JP6445384B2 - Line lighting device and method for manufacturing the same - Google Patents

Line lighting device and method for manufacturing the same Download PDF

Info

Publication number
JP6445384B2
JP6445384B2 JP2015094160A JP2015094160A JP6445384B2 JP 6445384 B2 JP6445384 B2 JP 6445384B2 JP 2015094160 A JP2015094160 A JP 2015094160A JP 2015094160 A JP2015094160 A JP 2015094160A JP 6445384 B2 JP6445384 B2 JP 6445384B2
Authority
JP
Japan
Prior art keywords
light
condenser lens
lens member
line
illumination device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015094160A
Other languages
Japanese (ja)
Other versions
JP2016211914A (en
Inventor
海老原 聡
聡 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI Tec System Co Ltd
Original Assignee
AI Tec System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI Tec System Co Ltd filed Critical AI Tec System Co Ltd
Priority to JP2015094160A priority Critical patent/JP6445384B2/en
Publication of JP2016211914A publication Critical patent/JP2016211914A/en
Application granted granted Critical
Publication of JP6445384B2 publication Critical patent/JP6445384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、ラインセンサ等のセンサの検出位置をライン状に照明するライン状照明装置およびその製造方法に関する。   The present invention relates to a line illumination device that illuminates a detection position of a sensor such as a line sensor in a line and a method for manufacturing the same.

この種のライン状照明装置は、例えば鋼鈑、板ガラス、食品、紙幣等を製造する各種製造工程の製造品検査において、ラインセンサカメラ等のセンサの検出位置をセンサの画角に合わせてライン状に照明する。また、検査の高速化や精度向上のため、センサの検出位置をライン状照明装置によってできるだけ明るく均一に照明する必要がある(例えば、特許文献1参照。)。   This type of line illuminating device is, for example, a line shape in which the detection position of a sensor such as a line sensor camera is matched to the angle of view of the sensor in manufactured product inspection in various manufacturing processes for manufacturing steel plates, sheet glass, food, banknotes, and the like. To illuminate. Further, in order to increase the inspection speed and improve the accuracy, it is necessary to illuminate the detection position of the sensor as brightly and uniformly as possible with a line illumination device (see, for example, Patent Document 1).

また、鋼板等の製品の表面の傷、異物の有無等をより確実に検出するために、ライン状照明装置の光軸と製品の表面とが45°程度の角度を成すようにライン状照明装置を傾けて配置している。照明装置の光軸と製品の表面とが角度を成すことにより、製品の表面の傷や異物の裏に影ができ、これにより傷や異物の検出精度が向上する(例えば、特許文献2の図21参照)。   In addition, in order to detect more reliably the surface of a product such as a steel plate, the presence or absence of foreign matter, etc., the line illuminating device so that the optical axis of the line illuminating device and the surface of the product form an angle of about 45 °. Is placed at an angle. By forming an angle between the optical axis of the illumination device and the surface of the product, a shadow is formed on the surface of the product and the back of the foreign matter, thereby improving the detection accuracy of the scratch and the foreign matter (for example, FIG. 21).

前述のように照明装置を傾けて配置すると、特許文献2の図21の傷K1(横傷)内に影が生成されるが、傷K2(縦傷)内には影は殆ど生成されない。このため、縦傷の検出精度も向上するために、X方向に並べられた複数のLED光源からの光を棒状のレンズを用いてX方向と直交するY方向に集光してライン状の光にした後、束になっている光ファイバーの一端側から入光させ、X方向に曲げられている各光ファイバーの他端側から出光することにより、照明装置の光軸をX方向にも傾ける試みがされている(例えば、特許文献2の図13参照)。   As described above, when the illuminating device is tilted and arranged, a shadow is generated in the scratch K1 (lateral scratch) in FIG. 21 of Patent Document 2, but almost no shadow is generated in the scratch K2 (vertical scratch). For this reason, in order to improve the accuracy of detection of vertical flaws, light from a plurality of LED light sources arranged in the X direction is condensed in the Y direction orthogonal to the X direction using a rod-shaped lens to form a line-shaped light. After that, an attempt is made to tilt the optical axis of the illumination device also in the X direction by entering light from one end side of the bundled optical fibers and emitting light from the other end side of each optical fiber bent in the X direction. (For example, refer to FIG. 13 of Patent Document 2).

特開2007−225591号公報JP 2007-225591 A 特開2011−133347号公報JP 2011-133347 A

しかしながら、後者の照明装置は、照明装置の光軸をX方向に傾けるために束になった光ファイバーを用いる必要があり、光ファイバーの入光面や出光面における光の反射や散乱、光ファイバー内での光の散乱等により、センサの検出位置における光量が低下する。さらに、各光ファイバーの端面の仕上がり精度や各光ファイバーの他端側の曲げ角度がセンサの検出位置における光量、光量のばらつき、光の照射方向等に大きな影響を与える。   However, the latter illuminating device needs to use a bundled optical fiber in order to tilt the optical axis of the illuminating device in the X direction. Reflection and scattering of light on the light incident surface and light exit surface of the optical fiber, The amount of light at the detection position of the sensor decreases due to light scattering or the like. Furthermore, the finishing accuracy of the end face of each optical fiber and the bending angle on the other end of each optical fiber have a great influence on the amount of light at the detection position of the sensor, the variation in the amount of light, the direction of light irradiation, and the like.

このため、光ファイバーの束を精度良く且つばらつき無く製造する必要がある。また、棒状のレンズによってライン状に集光した光を、束になっている光ファイバーの一端側に漏れなく入光する必要がある。しかしながら、この種の照明装置はX方向の寸法が50cmや1mを超える大きなものが多く、中には数mになるものもある。このため、X方向の全体に亘って光ファイバーの束を精度良く且つばらつき無く製造し、さらにライン状に集光した光を束になっている光ファイバーの一端側に漏れなく入光することは容易ではない。   For this reason, it is necessary to manufacture a bundle of optical fibers with high accuracy and no variation. Moreover, it is necessary to enter the light collected in a line shape by the rod-shaped lens into one end side of the bundled optical fiber without leakage. However, many of these types of lighting devices have large dimensions in the X direction exceeding 50 cm or 1 m, and some of them are several meters. For this reason, it is not easy to manufacture a bundle of optical fibers with high accuracy and uniformity over the entire X direction, and to enter light collected in a line shape into one end side of the bundled optical fibers without leakage. Absent.

また、鋼板等の製品がその長手方向に移動している状態で、センサにより製品の表面が観察されるが、製品の表面が完全に平面でないことや、製品がわずかに湾曲していること等により、センサによる観察位置である製品表面が上下方向に常に動いていることがよくある。ここで、ライン状照明装置は特許文献2の図21のように製品の長手方向に傾けて配置されているので、製品表面の上下方向位置が変動することにより照明位置が製品の長手方向に移動する。   In addition, the surface of the product is observed by the sensor while the product such as a steel plate is moving in the longitudinal direction, but the surface of the product is not completely flat, the product is slightly curved, etc. Thus, the product surface, which is the observation position by the sensor, often moves in the vertical direction. Here, since the line-shaped illumination device is arranged to be inclined in the longitudinal direction of the product as shown in FIG. 21 of Patent Document 2, the illumination position moves in the longitudinal direction of the product due to the change in the vertical position of the product surface. To do.

また、前述のように、この種の照明装置はX方向に大きな寸法を有する場合が多い。このため、細いライン状に照明するように照明装置を構成すると、実際の検査でエラーが生じやすくなり、また、照明装置およびセンサの設置作業やメンテナンス作業が極めて難しくなる。   Further, as described above, this type of lighting device often has a large dimension in the X direction. For this reason, if an illuminating device is configured to illuminate in a thin line shape, errors are likely to occur in actual inspection, and installation work and maintenance work of the illuminating device and sensor become extremely difficult.

本発明は、このような事情に鑑みてなされたものであって、光量を無用に低減することなく、LED光源の並設方向(X方向)に光軸を傾けることができ、しかもライン状の照明範囲の幅を任意に設定可能なライン状照明装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and the optical axis can be inclined in the parallel direction (X direction) of the LED light sources without unnecessarily reducing the amount of light. An object of the present invention is to provide a line illumination device and a manufacturing method thereof in which the width of the illumination range can be arbitrarily set.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明の第1の態様に係るライン状照明装置は、X方向に並ぶように配置された複数のLED光源と、各々前記各LED光源の光軸が通過するように配置され、前記X方向に曲率を有すると共に該X方向と直交するY方向に延び、前記各LED光源からの光を前記X方向に集光する複数の第1集光レンズ部と、前記Y方向に曲率を有すると共に前記X方向に延び、各第1集光レンズ部で前記X方向に集光された光を前記Y方向に集光する第2集光レンズ部と、前記X方向および前記Y方向と直交する方向をZ方向とした時、各々前記Z方向に延びる仮想線に対し40°以上80°以下の角度を有するように前記X方向に傾斜すると共に、前記X方向に並ぶように配置され、前記第2集光レンズ部で前記Y方向に集光された光を前記X方向に屈折させる複数の屈折レンズ面とを備える。
In order to solve the above problems, the present invention employs the following means.
The linear illumination device according to the first aspect of the present invention is arranged such that a plurality of LED light sources arranged so as to be aligned in the X direction and the optical axes of the respective LED light sources pass through, respectively, in the X direction. A plurality of first condensing lens portions that have a curvature and extend in the Y direction orthogonal to the X direction and condense light from the LED light sources in the X direction, and have a curvature in the Y direction and the X A second condensing lens portion that condenses the light collected in the X direction by each first condensing lens portion in the Y direction, and a direction orthogonal to the X direction and the Y direction. The second condensing element is inclined in the X direction so as to have an angle of 40 ° or more and 80 ° or less with respect to the imaginary line extending in the Z direction, and arranged in the X direction. Refracted light collected in the Y direction by the lens unit in the X direction A plurality of refractive lens surfaces.

上記第1の態様では、各第1集光レンズ部が各LED光源の光軸が通過するよう配置されているので、放射状に光を出す複数のLED光源からの光を複数の屈折レンズ面に向かうように効率良く案内することができる。また、各第1集光レンズ部を通過してX方向に集光されY方向には放射状に拡がりながら進む光が第2集光レンズ部でY方向に集光される。そして、第1および第2集光レンズ部で集光された光がX方向に並ぶように配置された複数の屈折レンズ面でX方向に屈折されるので、光量の低下の原因となるレンズへの入光やレンズからの出光を極力少なくしながら、LED光源の並設方向(X方向)に光軸を傾けることができる。   In the first aspect, each of the first condensing lens portions is arranged so that the optical axis of each LED light source passes, so that light from a plurality of LED light sources that emit light radially is directed to a plurality of refractive lens surfaces. You can guide efficiently as you head. Further, light that passes through each first condenser lens portion and is condensed in the X direction and travels radially in the Y direction is condensed in the Y direction by the second condenser lens portion. Then, since the light condensed by the first and second condenser lenses is refracted in the X direction by the plurality of refractive lens surfaces arranged so as to be aligned in the X direction, the lens that causes a decrease in the amount of light. The light axis can be tilted in the direction in which the LED light sources are arranged side by side (X direction) while minimizing the amount of incident light and light emitted from the lens.

ここで、第1および第2集光レンズ部は、LED光源から放射状に出る光の方向をX方向およびY方向に屈折させるものである。また、第1および第2集光レンズ部を通過した光が例えば焦点を結ぶように収束方向に向かわず、略平行光になる場合や、若干広がりながら進む場合であっても、放射状に進む光を内側(例えば各LED光源の光軸側)に向けて屈折させるのであれば、集光しているものとする。   Here, the first and second condenser lens units refract the light emitted radially from the LED light source in the X direction and the Y direction. In addition, even if the light that has passed through the first and second condenser lens portions does not go in the convergence direction so as to be focused, for example, becomes substantially parallel light, or travels while spreading slightly, it travels radially. Is refracted toward the inside (for example, the optical axis side of each LED light source), it is assumed that the light is condensed.

一方、各第1集光レンズ部を通過した光はX方向には集光されているがY方向には放射状に拡がりながら進む。このため、第1集光レンズ部と第2集光レンズ部との距離や、第2集光レンズ部のY方向の寸法や、第2集光レンズ部の曲率を調整することにより、第2集光レンズ部を通過した光のY方向の幅、即ち複数の屈折レンズ面を通過した後のライン状の照明範囲の幅を調整することができる。   On the other hand, the light that has passed through each first condenser lens portion is condensed in the X direction, but travels while spreading radially in the Y direction. Therefore, by adjusting the distance between the first condenser lens part and the second condenser lens part, the dimension of the second condenser lens part in the Y direction, and the curvature of the second condenser lens part, The width in the Y direction of the light that has passed through the condenser lens portion, that is, the width of the linear illumination range after passing through the plurality of refractive lens surfaces can be adjusted.

