JP6409848B2 - Steel slab joining method, continuous hot rolling method, and hot rolled steel sheet manufacturing method in continuous hot rolling - Google Patents
Steel slab joining method, continuous hot rolling method, and hot rolled steel sheet manufacturing method in continuous hot rolling Download PDFInfo
- Publication number
- JP6409848B2 JP6409848B2 JP2016212373A JP2016212373A JP6409848B2 JP 6409848 B2 JP6409848 B2 JP 6409848B2 JP 2016212373 A JP2016212373 A JP 2016212373A JP 2016212373 A JP2016212373 A JP 2016212373A JP 6409848 B2 JP6409848 B2 JP 6409848B2
- Authority
- JP
- Japan
- Prior art keywords
- steel slab
- joining
- steel
- hot rolling
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 193
- 239000010959 steel Substances 0.000 title claims description 193
- 238000005304 joining Methods 0.000 title claims description 69
- 238000000034 method Methods 0.000 title claims description 53
- 238000005098 hot rolling Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 75
- 238000002844 melting Methods 0.000 claims description 54
- 230000008018 melting Effects 0.000 claims description 54
- 238000005096 rolling process Methods 0.000 claims description 34
- 238000003825 pressing Methods 0.000 claims description 8
- 230000006698 induction Effects 0.000 description 19
- 238000005520 cutting process Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Metal Rolling (AREA)
Description
本発明は、連続熱間圧延において、連続熱間圧延ラインの仕上圧延機の入側で先行鋼片と後行鋼片とを接合する方法に関する。 The present invention relates to a method for joining a preceding steel slab and a subsequent steel slab on the entry side of a finishing mill in a continuous hot rolling line in continuous hot rolling.
従来、連続熱間圧延ラインの仕上圧延機の入側で先行鋼片と後行鋼片とを接合する方法としては、例えば、連続熱間圧延ラインの仕上圧延機の入側で先行鋼片の尾端と後行鋼片の先端とを互いに非接触で対向配置して、この状態で誘導加熱装置によって先行鋼片の尾端と後行鋼片の先端とを急速加熱し、次いで、加熱された先行鋼片の尾端と後行鋼片の先端とを突き合わせて押圧(アップセット)接合する方法が知られている。 Conventionally, as a method of joining the preceding steel slab and the subsequent steel slab at the entry side of the finish rolling mill of the continuous hot rolling line, for example, The tail end and the tip of the subsequent billet are placed in contact with each other in a non-contact manner, and in this state, the tail end of the preceding billet and the tip of the following billet are rapidly heated by the induction heating device, and then heated. In addition, there is known a method in which the tail end of the preceding steel piece and the tip of the subsequent steel piece are brought into contact with each other and pressed (upset).
しかしながら、大気雰囲気中で接合を行う際に、鋼中にCr、Ti、Mn、Al、Si等のように鋼の融点(1400〜1600℃)よりも高い融点の酸化物(例えば、Cr酸化物:融点約2000℃)を生成する成分を含むステンレス鋼や高張力鋼等については、誘導加熱時に接合面に生成されるこれらの酸化物が、アップセット後も接合部に固相として残って接合強度を著しく低下させ、後工程の仕上圧延にて接合部が破断する等の問題が生じる。 However, when joining in an air atmosphere, an oxide having a melting point higher than the melting point of the steel (1400 to 1600 ° C.) such as Cr, Ti, Mn, Al, Si, etc. in the steel (for example, Cr oxide) : For stainless steels and high-strength steels that contain components that generate a melting point of about 2000 ° C., these oxides generated on the joint surface during induction heating remain in the joint as a solid phase even after upsetting. The strength is remarkably reduced, and problems such as breakage of the joint portion occur in finish rolling in the subsequent process.
この問題に対し、加熱工程で、誘導加熱装置を用いて先行鋼片及び後行鋼片の各接合面の温度を鋼片の液相線温度以上にする方法が提案されている(特許文献1参照)。 In order to solve this problem, a method has been proposed in which the temperature of each joint surface of the preceding steel slab and the subsequent steel slab is set to be equal to or higher than the liquidus temperature of the steel slab by using an induction heating device in the heating process (Patent Document 1). reference).
