) and 2% by weight of a catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., PL-50T) was applied by 25 μm with a gravure coater and heated at 150 ° C. for 3 minutes. After forming a pressure-sensitive adhesive layer on the protective film substrate by crosslinking the silicone rubber, the low molecular weight is similar to that of the PET substrate protective film. Prepared by removing the volume eluate.

実施例3,6に用いるPET基材保護フィルムとしては、PETフィルムに流動性の低いアクリル系粘着剤を塗布した厚さ59μmのフィルム(日東電工株式会社製、RP301)を使用した。   As a PET base material protective film used in Examples 3 and 6, a 59 μm thick film (RP301, manufactured by Nitto Denko Corporation) obtained by applying an acrylic adhesive having low fluidity to a PET film was used.

これらの保護フィルムの粘着剤層が金属ワイヤ層と対向するようにして、保護フィルムを格子状凸部転写フィルムに密着させた。その後、保護フィルムを貼付した格子状凸部転写フィルムを80℃の熱風乾燥機中に1日放置し、熱風乾燥機から取り出して室温に戻した。このようにして実施例のワイヤグリッド偏光板を作製した。   The protective film was adhered to the lattice-shaped convex transfer film so that the pressure-sensitive adhesive layer of these protective films was opposed to the metal wire layer. Thereafter, the lattice-shaped convex transfer film with the protective film attached was left in a hot air dryer at 80 ° C. for 1 day, taken out of the hot air dryer, and returned to room temperature. Thus, the wire grid polarizing plate of the example was produced.

参考例1,2に用いるPET基材保護フィルムとして、厚さ38μmのPETフィルムに、軟質で流動性の高いアクリル系粘着剤を25μm塗布した厚さ63μmのフィルム(日東電工株式会社製、CS9621)を使用し、保護フィルムの粘着剤層が金属ワイヤ層と対向するようにして、保護フィルムを格子状凸部転写フィルムに密着させた。その後、保護フィルムを貼付した格子状凸部転写フィルムを80℃の熱風乾燥機中に1日放置し、熱風乾燥機から取り出して室温に戻した。このようにして参考例1,2のワイヤグリッド偏光板を作製した。   As a PET base material protective film used in Reference Examples 1 and 2, a film having a thickness of 63 μm obtained by applying 25 μm of an acrylic adhesive having a high fluidity to a PET film having a thickness of 38 μm (manufactured by Nitto Denko Corporation, CS9621) Was used, and the protective film was closely adhered to the lattice-shaped convex transfer film so that the adhesive layer of the protective film was opposed to the metal wire layer. Thereafter, the lattice-shaped convex transfer film with the protective film attached was left in a hot air dryer at 80 ° C. for 1 day, taken out from the hot air dryer, and returned to room temperature. Thus, the wire grid polarizing plates of Reference Examples 1 and 2 were produced.

(分光光度計による偏光性能評価と形状評価)
得られた実施例及び参考例のワイヤグリッド偏光板について、分光光度計を用い、直線偏光に対する平行ニコル時及び直交ニコル時の透過光強度を測定した。測定波長域は可視光として400nm〜780nmとし、偏光度と光線透過率は下記式より算出した。なお、PETフィルムを保護フィルム基材に含めたため、保護フィルム基材の複屈折の影響を除く目的で入光面は保護フィルム側とした。
偏光度=[(Imax−Imin)/(Imax+Imin)]×100(%)
光線透過率=[(Imax+Imin)/2]×100(%)
ここで、Imaxは平行ニコル時の透過光強度であり、Iminは直交ニコル時の透過光強度である。

Figure 0004520445
Figure 0004520445
(Evaluation of polarization performance and shape by spectrophotometer)
About the obtained wire grid polarizing plate of an Example and a reference example, the transmitted light intensity at the time of the parallel Nicol with respect to linearly polarized light and the time of orthogonal Nicol was measured using the spectrophotometer. The measurement wavelength range was 400 nm to 780 nm as visible light, and the degree of polarization and light transmittance were calculated from the following equations. In addition, since the PET film was included in the protective film substrate, the light incident surface was set to the protective film side for the purpose of removing the influence of birefringence of the protective film substrate.
Polarization degree = [(Imax−Imin) / (Imax + Imin)] × 100 (%)
Light transmittance = [(Imax + Imin) / 2] × 100 (%)
Here, Imax is the transmitted light intensity at the time of parallel Nicols, and Imin is the transmitted light intensity at the time of crossed Nicols.
Figure 0004520445
Figure 0004520445