本発明の第2の態様に係るライン状照明装置の製造方法は、各々複数のLED光源がX方向に並ぶように実装された複数の基板ユニットを該X方向に並ぶように照明装置本体に組付ける基板ユニットの組付けと、前記複数のLED光源からの光を前記X方向に集光する複数の第1集光レンズ部材を前記照明装置本体又は前記各基板ユニットに組付ける第1集光レンズ部材の組付けと、前記複数の第1集光レンズ部材からの光を前記X方向および前記LED光源の光軸と直交するY方向に集光する第2集光レンズ部材を前記照明装置本体内に配置する第2集光レンズ部材の組付けと、前記第2集光レンズ部材からの光を前記X方向に屈折させる屈折レンズ部材を前記照明装置本体に組付ける屈折レンズ部材の組付けと、を行うことによりライン状照明装置とする組付工程と、前記ライン状照明装置によって光が照射される照射位置において、互いに前記Y方向に位置が異なり各々前記X方向に延びる複数の仮想線上でそれぞれ複数の微小点照度又は微小点光量をセンサで測定する測定工程と、コンピュータが、前記測定工程で測定された前記複数の微小点照度又は微小点光量のデータをそのX方向およびY方向の測定位置と対応させた測定結果データを作成する測定結果データ作成工程と、前記ライン状照明装置を納入先に納入する製品納入工程と、前記測定結果データを前記納入先に納入するデータ納入工程とを有する。   According to a second aspect of the present invention, there is provided a method of manufacturing a linear illumination device, wherein a plurality of substrate units each mounted with a plurality of LED light sources arranged in the X direction are assembled to the illumination device main body so as to be arranged in the X direction. A first condensing lens for assembling the substrate unit and a plurality of first condensing lens members that condense light from the plurality of LED light sources in the X direction to the illuminating device main body or each of the substrate units. Assembling the members and a second condensing lens member for condensing light from the plurality of first condensing lens members in the X direction and the Y direction orthogonal to the optical axis of the LED light source in the illuminating device main body Assembly of the second condensing lens member disposed in the lens, and assembling the refractive lens member for assembling the refractive lens member for refracting light from the second condensing lens member in the X direction to the illuminating device main body, By doing the line In the assembling step to be an illuminating device and the irradiation position where light is irradiated by the line-shaped illuminating device, a plurality of minute point illuminances or a plurality of minute point illuminances respectively on a plurality of virtual lines that are different in the Y direction and extend in the X direction. A measurement process in which a minute point light quantity is measured by a sensor, and a measurement result in which the computer associates the data of the plurality of minute point illuminances or minute point light quantities measured in the measurement process with measurement positions in the X direction and the Y direction. It includes a measurement result data creation process for creating data, a product delivery process for delivering the line illumination device to a delivery destination, and a data delivery process for delivering the measurement result data to the delivery destination.

上記第2の態様では、第1および第2集光レンズ部で集光された光がX方向に並ぶように配置された複数の屈折レンズ面でX方向に屈折されるので、光量の低下の原因となるレンズへの入光やレンズからの出光を極力少なくしながら、LED光源の並設方向(X方向)に光軸を傾けることができる。   In the second aspect, the light collected by the first and second condenser lens portions is refracted in the X direction by the plurality of refractive lens surfaces arranged so as to be aligned in the X direction, so that the amount of light is reduced. The optical axis can be tilted in the direction in which the LED light sources are arranged side by side (X direction) while minimizing the incident light to the lens and the light exiting from the lens.

一方、各第1集光レンズ部を通過した光はX方向には集光されているがY方向には放射状に拡がりながら進む。このため、第1集光レンズ部と第2集光レンズ部との距離や、第2集光レンズ部のY方向の寸法や、第2集光レンズ部の曲率を調整することにより、第2集光レンズ部を通過した光のY方向の幅、即ち複数の屈折レンズ面を通過した後のライン状の照明範囲の幅を調整することができる。
また、測定結果データを作成し照明装置と共に納入するので、納入先においてライン状照明位置の照明状態を知った上でライン状照明装置の設置を行うことができ、設置の容易化を図る上で有利である。
On the other hand, the light that has passed through each first condenser lens portion is condensed in the X direction, but travels while spreading radially in the Y direction. Therefore, by adjusting the distance between the first condenser lens part and the second condenser lens part, the dimension of the second condenser lens part in the Y direction, and the curvature of the second condenser lens part, The width in the Y direction of the light that has passed through the condenser lens portion, that is, the width of the linear illumination range after passing through the plurality of refractive lens surfaces can be adjusted.
In addition, since measurement result data is created and delivered together with the lighting device, it is possible to install the line lighting device after knowing the lighting state of the line lighting position at the delivery destination, in order to facilitate the installation. It is advantageous.

本発明によれば、光量を無用に低減することなく、LED光源の並設方向(X方向)に光軸を傾けることができ、しかもライン状の照明範囲の幅を任意に設定することが可能である。   According to the present invention, the optical axis can be tilted in the direction in which the LED light sources are arranged side by side (X direction) without unnecessarily reducing the amount of light, and the width of the linear illumination range can be arbitrarily set. It is.

本発明の一実施形態に係るライン状照明装置の概略図である。It is the schematic of the linear illuminating device which concerns on one Embodiment of this invention. 前記ライン状照明装置のY方向断面図である。It is Y direction sectional drawing of the said linear illuminating device. 前記ライン状照明装置の基板ユニットの平面図である。It is a top view of the board | substrate unit of the said linear illuminating device. 図3におけるIV−IV線断面図である。It is the IV-IV sectional view taken on the line in FIG. 前記ライン状照明装置の基板ユニットの側面図である。It is a side view of the board | substrate unit of the said linear illuminating device. 図3におけるストッパ部材のVI方向矢視図である。It is a VI direction arrow directional view of the stopper member in FIG. 検査工程の一例の概略図である。It is a schematic diagram of an example of an inspection process. 鋼板の表面の長手方向断面図である。It is longitudinal direction sectional drawing of the surface of a steel plate. 鋼板の表面の幅方向断面図である。It is sectional drawing of the width direction of the surface of a steel plate. 屈折レンズ部材の要部側面図である。It is a principal part side view of a refractive lens member. 屈折レンズ部材によるX方向への屈折角度の計算結果を示す図表である。It is a graph which shows the calculation result of the refraction angle to the X direction by a refractive lens member. アライメント調整装置の概略平面図である。It is a schematic plan view of an alignment adjustment device. 前記アライメント調整装置の概略側面図である。It is a schematic side view of the alignment adjusting device. 測定結果データである照度の等高線図の例である。It is an example of the contour map of the illumination intensity which is measurement result data. 本実施形態の変形例を示す基板ユニットの側面図である。It is a side view of the board | substrate unit which shows the modification of this embodiment.

本発明の一実施形態に係るライン状照明装置について図面を参照して以下に説明する。
このライン状照明装置は、ラインセンサ等の検査用センサによる検出位置をライン状(線状)に照明するものであり、照明装置本体10と、それぞれ複数のLED1が直線状に並ぶように実装された複数の基板ユニット20と、複数のLED1が一直線状に並ぶように照明装置本体10のヒートシンク11に各基板ユニット20を固定する複数のボルト(締結手段)30とを有する。以下の説明において、LED1の並設方向をX方向とし、各LED1の光軸に沿う方向をZ方向とし、X方向およびZ方向に直交する方向をY方向とする。
A line illumination device according to an embodiment of the present invention will be described below with reference to the drawings.
This line illumination device illuminates the detection position by an inspection sensor such as a line sensor in a line shape (line shape), and is mounted so that the illumination device main body 10 and a plurality of LEDs 1 are arranged in a straight line. The plurality of board units 20 and the plurality of bolts (fastening means) 30 for fixing each board unit 20 to the heat sink 11 of the illuminating device body 10 so that the plurality of LEDs 1 are arranged in a straight line. In the following description, the parallel direction of the LEDs 1 is the X direction, the direction along the optical axis of each LED 1 is the Z direction, and the X direction and the direction orthogonal to the Z direction are the Y direction.

このライン状照明装置はさらに、X方向に延びるように照明装置本体10に取付けられ、並設された複数のLED1の光をY方向に集光する第2集光レンズ部材40と、第2集光レンズ部材40から出た光をX方向に屈折させる屈折レンズ部材50と、屈折レンズ部材50を保護するための保護レンズ部材60とを備えている。この照明装置によるライン状照明位置(集光位置)の光の幅は数mm程度であっても良く、十数mmであっても良く、場合によっては数十mmであっても良く、何れの場合もライン状である。   The line illumination device is further attached to the illumination device main body 10 so as to extend in the X direction, and a second condenser lens member 40 that condenses the light of the plurality of LEDs 1 arranged in parallel in the Y direction, and a second collector. A refractive lens member 50 that refracts light emitted from the optical lens member 40 in the X direction, and a protective lens member 60 for protecting the refractive lens member 50 are provided. The width of the light at the line-shaped illumination position (condensing position) by this illumination device may be about several mm, may be several tens of mm, and may be several tens of mm in some cases. The case is also line-shaped.

図1〜2のように、照明装置本体10は、X方向に延びる長尺状の金属製ヒートシンク11と、内部に形成された中空部にヒートシンク11が固定された下側ボディ12と、下側ボディ12にZ方向の一端が接続されたY方向一対の側面板13と、各側面板13のZ方向の他端側を覆う上側カバー14とを有する。一対の側面板13の互いに対抗する面にはそれぞれZ方向一対の突起部13aが設けられ、これら4つの突起部13aによって第2集光レンズ部材40が挟持され、Y方向およびZ方向に位置決めされる。各突起部13aは各側面板13の対向面からY方向に突出すると共に、X方向に延びるように設けられている。   As shown in FIGS. 1 and 2, the luminaire main body 10 includes a long metal heat sink 11 extending in the X direction, a lower body 12 in which the heat sink 11 is fixed in a hollow portion formed inside, and a lower side. The body 12 includes a pair of side plates 13 in the Y direction in which one end in the Z direction is connected to the body 12, and an upper cover 14 that covers the other end side in the Z direction of each side plate 13. A pair of projections 13a in the Z direction are provided on the opposing surfaces of the pair of side plates 13, and the second condenser lens member 40 is sandwiched by these four projections 13a and positioned in the Y direction and the Z direction. The Each protrusion 13a is provided so as to protrude from the opposing surface of each side plate 13 in the Y direction and to extend in the X direction.

一対の側面板13の間に第2集光レンズ部材40を配置し、一対の側面板13のZ方向他端側に屈折レンズ部材50および保護レンズ部材60を載せ、各側面板13のZ方向一端側を下側ボディ12に内側から係合させ、上側カバー14を一対の側面板13のZ方向他端側に被せ、複数のボルト15で下側ボディ12、一対の側面板13、および上側カバー14を一体となるように固定することにより照明装置が作られ、照明装置本体10内で第2集光レンズ部材40、屈折レンズ部材50、および保護レンズ60が位置決めされ固定される。   The second condenser lens member 40 is disposed between the pair of side plates 13, the refractive lens member 50 and the protective lens member 60 are placed on the other side in the Z direction of the pair of side plates 13, and the Z direction of each side plate 13. One end side is engaged with the lower body 12 from the inside, the upper cover 14 is covered on the other end side in the Z direction of the pair of side plates 13, and the lower body 12, the pair of side plates 13, and the upper side are covered with a plurality of bolts 15. The lighting device is made by fixing the cover 14 so as to be integrated, and the second condenser lens member 40, the refractive lens member 50, and the protective lens 60 are positioned and fixed in the lighting device main body 10.

各基板ユニット20は、例えば銅、アルミニウム等の金属やプラスチックから成り、図3〜図6のように、表面にLED1、その電力供給・制御回路、端子等が実装されている基板本体21と、基板本体21上に並設されたLED1からの光を受光する第1集光レンズ部材22と、第1集光レンズ部材22を基板本体21に取付ける取付構造23とを有する。基板本体21は製造のし易さ、ライン状照明位置の位置調整のし易さ、メンテナンスのし易さ等を考慮し、X方向の寸法が100mm以下であることが好ましい。LED1は高輝度LED1であることが好ましく、ライン状照明位置の照度を上げるため数mm以下(本実施形態では5mm以下)のピッチで配置されている。また、LED1は光軸から片側35°の範囲外(好ましくは25°の範囲外)の光量が光軸位置の光量の80%以下になる指向特性の強いLEDを用いることが好ましいが、それ以外のLEDも使用可能である。一般的に、光軸位置に対し光量が100%〜80%となる範囲の光量全量は、他の範囲の光量全量に比べて明らかに多い。   Each board unit 20 is made of, for example, metal such as copper or aluminum or plastic, and as shown in FIGS. 3 to 6, a board body 21 on which the LED 1, its power supply / control circuit, terminals, and the like are mounted, It has the 1st condensing lens member 22 which light-receives the light from LED1 arranged in parallel on the board | substrate body 21, and the attachment structure 23 which attaches the 1st condensing lens member 22 to the board | substrate body 21. FIG. The substrate body 21 preferably has a dimension in the X direction of 100 mm or less in consideration of ease of manufacture, ease of position adjustment of the line illumination position, ease of maintenance, and the like. The LEDs 1 are preferably high-intensity LEDs 1 and are arranged at a pitch of several mm or less (in this embodiment, 5 mm or less) in order to increase the illuminance at the line-shaped illumination position. Further, the LED 1 is preferably an LED with strong directivity that the light amount outside the range of 35 ° on one side (preferably outside the range of 25 °) from the optical axis is 80% or less of the light amount at the optical axis position. LEDs can also be used. In general, the total amount of light in a range where the amount of light is 100% to 80% with respect to the optical axis position is clearly larger than the total amount of light in other ranges.

第1集光レンズ部材22はガラスやプラスチック等の透光性材料から成り、板状である。本実施形態では耐熱性を考慮しガラスを使用している。第1集光レンズ部材22は、それぞれX方向に曲率を有すると共にY方向に断面略同一形状で延び、X方向に並ぶように配置された複数の第1集光レンズ部22aが厚さ方向の一方に設けられ、平面状の入光面22eが厚さ方向の他方に設けられている。本実施形態では第1集光レンズ部22aが出光面として機能する。   The 1st condensing lens member 22 consists of translucent materials, such as glass and a plastic, and is plate shape. In this embodiment, glass is used in consideration of heat resistance. Each of the first condenser lens members 22 has a curvature in the X direction and extends in substantially the same shape in the cross section in the Y direction, and a plurality of first condenser lens portions 22a arranged in the X direction are arranged in the thickness direction. Provided on one side, a planar light incident surface 22e is provided on the other side in the thickness direction. In this embodiment, the 1st condensing lens part 22a functions as a light emission surface.