しかし、誘導加熱装置による加熱では、発生する誘導電流が鋼片のコーナー部(幅端部)においては流れにくいために、接合予定部の温度(鋼片の幅方向の温度)が幅端部に近いほど昇温度合いが小さくなり、鋼片の押圧に際して接合予定部を全域にわたって接合できないという問題がある。ここで幅方向とは、水平面内で圧延方向に直角の方向のことである。 However, in the heating by the induction heating device, since the generated induced current does not easily flow at the corner portion (width end portion) of the steel slab, the temperature of the portion to be joined (temperature in the width direction of the steel slab) is changed to the width end portion. The closer the temperature is, the lower the temperature rise, and there is a problem that the part to be joined cannot be joined over the entire area when the steel piece is pressed. Here, the width direction is a direction perpendicular to the rolling direction in a horizontal plane.
この問題に対し、幅端部から所定の範囲に磁性体を配置して鋼片を加熱・昇温し、幅端部の昇温を促進する方法(特許文献2参照)や、先行鋼片の尾端と後行鋼片の先端とを急速加熱し、次いで、加熱された先行鋼片の尾端と後行鋼片の先端とを突き合わせた後、誘導コイルを接合部の板幅方向最端部に設置し、この板幅方向最端部を周回する渦電流によって加熱しながら再度加圧して接合することを特徴とする板材の接合方法(特許文献3参照)や、先行する鋼片の後端部と後行する鋼片の先端部の少なくともいずれか一方の端部を凸形状として、両鋼片をその幅方向中央部にて接触させると共に、該幅方向中央部にて鋼片の厚み方向に貫く交番磁界を印加し、この交番磁界によって誘起された誘導電流により加熱しつつ、鋼片同士を押圧することにより、鋼片中央部から幅端部へ向かって順次接合する方法(特許文献4参照)が提案されている。 With respect to this problem, a method of accelerating the temperature rise of the width end portion by arranging a magnetic body within a predetermined range from the width end portion to heat and raise the temperature of the steel piece (see Patent Document 2), After rapidly heating the tail end and the tip of the succeeding steel slab, and then butting the tail end of the heated preceding steel slab and the tip of the succeeding steel slab, the induction coil is connected to the end of the joint in the plate width direction. Plate material joining method (refer to Patent Document 3), which is performed by applying pressure again while heating by an eddy current that circulates in the plate width direction endmost part, and after the preceding steel piece At least one of the end portion and the tip end portion of the following steel slab is formed into a convex shape, and both steel pieces are brought into contact with each other at the center in the width direction, and the thickness of the steel slab at the center in the width direction. Applying an alternating magnetic field penetrating in the direction and pressing the steel pieces together while heating by the induced current induced by this alternating magnetic field The Rukoto, a method of sequentially bonding toward the billet central portion to the width end (see Patent Document 4) it has been proposed.
これらの幅端部の昇温量を促進する方法と、各接合面の温度を鋼片の液相線温度以上にする方法とを併用することにより、たとえ鋼の融点より高い融点の酸化物を生成する成分を含む鋼片であっても、幅端部の接合強度を向上できると考えられる。 By using both the method for promoting the temperature rise at the width end portion and the method for setting the temperature of each joint surface to be higher than the liquidus temperature of the steel slab, an oxide having a melting point higher than that of the steel can be obtained. It is considered that even the steel slab containing the component to be generated can improve the bonding strength of the width end portion.
しかしながら、特許文献2〜4に記載の方法では、幅端部の加熱のための装置を必要としており、より簡便に接合部の破断を防止できる方法が希求されていた。
However, in the methods described in
本発明は、前述した問題点を解消するためになされたものであり、幅端部の加熱にのみ用いる装置を必要とせず、簡便に、後工程の仕上圧延にて接合部の破断を防止できる、連続熱間圧延における鋼片の接合方法、該接合方法を用いた連続熱間圧延方法および該連続熱間圧延方法を用いた熱延鋼板の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and does not require an apparatus used only for heating the width end portion, and can easily prevent fracture of the joint portion in the finish rolling in the subsequent process. An object of the present invention is to provide a method for joining steel slabs in continuous hot rolling, a continuous hot rolling method using the joining method, and a method for producing a hot-rolled steel sheet using the continuous hot rolling method.
