JP6443411B2 - Steel slab joining method in continuous hot rolling - Google Patents

Steel slab joining method in continuous hot rolling Download PDF

Info

Publication number
JP6443411B2
JP6443411B2 JP2016160338A JP2016160338A JP6443411B2 JP 6443411 B2 JP6443411 B2 JP 6443411B2 JP 2016160338 A JP2016160338 A JP 2016160338A JP 2016160338 A JP2016160338 A JP 2016160338A JP 6443411 B2 JP6443411 B2 JP 6443411B2
Authority
JP
Japan
Prior art keywords
steel slab
joining
heating
succeeding
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160338A
Other languages
Japanese (ja)
Other versions
JP2018027557A (en
Inventor
俊郎 岡崎
俊郎 岡崎
植野 雅康
雅康 植野
祐樹 松本
祐樹 松本
貴徳 海野
貴徳 海野
木島 秀夫
秀夫 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016160338A priority Critical patent/JP6443411B2/en
Publication of JP2018027557A publication Critical patent/JP2018027557A/en
Application granted granted Critical
Publication of JP6443411B2 publication Critical patent/JP6443411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続熱間圧延ラインの仕上圧延機の入側で先行鋼片と後行鋼片とを接合する方法に関する。   The present invention relates to a method of joining a preceding steel slab and a subsequent steel slab on the entry side of a finish rolling mill of a continuous hot rolling line.

従来、連続熱間圧延ラインの仕上圧延機の入側で先行鋼片と後行鋼片とを接合する方法としては、例えば、連続熱間圧延ラインの仕上圧延機の入側で先行鋼片の尾端と後行鋼片の先端とを互いに非接触で対向配置して、この状態で誘導加熱装置によって先行鋼片の尾端と後行鋼片の先端とを急速加熱し、次いで、加熱された先行鋼片の尾端と後行鋼片の先端とを突き合わせて押圧(アップセット)接合する方法が知られている。   Conventionally, as a method of joining the preceding steel slab and the subsequent steel slab at the entry side of the finish rolling mill of the continuous hot rolling line, for example, The tail end and the tip of the subsequent billet are placed in contact with each other in a non-contact manner, and in this state, the tail end of the preceding billet and the tip of the following billet are rapidly heated by the induction heating device, and then heated. In addition, there is known a method in which the tail end of the preceding steel piece and the tip of the subsequent steel piece are brought into contact with each other and pressed (upset).

しかしながら、大気雰囲気中で接合を行う際に、鋼中にCr、Ti、Mn、Al、Si等のように鋼の融点(1400〜1600℃)よりも高い融点の酸化物(例えば、Cr酸化物:融点約2000℃)を生成する成分を含むステンレス鋼や高張力鋼等については、誘導加熱時に接合面に生成されるこれらの酸化物が、アップセット後も接合部に固相として残って接合強度を著しく低下させ、後工程の仕上圧延にて接合部が破断する等の問題が生じる。   However, when joining in an air atmosphere, an oxide having a melting point higher than the melting point of the steel (1400 to 1600 ° C.) such as Cr, Ti, Mn, Al, Si, etc. in the steel (for example, Cr oxide) : For stainless steels and high-strength steels that contain components that generate a melting point of about 2000 ° C., these oxides generated on the joint surface during induction heating remain in the joint as a solid phase even after upsetting. The strength is remarkably reduced, and problems such as breakage of the joint portion occur in finish rolling in the subsequent process.

この問題に対し、加熱工程で、誘導加熱装置を用いて先行鋼片及び後行鋼片の各接合面の温度を鋼片の液相線温度以上にする方法が提案されている(特許文献1参照)。しかしながら、各接合面の温度が鋼片の液相線温度以上となった状態でのアップセットによる接合では、アップセット時に酸化物を溶鋼と共に、接合界面から排出することが、接合強度を得る上で重要である。酸化物が接合界面から排出されない場合、鉄同士の接合が阻害され接合強度が低下し、仕上圧延中に接合部が破断する場合があった。   In order to solve this problem, a method has been proposed in which the temperature of each joint surface of the preceding steel slab and the subsequent steel slab is set to be equal to or higher than the liquidus temperature of the steel slab by using an induction heating device in the heating process (Patent Document 1). reference). However, in joining by upset when the temperature of each joint surface is equal to or higher than the liquidus temperature of the steel slab, the oxide is discharged from the joint interface together with the molten steel at the time of upset in order to obtain joint strength. Is important. When the oxide is not discharged from the bonding interface, the bonding between the irons is hindered, the bonding strength is lowered, and the bonded part may break during finish rolling.

従来、アップセット時に酸化物を接合部から除くため、接合部端面から積極的に溶鋼を排出する技術が検討されてきた。例えば、特許文献2〜6では、接合部端面の形状について検討した技術が記載されている。通常、接合部端面はスリットや端面研削によってほぼ平坦面を呈しているが、これらの技術では、接合部端面を接合の前にテーパ加工して、加工した端部形状によって溶接時の溶鋼排出を良好にすることを目的としている。   Conventionally, techniques for positively discharging molten steel from the end face of the joint have been studied in order to remove oxide from the joint during upset. For example, Patent Documents 2 to 6 describe techniques for examining the shape of the joint end face. Normally, the joint end faces are almost flat by slitting or end grinding, but with these technologies, the joint end faces are tapered before joining, and the molten steel discharge during welding is reduced by the processed end shape. The purpose is to improve.

しかしながら、前述の特許文献2〜6に記載の技術では、接合部端面の形状を接合前に加工するための設備を必要とする。そのため、接合部端面の形状を接合前に加工するための設備を必要とせずに、接合部の破断を防止できる方法が希求されていた。   However, the techniques described in Patent Documents 2 to 6 described above require equipment for processing the shape of the joint end face before joining. Therefore, there has been a demand for a method that can prevent breakage of the joint without requiring equipment for processing the shape of the end face of the joint before joining.