ここで、各第1集光レンズ部22aは、各LED1から放射状に出る光の方向をX方向に屈折させるものである。また、第1集光レンズ部22aを通過した光が例えば焦点を結ぶように収束方向に向かわず、略平行光になる場合や、若干広がりながら進む場合であっても、放射状に進む光を内側(例えば各LED1の光軸側)に向けて屈折させるのであれば、X方向に集光しているものとする。   Here, each 1st condensing lens part 22a refracts the direction of the light which radiate | emits radially from each LED1 to a X direction. In addition, even if the light that has passed through the first condenser lens portion 22a does not go in the convergence direction so as to be focused, for example, becomes substantially parallel light or travels slightly spreading, If the light is refracted toward the LED 1 (for example, the optical axis side of each LED 1), the light is condensed in the X direction.

取付構造23は、金属やプラスチックから成り、基板本体21の各LED1に対し第1集光レンズ部材22をZ方向所定の位置に保持するためのスペーサ23aと、スペーサ23aに第1集光レンズ部材22をZ方向に押付けるバネ部材23bと、スペーサ23aに保持された第1集光レンズ部材22のY方向の移動を規制し、また、第1集光レンズ部材22をスペーサ23aに押付けるストッパ部材23cとを有する。スペーサ23aは基板本体21の一部であっても別部材であっても良い。本実施形態ではスペーサ23aは基板本体21と別部材で、プラスチック製であり、型成形品である。   The attachment structure 23 is made of metal or plastic, and a spacer 23a for holding the first condenser lens member 22 at a predetermined position in the Z direction with respect to each LED 1 of the substrate body 21, and the first condenser lens member on the spacer 23a. The spring member 23b that presses the member 22 in the Z direction and the movement of the first condenser lens member 22 held by the spacer 23a in the Y direction, and a stopper that pushes the first condenser lens member 22 against the spacer 23a Member 23c. The spacer 23a may be a part of the substrate body 21 or a separate member. In the present embodiment, the spacer 23a is a separate member from the substrate body 21, is made of plastic, and is a molded product.

本実施形態では、第1集光レンズ部材22のX方向の中間部に切欠き部22bが設けられている。切欠き部22bは第1集光レンズ部材22のX方向の中間部をY方向に切欠くことにより形成されている。第1集光レンズ部材22がスペーサ23aに保持されると、当該切欠き部22bのX方向の両側がそれぞれ、スペーサ23aの一部にX方向外側から当接する。つまり、第1集光レンズ部材22には、スペーサ23aにX方向の一方から当接する第1の当接部22cと、スペーサ23aにX方向の他方から当接する第2の当接部22dとが設けられている。   In the present embodiment, a notch 22 b is provided in the middle portion of the first condenser lens member 22 in the X direction. The notch 22b is formed by notching an intermediate portion in the X direction of the first condenser lens member 22 in the Y direction. If the 1st condensing lens member 22 is hold | maintained at the spacer 23a, the both sides of the X direction of the said notch part 22b each contact | abut to a part of spacer 23a from the X direction outer side. That is, the first condenser lens member 22 includes a first contact portion 22c that contacts the spacer 23a from one side in the X direction and a second contact portion 22d that contacts the spacer 23a from the other side in the X direction. Is provided.

スペーサ23aの前記一部のX方向の寸法公差を100分の3mm以下等の小さなものとし、切欠き部22bのX方向の寸法公差も100分の3mm以下等の小さなものとすることにより、各LED1の光軸の位置と各第1集光レンズ部22aのX方向中央部とを一致させ、若しくは実質的に一致させることができ、又は、各LED1の光軸の位置と各第1集光レンズ部22aのX方向位置とを合わせることができる。合わせるとは、X方向に集光されたX方向集約光が各第1集光レンズ部22aから出ている状態で、隣り合うX方向集約光の互いの光軸がなす角度が5°以下、望ましくは3°以下、より望ましくは1°以下になることを言う。つまり、各X方向集約光の光軸がZ方向に延びる仮想線に対し成す角度が数十度であっても、隣り合うX方向集約光の互いの光軸がなす角度が前記角度以下であれば良いが、各X方向集約光の光軸がZ方向に延びる仮想線に対し成す角度は0°に近いことが望ましい。基板本体21上への各LED1の実装位置の誤差も、近年の技術改良により100分の数mm以下にすることが可能であり、スペーサ23aと第1集光レンズ部材22との上記係合があるため、このように一致させ、又は実質的に一致させることができる。
一方、スペーサ23aの前記一部のX方向の寸法を前記切欠き部22bのX方向の寸法より0.2mm以上、より好ましくは0.5mm以上小さく設定し、各LED1に対する第1集光レンズ部材22のX方向の位置を微調整可能に構成することも可能である。
By setting the dimensional tolerance in the X direction of the spacer 23a as small as 3/100 mm or less and the dimensional tolerance in the X direction of the notch 22b as small as 3/100 mm or less, The position of the optical axis of the LED 1 and the X-direction central portion of each first condenser lens portion 22a can be matched or substantially matched, or the position of the optical axis of each LED 1 and each first condenser It is possible to match the position of the lens portion 22a in the X direction. In the state where the X direction aggregated light condensed in the X direction is emitted from each first condenser lens portion 22a, the angle formed by the optical axes of the adjacent X direction aggregated light is 5 ° or less, It is preferably 3 ° or less, more preferably 1 ° or less. That is, even if the angle formed by the optical axis of each X-direction aggregated light with respect to the virtual line extending in the Z-direction is several tens of degrees, the angle formed by the optical axes of the adjacent X-direction aggregated light is equal to or less than the above angle. However, the angle formed by the optical axis of each X-direction aggregated light with respect to the imaginary line extending in the Z direction is preferably close to 0 °. The error in the mounting position of each LED 1 on the substrate body 21 can also be reduced to a few hundredths of mm or less due to recent technological improvements, and the above-described engagement between the spacer 23a and the first condenser lens member 22 is achieved. As such, they can be matched or substantially matched in this way.
On the other hand, the X-direction dimension of the part of the spacer 23a is set to 0.2 mm or more, more preferably 0.5 mm or more smaller than the X-direction dimension of the notch 22b, and the first condenser lens member for each LED 1 is set. It is also possible to make a fine adjustment of the position of 22 in the X direction.

なお、本実施形態では、スペーサ23aは基板本体21と共に複数のボルト(固定部材)24によってヒートシンク11に固定される。本実施形態では、スペーサ23aおよび基板本体21に設けられるボルト孔の内径とボルト24の外径との隙間も100分の数mmに設定され、スペーサ23aも基板本体21に対しY方向に精密に位置決めされている。なお、スペーサ23aと基板本体21とがX方向に係合するように構成し、これによりスペーサ23aを基板本体21に対しX方向に精密に位置決めすることも可能である。   In this embodiment, the spacer 23 a is fixed to the heat sink 11 together with the substrate body 21 by a plurality of bolts (fixing members) 24. In the present embodiment, the gap between the inner diameter of the bolt hole provided in the spacer 23a and the substrate body 21 and the outer diameter of the bolt 24 is also set to several hundredths of a millimeter, and the spacer 23a is also precisely in the Y direction with respect to the substrate body 21. It is positioned. The spacer 23a and the substrate body 21 can be configured to engage in the X direction, whereby the spacer 23a can be precisely positioned with respect to the substrate body 21 in the X direction.

上記のように各第1集光レンズ部材22がスペーサ23aに保持された状態で、バネ部材23bをスペーサ23aにボルト(固定部材)23dで固定する。ボルト23dでバネ部材23bのY方向一端側をスペーサ23aに固定すると、バネ部材23bのY方向他端側とスペーサ23aとの間に第1集光レンズ部材22の一部が挟持される。この時、バネ部材23bが弾性変形し、当該弾性変形の反力を用いて第1集光レンズ部材22の一部がスペーサ23bに押付けられ、スペーサ23aに取付けられる。   As described above, the spring member 23b is fixed to the spacer 23a with the bolt (fixing member) 23d in a state where each first condenser lens member 22 is held by the spacer 23a. When one end in the Y direction of the spring member 23b is fixed to the spacer 23a with the bolt 23d, a part of the first condenser lens member 22 is sandwiched between the other end in the Y direction of the spring member 23b and the spacer 23a. At this time, the spring member 23b is elastically deformed, and a part of the first condenser lens member 22 is pressed against the spacer 23b using the reaction force of the elastic deformation, and is attached to the spacer 23a.

ここで、第1集光レンズ部材22とスペーサ23aとがX方向に厳密に当接するよう構成されず、前述のように、各LED1に対する第1集光レンズ部材22のX方向の位置を微調整可能に構成されている場合、第1集光レンズ部材22の一部がバネ部材23bの反力でスペーサ23bに押付けられた状態で、第1集光レンズ部材22のX方向の位置を微調整することができる。この時、第1集光レンズ部材22の一部がバネ部材23bの反力でスペーサ23aに押付けられているので、第1集光レンズ部材22がスペーサ23aや各LED1に対しX方向に無用に動かない状態で、前記微調整作業を行うことができ、当該作業を容易かつ正確に行うことができる。
この場合、基板ユニット20を1つずつ点灯し、そのX方向集約光の方向や照度を確認することにより、各基板ユニット20の第1集光レンズ部材22について前記微調整や位置が正しいことを確認することができる。このように製造すると、ライン状照明位置の光量のムラや光量を確保する上で有利であり、精度の高い製品をスムーズに製造する上でも有利である。
Here, the first condenser lens member 22 and the spacer 23a are not configured to strictly contact with each other in the X direction. As described above, the position of the first condenser lens member 22 in the X direction with respect to each LED 1 is finely adjusted. In the case where the first condensing lens member 22 is pressed against the spacer 23b by the reaction force of the spring member 23b, the position of the first condensing lens member 22 in the X direction is finely adjusted. can do. At this time, since a part of the first condenser lens member 22 is pressed against the spacer 23a by the reaction force of the spring member 23b, the first condenser lens member 22 is useless in the X direction with respect to the spacer 23a and each LED1. The fine adjustment work can be performed without moving, and the work can be easily and accurately performed.
In this case, by turning on the substrate units 20 one by one and confirming the direction and illuminance of the X-direction aggregated light, the fine adjustment and the position of the first condenser lens member 22 of each substrate unit 20 are correct. Can be confirmed. Manufacturing in this way is advantageous in securing unevenness in the amount of light and the amount of light at the line-shaped illumination position, and is also advantageous in smoothly manufacturing a highly accurate product.

また、ストッパ部材23cは第1集光レンズ部材22のY方向一端にY方向に当接する。一方、ストッパ部材23cは複数のボルト24によって基板本体21と共にヒートシンク11に固定される。これにより、ストッパ部材23cは第1集光レンズ部材22のY方向他端にY方向に当接し、第1集光レンズ部材22のY方向の移動を規制すると共に、第1集光レンズ部材22をスペーサ23aに押付け、第1集光レンズ部材22のX方向およびY方向の移動を規制する。ここで、前述のように第1集光レンズ部材22の一部がバネ部材23bの反力でスペーサ23aに押付けられているので、第1集光レンズ部材22の位置がずれないようにしながらストッパ部材23cの固定を行うことができる。   In addition, the stopper member 23c is in contact with one end in the Y direction of the first condenser lens member 22 in the Y direction. On the other hand, the stopper member 23 c is fixed to the heat sink 11 together with the substrate body 21 by a plurality of bolts 24. Accordingly, the stopper member 23c contacts the other end in the Y direction of the first condensing lens member 22 in the Y direction, restricts the movement of the first condensing lens member 22 in the Y direction, and the first condensing lens member 22. Is pressed against the spacer 23a to restrict the movement of the first condenser lens member 22 in the X and Y directions. Here, as described above, a part of the first condensing lens member 22 is pressed against the spacer 23a by the reaction force of the spring member 23b, so that the position of the first condensing lens member 22 is prevented from shifting. The member 23c can be fixed.

ここで、ストッパ部材23cや基板本体21やスペーサ23aの一部に第1集光レンズ部材22の前記Y方向一端側で第1集光レンズ部材22にZ方向に当接するZ方向当接部を設けることも可能である。
さらに、第1集光レンズ部材22を前記Z方向当接部にZ方向に押付ける移動規制部材を設けることも可能である。この移動規制部材は、例えばバネ部材の反力で第1集光レンズ部材22を前記Z方向当接部にZ方向に押付けるように構成できる。この場合、前記ストッパ部材23cで第1集光レンズ部材22をスペーサ23aに押付けずに、ストッパ23cを前記第1集光レンズ部材22にY方向に軽く当接させるだけで、第1集光レンズ部材22のX方向の移動を規制することもできる。
Here, a Z-direction abutting portion that abuts the first condenser lens member 22 in the Z direction on one end side in the Y direction of the first condenser lens member 22 on a part of the stopper member 23c, the substrate body 21, and the spacer 23a. It is also possible to provide it.
Furthermore, it is also possible to provide a movement restricting member that presses the first condenser lens member 22 against the Z direction contact portion in the Z direction. The movement restricting member can be configured to press the first condenser lens member 22 in the Z direction against the Z direction abutting portion by a reaction force of a spring member, for example. In this case, the first condensing lens can be obtained by simply abutting the stopper 23c against the first condensing lens member 22 in the Y direction without pressing the first condensing lens member 22 against the spacer 23a with the stopper member 23c. The movement of the member 22 in the X direction can also be restricted.