本発明に係るワイヤグリッド偏光板(実施例1)は、保護フィルムがあっても可視光領域のほぼ全領域にわたって優れた偏光度を示した。これは、本発明のワイヤグリッド偏光板において、保護フィルムの粘着剤が金属ワイヤ層のワイヤ間にわずかしか入り込んでいないからであると考えられる。一方、参考例1のワイヤグリッド偏光板は、可視光領域の短波長側において、偏光度の低下率が顕著であり、波長500nmの直線偏光に対する直交ニコル時の透過光強度が、保護フィルムを設けない場合の2.8倍であった。これは、参考例のワイヤグリッド偏光板においては、保護フィルムの軟質で流動性の高い粘着剤が金属ワイヤ層のワイヤ間に入り込んでしまったことが原因と考えられる。このように、本発明に係るワイヤグリッド偏光板は、150nm以下のピッチの微細凹凸格子を有し、構成上の制約がなく、しかも可視光領域の広帯域にわたって優れた偏光度を発揮するものであることが分かった。   The wire grid polarizing plate (Example 1) according to the present invention showed an excellent degree of polarization over almost the entire visible light region even with a protective film. This is presumably because in the wire grid polarizing plate of the present invention, the adhesive of the protective film hardly penetrates between the wires of the metal wire layer. On the other hand, the wire grid polarizing plate of Reference Example 1 has a remarkable decrease in the degree of polarization on the short wavelength side in the visible light region, and the transmitted light intensity at the time of crossed Nicols with respect to linearly polarized light having a wavelength of 500 nm is provided with a protective film. It was 2.8 times that in the case of no. This is considered to be because, in the wire grid polarizing plate of the reference example, the soft and highly fluid adhesive of the protective film has entered between the wires of the metal wire layer. As described above, the wire grid polarizer according to the present invention has a fine concavo-convex grating with a pitch of 150 nm or less, has no structural limitation, and exhibits an excellent degree of polarization over a wide band in the visible light region. I understood that.

ここで、実施例1〜6、参考例1〜2の波長500nmにおける偏光度、光線透過率、直交ニコル時の透過光強度比を表1,2に示し、実施例1〜3、参考例1の波長400nm〜780nmの光に対する偏光度、直交ニコル時の透過光強度比をそれぞれ図3及び図4に示す。なお、保護フィルムのないワイヤグリッド偏光板の光線透過率よりも、実施例の光線透過率が低いのは、保護フィルム表面による反射によるものが主な原因であり、保護フィルム表面に反射防止処理をすることにより光線透過率は向上する。   Here, the polarization degree at the wavelength of 500 nm, the light transmittance, and the transmitted light intensity ratio at the time of crossed Nicols in Examples 1 to 6 and Reference Examples 1 and 2 are shown in Tables 1 and 2, and Examples 1 to 3 and Reference Example 1 are shown. FIGS. 3 and 4 show the degree of polarization for light having a wavelength of 400 nm to 780 nm and the transmitted light intensity ratio at the time of crossed Nicols, respectively. The light transmittance of the examples is lower than the light transmittance of the wire grid polarizing plate without the protective film, mainly due to reflection by the surface of the protective film, and the protective film surface is subjected to antireflection treatment. By doing so, the light transmittance is improved.

本発明のワイヤグリッド偏光板においては、図2に示すように、基材1のベース基材11のワイヤ側の反対側の主面に反射層5を設けても良い。また、保護フィルム3上に粘着剤層4を介して離型紙6を取り付けても良い。このような構成にすることにより、離型紙6を剥がして粘着剤層4によりワイヤグリッド偏光板をデバイスに装着することが可能となる。この場合において、粘着剤層4を構成する材料としては、通常の透明な粘着材料を用いることができる。また、ワイヤグリッド偏光板を装着するデバイスとしては、液晶表示装置などのディスプレイ装置を挙げることができる。   In the wire grid polarizing plate of the present invention, as shown in FIG. 2, a reflective layer 5 may be provided on the main surface of the base substrate 11 on the side opposite to the wire side. Moreover, you may attach the release paper 6 through the adhesive layer 4 on the protective film 3. FIG. With such a configuration, the release paper 6 can be peeled off and the wire grid polarizer can be attached to the device by the adhesive layer 4. In this case, a normal transparent adhesive material can be used as a material constituting the adhesive layer 4. In addition, examples of a device to which the wire grid polarizer is attached include a display device such as a liquid crystal display device.