特開2000−271605号公報JP 2000-271605 A 特開2009−119483号公報JP 2009-119483 A 特開2009−119484号公報JP 2009-119484 A 特開2011−25311号公報JP 2011-25311 A 特開2013−6207号公報JP 2013-6207 A 特開2009−119482号公報JP 2009-119482 A

本発明は、前述した問題点を解消するためになされたものであり、接合部端面の形状を加工する設備を必要とせずに、簡便に、仕上圧延にて接合部の破断を防止できる、連続熱間圧延における鋼片の接合方法を提供することを目的とする。   The present invention was made in order to solve the above-mentioned problems, without requiring equipment for processing the shape of the end face of the joint, and can easily prevent breakage of the joint by finish rolling. It aims at providing the joining method of the steel slab in hot rolling.

本発明者らは、上記課題を鑑み、加熱周波数による接合強度への影響を調査した結果、誘導加熱の周波数を1.2kHz以上にすることにより酸化物を十分排出することができることを明らかにした。   As a result of investigating the influence of the heating frequency on the bonding strength in view of the above problems, the inventors have clarified that the oxide can be sufficiently discharged by setting the induction heating frequency to 1.2 kHz or more. .

このような知見に基づき、本発明者らの鋭意検討の結果完成した本発明の要旨は、以下の通りである。
[1]連続熱間圧延ラインの仕上圧延機の入側で先行鋼片の尾端と後行鋼片の先端とを互いに非接触で対向配置し、前記先行鋼片の尾端と前記後行鋼片の先端とを誘導加熱する加熱工程と、
該加熱工程で加熱された前記先行鋼片の尾端と前記後行鋼片の先端とを突き合わせて押圧接合する接合工程と、を含み、
前記加熱工程では、加熱周波数fを1.2〜500kHzとし、前記先行鋼片の尾端と前記後行鋼片の先端とを溶融させることを特徴とする、連続熱間圧延における鋼片の接合方法。
[2]前記加熱工程では、前記加熱周波数f(kHz)と加熱時間t(sec)とが以下の式(1)を満たすことを特徴とする、前記[1]に記載の連続熱間圧延における鋼片の接合方法。
{30/(f+10)}+0.2≦t≦{1400/(f+100)}+4.0 ・・・(1)
[3]前記加熱工程で前記先行鋼片及び前記後行鋼片の各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱し、
前記接合工程におけるアップセット量を、前記先行鋼片の最大溶融深さと前記後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍とすることを特徴とする、前記[1]または[2]に記載の連続熱間圧延における鋼片の接合方法。
Based on such knowledge, the gist of the present invention completed as a result of intensive studies by the present inventors is as follows.
[1] The tail end of the preceding steel slab and the tip of the succeeding steel slab are arranged so as to face each other in a non-contact manner on the entry side of the finish rolling mill of the continuous hot rolling line. A heating step of induction heating the tip of the steel piece;
A joining step of pressing and joining the tail end of the preceding steel slab heated in the heating step and the tip of the succeeding steel slab,
In the heating step, the heating frequency f is set to 1.2 to 500 kHz, and the tail end of the preceding steel slab and the tip of the succeeding steel slab are melted. Method.
[2] In the continuous hot rolling according to [1], in the heating step, the heating frequency f (kHz) and a heating time t (sec) satisfy the following formula (1): Method of joining billets.
{30 / (f + 10)} + 0.2 ≦ t ≦ {1400 / (f + 100)} + 4.0 (1)
[3] In the heating step, heating is performed until the temperature in the range of 50 to 100% of the total width of each joining surface of the preceding steel slab and the subsequent steel slab becomes equal to or higher than the liquidus temperature of the steel slab,
The upset amount in the joining step is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab and the maximum melting depth of the succeeding steel slab, The method for joining steel slabs in continuous hot rolling according to [1] or [2].

ここで、溶融深さとは、図6に示す、各鋼片における、加熱により液相線温度以上となり溶融した範囲の圧延方向長さのことであり、最大溶融深さとは、図7に一例を示す、接合面内全体(全幅・全厚)での溶融深さの最大値のことである。   Here, the melting depth refers to the length in the rolling direction in the range where each steel slab shown in FIG. 6 is heated to the liquidus temperature or higher and melted, and the maximum melting depth is an example in FIG. It shows the maximum value of the melting depth in the entire joining surface (full width and full thickness).

また、アップセット量とは、接合工程における圧延方向の鋼片の押し込み量(先行鋼片の尾端の接合面と後行鋼片の先端の接合面との距離がゼロになった状態(2つの面がぴったり合わさった状態)からの押し込み量)のことである。アップセット量は、先行鋼片と後行鋼片との相対的な距離によるので、先行鋼片と後行鋼片とのそれぞれの押し込み量の和とする。そのアップセット量の範囲内の値となる条件であれば、先行鋼片と後行鋼片のそれぞれの押し込み量は任意に決めることが出来る。例えば、先行鋼片は押し込まず(動かさず)に、後行鋼片のみを所望のアップセット量で押し込んでもよい。   Further, the amount of upset is the amount of pushing of the steel slab in the rolling direction in the joining process (the state in which the distance between the joint surface at the tail end of the preceding steel slab and the joint surface at the tip of the succeeding steel slab is zero (2 The amount of push-in from when the two surfaces fit together. The amount of upset depends on the relative distance between the preceding steel slab and the succeeding steel slab, and is therefore the sum of the pushing amounts of the preceding steel slab and the subsequent steel slab. If it is the conditions which become the value within the range of the upset amount, each pushing amount of a preceding steel slab and a succeeding steel slab can be determined arbitrarily. For example, only the subsequent billet may be pushed in a desired upset amount without pushing (moving) the preceding billet.

本発明によれば、後工程の仕上圧延にて接合部が破断することを防止できる。   According to this invention, it can prevent that a junction part fractures | ruptures by finish rolling of a post process.