このように、第1集光レンズ部材22は上記のようにX方向およびY方向の移動が規制され、バネ部材の弾性変形の反力によって位置決めされ、取付けられている。本照明装置が製鉄所の数百度の鋼板の表面に光を照射するために用いられる場合は、前記当接部は常温で僅かな隙間が生ずるよう締り嵌め設定でないことが好ましい。これにより、基板ユニット20付近の温度が数百度になったとしても、熱膨張による変形分を締り嵌めでないことやバネ部材の弾性変形等により吸収し、第1集光レンズ部材22に変形や破損が生じ難い。また、本実施形態では第1集光レンズ部材22がガラスから成るのでレンズの熱変形も生じ難い。このため、所望の精度や性能を長時間に亘って維持することが可能である。   Thus, the movement of the first condenser lens member 22 in the X direction and the Y direction is restricted as described above, and the first condenser lens member 22 is positioned and attached by the reaction force of the elastic deformation of the spring member. When this lighting device is used to irradiate light on the surface of a steel sheet of several hundred degrees in a steelworks, it is preferable that the contact portion is not an interference fit setting so that a slight gap is generated at room temperature. As a result, even if the temperature near the substrate unit 20 reaches several hundred degrees, the deformation due to thermal expansion is absorbed by the fact that it is not an interference fit or the elastic deformation of the spring member, and the first condenser lens member 22 is deformed or damaged. Is unlikely to occur. In the present embodiment, since the first condenser lens member 22 is made of glass, thermal deformation of the lens hardly occurs. For this reason, desired accuracy and performance can be maintained for a long time.

第2集光レンズ部材40はライン状照明装置とほぼ同じ長さを有する円柱状レンズである。直径は十数mm〜数十mmであり、アクリル樹脂等の透明なプラスチックやガラス等から成る。ライン状照明装置は長いもので数mになり、3mを超えるものも多いので、第2集光レンズ部材40もライン状照明装置とほぼ同じ長さの数mとなる。なお、第2集光レンズ部材40を複数の円柱状レンズを接続して形成することも可能であるが、接続部が集光位置に映り込む場合があるので、1本の円柱状レンズから形成することが好ましい。   The second condenser lens member 40 is a cylindrical lens having substantially the same length as that of the line illumination device. The diameter is from several tens of millimeters to several tens of millimeters, and is made of transparent plastic such as acrylic resin, glass, or the like. Since the line-shaped illumination device is long and has a length of several meters, and many of the line-shaped illumination devices exceed 3 m, the second condenser lens member 40 also has a length of several meters that is substantially the same as that of the line-shaped illumination device. The second condensing lens member 40 can be formed by connecting a plurality of cylindrical lenses. However, since the connecting portion may be reflected in the condensing position, it is formed from a single cylindrical lens. It is preferable to do.

本実施形態では、第2集光レンズ部材40が円柱状レンズから成るので、第2集光レンズ部材40の入光面40aと出光面40bの両方で各第1集光レンズ部22aからの光がY方向に集光する。つまり、入光面40aと出光面40bが第2集光レンズ部として機能する。
ここで、第2集光レンズ部40a,40bは、図2に示すように、各LED1から放射状に出る光の方向をY方向に屈折させるものである。また、第2集光レンズ部40a,40bを通過した光が例えば焦点を結ぶように収束方向に向かわず、略平行光になる場合や、若干広がりながら進む場合であっても、放射状に進む光を内側(例えば各LED1の光軸側)に向けて屈折させるのであれば、Y方向に集光しているものとする。
In this embodiment, since the 2nd condensing lens member 40 consists of a cylindrical lens, the light from each 1st condensing lens part 22a by both the light-incidence surface 40a of the 2nd condensing lens member 40 and the light emission surface 40b. Condenses in the Y direction. That is, the light incident surface 40a and the light exit surface 40b function as a second condenser lens unit.
Here, as shown in FIG. 2, the second condenser lens portions 40 a and 40 b refract the light emitted radially from each LED 1 in the Y direction. Further, even if the light that has passed through the second condenser lens portions 40a and 40b does not go in the convergence direction so as to be focused, for example, becomes substantially parallel light, or travels while spreading slightly, the light traveling radially Is refracted toward the inside (for example, the optical axis side of each LED 1), it is assumed that the light is condensed in the Y direction.

第2集光レンズ部材40が上記のように長くなると、第2集光レンズ部材40自体をその長さ方向に亘って均一に成形することが難しくなる。特に、第2集光レンズ部材40の外径が大きくなると、第2集光レンズ部材40の外径をその長さ方向に亘って均一に成形することが難しくなる。均一な製造を求めると第2集光レンズ部材40の製造コストが大幅に上昇する。また、第2集光レンズ部材40の照明装置本体10への組付時に第2集光レンズ部材40のY方向やZ方向の位置が若干ずれる場合があり、また、第2集光レンズ部材40や側面板13が自重によって撓み、第2集光レンズ部材40のY方向やZ方向の位置がずれる場合もあるので、これらの点に注意を払う必要もある。   When the second condensing lens member 40 becomes long as described above, it becomes difficult to uniformly mold the second condensing lens member 40 itself along its length direction. In particular, when the outer diameter of the second condenser lens member 40 is increased, it becomes difficult to uniformly mold the outer diameter of the second condenser lens member 40 along its length direction. If uniform production is required, the production cost of the second condenser lens member 40 will increase significantly. In addition, the position of the second condenser lens member 40 in the Y direction or the Z direction may be slightly shifted when the second condenser lens member 40 is assembled to the illuminating device body 10. Further, since the side plate 13 may be bent by its own weight, the position of the second condensing lens member 40 in the Y direction or the Z direction may be shifted, so it is necessary to pay attention to these points.

屈折レンズ部材50はライン状照明装置とほぼ同じ長さ範囲に設けられたプリズムレンズであり、アクリル樹脂等の透明なプラスチックやガラス等から成る。屈曲レンズ部材50は、平面状の入光面50aと、X方向に並設された複数の三角柱状のプリズムレンズを有するプリズム面50bとを有する。各プリズムレンズは、Z方向に延びる仮想線に対し30°の角度を有するようにX方向に傾斜している屈折レンズ面50cと、隣り合う屈折レンズ面50cの間を繋ぐ接続面50dとを有する。   The refractive lens member 50 is a prism lens provided in a length range substantially the same as that of the line illumination device, and is made of transparent plastic such as acrylic resin, glass, or the like. The bent lens member 50 includes a planar light incident surface 50a and a prism surface 50b having a plurality of triangular prism prism lenses arranged in parallel in the X direction. Each prism lens has a refractive lens surface 50c inclined in the X direction so as to have an angle of 30 ° with respect to an imaginary line extending in the Z direction, and a connection surface 50d connecting between adjacent refractive lens surfaces 50c. .

本実施形態では、一例として、接続面50dはZ方向に延びる仮想線に対し3°以下の角度でX方向に傾斜している。また、プリズムレンズのX方向のピッチPは1mm以下であることが好ましく、本実施形態では0.5mm以下である。なお、プリズムレンズのX方向のピッチは1mmを超えるものであっても構わないが、小さい方がライン状照明位置の光の均一性を上げる上で好ましい。   In the present embodiment, as an example, the connection surface 50d is inclined in the X direction at an angle of 3 ° or less with respect to a virtual line extending in the Z direction. In addition, the pitch P in the X direction of the prism lenses is preferably 1 mm or less, and in this embodiment is 0.5 mm or less. The pitch in the X direction of the prism lenses may be greater than 1 mm, but a smaller one is preferable in terms of increasing the light uniformity at the line-shaped illumination position.

このライン状照明装置は、X方向の両端側に基準光源としてレーザー光源を備えている。各レーザー光源は第1および第2集光レンズ部材22,40を介さずに、屈折レンズ部材50を介してライン状照明位置に向かって直径数mm程度の平行光を照射する。複数のLED1のうちX方向の一端および他端の特定のLED1を基準光源として用いることも可能である。この場合、特定のLED1の光が第1および第2集光レンズ部材22,40および屈折レンズ部材50を介してライン状照明位置に照射される。   This line illumination device includes laser light sources as reference light sources on both ends in the X direction. Each laser light source irradiates parallel light having a diameter of several millimeters toward the line-shaped illumination position via the refractive lens member 50 without passing through the first and second condenser lens members 22 and 40. Of the plurality of LEDs 1, specific LEDs 1 at one end and the other end in the X direction can be used as a reference light source. In this case, the light of the specific LED 1 is irradiated to the line-shaped illumination position via the first and second condenser lens members 22 and 40 and the refractive lens member 50.

前述のように組付けられた照明装置では、各LED1からの光は各第1集光レンズ部22aによりX方向に集光し、第2集光レンズ部40a,40bによりY方向に集光し、その後、入光面50aから屈折レンズ部材50内に入光し、各屈折レンズ面50cによってX方向に屈折し、保護レンズ部材60を通過してライン状照明位置に到達する。各第1集光レンズ部22aおよび第2集光レンズ部40a,40bにより、各屈折レンズ面50cに入光する光は、Z方向に向かう平行光の成分が多くなっている。   In the illuminating device assembled as described above, the light from each LED 1 is condensed in the X direction by the respective first condenser lens portions 22a, and is condensed in the Y direction by the second condenser lens portions 40a and 40b. Thereafter, light enters the refractive lens member 50 from the light incident surface 50a, is refracted in the X direction by each refractive lens surface 50c, passes through the protective lens member 60, and reaches the linear illumination position. The light entering the refractive lens surfaces 50c by the first condenser lens portions 22a and the second condenser lens portions 40a and 40b has a large amount of parallel light components in the Z direction.

ここで、各屈折レンズ面50cによりどの程度X方向に光が曲げられるかについて、図10および図11を用いて説明する。図10では、Z方向に延びる仮想線(図10中の一点鎖線、以下同じ)対し各屈折レンズ面50cがX方向に傾斜する傾斜角がαで示され、各屈折レンズ50cを通過した光がZ方向に延びる仮想線に対してX方向に傾斜する角度がθa、θb、θc、θd、およびθeで示されている。図10では、第2集光レンズ部材40からの光L1は仮想線と平行な光であり、第2集光レンズ部材40からの光L2は仮想線に対しX方向一方に1°傾斜しており、第2集光レンズ部材40からの光L3は仮想線に対しX方向一方に2°傾斜しており、第2集光レンズ部材40からの光L4は仮想線に対しX方向他方に1°傾斜しており、第2集光レンズ部材40からの光L5は仮想線に対しX方向他方に2°傾斜しています。   Here, how much light is bent in the X direction by each refractive lens surface 50c will be described with reference to FIGS. In FIG. 10, the inclination angle at which each refractive lens surface 50c is inclined in the X direction with respect to a virtual line extending in the Z direction (the one-dot chain line in FIG. 10, the same applies hereinafter) is indicated by α, and the light passing through each refractive lens 50c The angles inclined in the X direction with respect to the imaginary line extending in the Z direction are indicated by θa, θb, θc, θd, and θe. In FIG. 10, the light L1 from the second condenser lens member 40 is light parallel to the imaginary line, and the light L2 from the second condenser lens member 40 is tilted by 1 ° in the X direction with respect to the imaginary line. The light L3 from the second condenser lens member 40 is inclined by 2 ° in one direction in the X direction with respect to the virtual line, and the light L4 from the second condenser lens member 40 is 1 in the other direction in the X direction with respect to the virtual line. The light L5 from the second condenser lens member 40 is inclined 2 ° to the other side in the X direction with respect to the virtual line.

図10では、L1はあるLED1からその光軸に対し5°の角度をなす方向に出た光の経路であり、L2およびL4はLED1からその光軸に対し15°の角度をなす方向に出た光の経路であり、L3およびL5はLED1からその光軸に対し25°の角度をなす方向に出た光の経路である。このように、LED1からの光の全てが完全な平行光(進む方向が平行な光)にならずに進む向きが数度異なる光が含まれる場合、第2集光レンズ部材22を通過した時点等で隣り合うLED1からの光が互いに混ざり、これによりライン状照明位置の光量のムラが低減される。   In FIG. 10, L1 is a path of light emitted from a certain LED 1 in a direction forming an angle of 5 ° with respect to the optical axis, and L2 and L4 are output from the LED 1 in a direction forming an angle of 15 ° with respect to the optical axis. L3 and L5 are paths of light emitted from the LED 1 in a direction that forms an angle of 25 ° with respect to the optical axis. In this way, when all the light from the LED 1 is not completely parallel light (light traveling in parallel) but includes light traveling in several degrees, the time when the light passes through the second condenser lens member 22 Etc., the lights from the adjacent LEDs 1 are mixed with each other, thereby reducing unevenness in the amount of light at the line-shaped illumination position.

図11に例示するように、各屈折レンズ面50cを通過した光の進む方向は、屈折レンズ部材50を形成する材質の屈折率、傾斜角α、光の入射方向等によって変わる。強度、耐久性、値段等を考慮すると、屈折レンズ部材50を形成する材質としては透光性を有するプラスチック、ガラス等がよく用いられるが、これらの屈折率は1.5近傍であることが多い。また、このようなレンズ製品の実際の屈折率を1.3まで下げることはかなり難しく、事実上1.3以上となる。このため、傾斜角αが40°以上であれば、屈折された光がライン状照明位置に照射されるので、本製品が機能する。また、傾斜角αが80°以下であれば、各屈折レンズ部材50cを通過した光が仮想線に対しX方向に確実に傾いているので、縦傷の検査に有効である。   As illustrated in FIG. 11, the traveling direction of the light that has passed through each refractive lens surface 50c varies depending on the refractive index of the material forming the refractive lens member 50, the inclination angle α, the incident direction of light, and the like. Considering strength, durability, price, etc., the material for forming the refractive lens member 50 is often made of light-transmitting plastic, glass, etc., but their refractive index is often around 1.5. . In addition, it is quite difficult to lower the actual refractive index of such a lens product to 1.3, which is practically 1.3 or more. For this reason, if the inclination angle α is 40 ° or more, the refracted light is applied to the line-shaped illumination position, so that this product functions. Further, if the inclination angle α is 80 ° or less, the light passing through each refractive lens member 50c is surely inclined in the X direction with respect to the imaginary line, which is effective for the inspection of vertical flaws.