本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態における寸法、材質などは例示的なものであり、適宜変更して実施することが可能である。また、上記実施の形態における偏光板については、板状の部材である必要はなく、必要に応じてシート状、フィルム状であっても良い。また、上記実施の形態においては、格子状凸部を有するフィルムを延伸した後に金属蒸着して得られた格子状凸部転写フィルムを用いた場合について説明しているが、本発明においては、他の方法で得られた狭ピッチの格子状凸部を有するワイヤグリッド偏光子を用いても良い。その他、本発明の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the embodiment described above, and can be implemented with various modifications. For example, the dimensions, materials, and the like in the above-described embodiment are illustrative, and can be changed as appropriate. Moreover, the polarizing plate in the said embodiment does not need to be a plate-shaped member, and may be a sheet form and a film form as needed. Further, in the above embodiment, a case is described in which a grid-like convex transfer film obtained by metal vapor deposition after stretching a film having a grid-like convex portion is used. You may use the wire grid polarizer which has the lattice-shaped convex part of the narrow pitch obtained by the method of this. In addition, various modifications can be made without departing from the scope of the present invention.

本発明の実施の形態に係るワイヤグリッド偏光板の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of wire grid polarizing plate which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤグリッド偏光板の他の例を示す図である。It is a figure which shows the other example of the wire grid polarizing plate which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤグリッド偏光板及び参考例のワイヤグリッド偏光板の偏光度を示す図である。It is a figure which shows the polarization degree of the wire grid polarizing plate which concerns on embodiment of this invention, and the wire grid polarizing plate of a reference example. 本発明の実施の形態に係るワイヤグリッド偏光板及び参考例のワイヤグリッド偏光板の直線偏光に対する直交ニコル時の透過光強度比を示す図である。It is a figure which shows the transmitted light intensity ratio at the time of orthogonal Nicol with respect to the linearly polarized light of the wire grid polarizing plate which concerns on embodiment of this invention, and the wire grid polarizing plate of a reference example.

符号の説明Explanation of symbols

1 基材
1a 格子状凸部
2 金属ワイヤ層
3 保護フィルム
3a 保護フィルム基材
3b,4 粘着剤層
5 反射層
6 離型紙
11 ベース基材
12 紫外線硬化型樹脂層
DESCRIPTION OF SYMBOLS 1 Base material 1a Lattice-like convex part 2 Metal wire layer 3 Protective film 3a Protective film base material 3b, 4 Adhesive layer 5 Reflective layer 6 Release paper 11 Base base material 12 UV curable resin layer

Claims (6)

格子状凸部を有する透明な基材と、前記基材の前記格子状凸部を含む領域上に設けられた金属ワイヤ層と、前記金属ワイヤ層の先端部と密着する粘着剤層を有する保護フィルムと、を具備し、前記基材のピッチが150nm以下であり、前記粘着剤層の前記金属ワイヤ層に対する密着力が平滑面に対する180度方向の剥離力で0.02N/25mm〜1N/25mmであり、前記粘着剤層は波長500nmの直線偏光に対する直交ニコル時の透過光強度が、前記保護フィルムを設けない場合の2倍以下となるような流動性を有する弾性材料で構成されていることを特徴とするワイヤグリッド偏光板。 Protection having a transparent base material having a grid-like convex part, a metal wire layer provided on a region of the base material including the grid-like convex part, and an adhesive layer in close contact with a tip part of the metal wire layer Film, and the base material has a pitch of 150 nm or less, and the adhesive force of the pressure-sensitive adhesive layer to the metal wire layer is 0.02 N / 25 mm to 1 N / 25 mm as a peel force in the direction of 180 degrees with respect to a smooth surface. , and the transmitted light intensity at orthogonal Nicol the pressure-sensitive adhesive layer for linearly polarized light of wavelength 500nm is that it is an elastic material having a 2-fold less to become such the fluidity of the case of not providing the protective film A wire grid polarizer characterized by. 前記弾性材料は、架橋したシリコーンゴムもしくはアクリル系粘着剤であることを特徴とする請求項記載のワイヤグリッド偏光板。 The elastic material, a wire grid polarizer according to claim 1, characterized in that the crosslinked silicone rubber or acrylic adhesive. 前記保護フィルムは、20nm又はそれ以下の位相差を有することを特徴とする請求項1又は請求項2に記載のワイヤグリッド偏光板。 The wire grid polarizer according to claim 1 or 2 , wherein the protective film has a retardation of 20 nm or less. 前記保護フィルムは、80nm又はそれ以上の位相差を有し、前記保護フィルムが位相差フィルムを兼ねることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 The wire grid polarizing plate according to any one of claims 1 to 3 , wherein the protective film has a retardation of 80 nm or more, and the protective film also serves as a retardation film. 前記保護フィルムが、COP、PC、PS、TAC、PETからなる群から選択されることを特徴とする請求項1から請求項のいずれかに記載のワイヤグリッド偏光板。 The wire grid polarizer according to any one of claims 1 to 4 , wherein the protective film is selected from the group consisting of COP, PC, PS, TAC, and PET. 前記粘着剤層の厚さが1μmから10μmであることを特徴とする請求項1から請求項5のいずれか1項に記載のワイヤグリッド偏光板。The wire grid polarizing plate according to any one of claims 1 to 5, wherein the pressure-sensitive adhesive layer has a thickness of 1 µm to 10 µm.
JP2006278114A 2006-10-11 2006-10-11 Wire grid polarizer Active JP4520445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006278114A JP4520445B2 (en) 2006-10-11 2006-10-11 Wire grid polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006278114A JP4520445B2 (en) 2006-10-11 2006-10-11 Wire grid polarizer