連続熱間圧延ラインのコイルボックスから仕上圧延機の第1スタンドまでの設備配列を示す概略図である。It is the schematic which shows the equipment arrangement | sequence from the coil box of a continuous hot rolling line to the 1st stand of a finishing mill. 接合装置の概略断面図である。It is a schematic sectional drawing of a joining apparatus. 誘導加熱装置の概略図である。It is the schematic of an induction heating apparatus. 交番磁界と誘導電流の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of an alternating magnetic field and an induced current. 加熱周波数を1.0kHz、1.2kHz、または5.0kHzとした場合における、溶融範囲の接合端面からの長手方向長さ(溶融深さ)の幅中央の板厚方向分布を示す図である。It is a figure which shows the plate | board thickness direction distribution of the width center of the longitudinal direction length (melting depth) from the joining end surface of a melting range in case a heating frequency is 1.0 kHz, 1.2 kHz, or 5.0 kHz. 溶融深さの定義を説明するための図である。It is a figure for demonstrating the definition of a melting depth. 最大溶融深さの定義を説明するための図である。It is a figure for demonstrating the definition of the maximum melting depth.

以下、本発明について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。   Hereinafter, the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

図1は、連続熱間圧延ラインのコイルボックスから仕上圧延機の第1スタンドまでの設備配列を示す概略図である。図1において、符号1は粗圧延機から出た板材を巻き取るコイルボックス、符号2はコイルボックス1から巻き出された先行鋼片S1の尾端及び後行鋼片S2の先端を切断するクロップシャー、符号3は先行鋼片S1及び後行鋼片S2の切断面(接合面)同士を接合する接合装置、符号4はレベラー、符号5a〜5cはピンチロール、符号6は脱スケール装置、符号7は仕上圧延機の第1スタンドである。   FIG. 1 is a schematic diagram showing an equipment arrangement from a coil box of a continuous hot rolling line to a first stand of a finishing mill. In FIG. 1, reference numeral 1 is a coil box that winds a plate material from a rough rolling mill, and reference numeral 2 is a crop that cuts the tail end of a preceding steel slab S1 and the tip of a subsequent steel slab S2 that are unwound from the coil box 1. Shear, code 3 is a joining device for joining the cut surfaces (joint surfaces) of the preceding steel piece S1 and the succeeding steel piece S2, reference numeral 4 is a leveler, reference numerals 5a to 5c are pinch rolls, reference numeral 6 is a descaling device, reference numeral Reference numeral 7 denotes a first stand of a finishing mill.

図2は、接合装置3の概略断面図である。接合装置3は、図2に示すように、クロップシャー2によって後端のクロップが切り落とされた先行鋼片S1及び先端のクロップが切り落とされた後行鋼片S2の各切断端を接合面同士が互いに非接触で対向配置されるように把持する左右のクランプ装置8、9と、該クランプ装置8、9によって把持された先行鋼片S1及び後行鋼片S2の各切断端を加熱する誘導加熱装置10と、クランプ装置8をクランプ装置9側に押圧移動させて誘導加熱装置10によって加熱された先行鋼片S1及び後行鋼片S2の各切断端の接合面同士を突き合わせてアップセット接合して接合部αを形成する押圧シリンダ11と、該アップセット接合時に先行鋼片S1と後行鋼片S2とが上下方向にずれることを防止する目違い防止板20とを有する。   FIG. 2 is a schematic cross-sectional view of the bonding apparatus 3. As shown in FIG. 2, the joining device 3 has the joining surfaces of the cutting ends of the preceding steel piece S <b> 1 in which the rear end crop is cut off by the crop shear 2 and the succeeding steel piece S <b> 2 in which the front end crop is cut off. Induction heating that heats the left and right clamping devices 8 and 9 that are gripped so as to face each other in a non-contact manner, and the cutting ends of the preceding steel piece S1 and the subsequent steel piece S2 that are held by the clamping devices 8 and 9 The apparatus 10 and the clamping device 8 are pressed and moved to the clamping device 9 side, and the joining surfaces of the cutting ends of the preceding steel piece S1 and the succeeding steel piece S2 heated by the induction heating device 10 are brought into contact with each other and upset joined. And a press cylinder 11 that forms a joint portion α, and a mistake prevention plate 20 that prevents the preceding steel piece S1 and the subsequent steel piece S2 from shifting in the vertical direction during the upset joining.

なお、接合装置3は、ライン方向に沿って所定長さだけ延在するレール19(図1も参照)上を走行可能な台車17上に設置されている。また、台車17の走行可能範囲に設置される鋼片搬送用テーブルローラ18は昇降式のテーブルローラとなっており、接合装置3の位置に相当する搬送用テーブルローラ18は台車17により押し下げられるようになっている。接合装置3をこのような構成とすることにより、鋼片の搬送を停止させることなく先行鋼片S1と後行鋼片S2との接合を行うことができる。   The joining device 3 is installed on a carriage 17 that can travel on a rail 19 (see also FIG. 1) that extends a predetermined length along the line direction. Further, the billet transfer table roller 18 installed in the travelable range of the carriage 17 is a liftable table roller, and the carriage table roller 18 corresponding to the position of the joining device 3 is pushed down by the carriage 17. It has become. By setting the joining apparatus 3 to such a configuration, the preceding steel piece S1 and the succeeding steel piece S2 can be joined without stopping the conveyance of the steel piece.

図3は、誘導加熱装置10の概略図である。誘導加熱装置(高周波誘導加熱装置)10は、先行鋼片S1及び後行鋼片S2の各切断端の板厚方向に交番磁界を貫通させるためのものである。図3に示すように、誘導加熱装置10は、先行鋼片S1及び後行鋼片S2の各切断端の上下に配設された一対の磁極芯13と、これらの磁極芯13に上下方向に連続して巻回されたコイル14と、電源15とを備える。   FIG. 3 is a schematic diagram of the induction heating apparatus 10. The induction heating device (high frequency induction heating device) 10 is for penetrating an alternating magnetic field in the plate thickness direction of each cutting end of the preceding steel piece S1 and the subsequent steel piece S2. As shown in FIG. 3, the induction heating device 10 includes a pair of magnetic pole cores 13 disposed above and below the cutting ends of the preceding steel piece S1 and the succeeding steel piece S2, and the magnetic pole cores 13 in the vertical direction. A coil 14 continuously wound and a power source 15 are provided.