[1]連続熱間圧延ラインの仕上圧延機の入側で先行鋼片の尾端と後行鋼片の先端とを互いに非接触で対向配置し、前記先行鋼片の尾端と前記後行鋼片の先端とを加熱する加熱工程と、加熱された前記先行鋼片の尾端と前記後行鋼片の先端とを突き合わせて押圧接合する接合工程とを含む、連続熱間圧延における鋼片の接合方法において、
前記加熱工程で前記先行鋼片の尾端及び前記後行鋼片の先端の各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱し、
かつ、前記接合工程におけるアップセット量を、前記先行鋼片の最大溶融深さと前記後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍とすることを特徴とする連続熱間圧延における鋼片の接合方法。
[2]前記[1]に記載の接合方法を用いることを特徴とする連続熱間圧延方法。
[3]前記[2]に記載の連続熱間圧延方法を用いることを特徴とする熱延鋼板の製造方法。
[1] The tail end of the preceding steel slab and the tip of the succeeding steel slab are arranged so as to face each other in a non-contact manner on the entry side of the finish rolling mill of the continuous hot rolling line. A steel slab in continuous hot rolling, comprising: a heating step for heating the tip of the steel slab; and a joining step for pressing and joining the tail end of the heated preceding steel slab and the tip of the succeeding steel slab In the joining method of
In the heating step, heating is performed until the temperature in the range of 50 to 100% of the total width of the joining surface at the tail end of the preceding steel slab and the tip of the subsequent steel slab becomes equal to or higher than the liquidus temperature of the steel slab. And
And the amount of upset in the joining step is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab and the maximum melting depth of the succeeding steel slab. A method of joining steel slabs in continuous hot rolling.
[2] A continuous hot rolling method using the joining method according to [1].
[3] A method for producing a hot-rolled steel sheet, wherein the continuous hot rolling method according to [2] is used.
ここで、溶融深さとは、図7に示すように、各鋼片における、加熱により液相線温度以上となった範囲の圧延方向長さのことであり、最大溶融深さとは、図8に示すように、接合面内全体(全幅・全厚)での溶融深さの最大値のことである。最大溶融深さは、加熱条件により、板厚中心が最大になる場合もあるし、上面あるいは下面の方が最大になる場合もある。 Here, as shown in FIG. 7, the melting depth is the length in the rolling direction of each steel slab in the range of the liquidus temperature or higher due to heating, and the maximum melting depth is shown in FIG. As shown, it is the maximum value of the melting depth in the entire joining surface (full width and full thickness). Depending on the heating conditions, the maximum melting depth may be the maximum at the center of the plate thickness, or the upper surface or the lower surface may be the maximum.
また、アップセット量とは、接合工程における圧延方向の鋼片の押し込み量(接合する先行鋼片の尾端の接合面と後行鋼片の先端の接合面との距離がゼロになった状態(2つの面がぴったり合わさった状態)からの押し込み量)のことである。
アップセット量は、先行鋼片と後行鋼片との相対的な距離によるので、先行鋼片と後行鋼片とのそれぞれの押し込み量の和とする。そのアップセット量の範囲内の値となる条件であれば、先行鋼片と後行鋼片のそれぞれの押し込み量は任意に決めることが出来る。例えば、先行鋼片は押し込まず(動かさず)に、後行鋼片のみを所望のアップセット量で押し込んでもよい。
The amount of upset is the amount of steel slab push in the rolling direction in the joining process (the distance between the joining surface at the tail end of the preceding steel slab to be joined and the joining surface at the tip of the succeeding steel slab is zero) (The amount of push-in from the state in which the two surfaces are closely aligned)).
The amount of upset depends on the relative distance between the preceding steel slab and the succeeding steel slab, and is therefore the sum of the pushing amounts of the preceding steel slab and the subsequent steel slab. If it is the conditions which become the value within the range of the upset amount, the pushing amount of each of the preceding steel slab and the succeeding steel slab can be arbitrarily determined. For example, only the subsequent billet may be pushed in a desired upset amount without pushing (moving) the preceding billet.