Publications (2)

Publication Number Publication Date
JP2008096677A JP2008096677A (en) 2008-04-24
JP4520445B2 true JP4520445B2 (en) 2010-08-04

Family

ID=39379595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278114A Active JP4520445B2 (en) 2006-10-11 2006-10-11 Wire grid polarizer

Country Status (1)

Country Link
JP (1) JP4520445B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205186B2 (en) * 2008-09-10 2013-06-05 旭化成イーマテリアルズ株式会社 Laminate storage method
JP2010145854A (en) * 2008-12-19 2010-07-01 Asahi Kasei E-Materials Corp Wire grid polarizer
CN102405436B (en) * 2009-02-05 2015-09-16 旭硝子株式会社 Duplexer with polaroid, the display device panel being with supporting mass, display device panel, display device and their manufacture method
JP2010231203A (en) * 2009-03-06 2010-10-14 Asahi Kasei E-Materials Corp Wire grid polarizing plate and projection liquid crystal display device using the same
JP5137084B2 (en) * 2009-03-29 2013-02-06 国立大学法人宇都宮大学 Polarizer, manufacturing method thereof, and optical module
KR101610376B1 (en) 2009-04-10 2016-04-08 엘지이노텍 주식회사 A wire grid polarizer, liquid crystal display including the same and method of manufacturing the wire grid polarizer
JP2011048360A (en) * 2009-07-31 2011-03-10 Asahi Kasei E-Materials Corp Wire grid polarizer
JP5503216B2 (en) * 2009-08-03 2014-05-28 旭化成イーマテリアルズ株式会社 Laminated body
JP2011081154A (en) 2009-10-07 2011-04-21 Hitachi Ltd Optical element and optical apparatus
JP2011090141A (en) * 2009-10-22 2011-05-06 Asahi Glass Co Ltd Wire grid type polarizer and method for manufacturing the same
JP5497522B2 (en) * 2010-02-05 2014-05-21 旭化成イーマテリアルズ株式会社 Wire grid polarizer for terahertz optical element and electromagnetic wave processing apparatus
JP2012113280A (en) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp Wire grid polarizer and optical sensor
JP2012118438A (en) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp Wire grid polarizer and method for manufacturing wire grid polarizer
KR101622056B1 (en) * 2011-10-14 2016-05-17 아사히 가세이 이-매터리얼즈 가부시키가이샤 Wire grid polarizing plate and projection-type image display device
KR101856231B1 (en) * 2011-12-19 2018-05-10 엘지이노텍 주식회사 Transparent substrate with nano-pattern and method of manufacturing thereof
JP5668110B2 (en) * 2013-08-01 2015-02-12 株式会社日立製作所 Optical element and optical device
JP6327222B2 (en) * 2014-09-30 2018-05-23 住友化学株式会社 Polarizing plate, polarizing plate with adhesive, and liquid crystal display device
JP2021009174A (en) * 2019-06-28 2021-01-28 旭化成株式会社 Wire grid polarizing plate