図4は、交番磁界と誘導電流の流れを説明するための説明図である。上記の構成の誘導加熱装置10を用いて、図4に示すように、先行鋼片S1及び後行鋼片S2の各切断端の板厚方向に交番磁界を貫通させることにより、各切断端に渦電流が発生して接合面同士が優先的に加熱されるようになっている。なお、本実施形態では、加熱・接合処理を鋼片の走行と同期させるいわゆるトランスバース方式の接合装置3を採用したが、接合装置3を停止した状態で加熱・接合処理を行う場合には、図1に破線で示すルーパー16を用いる。   FIG. 4 is an explanatory diagram for explaining the flow of the alternating magnetic field and the induced current. By using the induction heating device 10 having the above-described configuration, as shown in FIG. 4, by passing an alternating magnetic field in the thickness direction of each cutting end of the preceding steel piece S1 and the succeeding steel piece S2, each cutting end An eddy current is generated to preferentially heat the joint surfaces. In the present embodiment, the so-called transverse joining device 3 that synchronizes the heating / joining process with the travel of the steel slab is adopted, but when performing the heating / joining process with the joining device 3 stopped, A looper 16 indicated by a broken line in FIG. 1 is used.

ここで、本発明では、先行鋼片S1及び後行鋼片S2の鋼種については特に限定されず、例えば、先行鋼片S1及び後行鋼片S2の内の少なくとも一方が鋼の融点(1400〜1600℃)よりも高い融点の酸化物を生成する元素を1質量%以上含有する鋼種とすることができる。鋼の融点よりも高い融点の酸化物とは、Cr、Ti、Mn、Al、Si等の酸化物(例えば、Cr酸化物:融点約2000℃)のことを指す。   Here, in the present invention, the steel types of the preceding steel slab S1 and the succeeding steel slab S2 are not particularly limited. For example, at least one of the preceding steel slab S1 and the succeeding steel slab S2 has a melting point of steel (1400 to 1400). 1600 ° C.), a steel type containing 1% by mass or more of an element that generates an oxide having a melting point higher than 1600 ° C. An oxide having a melting point higher than that of steel refers to an oxide such as Cr, Ti, Mn, Al, Si, or the like (for example, Cr oxide: melting point about 2000 ° C.).

本発明の連続熱間圧延における接合方法では、上述した連続熱間圧延ラインの仕上圧延機の入側で先行鋼片S1の尾端と後行鋼片S2の先端とを互いに非接触で対向配置し、先行鋼片S1の尾端と後行鋼片S2の先端とを加熱する加熱工程と、加熱された先行鋼片S1の尾端と後行鋼片S2の先端とを突き合わせて押圧接合する接合工程とを含む。   In the joining method in continuous hot rolling according to the present invention, the tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2 are opposed to each other on the entry side of the finishing mill of the continuous hot rolling line described above. Then, the heating step of heating the tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2, and the heated tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2 are brought into contact with each other and pressed. Joining process.

上記加熱工程では、加熱周波数fを1.2〜500kHzとし、先行鋼片S1の尾端と後行鋼片S2の先端とを溶融させることを特徴とする。   In the heating step, the heating frequency f is set to 1.2 to 500 kHz, and the tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2 are melted.

以下、本発明の連続熱間圧延における接合方法のこれらの特徴を詳細に説明する。   Hereinafter, these features of the joining method in continuous hot rolling of the present invention will be described in detail.

まず、加熱工程について説明する。   First, the heating process will be described.

本発明者らが、加熱周波数fによる接合強度への影響を調査した結果、誘導加熱の周波数を1.2kHz以上とすることにより酸化物を十分排出することができることを明らかにした。   As a result of investigating the influence of the heating frequency f on the bonding strength, the present inventors have clarified that the oxide can be sufficiently discharged by setting the induction heating frequency to 1.2 kHz or more.

ここで、図5を参照して、加熱周波数fによる接合強度への影響を調査した一例を示す。   Here, an example in which the influence of the heating frequency f on the bonding strength is investigated with reference to FIG.

図5は、加熱周波数を1.0kHz、1.2kHz、または5.0kHzとした場合における、溶融範囲の接合端面からの長手方向長さ(溶融深さ)の幅中央の板厚方向分布を示す図である。より具体的には、図5では、電磁−熱伝導連成有限要素法解析により計算した、板幅方向の溶融範囲の割合が全幅の90%となる加熱時間における、溶融範囲の接合端面からの長手方向長さ(溶融深さ)の幅中央の板厚方向分布を示している。先行鋼片S1、後行鋼片S2の寸法はそれぞれ幅1200mm、厚み30mmになるシートバー(1.5質量%Si鋼)とし、先行シートバーと後行シートバーの各接合面の間隔を5mmとしている。他の加熱条件としては、本発明では、特に限定されないが、投入電力を1000kWとしている。   FIG. 5 shows the thickness direction distribution at the center of the length in the longitudinal direction (melting depth) from the joining end face in the melting range when the heating frequency is 1.0 kHz, 1.2 kHz, or 5.0 kHz. FIG. More specifically, in FIG. 5, the melting range from the joining end face in the melting range in the heating time in which the ratio of the melting range in the plate width direction is 90% of the total width calculated by the electromagnetic-thermal conduction coupled finite element analysis. The distribution in the plate thickness direction at the center of the width in the longitudinal direction (melting depth) is shown. The dimensions of the preceding steel slab S1 and the succeeding steel slab S2 are a sheet bar (1.5% by mass Si steel) having a width of 1200 mm and a thickness of 30 mm, respectively, and the interval between each joining surface of the preceding sheet bar and the succeeding sheet bar is 5 mm. It is said. Other heating conditions are not particularly limited in the present invention, but the input power is 1000 kW.

この電磁−熱伝導連成有限要素法解析は、汎用計算ソフトJMAGを使用し、対象とするシートバー、コイル、磁極芯をモデル化し、シートバーの寸法及び接合面間隙、鋼の電気抵抗、比熱、熱伝導率、密度及び比透磁率、コイル・磁極芯の寸法及びシートバーとの相対的な位置関係、並びに加熱条件(加熱時間、投入電力及び周波数)を適宜設定して行うことができる。   This electromagnetic-heat conduction coupled finite element method analysis uses general-purpose calculation software JMAG to model the target sheet bar, coil, and magnetic pole core, and the dimensions of the sheet bar, the gap between the joint surfaces, the electrical resistance of the steel, and the specific heat. , Thermal conductivity, density and relative permeability, coil / pole core dimensions and relative positional relationship with the sheet bar, and heating conditions (heating time, input power and frequency) can be set as appropriate.