図10に例示するように、各屈折レンズ面50cに入射する光の全てが完全な平行光(進む方向が平行な光)にならずに、進む向きが数度異なる光が含まれる場合は、各屈折レンズ面50cを通過した光も完全な平行光にはならず、進む向きが異なる光が含まれることになるが、これはライン状照明位置の光量のムラを低減する上で有利である。
なお、ライン状照明位置の光量のムラをより低減するため、各屈折レンズ面50cの傾斜角αを隣り合う屈折レンズ面50c、又は近傍の(数個離れた)屈折レンズ面50cの傾斜角αと数度異ならせることも可能である。
As illustrated in FIG. 10, when all of the light incident on each refractive lens surface 50 c is not completely parallel light (light that travels in parallel), but includes light that travels several degrees differently, The light that has passed through each refracting lens surface 50c does not become completely parallel light, but includes light that travels in different directions. This is advantageous in reducing unevenness in the amount of light at the line-shaped illumination position. .
In order to further reduce the unevenness in the amount of light at the line-shaped illumination position, the inclination angle α of each refractive lens surface 50c is changed to the inclination angle α of the adjacent refractive lens surface 50c or the adjacent refractive lens surface 50c (several apart). It is also possible to make it different from that several times.

前述のように組付けられ照明装置となった後、図12および13のように、当該ライン状照明装置をアライメント調整装置の支持部110によって支持する。アライメント調整装置は支持部110と後述する照度測定装置を有する。本実施形態では、実際に使用する場合に用いられる照明装置本体10のねじ孔等の相手側取付部を用いてライン状照明装置が支持部110に取付けられるが、相手側取付部を用いずに、支持部110にライン状照明装置を専用治具で押付けて取付けても良い。支持部110は、図13のように、支持部110の傾動取付孔111がベース112に傾動可能に支持されている。このため、支持部110の支持角度をX方向に延びる軸線(傾動取付孔111の中心を通る軸線)中心に変更し、これにより、支持部110によって支持されるライン状照明装置の支持角度をX方向に延びる軸線を中心に任意に設定することができる。本実施形態では、一例として、前記支持角度を納入先における実際の設置角度に設定している。この状態で、各LED1及び各レーザー光源を点灯し、照度測定装置によって照度測定を行う。   After being assembled as described above to become an illumination device, the linear illumination device is supported by the support portion 110 of the alignment adjustment device as shown in FIGS. The alignment adjustment device includes a support portion 110 and an illuminance measurement device described later. In the present embodiment, the line-shaped lighting device is attached to the support portion 110 using a mating mounting portion such as a screw hole of the lighting device main body 10 that is actually used, but without using the mating mounting portion. The line-shaped illumination device may be attached to the support 110 by pressing it with a dedicated jig. As shown in FIG. 13, the support portion 110 is supported by the base 112 so that the tilt mounting hole 111 of the support portion 110 can tilt. For this reason, the support angle of the support part 110 is changed to the axis extending in the X direction (the axis passing through the center of the tilt mounting hole 111), and thereby the support angle of the linear illumination device supported by the support part 110 is changed to X. It can be arbitrarily set around an axis extending in the direction. In the present embodiment, as an example, the support angle is set to an actual installation angle at the delivery destination. In this state, each LED 1 and each laser light source are turned on, and the illuminance measurement is performed by the illuminance measuring device.

照度測定装置は、図12および13に示すように、支持部110に沿ってX方向に延びるレール121と、ステッピングモータ等のモータを有するセンサX方向位置移動手段(図示せず)によりレール121上を移動するセンサホルダ122と、センサホルダ122に保持された微小点照度センサ123と、センサホルダ122および微小点照度センサ123に接続された処理装置124と、処理装置124に接続された表示装置125と、処理装置124に接続されたプリンター126とを有する。処理装置124はCPU、メモリ等を有するコンピュータであり、照度測定および測定結果データ作成を行うように処理装置124を動作させる測定プログラムを格納している。レール121は支持部110に対してフレーム121aを介して支持され、支持部110に支持されたライン状照明装置と平行に延びるように設けられている。つまり、支持部110の配置角度が前記のように変えられると、レール121の位置も変わる。また、照度測定装置は、レール121をフレーム121a上でZ方向に移動させる図示しないステッピングモータ等の駆動手段を有し、これにより、図13に示すように微小点照度センサ123とライン状照明装置とのZ方向の距離を調整することができる。前記センサX方向位置移動手段は前記測定プログラムに基づく処理装置124からの指令によって動作し、これにより、前記プログラムに基づいて微小点照度センサ123がセンサホルダ122と共にレール上を移動する。センサホルダ122は、図13に示すように、前記測定プログラムに基づく処理装置124からの指令によって微小点照度センサ123の位置を前記Y方向に移動するステッピングモータ等のモータを有するセンサY方向移動手段122aを有する。   As shown in FIGS. 12 and 13, the illuminance measuring apparatus is mounted on the rail 121 by a sensor 121 in the X direction position moving means (not shown) having a rail 121 extending in the X direction along the support portion 110 and a motor such as a stepping motor. A sensor holder 122 that moves the sensor holder, a minute point illuminance sensor 123 held by the sensor holder 122, a processing device 124 connected to the sensor holder 122 and the minute point illuminance sensor 123, and a display device 125 connected to the processing device 124. And a printer 126 connected to the processing device 124. The processing device 124 is a computer having a CPU, a memory, and the like, and stores a measurement program for operating the processing device 124 so as to perform illuminance measurement and measurement result data creation. The rail 121 is supported by the support part 110 via the frame 121a, and is provided so as to extend in parallel with the line illumination device supported by the support part 110. That is, when the arrangement angle of the support part 110 is changed as described above, the position of the rail 121 also changes. Further, the illuminance measuring apparatus has a driving means such as a stepping motor (not shown) that moves the rail 121 in the Z direction on the frame 121a, whereby a minute point illuminance sensor 123 and a line illumination device are provided as shown in FIG. The distance in the Z direction can be adjusted. The sensor X direction position moving means operates in response to a command from the processing device 124 based on the measurement program, whereby the minute point illuminance sensor 123 moves on the rail together with the sensor holder 122 based on the program. As shown in FIG. 13, the sensor holder 122 is a sensor Y direction moving means having a motor such as a stepping motor that moves the position of the minute point illuminance sensor 123 in the Y direction in response to a command from the processing device 124 based on the measurement program. 122a.

微小点照度センサ123は、直径1mm程度の導光孔123aを有する遮蔽板123bと、支持部110に支持されたライン状照明装置からの光を遮蔽板123bの導光孔123aを通して受光部123cで受光する照度センサ123dとを有する。つまり、微小点照度センサ123は、直径1mm程度の導光孔123aを通過する光の照度を測定する。本実施形態では、直径1mm程度の導光孔123aを用いて微小点照度の測定を行うが導光孔123aの直径は第2集光レンズ部材40のY方向寸法(本実施形態の場合は直径)の1/10以下であれば、微小点照度の測定が可能である。しかし、導光孔123aが小さいほど精度の良い測定ができるので、前記数値は1/15以下であることが好ましく、1/20以下であることがより好ましい。   The minute point illuminance sensor 123 includes a shielding plate 123b having a light guide hole 123a having a diameter of about 1 mm, and light from the line illumination device supported by the support unit 110 through the light guide hole 123a of the shielding plate 123b. And an illuminance sensor 123d for receiving light. That is, the minute point illuminance sensor 123 measures the illuminance of light passing through the light guide hole 123a having a diameter of about 1 mm. In the present embodiment, the minute spot illuminance is measured using the light guide hole 123a having a diameter of about 1 mm. The diameter of the light guide hole 123a is the Y-direction dimension of the second condenser lens member 40 (in the case of the present embodiment, the diameter). If it is 1/10 or less of), minute point illuminance can be measured. However, since the smaller the light guide hole 123a, the more accurate measurement can be performed, the numerical value is preferably 1/15 or less, and more preferably 1/20 or less.

本実施形態では、導光孔123aの中心軸はX方向に33°傾いている。つまり、導光孔123aの中心軸の延びる方向が、後述の屈折レンズ部材50の各屈折レンズ面50cを通過した光がZ軸方向に延びる仮想軸線に対しX方向に傾く角度(設計上狙いとする角度)で導光孔123aの中心軸がX方向に傾いている。なお、この角度を前記設計上狙いとする角度に対し10°以下や20°以下の範囲で異ならせることも可能である。これにより、導光孔123aの内壁は、屈折レンズ部材50による光の平均的な屈折方向に沿って延びることになり、照度センサ123dが主に前記平均的な屈折方向に沿って進む光の微小点照度又は微小点光量を測定することになる。ここで、遮蔽板123bの厚さは導光孔123aの直径以上、好ましくは1.5倍以上であることが好ましい。一方、中心軸がX方向に全く傾いていない導光孔123aを用いても、ライン状照明位置における光量や光量のムラを確認することは可能である。   In the present embodiment, the central axis of the light guide hole 123a is inclined 33 ° in the X direction. In other words, the direction in which the central axis of the light guide hole 123a extends is an angle at which light that has passed through each refractive lens surface 50c of the refractive lens member 50 described later is inclined in the X direction with respect to a virtual axis extending in the Z-axis direction. The central axis of the light guide hole 123a is inclined in the X direction. In addition, it is also possible to make this angle different in the range of 10 degrees or less or 20 degrees or less with respect to the angle aimed at in the design. As a result, the inner wall of the light guide hole 123a extends along the average refraction direction of the light by the refractive lens member 50, and the illuminance sensor 123d mainly travels along the average refraction direction. The point illuminance or the minute point light quantity is measured. Here, the thickness of the shielding plate 123b is not less than the diameter of the light guide hole 123a, preferably not less than 1.5 times. On the other hand, even when the light guide hole 123a whose central axis is not inclined at all in the X direction is used, it is possible to confirm the light quantity and the light quantity unevenness at the line-shaped illumination position.

照度測定を行うためにライン状照明装置を支持部110によって支持し、処理装置124が測定の開始の命令を受付けると、前記測定プログラムにより照度測定が開始される。この時、処理装置124は、測定するライン状照明装置の製造シリアル番号も受付ける。以下では、前記測定プログラムに基づく処理装置124からの指令によってセンサホルダ122、微小点照度センサ123、表示装置125、及びプリンター126が動作する。
先ず、支持部110に支持されたライン状照明装置のライン状照明位置において、X方向に延びる第1の仮想線上の複数位置で微小点照度を測定する。このために、センサホルダ122が微小点照度センサ123をY方向の所定位置(Y1)に保持した状態でセンサホルダ122をX方向に移動させ、微小点照度センサ123がX方向に数mm移動する毎に微小点照度を測定する。この測定は、X方向における各レーザー光源による照射位置の範囲まで行う。
続いて、前記第1の仮想線と平行に延び前記第1の仮想線に対してY方向に所定距離(例えば1mm)だけ離れた第2の仮想線上(Y2の位置)の複数位置で微小点照度を測定する。このために、センサY方向移動手段122aが微小点照度センサ123をY方向に前記所定距離(1mm)移動させ、微小点照度センサ123がX方向に数mm移動する毎に微小点照度を測定する。
このように、第1の仮想線上で測定を行った後、nを1ずつ増やしながら、第n−1(nは2以上の整数)の仮想線と平行に延び前記n−1の仮想線に対してY方向に所定距離だけ離れた第nの仮想線上の複数位置で微小点照度を測定する。本実施形態ではnが9になるまで(Y1〜Y9の位置で)上記の測定を行う。本実施形態ではnが9になるまで測定するが、nは2以上であれば良い。また、nが数十〜100になるまで測定を行うと、より正確な測定を行うことができる。
When the line illumination device is supported by the support unit 110 to perform illuminance measurement and the processing device 124 receives an instruction to start measurement, illuminance measurement is started by the measurement program. At this time, the processing device 124 also accepts the manufacturing serial number of the line illumination device to be measured. In the following, the sensor holder 122, the minute point illuminance sensor 123, the display device 125, and the printer 126 operate according to instructions from the processing device 124 based on the measurement program.
First, the minute point illuminance is measured at a plurality of positions on the first imaginary line extending in the X direction at the line illumination position of the line illumination device supported by the support unit 110. Therefore, the sensor holder 122 moves the sensor holder 122 in the X direction while holding the minute point illuminance sensor 123 at a predetermined position (Y1) in the Y direction, and the minute point illuminance sensor 123 moves several mm in the X direction. Measure minute point illuminance every time. This measurement is performed up to the range of the irradiation position by each laser light source in the X direction.
Subsequently, a minute point at a plurality of positions on a second imaginary line (position Y2) that extends in parallel with the first imaginary line and is separated from the first imaginary line by a predetermined distance (for example, 1 mm) in the Y direction. Measure the illuminance. For this purpose, the sensor Y direction moving means 122a moves the minute point illuminance sensor 123 in the Y direction by the predetermined distance (1 mm), and measures the minute point illuminance every time the minute point illuminance sensor 123 moves several mm in the X direction. .
In this way, after measuring on the first imaginary line, the n-1 imaginary line extends in parallel with the n-1 (n is an integer of 2 or more) imaginary line while increasing n by 1. On the other hand, the minute point illuminance is measured at a plurality of positions on the nth imaginary line separated by a predetermined distance in the Y direction. In the present embodiment, the above measurement is performed until n reaches 9 (at positions Y1 to Y9). In this embodiment, measurement is performed until n reaches 9, but n may be 2 or more. Further, if measurement is performed until n reaches several tens to 100, more accurate measurement can be performed.