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292520A (en) * 1996-04-26 1997-11-11 Tdk Corp Diffraction grating type polarizer, optical parts using the same and their production
JPH11142650A (en) * 1997-11-13 1999-05-28 Fuji Elelctrochem Co Ltd Grid polarizer
WO2000044841A1 (en) * 1999-01-27 2000-08-03 Toyo Boseki Kabushiki Kaisha Surface-protective film
JP2001330728A (en) * 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
JP2003502708A (en) * 1999-06-22 2003-01-21 モックステック Broadband wire grid polarizer for the visible spectrum
JP2003519818A (en) * 2000-01-11 2003-06-24 モックステック Embedded wire grid polarizer for the visible spectrum
JP2003215344A (en) * 2001-03-29 2003-07-30 Seiko Epson Corp Polarizer and optical device using the polarizer
JP2004280050A (en) * 2002-10-15 2004-10-07 Eastman Kodak Co Embedded type wire grid polarizer
JP2004533644A (en) * 2001-05-21 2004-11-04 モックステック Image projection system with polarizing beam splitter
JP2005266343A (en) * 2004-03-18 2005-09-29 Nippon Zeon Co Ltd Optical member
JP2007017762A (en) * 2005-07-08 2007-01-25 Seiko Epson Corp Method for manufacturing wire grid polarizer, liquid crystal apparatus and projector
JP2007033560A (en) * 2005-07-22 2007-02-08 Nippon Zeon Co Ltd Grid polarizer
JP2007033558A (en) * 2005-07-22 2007-02-08 Nippon Zeon Co Ltd Grid polarizer and its manufacturing method
JP2007052315A (en) * 2005-08-19 2007-03-01 Seiko Epson Corp Manufacturing method of optical element and projection type display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011047A1 (en) * 2005-07-22 2007-01-25 Zeon Corporation Grid polarizer and method for manufacturing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292520A (en) * 1996-04-26 1997-11-11 Tdk Corp Diffraction grating type polarizer, optical parts using the same and their production
JPH11142650A (en) * 1997-11-13 1999-05-28 Fuji Elelctrochem Co Ltd Grid polarizer
WO2000044841A1 (en) * 1999-01-27 2000-08-03 Toyo Boseki Kabushiki Kaisha Surface-protective film
JP2003502708A (en) * 1999-06-22 2003-01-21 モックステック Broadband wire grid polarizer for the visible spectrum
JP2003519818A (en) * 2000-01-11 2003-06-24 モックステック Embedded wire grid polarizer for the visible spectrum
JP2001330728A (en) * 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
JP2003215344A (en) * 2001-03-29 2003-07-30 Seiko Epson Corp Polarizer and optical device using the polarizer
JP2004533644A (en) * 2001-05-21 2004-11-04 モックステック Image projection system with polarizing beam splitter
JP2004280050A (en) * 2002-10-15 2004-10-07 Eastman Kodak Co Embedded type wire grid polarizer
JP2005266343A (en) * 2004-03-18 2005-09-29 Nippon Zeon Co Ltd Optical member
JP2007017762A (en) * 2005-07-08 2007-01-25 Seiko Epson Corp Method for manufacturing wire grid polarizer, liquid crystal apparatus and projector
JP2007033560A (en) * 2005-07-22 2007-02-08 Nippon Zeon Co Ltd Grid polarizer
JP2007033558A (en) * 2005-07-22 2007-02-08 Nippon Zeon Co Ltd Grid polarizer and its manufacturing method
JP2007052315A (en) * 2005-08-19 2007-03-01 Seiko Epson Corp Manufacturing method of optical element and projection type display device

Also Published As

Publication number Publication date
JP2008096677A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4520445B2 (en) Wire grid polarizer
KR101911568B1 (en) Optical element, display device, and input device
KR101628445B1 (en) Transparent conductive element, input device, and display device
WO2011002042A1 (en) Method for producing article having fine recessed and projected structure on surface, and method for producing wire grid polarizer
JP5205186B2 (en) Laminate storage method
JP5203784B2 (en) Wire grid polarizer and laminate using the same
JP2014211609A (en) Polarizing plate set and liquid crystal display panel integrated with front plate
KR20090101762A (en) Ultra thin polarizing plate and liquid crystal display device
KR102363734B1 (en) Substrate
JP5792425B2 (en) Antireflection film composition, antireflection film, method for producing antireflection film, polarizing plate, and liquid crystal display device
KR20170003422A (en) Polarizing plate, liquid crystal panel and liquid crystal display device
JP2012118237A (en) Wire grid polarization plate for infrared ray
JP6934996B2 (en) Flexible image display device and optical laminate used for it
JP2016148871A (en) Wire grid polarization plate for infrared ray, image sensor for infrared ray, and camera for infrared ray
JP5833301B2 (en) Wire grid polarizer and method of manufacturing wire grid polarizer
JP5503216B2 (en) Laminated body
JP6006479B2 (en) Polarized beam splitter and projection display device
JP3373492B2 (en) Polarizer
JP5368011B2 (en) Absorption type wire grid polarizer
JP5515228B2 (en) Optical film and manufacturing method thereof
JP2021173773A (en) Polarizing film, optical laminate, and image display device
JP6455545B2 (en) Set of polarizing plates
JP6772564B2 (en) Water contact angle control method of optical laminate, and optical laminate with protective film
JP5291425B2 (en) Absorption-type wire grid polarizer and liquid crystal display device
JP2021009174A (en) Wire grid polarizing plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4520445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350