図5(a)に示すように、加熱周波数1.0kHzの場合は板厚中心に近いほど溶融深さが大きくなるが、図5(b)や図5(c)に示すように、1.2kHz以上では上面・下面に近いほど溶融深さが大きくなり、テーパ形状を上面と下面に付けたのと疑似的に同様な形状となっている。したがって、加熱周波数を1.2kHz以上することにより、接合する端部の上下面にテーパを付けたのと同様の酸化物排出効果を得ることができる。
本手法が適用できるシートバー寸法範囲としては巾200mm〜2400mm、厚み10mm〜60mm程度である。加熱周波数の範囲としては、酸化物を排出するに十分な溶融金属を得るための加熱効率をかんがみて500kHzが上限である。以上のような検討を行い、本発明では、加熱周波数fを1.2〜500kHzとする。好ましくは、加熱周波数fは、1.5〜500kHzであり、より好ましくは、5〜100kHzである。
As shown in FIG. 5 (a), when the heating frequency is 1.0 kHz, the closer to the center of the plate thickness, the larger the melting depth, but as shown in FIG. 5 (b) and FIG. At 2 kHz or higher, the closer to the upper and lower surfaces, the larger the melting depth, and the pseudo shape is similar to the taper shape applied to the upper and lower surfaces. Therefore, by setting the heating frequency to 1.2 kHz or more, it is possible to obtain the same oxide discharging effect as when the upper and lower surfaces of the end portions to be joined are tapered.
The sheet bar dimension range to which this method can be applied is about 200 mm to 2400 mm in width and about 10 mm to 60 mm in thickness. The range of the heating frequency is 500 kHz in consideration of the heating efficiency for obtaining a molten metal sufficient to discharge the oxide. The above examination is performed, and in the present invention, the heating frequency f is set to 1.2 to 500 kHz. Preferably, the heating frequency f is 1.5 to 500 kHz, and more preferably 5 to 100 kHz.

また、加熱工程では、上述のように加熱周波数fを1.2〜500kHzとしつつ、加熱周波数f(kHz)と加熱時間t(sec)とが以下の式(1)を満たすことが好ましい。
{30/(f+10)}+0.2≦t≦{1400/(f+100)}+4.0 ・・・(1)
加熱時間t(sec)が、[{30/(f+10)}+0.2]未満であると、液相線温度以上まで加熱される箇所の幅方向割合が小さく、圧延中に破断する可能性がある。一方、加熱時間t(sec)が[{1400/(f+100)}+4.0]を超えると、溶融深さが大きくなりアップセットの実施が困難になる場合がある。
In the heating step, it is preferable that the heating frequency f (kHz) and the heating time t (sec) satisfy the following formula (1) while the heating frequency f is set to 1.2 to 500 kHz as described above.
{30 / (f + 10)} + 0.2 ≦ t ≦ {1400 / (f + 100)} + 4.0 (1)
When the heating time t (sec) is less than [{30 / (f + 10)} + 0.2], the ratio in the width direction of the portion heated to the liquidus temperature or higher is small, and there is a possibility of breaking during rolling. There is. On the other hand, if the heating time t (sec) exceeds [{1400 / (f + 100)} + 4.0], the melting depth becomes large and it may be difficult to perform the upset.

よって、加熱時間t(sec)は、[{30/(f+10)}+0.2]以上、[{1400/(f+100)}+4.0]以下とすることが好ましい。より好ましくは、加熱時間t(sec)は、[{50/(f+10)}+0.4]以上、[{1100/(f+100)}+3.2]以下である。   Therefore, the heating time t (sec) is preferably set to [{30 / (f + 10)} + 0.2] or more and [{1400 / (f + 100)} + 4.0] or less. More preferably, the heating time t (sec) is [{50 / (f + 10)} + 0.4] or more and [{1100 / (f + 100)} + 3.2] or less.

また、いずれの加熱周波数においても、安定して圧延を続行するためには、各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱することが好ましい。これは、板幅に対する幅端部の未接合部の割合が大きい場合は後工程の仕上圧延において接合部に張力が集中し、接合部が分離する可能性がある為である。以上、本発明では、加熱工程において、幅方向50〜100%の範囲の温度が鋼片の液相線温度以上になるまで加熱することが好ましく、より好ましくは、上記幅方向は、70〜100%であり、さらに好ましくは、85〜100%である。幅方向50〜100%の範囲の温度が鋼片の液相線温度以上になるようにするためには、加熱時間、加熱時の投入電力、加熱周波数f等により調整することができる。   Moreover, in order to continue rolling stably at any heating frequency, heating is performed until the temperature in the range of 50 to 100% of the entire width of each joint surface is equal to or higher than the liquidus temperature of the steel slab. It is preferable to do. This is because when the ratio of the unjoined portion at the width end portion to the plate width is large, tension is concentrated on the joined portion in finish rolling in the subsequent process, and the joined portion may be separated. As mentioned above, in this invention, it is preferable to heat until the temperature of the range of 50-100% of the width direction becomes more than the liquidus temperature of a steel piece in a heating process, More preferably, the said width direction is 70-100. %, More preferably 85 to 100%. In order to make the temperature in the range of 50 to 100% in the width direction equal to or higher than the liquidus temperature of the steel slab, it can be adjusted by the heating time, the input power during heating, the heating frequency f, and the like.

次に、接合工程について説明する。   Next, the joining process will be described.