上記測定が終わると、前記測定プログラムにより処理装置124は、測定された複数の微小点照度のデータをそのX方向およびY方向の測定位置と対応させた測定結果データを製造シリアル番号と関連付けて作成し、表示装置125に表示する。例えば、図14に示すように、横軸がX方向に対応し縦軸がY方向に対応する照度の等高線図(マップデータ)を前記測定結果データとして作成する。この照度の等高線図には、前記基準光源による照射位置2aが示されている。ここで、基準光源の光の波長がLED1に対して特殊である場合、その波長に基づいて処理装置124は基準光源による照射位置を求め、照度の等高線図に示す。一方、基準光源として特定のLEDを用いる場合、基準光源を他のLED1と別に点灯した上で、上記測定を行い、その測定結果に基づいて基準光源による照射位置(測定したレーザー光の照度データそのものでも可)2aを照度の等高線図に示すことも可能である。なお、本実施形態では、照度の等高線図を用いているが、X軸がX方向に対応し、Y軸がY方向に対応し、Z軸が照度に対応する3次元グラフ(グラフデータ)や、その他のグラフで前記測定結果データを作成することも可能である。   When the above measurement is completed, the processing device 124 creates the measurement result data by associating the measured data of a plurality of minute point illuminances with the measurement positions in the X direction and the Y direction in association with the manufacturing serial number. And displayed on the display device 125. For example, as shown in FIG. 14, a contour map (map data) of illuminance with the horizontal axis corresponding to the X direction and the vertical axis corresponding to the Y direction is created as the measurement result data. In the contour map of the illuminance, the irradiation position 2a by the reference light source is shown. Here, when the wavelength of the light of the reference light source is special with respect to the LED 1, the processing device 124 obtains the irradiation position by the reference light source based on the wavelength, and shows the illuminance contour map. On the other hand, when a specific LED is used as the reference light source, the above measurement is performed after the reference light source is turned on separately from the other LEDs 1, and the irradiation position by the reference light source based on the measurement result (illuminance data of the measured laser light itself) However, it is also possible to show 2a in the contour map of illuminance. In this embodiment, a contour map of illuminance is used. However, a three-dimensional graph (graph data) in which the X axis corresponds to the X direction, the Y axis corresponds to the Y direction, and the Z axis corresponds to the illuminance. It is also possible to create the measurement result data with other graphs.

上記照度の等高線図を参照し、照度が所定値以上の範囲(例えば図14で最も色が濃い範囲)がX方向の一部でY方向にずれて蛇行している場合等は、そのX方向位置に対応する少なくとも1つの基板ユニット20の位置を修正する処理や、その基板ユニット20を新しい基板ユニット20と交換する処理等を行い、上記蛇行を修正することができる。これら調整が終わった後、上記測定および上記照度の等高線図の作成および表示を再び行うこともできる。   Referring to the contour map of the above illuminance, if the illuminance range (for example, the darkest range in FIG. 14) is meandering in the X direction and is meandering in the Y direction, the X direction The meandering can be corrected by performing a process of correcting the position of at least one board unit 20 corresponding to the position, a process of replacing the board unit 20 with a new board unit 20, and the like. After these adjustments are completed, the measurement and the contour map of the illuminance can be created and displayed again.

上記測定の結果、照度が所定値以上の範囲のY方向へのずれ(蛇行)が基準範囲内であれば、処理装置124の指令でプリンター126が照度の等高線図を印刷し、作業者がライン状照明装置を支持部110から取外し、他の所定の検査等を行った後、所定の梱包容器に梱包する。取外した後に完成品とするための工程を行っても良い。
前記印刷される物には前記製造シリアル番号も記載されている。上記の1回目の照度の等高線図を参照し、照度が所定値以上の範囲のY方向へのずれ(蛇行)が基準範囲内であれば、基板ユニット20等の位置調整をせずに、処理装置124がプリンター126によって照度の等高線図を印刷し、作業者がライン状照明装置を支持部110から取外し、他の所定の検査や、完成品とするための工程を行った後、所定の梱包容器に梱包する。そして、梱包したライン状照明装置を前記印刷した照度の等高線図と共に納入先に送る。なお、照度の等高線図を電子データで納入先に送ることも可能である。納入先に送る測定結果データは、照度の等高線図ではなく、上記グラフであっても良く、測定した微小点照度測定値をX方向およびY方向の測定位置と対応させた数値データであっても良い。
As a result of the above measurement, if the deviation (meandering) in the Y direction within the range where the illuminance is not less than the predetermined value is within the reference range, the printer 126 prints the contour map of the illuminance in response to a command from the processing device 124, and the operator After removing the illuminating device from the support 110 and performing other predetermined inspections, it is packed in a predetermined packing container. You may perform the process for setting it as a finished product after removing.
The printed serial number is also written on the printed matter. If the deviation (meandering) in the Y direction within the range where the illuminance is not less than a predetermined value is within the reference range with reference to the first contour map of the illuminance, the processing is performed without adjusting the position of the substrate unit 20 or the like. The device 124 prints the contour map of the illuminance by the printer 126, and the operator removes the line illumination device from the support unit 110, performs other predetermined inspections and processes for making a finished product, and then performs predetermined packaging. Pack in a container. Then, the packed line illumination device is sent to the delivery destination together with the printed contour map of illuminance. It is also possible to send a contour map of illuminance to the customer as electronic data. The measurement result data sent to the customer may be the above graph, not the contour map of the illuminance, or the numerical data in which the measured minute point illuminance measurement values correspond to the measurement positions in the X direction and the Y direction. good.

ここで、上記調整が終わった後、照度が所定値以上の範囲のY方向のずれが完全に修正しきれない場合や、照度が所定値以上の範囲が真っ直ぐではあるが全体的にY方向にずれている場合に、基準光源の照射方向をY方向に調整することも可能である。例えば、図14では2つの基準光源の照射位置2aがY5の付近にあらわれているが、各基準光源の照射方向をY方向に調整し、各照射位置2aがY4の位置等にあらわれるようにしても良い。   Here, after the above adjustment is completed, when the deviation in the Y direction in the range where the illuminance exceeds the predetermined value cannot be completely corrected, or the range where the illuminance exceeds the predetermined value is straight, the entire direction is in the Y direction. In the case of deviation, the irradiation direction of the reference light source can be adjusted in the Y direction. For example, in FIG. 14, the irradiation position 2a of the two reference light sources appears in the vicinity of Y5, but the irradiation direction of each reference light source is adjusted in the Y direction so that each irradiation position 2a appears at the position of Y4 or the like. Also good.

なお、上記の測定、測定結果データの作成、必要に応じた基板ユニット20のY方向位置等の調整、調整後の再度の測定、および測定結果データの再度の作成は、照明装置の長手方向の寸法が大きい場合や、第2集光レンズ部材40の長さ寸法や直径が大きい場合は、製造する製品の全数に対して行わないと製品を高精度とすることができない。納入先において求められる仕様にもよるが、一般的に、第2集光レンズ部材40の長さが1000mm以上の場合に製品全数に対して行うことが好ましく、800mm以上の場合に製品全数に対して行うことがより好ましい。また、第2集光レンズ部材40の直径が40mm以上の場合に製品全数に対して行うことが好ましく、30mm以上の場合に製品全数に対して行うことがより好ましい。なお、納入先で特に精度が要求される場合は、上記の長さや直径以下の場合にも、製造する製品の全数に対して上記を行うことが好ましい。   Note that the above measurement, creation of measurement result data, adjustment of the position of the substrate unit 20 in the Y direction, etc., if necessary, remeasurement after adjustment, and recreation of measurement result data are performed in the longitudinal direction of the lighting device. If the dimensions are large, or if the length and diameter of the second condenser lens member 40 are large, the product cannot be made highly accurate unless it is performed on the total number of products to be manufactured. Although it depends on the specifications required at the delivery destination, in general, it is preferable that the second condensing lens member 40 is performed on the total number of products when the length of the second condenser lens member 40 is 1000 mm or longer, and on the total number of products when the length is 800 mm or longer. More preferably. Moreover, it is preferable to carry out with respect to all products when the diameter of the 2nd condensing lens member 40 is 40 mm or more, and it is more preferable to carry out with respect to all products when it is 30 mm or more. In addition, when the accuracy is particularly required at the delivery destination, it is preferable to perform the above for the total number of products to be manufactured even when the length or the diameter is equal to or smaller than the above.

なお、上記では、第2集光レンズ部材40および屈折レンズ部材50を取付けた状態で上記測定を行ったが、第2集光レンズ部材40および屈折レンズ部材50を取付けない状態で上記と同様の測定を行うことも可能である。この場合、導光孔の中心軸がX方向に全く傾いていない遮蔽板123bを用いることが好ましい。この測定を行うと、第2集光レンズ部材40および屈折レンズ部材50の取付け前に、照度の等高線図等の測定データ上で修正又は交換すべき基板ユニット20を見つけることができ、製造の効率を向上することができる。   In the above description, the measurement was performed with the second condenser lens member 40 and the refractive lens member 50 attached. However, the same measurement as described above was performed without the second condenser lens member 40 and the refractive lens member 50 attached. Measurements can also be made. In this case, it is preferable to use a shielding plate 123b in which the central axis of the light guide hole is not inclined at all in the X direction. When this measurement is performed, the substrate unit 20 to be corrected or replaced can be found on the measurement data such as the contour map of the illuminance before the second condenser lens member 40 and the refractive lens member 50 are attached. Can be improved.

本実施形態では、1本の仮想線ではなく、Y方向に位置をずらした複数の仮想線上でそれぞれ複数の微小点照度を測定し、その測定データをX方向およびY方向の測定位置と対応させた測定結果データを作成するので、ライン状の集光位置で最も照度が高くなっている位置やラインを確実に判定することができる。また、測定結果データに基づき基板ユニット20等のY方向の位置を調整するので、例えば第2集光レンズ部材40や照明装置本体10の自重により第2集光レンズ部材40にわずかな曲がりが生じる場合であっても、調整によりライン状の照射位置の精度を確保することが可能である。また、前記のように全製品について測定を行うことにより、納入先ではライン状照明装置の照射位置の精度に疑問を抱かずに設置作業を行うことができ、納入先での設置および調整を容易に行うことができる。   In the present embodiment, a plurality of minute point illuminances are measured on a plurality of virtual lines shifted in the Y direction instead of one virtual line, and the measurement data is made to correspond to the measurement positions in the X direction and the Y direction. Since the measurement result data is created, it is possible to reliably determine the position or line where the illuminance is highest at the line-shaped condensing position. Further, since the position of the substrate unit 20 or the like in the Y direction is adjusted based on the measurement result data, for example, the second condenser lens member 40 is slightly bent due to the weight of the second condenser lens member 40 or the illumination device body 10. Even in this case, it is possible to ensure the accuracy of the line-shaped irradiation position by adjustment. In addition, by measuring all products as described above, the installation can be performed without questioning the accuracy of the irradiation position of the line illumination device at the delivery site, and installation and adjustment at the delivery site is easy. Can be done.

また、測定結果データをライン状照明装置の製品を納入した納入先に納入するので、納入したライン状照明装置が照射位置に許容範囲内のわずかな曲がり等を有する場合であっても、納入先ではその特性を考慮しながらライン状照明装置の設置作業を行うことができる。このため、わずかな曲がり等の特性があることに気付かずに設置作業を行う場合に比べ、作業効率が大幅に向上する。   In addition, since the measurement result data is delivered to the customer who delivered the product of the line lighting device, even if the delivered line lighting device has a slight bend within the allowable range at the irradiation position, the customer Then, it is possible to perform the installation work of the line-shaped illumination device while taking the characteristics into consideration. For this reason, compared with the case where installation work is performed without noticing that there is a characteristic such as slight bending, the work efficiency is greatly improved.

また、ライン状照明装置が納入先における設置角度に設置された状態で測定および測定結果データの作成を行うので、納入先における設置状態での集光レンズや照明装置本体のわずかな撓みも加味した測定結果データとなり、納入先における設置作業の容易化に極めて有用である。
また、納入先でライン状照明装置の設置作業を行う時に、例えば基準光源の照射位置を基準にラインセンサカメラを仮止めし、基準光源の照射位置が示されたマップデータ又はグラフデータを参照しながらライン状照明装置又はラインセンサカメラの位置を微調整することができる。すなわち、基準光源の照射位置を目印に設置作業を行うことができるので、作業効率がより向上する。
また、基準光源の光が第2集光レンズ部材40を介さずにライン状照明位置に照射される場合、第2集光レンズ部材40のわずかなうねり等により乱されることが無く、設置作業を行う際の目印としてより信頼することができる。
In addition, measurement and creation of measurement result data is performed with the line lighting device installed at the installation angle at the delivery destination, so that the slight deflection of the condenser lens and lighting device body in the installation state at the delivery location is also taken into account. The measurement result data is extremely useful for facilitating installation work at the delivery destination.
Also, when installing the line lighting device at the delivery destination, for example, temporarily fix the line sensor camera based on the irradiation position of the reference light source, and refer to the map data or graph data showing the irradiation position of the reference light source. However, the position of the line illumination device or the line sensor camera can be finely adjusted. That is, since the installation work can be performed with the irradiation position of the reference light source as a mark, the work efficiency is further improved.
Further, when the light from the reference light source is irradiated to the line-shaped illumination position without going through the second condenser lens member 40, the light is not disturbed by a slight swell of the second condenser lens member 40, and the installation work It can be more reliable as a mark when performing.

また、基準光源は、照明装置本体10のヒートシンク11等の他の場所に取付けることも可能であり、基板ユニット20上に実装することも可能であり、これらの場合でも上記と同様の効果を得ることは可能である。また、基準光源としてレーザー光源の代わりに指向性の強いLED光源や他の公知の光源を設けることも可能である。また、基準光源としての基準光源を、ライン状照明装置のX方向の両端側だけではなく、中央付近にも設けることが可能である。   In addition, the reference light source can be attached to other places such as the heat sink 11 of the lighting device body 10 and can be mounted on the board unit 20. In these cases, the same effect as described above can be obtained. It is possible. Moreover, it is also possible to provide a highly directional LED light source or other known light source instead of the laser light source as the reference light source. Further, a reference light source as a reference light source can be provided not only at both ends in the X direction of the line illumination device but also near the center.