本発明では、特に限定されないが、好ましくは、接合面の全幅・全厚にわたり十分にアップセットを施すために、先行鋼片S1の最大溶融深さと後行鋼片S2の最大溶融深さとの和に対して1.1〜7.0倍とし、より好ましくは、1.3〜7.0倍とする。アップセット量を適切に設定するためには溶融範囲の接合端面からの長手方向長さ(溶融深さ)の板厚方向分布を事前に知っておく必要があるが、図5のように電磁−熱伝導連成有限要素法解析により計算することで求めることができる。   In the present invention, although not particularly limited, preferably, the sum of the maximum melting depth of the preceding steel slab S1 and the maximum melting depth of the succeeding steel slab S2 in order to sufficiently upset the entire width and thickness of the joining surface. 1.1 to 7.0 times, and more preferably 1.3 to 7.0 times. In order to appropriately set the upset amount, it is necessary to know in advance the thickness direction distribution of the longitudinal direction length (melting depth) from the joining end face of the melting range. It can be obtained by calculating by heat conduction coupled finite element analysis.

ここで、溶融深さとは、図6に示す、各鋼片における、加熱により液相線温度以上となり溶融した範囲の圧延方向長さのことであり、最大溶融深さとは、図7に一例を示す、接合面内全体(全幅・全厚)での溶融深さの最大値のことである。   Here, the melting depth refers to the length in the rolling direction in the range where each steel slab shown in FIG. 6 is heated to the liquidus temperature or higher and melted, and the maximum melting depth is an example in FIG. It shows the maximum value of the melting depth in the entire joining surface (full width and full thickness).

また、アップセット量とは、接合工程における圧延方向の鋼片の押し込み量(先行鋼片の尾端の接合面と後行鋼片の先端の接合面との距離がゼロになった状態(2つの面がぴったり合わさった状態)からの押し込み量)のことである。アップセット量は、先行鋼片と後行鋼片の相対的な距離によるので、先行鋼片と後行鋼片のそれぞれの押し込み量の和とする。そのアップセット量の値となる条件で、先行鋼片と後行鋼片のそれぞれの押し込み量は任意に決めることが出来る。例えば、先行鋼片は押し込まず(動かさず)に、後行鋼片のみを所望のアップセット量で押し込んでも良い。   Further, the amount of upset is the amount of pushing of the steel slab in the rolling direction in the joining process (the state in which the distance between the joint surface at the tail end of the preceding steel slab and the joint surface at the tip of the succeeding steel slab is zero (2 The amount of push-in from when the two surfaces fit together. Since the amount of upset depends on the relative distance between the preceding steel slab and the succeeding steel slab, the amount of upset is the sum of the pushing amounts of the preceding steel slab and the subsequent steel slab. The pushing amount of each of the preceding steel slab and the succeeding steel slab can be arbitrarily determined under the condition of the upset amount. For example, the following steel slab may be pushed in a desired upset amount without pushing (moving) the preceding steel slab.

また、加熱終了からアップセット完了までの時間が2.0sec以上である場合、接合面の温度低下により粘度が下がるため、この場合もテーパ形状による排出促進効果が顕著である。   In addition, when the time from the end of heating to the completion of upset is 2.0 sec or more, the viscosity decreases due to a decrease in the temperature of the joint surface. In this case as well, the discharge promotion effect due to the tapered shape is significant.

なお、本実施形態では、接合工程における押圧力については特に限定されない。   In the present embodiment, the pressing force in the joining process is not particularly limited.

以上説明したように、本発明では、加熱工程における加熱周波数fを1.2〜500kHzとすることで、端面を加工する設備を必要とせず、簡便に、後工程の仕上圧延にて接合部が破断することを防止できる。また、本発明では、加熱時間を短縮することもでき、接合にかかる時間を短縮化して生産性を向上させることができる。また、本発明では、発生する溶鋼を少なくすることができ、次の鋼片の接合の際、残存した溶鋼が接合面に噛み込まれる可能性を低減することができる。   As described above, in the present invention, the heating frequency f in the heating step is set to 1.2 to 500 kHz, so that no equipment for processing the end surface is required, and the joining portion can be easily formed by finish rolling in the subsequent step. Breakage can be prevented. In the present invention, the heating time can also be shortened, and the time required for joining can be shortened to improve productivity. Moreover, in this invention, the molten steel which generate | occur | produces can be decreased and the possibility that the molten steel which remain | survived will be bitten by a joining surface can be reduced in the case of the joining of the next steel piece.

また、本発明の連続熱間圧延における接合方法を用いて熱延鋼帯を製造する際、上述した接合方法の条件以外の製造条件については、従来公知の条件を採用し、鋼種や鋼の形状に応じて適宜設定することができる。   Moreover, when manufacturing a hot-rolled steel strip using the joining method in the continuous hot rolling of the present invention, for production conditions other than the above-described joining method conditions, conventionally known conditions are adopted, and the steel type and the shape of the steel It can be set appropriately depending on the situation.

なお、上記説明では、1.5%Si鋼のみを例に挙げたが、鋼組成として、Cの場合最大1.2質量%、Siの場合最大4.0質量%、Mnの場合最大6.2質量%、Crの場合最大35.0質量%、Tiの場合最大0.5質量%、Alの場合最大0.5質量%、Pの場合最大0.5質量%、Sの場合最大0.4質量%、Niの場合最大25.0質量%、Moの場合最大1.0質量%、Vの場合最大0.5質量%含有していても、同様の条件で、接合部が分離することなく仕上げ板厚2mmまで良好な連続圧延を継続可能である。   In the above description, only 1.5% Si steel is taken as an example, but the steel composition is 1.2 mass% at maximum in the case of C, 4.0 mass% in the case of Si, and 6. max in the case of Mn. 2% by mass, Cr: 35.0% by mass, Ti: 0.5% by mass, Al: 0.5% by mass, P: 0.5% by mass, S: 0. 4 mass%, Ni 25.0 mass% maximum, Mo Mo maximum 1.0 mass%, V 0.5 mass% maximum Good continuous rolling can be continued up to a finished sheet thickness of 2 mm.

以下、実施例に基づき、本発明について説明する。   Hereinafter, the present invention will be described based on examples.

先行鋼片、後行鋼片としてそれぞれ幅1250mm、厚み30mmになるシートバー(3.0質量%Mn鋼)を図1に示した連続熱間圧延ラインに供した。先行鋼片および後行鋼片としては、質量%で、Si:1.5%、C:0.12%、Mn:3.0%、Cr:0.3%を有し、残部がFeおよび不可避的不純物からなる鋼組成を有するものを用いた。   A sheet bar (3.0 mass% Mn steel) having a width of 1250 mm and a thickness of 30 mm as a preceding steel piece and a subsequent steel piece was subjected to the continuous hot rolling line shown in FIG. As the preceding steel slab and the subsequent steel slab, in mass%, Si: 1.5%, C: 0.12%, Mn: 3.0%, Cr: 0.3%, the balance being Fe and What has the steel composition which consists of an unavoidable impurity was used.

また、接合装置3内で先行シートバーと後行シートバーの各接合面を5mmの間隙を隔てて対向配置した後、誘導加熱装置10(幅方向の寸法1300mm、長手方向の寸法240mm)によって各接合面を加熱した。このときの加熱条件は投入電力を1000kWとし、加熱周波数fと加熱時間は表1に示す通りとした。   In addition, after the joining surfaces of the preceding sheet bar and the succeeding sheet bar are arranged to face each other with a gap of 5 mm in the joining device 3, each is heated by the induction heating device 10 (size in the width direction is 1300 mm, dimension in the longitudinal direction is 240 mm). The joining surface was heated. The heating conditions at this time were an input power of 1000 kW, and the heating frequency f and heating time were as shown in Table 1.

鋼の液相線温度以上となる領域を、電磁−熱伝導連成有限要素法解析により計算した結果を図5に示す。この電磁−熱伝導連成有限要素法解析では汎用計算ソフトJMAGを使用しており、シートバー、コイル、磁極芯をモデル化している。当モデルにおいて、シートバーの寸法および接合面間隙は前述の当実施例と同等の寸法とし、物性値については当実施例と同等成分の鋼の特性値(電気抵抗・比熱・熱伝導率・密度・比透磁率)を使用した。具体的には、電気抵抗:120μΩ・cm、比熱:350J/kg/degC、熱伝導率:28W/m/degC、密度:7850kg/m、比透磁率:8とした。コイル・磁極芯の寸法及びシートバーとの相対的な位置関係は、当実施例にて使用の接合機と同等としており、加熱条件(投入電力・周波数)は当実施例と同等としている。 FIG. 5 shows the result of calculating the region where the temperature is higher than the liquidus temperature of steel by the electromagnetic-thermal conduction coupled finite element analysis. In this electromagnetic-heat conduction coupled finite element method analysis, general-purpose calculation software JMAG is used to model a sheet bar, a coil, and a magnetic pole core. In this model, the dimensions of the seat bar and the gap between the joint surfaces are the same as those in the previous example, and the physical properties are the same as in this example (characteristic values of electrical resistance, specific heat, thermal conductivity, density).・ Relative permeability) was used. Specifically, electric resistance: 120 μΩ · cm, specific heat: 350 J / kg / degC, thermal conductivity: 28 W / m / degC, density: 7850 kg / m 3 , and relative magnetic permeability: 8. The dimensions of the coil and magnetic pole core and the relative positional relationship with the seat bar are the same as those of the joining machine used in this embodiment, and the heating conditions (input power and frequency) are the same as in this embodiment.

引き続き、接合面同士を突き合わせて押圧シリンダ11によって押圧力5.2kg/mmで押圧して接合を完了させた。アップセット量は表1に示す通りである。 Subsequently, the joining surfaces were brought into contact with each other and pressed by the pressing cylinder 11 with a pressing force of 5.2 kg / mm 2 to complete the joining. The amount of upset is as shown in Table 1.

接合部より引張試験片を採取し、JIS14A号の引張試験片を用いて接合部熱間引張強度(試験温度1000℃)を実施したところ、本発明例では、母材強度の80%以上の接合部強度が得られた。   Tensile test specimens were collected from the joints and subjected to joint hot tensile strength (test temperature 1000 ° C.) using JIS No. 14A tensile test specimens. Partial strength was obtained.

また、接合完了後、仕上圧延機の7スタンドミルにより板厚2mmまで20回の接合・圧延を施し、その際に接合部が破断した確率(破断確率(%))を表中に示した。本発明例では、周波数を1.2kHz以上とすることにより破断確率を35%以下にすることができた
また、本発明例の中でも、加熱条件として、式(1)を満たし、先行鋼片及び後行鋼片の各接合面の幅方向50〜100%の範囲の温度を鋼片の液相線温度以上になるまで加熱し、接合条件として、アップセット量を、先行鋼片の最大溶融深さと後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍としたNo.3、4、5、6、7、10、12、13、14では、接合部強度を80%以上としつつ、破断確率を0%とすることができた。
In addition, after completion of joining, 20 times of joining / rolling up to a plate thickness of 2 mm were performed by 7 stand mills of a finish rolling mill, and the probability that the joint was broken at that time (breaking probability (%)) is shown in the table. In the example of the present invention, the fracture probability could be reduced to 35% or less by setting the frequency to 1.2 kHz or more. Also, among the examples of the present invention, as a heating condition, the formula (1) was satisfied, Heat the temperature in the range of 50-100% in the width direction of each joining surface of the succeeding steel slab until it reaches the liquidus temperature of the steel slab, and as a joining condition, set the upset amount as the maximum melting depth of the preceding steel slab. No. and 1.1 to 7.0 times the sum of the maximum melting depth of the succeeding steel slab. In 3, 4, 5, 6, 7, 10, 12, 13, and 14, the fracture strength could be 0% while the joint strength was 80% or more.