上記のように構成されたライン状照明装置では、各第1集光レンズ部22aが各LED1の光軸が通過するよう配置されているので、放射状に光を出す複数のLED1からの光を複数の屈折レンズ面50cに向かうように効率良く案内することができる。また、各第1集光レンズ部22aを通過してX方向に集光されY方向には放射状に拡がりながら進む光が第2集光レンズ部40a,40bでY方向に集光される。そして、第1および第2集光レンズ部で集光された光がX方向に並ぶように配置された複数の屈折レンズ面50cでX方向に屈折されるので、光量の低下の原因となるレンズへの入光やレンズからの出光を極力少なくしながら、LED1の並設方向(X方向)に光軸を傾けることができる。このため、図7〜9に示す横傷K1だけではなく縦傷K2の検出も確実に行うことを可能にする。例えば、図8および9で太い破線の範囲に影が生じる。   In the line-shaped illumination device configured as described above, each first condenser lens portion 22a is arranged so that the optical axis of each LED 1 passes therethrough, and thus a plurality of lights from a plurality of LEDs 1 that emit light radially. Can be efficiently guided toward the refractive lens surface 50c. Further, the light that passes through each first condenser lens portion 22a and is condensed in the X direction and travels radially in the Y direction is condensed in the Y direction by the second condenser lens portions 40a and 40b. Since the light condensed by the first and second condenser lens portions is refracted in the X direction by the plurality of refractive lens surfaces 50c arranged so as to be aligned in the X direction, a lens that causes a reduction in the amount of light The optical axis can be tilted in the direction in which the LEDs 1 are arranged side by side (X direction) while minimizing light entering the lens and light exiting from the lens. For this reason, it is possible to reliably detect not only the lateral wound K1 shown in FIGS. For example, in FIGS. 8 and 9, a shadow is generated in a thick broken line range.

一方、各第1集光レンズ部22aを通過した光はX方向には集光されているがY方向には放射状に拡がりながら進む。このため、第1集光レンズ部22aと第2集光レンズ部40aとの距離や、第2集光レンズ部40aのY方向の寸法や、第2集光レンズ部40a,40bの曲率を調整することにより、第2集光レンズ部を通過した光のY方向の幅、即ち複数の屈折レンズ面を通過した後のライン状の照明範囲の幅を調整することができる。このため、光量を無用に低減することなく、LED1の並設方向(X方向)に光軸を傾けることができ、しかもライン状の照明範囲の幅を任意に設定することが可能である。   On the other hand, the light that has passed through each first condenser lens portion 22a is condensed in the X direction but travels while spreading radially in the Y direction. Therefore, the distance between the first condenser lens portion 22a and the second condenser lens portion 40a, the dimension in the Y direction of the second condenser lens portion 40a, and the curvature of the second condenser lens portions 40a and 40b are adjusted. By doing so, it is possible to adjust the width of the light passing through the second condenser lens portion in the Y direction, that is, the width of the linear illumination range after passing through the plurality of refractive lens surfaces. For this reason, the optical axis can be tilted in the juxtaposed direction (X direction) of the LEDs 1 without unnecessarily reducing the amount of light, and the width of the linear illumination range can be arbitrarily set.

また、各第1集光レンズ部材22は複数の第1集光レンズ部22aを有する。このため、1つ1つの第1集光レンズ部22aを各LED1に対し位置決めするよりも、各第1集光レンズ部22aの各LED1に対する位置決めを容易に行うことができる。また、第1集光レンズ部材22が基板ユニット20に取付けられている。このため、基板ユニット20を作成した時点で、各LED1と各第1集光レンズ部22aとの位置合わせができている。従って、所望の特性が得られない時の調整作業や、メンテナンス時の交換作業を容易に行うことができる。   Each first condenser lens member 22 has a plurality of first condenser lens portions 22a. For this reason, rather than positioning each 1st condensing lens part 22a with respect to each LED1, positioning with respect to each LED1 of each 1st condensing lens part 22a can be performed easily. A first condenser lens member 22 is attached to the substrate unit 20. For this reason, when the board | substrate unit 20 is created, each LED1 and each 1st condensing lens part 22a can be aligned. Accordingly, adjustment work when desired characteristics cannot be obtained and replacement work during maintenance can be easily performed.

尚、本実施形態では、第1集光レンズ部材22の各第1集光レンズ部22aが照射位置に向かって凸レンズであるものを示したが、照射位置に向かって凹レンズであっても良い。また、出光面側ではなく入光面側に各LED1に対応するように第1集光レンズ部を設けることも可能であり、そのレンズ部を各LED1に向かって凸レンズとすることも凹レンズとすることも可能である。さらに、入光面側と出光面側の両方に各LED1に対応するように第1集光レンズ部を設けることも可能である。本実施形態では、入光面22eが平面であり、その入光面22eがスペーサ23aに当接するので、各LED1に対し各第1集光レンズ部22aのZ方向の位置精度を向上させることができる。   In the present embodiment, each first condenser lens portion 22a of the first condenser lens member 22 is a convex lens toward the irradiation position, but may be a concave lens toward the irradiation position. Moreover, it is also possible to provide a 1st condensing lens part so that it may respond | correspond to each LED1 instead of a light-emitting surface side, and making it the convex lens toward each LED1 also makes it a concave lens. It is also possible. Furthermore, it is also possible to provide a first condenser lens portion so as to correspond to each LED 1 on both the light incident surface side and the light exit surface side. In the present embodiment, the light incident surface 22e is a flat surface, and the light incident surface 22e is in contact with the spacer 23a, so that the positional accuracy in the Z direction of each first condenser lens portion 22a can be improved with respect to each LED1. it can.

また、本実施形態では、円柱状レンズである第2集光レンズ部材40により第2集光レンズ部を構成している。これに対し、断面半円形状や蒲鉾形状等のY方向に集光するシリンドリカルレンズを用い、このレンズの曲面を第2集光レンズ部として機能させることも可能である。また、上記のようなシリンドリカルレンズを2つ以上用い、これらレンズの曲面を第2集光レンズ部として機能させることも可能である。また、シリンドリカルレンズの代わりにY方向に集光するリニアフレネルレンズを用いることも可能である。   Moreover, in this embodiment, the 2nd condensing lens part is comprised by the 2nd condensing lens member 40 which is a cylindrical lens. On the other hand, it is also possible to use a cylindrical lens that condenses light in the Y direction, such as a semicircular cross section or a saddle shape, and allows the curved surface of this lens to function as the second condensing lens portion. It is also possible to use two or more cylindrical lenses as described above and to make the curved surface of these lenses function as the second condenser lens portion. In addition, a linear Fresnel lens that collects light in the Y direction can be used instead of the cylindrical lens.

また、本実施形態では、各基板ユニット20に1つの第1集光レンズ部材22が取付けられているが、各基板ユニット20に2つ以上の第1集光レンズ部材を取付けることも可能である。さらに、第1集光レンズ部材として、図15のように円柱状レンズ25を用いることも可能である。この場合、各LED1に対応するように各円柱状レンズ25が位置決めされる。この場合であっても、各円柱状レンズ25をバネ部材の反力を用いて基板ユニット20に取付けることが可能である。さらに、第1集光レンズ部材22や、第1集光レンズ部材としての前記複数の円柱状レンズ25を照明装置本体10側に固定することも可能である。   In the present embodiment, one first condenser lens member 22 is attached to each substrate unit 20, but it is also possible to attach two or more first condenser lens members to each substrate unit 20. . Further, it is also possible to use a cylindrical lens 25 as the first condenser lens member as shown in FIG. In this case, each cylindrical lens 25 is positioned so as to correspond to each LED 1. Even in this case, each cylindrical lens 25 can be attached to the substrate unit 20 using the reaction force of the spring member. Furthermore, it is also possible to fix the first condenser lens member 22 and the plurality of cylindrical lenses 25 as the first condenser lens member to the lighting device main body 10 side.

また、本実施形態では、各屈折レンズ面50cが平面状であるものを示したが、若干の曲率を有していても、上記の作用効果を奏する。
また、前記測定では遮蔽板123bを用いたが、照度センサ123d自体が微小点照度や光量を測定できるものであれば、遮蔽板123bを用いなくても良い。この場合、Y方向に並べられた複数の画素(照度センサ)を有するラインセンサを微小点照度センサとして用いると、1度X方向に走査するだけで、複数の仮想線上でそれぞれ複数の微小点照度や微小点光量を測定することができる。
In the present embodiment, each refractive lens surface 50c is planar. However, even if it has a slight curvature, the above-described effects can be obtained.
Further, although the shielding plate 123b is used in the measurement, the shielding plate 123b may not be used as long as the illuminance sensor 123d itself can measure the minute point illuminance and the light amount. In this case, when a line sensor having a plurality of pixels (illuminance sensors) arranged in the Y direction is used as a minute point illuminance sensor, a plurality of minute point illuminances are respectively obtained on a plurality of virtual lines only by scanning in the X direction once. It is possible to measure the light intensity of minute points.

また、本実施形態では、バネ部材23bを基板ユニット20のスペーサ23aに固定したものを示したが、基板ユニット20のスペーサ23a以外の部分に固定することも可能であり、照明装置本体10に固定することも可能である。これらの場合であっても、第1集光レンズ部材22をバネ部材の弾性変形の反力を用いて基板ユニット20に取付けることができる。   In the present embodiment, the spring member 23b is fixed to the spacer 23a of the substrate unit 20. However, the spring member 23b may be fixed to a portion other than the spacer 23a of the substrate unit 20 and fixed to the lighting device body 10. It is also possible to do. Even in these cases, the first condenser lens member 22 can be attached to the substrate unit 20 by using the reaction force of the elastic deformation of the spring member.

また、レール121、センサホルダ122、および微小点照度センサ123の代わりに、ラインセンサカメラを設け、先ず、第1の仮想線上で集光位置の照度や輝度を測定し、続いて第nの仮想線上で集光位置の照度や輝度を測定し、この測定結果に基づいて測定結果データの作成を行っても良い。ラインセンサカメラを用いる場合、ラインセンサカメラ自体の撓みの問題が発生するので、レール121、センサホルダ122、および微小点照度センサ123を用いた測定の方が正確且つ安価な測定が可能である。
また、照度センサ124dの代わりに、光量(光度、光束、輝度等の光の量)を測定する他のセンサを用いても良い。
In addition, a line sensor camera is provided instead of the rail 121, the sensor holder 122, and the minute point illuminance sensor 123, and first, the illuminance and luminance at the condensing position are measured on the first virtual line, and then the nth virtual It is also possible to measure the illuminance and brightness at the condensing position on the line and create measurement result data based on the measurement result. When the line sensor camera is used, a problem of bending of the line sensor camera itself occurs. Therefore, the measurement using the rail 121, the sensor holder 122, and the minute point illuminance sensor 123 is more accurate and inexpensive.
Further, instead of the illuminance sensor 124d, another sensor that measures the amount of light (amount of light such as luminous intensity, luminous flux, and luminance) may be used.

前記実施形態で行う複数の仮想線上の複数位置での微小点照度の測定、測定結果データの作成、測定結果データに基づく基板ユニット20等の位置調整、再測定、および再測定データの測定結果データの作成は、納入先で行っても良い。この場合、納入先に上記アライメント調整装置を持ち込んで、本製品の製造の最終工程を行うことになる。現地で上記測定、測定結果データの作成、測定結果データに基づく基板ユニット20等の位置調整、再測定、再測定データの測定結果データの作成を行うことにより、搬送時に第2集光レンズ部材40や各基板ユニット20のアライメントが変化する可能性を排除できるので、より高精度なライン状照明装置を製造し納入することができる。   Measurement of minute spot illuminance at a plurality of positions on a plurality of virtual lines performed in the embodiment, creation of measurement result data, position adjustment of the substrate unit 20 and the like based on the measurement result data, remeasurement, and measurement result data of the remeasurement data This may be made at the delivery destination. In this case, the alignment adjustment device is brought to the delivery destination and the final process of manufacturing the product is performed. By performing the above measurement, creation of measurement result data, position adjustment of the substrate unit 20 and the like based on the measurement result data, remeasurement, and creation of measurement result data of the remeasurement data, the second condensing lens member 40 is conveyed during transport. Since the possibility of changing the alignment of each substrate unit 20 can be eliminated, a more accurate line illumination device can be manufactured and delivered.

なお、納入先で上記測定を行う場合、納入先でライン状照明装置を実際に取付ける取付部を本願発明の支持部として使用することができる。この場合、支持部に支持した状態で納入先に納入することが可能である。これにより、実際の使用条件に近い状態で上記測定、測定結果データの作成、測定結果データに基づく基板ユニット20等の位置調整、再測定、再測定データの測定結果データの作成を行うことができるので、より実機に則したライン状照明装置を製造し納入することができる。   In addition, when performing the said measurement in a delivery destination, the attachment part which actually attaches a linear illuminating device in a delivery destination can be used as a support part of this invention. In this case, the product can be delivered to the delivery destination while being supported by the support unit. Thereby, the measurement, creation of measurement result data, position adjustment of the substrate unit 20 and the like based on the measurement result data, remeasurement, and creation of measurement result data of the remeasurement data can be performed in a state close to actual use conditions. Therefore, it is possible to manufacture and deliver a line illuminating device that more closely matches the actual machine.