Figure 0006443411
Figure 0006443411

1 コイルボックス
2 クロップシャー
3 接合装置
4 レベラー
5 ピンチロール
6 脱スケール装置
7 仕上圧延機の第1スタンド
8、9 クランプ装置
10 誘導加熱装置
11 押圧シリンダ
13 磁極芯
14 コイル
15 電源
16 ルーパー
17 台車
18 鋼片搬送用テーブルローラ
19 レール
20 目違い防止板
S1 先行鋼片
S2 後行鋼片
DESCRIPTION OF SYMBOLS 1 Coil box 2 Crop shear 3 Joining device 4 Leveler 5 Pinch roll 6 Descaling device 7 First stand of finishing mill 8, 9 Clamp device 10 Induction heating device 11 Pressing cylinder 13 Magnetic pole core 14 Coil 15 Power source 16 Looper 17 Carriage 18 Steel slab conveying table roller 19 Rail 20 Misalignment prevention plate S1 Leading steel slab S2 Backing steel slab

Claims (3)

連続熱間圧延ラインの仕上圧延機の入側で先行鋼片の尾端と後行鋼片の先端とを互いに非接触で対向配置し、前記先行鋼片の尾端と前記後行鋼片の先端とを誘導加熱する加熱工程と、
該加熱工程で加熱された前記先行鋼片の尾端と前記後行鋼片の先端とを突き合わせて押圧接合する接合工程と、を含み、
前記加熱工程では、加熱周波数fを1.2〜500kHzとし、前記先行鋼片の尾端と前記後行鋼片の先端とを溶融させることを特徴とする、連続熱間圧延における鋼片の接合方法。
The leading edge of the preceding steel slab and the leading edge of the following steel slab are placed in contact with each other in a non-contact manner on the entry side of the finish rolling mill of the continuous hot rolling line, and the tail edge of the preceding steel slab and the following steel slab A heating process for induction heating the tip;
A joining step of pressing and joining the tail end of the preceding steel slab heated in the heating step and the tip of the succeeding steel slab,
In the heating step, the heating frequency f is set to 1.2 to 500 kHz, and the tail end of the preceding steel slab and the tip of the succeeding steel slab are melted. Method.
前記加熱工程では、前記加熱周波数f(kHz)と加熱時間t(sec)とが以下の式(1)を満たすことを特徴とする、請求項1に記載の連続熱間圧延における鋼片の接合方法。
{30/(f+10)}+0.2≦t≦{1400/(f+100)}+4.0 ・・・(1)
In the said heating process, the said heating frequency f (kHz) and heating time t (sec) satisfy | fill the following formula | equation (1), The joining of the steel slab in the continuous hot rolling of Claim 1 characterized by the above-mentioned. Method.
{30 / (f + 10)} + 0.2 ≦ t ≦ {1400 / (f + 100)} + 4.0 (1)
前記加熱工程で前記先行鋼片及び前記後行鋼片の各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱し、
前記接合工程におけるアップセット量を、前記先行鋼片の最大溶融深さと前記後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍とすることを特徴とする、請求項1または2に記載の連続熱間圧延における鋼片の接合方法。
In the heating step, heating is performed until the temperature in the range of 50 to 100% of the total width of each joining surface of the preceding steel slab and the subsequent steel slab becomes equal to or higher than the liquidus temperature of the steel slab,
The upset amount in the joining step is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab and the maximum melting depth of the succeeding steel slab, Item 3. A method for joining steel pieces in continuous hot rolling according to item 1 or 2.
JP2016160338A 2016-08-18 2016-08-18 Steel slab joining method in continuous hot rolling Active JP6443411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160338A JP6443411B2 (en) 2016-08-18 2016-08-18 Steel slab joining method in continuous hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160338A JP6443411B2 (en) 2016-08-18 2016-08-18 Steel slab joining method in continuous hot rolling

Publications (2)

Publication Number Publication Date
JP2018027557A JP2018027557A (en) 2018-02-22
JP6443411B2 true JP6443411B2 (en) 2018-12-26

Family

ID=61248248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160338A Active JP6443411B2 (en) 2016-08-18 2016-08-18 Steel slab joining method in continuous hot rolling

Country Status (1)

Country Link
JP (1) JP6443411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102502606B1 (en) * 2021-11-05 2023-02-23 천복기계(주) Brazing Device Using Induction Heating Coil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340696B2 (en) * 1999-03-26 2002-11-05 川崎製鉄株式会社 Method of joining billets in continuous hot rolling
JP4081910B2 (en) * 1999-03-29 2008-04-30 Jfeスチール株式会社 Steel slab joining method in continuous hot rolling

Also Published As

Publication number Publication date
JP2018027557A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6443411B2 (en) Steel slab joining method in continuous hot rolling
JP2018024017A (en) High-grade steel continuous hot rolling method
JP6421793B2 (en) Method of joining steel slabs in continuous hot rolling, continuous hot rolling method, and manufacturing method of hot rolled steel sheet
JP2011224594A (en) Cold rolling method
JP6409848B2 (en) Steel slab joining method, continuous hot rolling method, and hot rolled steel sheet manufacturing method in continuous hot rolling
JP3340696B2 (en) Method of joining billets in continuous hot rolling
KR101580589B1 (en) Method for joining sheet bars in continuous hot rolling
JP4081910B2 (en) Steel slab joining method in continuous hot rolling
JP6583256B2 (en) Clamp for joining steel slabs in continuous hot rolling
JP2905377B2 (en) Method of joining billets in hot rolling
JP2018027556A (en) Plate passing method in continuous hot rolling and hot-rolled steel strip manufacturing method
JP3126875B2 (en) Continuous hot rolling of billets
KR20190029876A (en) Equipment and method for endless hot strip rolling of difficult-to-joining steel
JP2905347B2 (en) Method of joining billets in hot rolling
JP6477639B2 (en) Clamp and joining equipment for joining steel slabs in continuous hot rolling.
JP6432570B2 (en) Clamp for joining steel slabs in continuous hot rolling, joining apparatus and joining method, and continuous hot rolling method and hot rolled steel sheet manufacturing method
JPS61159285A (en) Joining method of billet in hot rolling
KR101778160B1 (en) Method for increasing efficiency for surface modification of hot rolling material
JP2938689B2 (en) Method of joining billets in hot rolling
JP2981089B2 (en) Method of joining billets in continuous hot rolling
JP2905399B2 (en) Method of joining billets in hot rolling
JP2992188B2 (en) How to join billets
JPH08141602A (en) Method for joining slab in hot rolling
JPH09271803A (en) Method and device for continuous rolling of hot bar steel
JP2018069277A (en) Joining clamp for slab in continuous hot rolling, slab joint device, slab joint method, continuous hot rolling method, and method and device for production of hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6443411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250