つまり、前記実施形態とあわせると、納入とは、前記支持部に支持した状態で、又は、前記支持部から前記照明装置本体を取外し、又は、前記ライン状照明装置を取外すと共に所定の工程を行うことにより完成品として納入先に納入することを意味し、出荷も納入に含まれる。
なお、ライン状照明装置の寸法や仕様は、検査対象や納入先の要望におうじて変化し、完全に同一の製品を複数の納入先に収めることは少ない。このような製品では、上記のように納入先で製造の最終工程を行うことが好ましい場合が多い。
That is, when combined with the above embodiment, delivery means a state in which the lighting device main body is removed from the support portion, or the line-like lighting device is removed and the predetermined process is performed while being supported by the support portion. This means that the product is delivered to the customer as a finished product, and shipping is also included in the delivery.
Note that the dimensions and specifications of the line illumination device change according to the inspection object and the demands of the customers, and it is rare that the same product is stored in a plurality of customers. In such products, it is often preferable to perform the final manufacturing process at the delivery destination as described above.

また、納入先でライン状照明装置とラインセンサカメラとの位置を再調整する場合も、基準光源の照射位置が示されたマップデータ又はグラフデータを参照しながらライン状照明装置又はラインセンサカメラの位置を微調整することにより、再調整を容易且つ確実に行うことができる。   In addition, when the position of the line illumination device and the line sensor camera is readjusted at the delivery destination, the line illumination device or the line sensor camera is referred to with reference to map data or graph data indicating the irradiation position of the reference light source. By finely adjusting the position, readjustment can be performed easily and reliably.

また、納入先において、上記のように納入された測定結果データを参照しながら、ラインセンサカメラ等の検査用センサと前記納入されたライン状照明装置との位置を調整し、このように調整された状態で前記検査用センサを用いた検査を行うことが可能である。測定結果データに基づき検査用センサとライン状照明装置との位置を調整できるので、検査用センサはライン状の照明位置において照度が高いラインを確実に狙うことができ、検査精度を向上することができる。   In addition, while referring to the measurement result data delivered as described above, the delivery destination adjusts the position of the inspection sensor such as a line sensor camera and the delivered line illumination device, and is adjusted in this way. In this state, it is possible to perform inspection using the inspection sensor. Since the position of the inspection sensor and the line illumination device can be adjusted based on the measurement result data, the inspection sensor can surely aim at a line with high illuminance at the line illumination position, and improve the inspection accuracy. it can.

なお、本実施形態では、X方向およびY方向に集光された光が屈折レンズ部材50の入光面50aから屈折レンズ部材50内に入光するものを示した。これに対し、入光面50aではなくプリズム面50bが各LED1側を望むように屈折レンズ部材50を照明装置本体10に取付けることも可能である。この場合、X方向およびY方向に集光された光が各屈折レンズ面50cを介して屈折レンズ部材50内に入光し、その光が入光面50aを介して屈折レンズ部材50から出光する。   In the present embodiment, the light collected in the X direction and the Y direction enters the refractive lens member 50 from the light incident surface 50a of the refractive lens member 50. On the other hand, it is also possible to attach the refractive lens member 50 to the illuminating device main body 10 so that the prism surface 50b is not the light incident surface 50a but the LED 1 side is desired. In this case, the light condensed in the X direction and the Y direction enters the refractive lens member 50 via each refractive lens surface 50c, and the light exits from the refractive lens member 50 via the light incident surface 50a. .

1…LED、2a…照射位置、10…照明装置本体、11…ヒートシンク、12…下側ボディ、13…側面板、14…上側カバー、20…基板ユニット、21…基板本体、22…第1集光レンズ部材、22a…第1集光レンズ部、22b…切欠き部、22c…第1の当接部、22d…第2の当接部、23…取付構造、23a…スペーサ、23b…バネ部材、23c…ストッパ部材、30…ボルト、40…第2集光レンズ部材、40a,40b…第2集光レンズ部、50…屈折レンズ部材、50c…屈折レンズ面、60…保護レンズ部材、110…支持部、111…傾動取付孔、112…ベース、121…レール、122…センサホルダ、123…微小点照度センサ、124…処理装置、125…表示装置、126…プリンター   DESCRIPTION OF SYMBOLS 1 ... LED, 2a ... Irradiation position, 10 ... Illuminating device main body, 11 ... Heat sink, 12 ... Lower body, 13 ... Side plate, 14 ... Upper cover, 20 ... Substrate unit, 21 ... Substrate main body, 22 ... First collection Optical lens member, 22a ... first condenser lens portion, 22b ... notch portion, 22c ... first contact portion, 22d ... second contact portion, 23 ... mounting structure, 23a ... spacer, 23b ... spring member , 23c ... stopper member, 30 ... bolt, 40 ... second condenser lens member, 40a, 40b ... second condenser lens portion, 50 ... refractive lens member, 50c ... refractive lens surface, 60 ... protective lens member, 110 ... Support part 111 ... Tilt mounting hole, 112 ... Base, 121 ... Rail, 122 ... Sensor holder, 123 ... Minute point illuminance sensor, 124 ... Processing device, 125 ... Display device, 126 ... Printer

Claims (6)

X方向に並ぶように配置された複数のLED光源と、
各々前記各LED光源の光軸が通過するように配置され、前記X方向に曲率を有すると共に該X方向と直交するY方向に延び、前記各LED光源からの光を前記X方向に集光する複数の第1集光レンズ部と、
前記Y方向に曲率を有すると共に前記X方向に延び、前記各第1集光レンズ部で前記X方向に集光された光を前記Y方向に集光する第2集光レンズ部と、
前記X方向および前記Y方向と直交する方向をZ方向とした時、各々前記Z方向に延びる仮想線に対し40°以上80°以下の角度を有するように前記X方向に傾斜すると共に、前記X方向に並ぶように配置され、前記第2集光レンズ部で前記Y方向に集光された光を前記X方向に屈折させる複数の屈折レンズ面とを備えるライン状照明装置。
A plurality of LED light sources arranged to line up in the X direction;
Each of the LED light sources is arranged so that the optical axis passes through, has a curvature in the X direction and extends in the Y direction perpendicular to the X direction, and condenses the light from each LED light source in the X direction. A plurality of first condenser lens portions;
A second condensing lens portion that has a curvature in the Y direction and extends in the X direction, and condenses the light collected in the X direction by the first condensing lens portions in the Y direction;
When the direction perpendicular to the X direction and the Y direction is defined as the Z direction, each of the X direction and the virtual line extending in the Z direction is inclined in the X direction so as to have an angle of 40 ° or more and 80 ° or less. A linear illumination device comprising a plurality of refractive lens surfaces arranged in a direction and refracting light collected in the Y direction by the second condenser lens unit in the X direction.
各々前記LED光源が複数個ずつ前記X方向に並ぶように実装され、前記X方向に並ぶように配置された複数の基板ユニットと、
前記各基板ユニットに1つ又は複数ずつ取付けられた第1レンズ部材とを備え、
前記第1レンズ部材の少なくとも一部が前記第1集光レンズ部として機能する請求項1に記載のライン状照明装置。
Each of the LED light sources is mounted such that a plurality of LED light sources are arranged in the X direction, and a plurality of substrate units arranged to be arranged in the X direction;
And one or more first lens members attached to each of the substrate units,
The line illumination device according to claim 1, wherein at least a part of the first lens member functions as the first condenser lens unit.
前記各第1レンズ部材は対応する前記基板ユニットにバネ部材の反力を用いて取付けられている請求項2に記載のライン状照明装置。   3. The line illumination device according to claim 2, wherein each first lens member is attached to the corresponding substrate unit using a reaction force of a spring member. 前記各第1レンズ部材が複数の第1集光レンズ部を有する請求項2に記載のライン状照明装置。   The line illumination device according to claim 2, wherein each first lens member has a plurality of first condenser lens portions. 各々複数のLED光源がX方向に並ぶように実装された複数の基板ユニットを該X方向に並ぶように照明装置本体に組付ける基板ユニットの組付けと、前記複数のLED光源からの光を前記X方向に集光する複数の第1集光レンズ部材を前記照明装置本体又は前記各基板ユニットに組付ける第1集光レンズ部材の組付けと、前記複数の第1集光レンズ部材からの光を前記X方向および前記LED光源の光軸と直交するY方向に集光する第2集光レンズ部材を前記照明装置本体内に配置する第2集光レンズ部材の組付けと、前記第2集光レンズ部材からの光を前記X方向に屈折させる屈折レンズ部材を前記照明装置本体に組付ける屈折レンズ部材の組付けと、を行うことによりライン状照明装置とする組付工程と、
前記ライン状照明装置によって光が照射されるライン状照射位置において、互いに前記Y方向に位置が異なり各々前記X方向に延びる複数の仮想線上でそれぞれ複数の微小点照度又は微小点光量をセンサで測定する測定工程と、
コンピュータが、前記測定工程で測定された前記複数の微小点照度又は微小点光量のデータをそのX方向およびY方向の測定位置と対応させた測定結果データを作成する測定結果データ作成工程と、
前記ライン状照明装置を納入先に納入する製品納入工程と、
前記測定結果データを前記納入先に納入するデータ納入工程とを有するライン状照明装置の製造方法。
Assembling a substrate unit that is mounted on the illuminating device main body so that a plurality of substrate units, each mounted with a plurality of LED light sources arranged in the X direction, are arranged in the X direction, and the light from the plurality of LED light sources is Assembly of a first condenser lens member for assembling a plurality of first condenser lens members that condense in the X direction to the illuminating device body or each of the substrate units, and light from the plurality of first condenser lens members Assembling the second condenser lens member that arranges the second condenser lens member in the X direction and the Y direction perpendicular to the optical axis of the LED light source in the illuminating device main body, and the second condenser An assembly step of making a linear illumination device by assembling a refractive lens member that refracts light from the optical lens member in the X direction to the illumination device body; and
At a line irradiation position where light is irradiated by the line illumination device, a plurality of minute point illuminances or minute point light amounts are measured by sensors on a plurality of virtual lines that are different from each other in the Y direction and extend in the X direction. Measuring process to
A measurement result data creation step in which a computer creates measurement result data in which the data of the plurality of minute point illuminances or minute point light amounts measured in the measurement step are associated with measurement positions in the X direction and the Y direction;
A product delivery process for delivering the line illumination device to a customer;
A method of manufacturing a line illumination device, comprising: a data delivery process for delivering the measurement result data to the delivery destination.
前記測定工程では、前記屈折レンズ部材による光の平均的な屈折方向に沿って延びる遮蔽壁を用いて、主に前記平均的な屈折方向に沿って進む光の微小点照度又は微小点光量を測定する請求項5に記載のライン状照明装置の製造方法。   In the measurement step, a minute point illuminance or a minute point light amount of light mainly traveling along the average refraction direction is measured using a shielding wall extending along the average refraction direction of the light by the refractive lens member. The manufacturing method of the line-shaped illuminating device of Claim 5.
JP2015094160A 2015-05-01 2015-05-01 Line lighting device and method for manufacturing the same Active JP6445384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094160A JP6445384B2 (en) 2015-05-01 2015-05-01 Line lighting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094160A JP6445384B2 (en) 2015-05-01 2015-05-01 Line lighting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016211914A JP2016211914A (en) 2016-12-15
JP6445384B2 true JP6445384B2 (en) 2018-12-26

Family

ID=57550042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094160A Active JP6445384B2 (en) 2015-05-01 2015-05-01 Line lighting device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6445384B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918392B2 (en) * 2000-02-03 2007-05-23 シーシーエス株式会社 Line lighting device for product inspection using LED
JP2005114504A (en) * 2003-10-07 2005-04-28 Mega Trade:Kk Lighting system
JP4943237B2 (en) * 2007-06-07 2012-05-30 新日本製鐵株式会社 疵 inspection device and 疵 inspection method
JP5783674B2 (en) * 2009-12-24 2015-09-24 株式会社アイテックシステム Lighting device in an apparatus for inspecting the surface of a long object using a line sensor camera
JP5921036B2 (en) * 2012-10-30 2016-05-24 京都電機器株式会社 Linear oblique illumination device
WO2014209702A1 (en) * 2013-06-28 2014-12-31 Innovations In Optics, Inc. Light emitting diode linear light with uniform far field

Also Published As

Publication number Publication date
JP2016211914A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
US8743315B2 (en) Surface light source device, liquid crystal display device, and lens
JP6377436B2 (en) Line-shaped illumination device, manufacturing method and inspection method thereof
JPWO2018088423A1 (en) Optical inspection device
JP2022036236A (en) Lighting device
JP2016014632A (en) Lighting device
WO2013051716A1 (en) Surface inspection system for semiconductor wafer
JP2009225414A (en) Illuminator and image reader
JP6302242B2 (en) Lighting device
JP6445384B2 (en) Line lighting device and method for manufacturing the same
JP2017084747A (en) Linear lighting device
JP6660101B2 (en) Linear lighting device and method of manufacturing the same
JP6339878B2 (en) Method for manufacturing line illumination device, line illumination device and inspection method
JP7138571B2 (en) Quality control station for sheet element processing machines and lighting unit for quality control station
JP6571243B2 (en) Line-shaped illumination device, manufacturing method and inspection method thereof
JP6571317B2 (en) Line-shaped illumination device, manufacturing method and inspection method thereof
JP2011222239A (en) Lighting system and inspection device
JP2018037257A (en) Surface light source device and liquid crystal display device
JP6078826B2 (en) Line light irradiation device
JP6775273B2 (en) Line-shaped luminaire, its manufacturing method and inspection method
JP2014110379A (en) Lighting system
US7508522B2 (en) Reflected light measuring apparatus and reflected light measuring method
JP2009199909A (en) Light guide
JP7206736B2 (en) Measuring device and measuring method
WO2021015061A1 (en) Illumination device and illumination system
JP4575225B2 (en) Outline inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181129

R150 Certificate of patent or registration of utility model

Ref document number: 6445384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250