本発明によれば、幅端部の加熱にのみ用いる装置を必要とせず、簡便に、後工程の仕上圧延にて接合部が破断することを防止できる。 According to the present invention, an apparatus used only for heating the width end portion is not required, and it is possible to easily prevent the joint portion from being broken by finish rolling in a subsequent process.
以下、本発明について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。 Hereinafter, the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
図1は、連続熱間圧延ラインのコイルボックスから仕上圧延機の第1スタンドまでの設備配列を示す概略図である。図1において、符号1は粗圧延機から出た板材を巻き取るコイルボックス、符号2はコイルボックス1から巻き出された先行鋼片S1の尾端及び後行鋼片S2の先端を切断するクロップシャー、符号3は先行鋼片S1及び後行鋼片S2の切断面(接合面)同士を接合する接合装置、符号4はレベラー、符号5a〜5cはピンチロール、符号6は脱スケール装置、符号7は仕上圧延機の第1スタンドである。
FIG. 1 is a schematic diagram showing an equipment arrangement from a coil box of a continuous hot rolling line to a first stand of a finishing mill. In FIG. 1,
図2は、接合装置3の概略断面図である。接合装置3は、図2に示すように、クロップシャー2によって後端のクロップが切り落とされた先行鋼片S1及び先端のクロップが切り落とされた後行鋼片S2の各切断端を接合面同士が互いに非接触で対向配置されるように把持する左右のクランプ装置8、9と、該クランプ装置8、9によって把持された先行鋼片S1及び後行鋼片S2の各切断端を加熱する誘導加熱装置10と、クランプ装置8をクランプ装置9側に押圧移動させて誘導加熱装置10によって加熱された先行鋼片S1及び後行鋼片S2の各切断端の接合面同士を突き合わせてアップセット接合して接合部αを形成する押圧シリンダ11と、該アップセット接合時に先行鋼片S1と後行鋼片S2とが上下方向にずれることを防止する目違い防止板20とを有する。
FIG. 2 is a schematic cross-sectional view of the
なお、接合装置3は、ライン方向に沿って所定長さだけ延在するレール19(図1も参照)上を走行可能な台車17上に設置されている。また、台車17の走行可能範囲に設置される鋼片搬送用テーブルローラ18は昇降式のテーブルローラとなっており、接合装置3の位置に相当する搬送用テーブルローラ18は台車17により押し下げられるようになっている。接合装置3をこのような構成とすることにより、鋼片の搬送を停止させることなく先行鋼片S1と後行鋼片S2との接合を行うことができる。
The joining
図3は、誘導加熱装置10の概略図である。誘導加熱装置(高周波誘導加熱装置)10は、先行鋼片S1及び後行鋼片S2の各切断端の板厚方向に交番磁界を貫通させるためのものである。図3に示すように、誘導加熱装置10は、先行鋼片S1及び後行鋼片S2の各切断端の上下に配設された一対の磁極芯13と、これらの磁極芯13に上下方向に連続して巻回されたコイル14と、電源15とを備える。
FIG. 3 is a schematic diagram of the
図4は、交番磁界と誘導電流の流れを説明するための説明図である。上記の構成の誘導加熱装置10を用いて、図4に示すように、先行鋼片S1及び後行鋼片S2の各切断端の板厚方向に交番磁界を貫通させることにより、各切断端に渦電流が発生して接合面同士が優先的に加熱されるようになっている。なお、本実施形態では、加熱・接合処理を鋼片の走行と同期させるいわゆるトランスバース方式の接合装置3を採用したが、接合装置3を停止した状態で加熱・接合処理を行う場合には、図1に破線で示すルーパ16を用いる。
FIG. 4 is an explanatory diagram for explaining the flow of the alternating magnetic field and the induced current. By using the
ここで、本実施形態では、先行鋼片S1及び後行鋼片S2の鋼種については特に限定されず、例えば、先行鋼片S1及び後行鋼片S2の内の少なくとも一方が鋼の融点(1400〜1600℃)よりも高い融点の酸化物を生成する元素を1質量%以上含有する鋼種とすることができる。鋼の融点よりも高い融点の酸化物とは、Cr、Ti、Mn、Al、Si等の酸化物(具体的には、Cr酸化物:融点約2000℃、その他TiO2、MnO、Al2O3、SiO2等)のことを指す。 Here, in this embodiment, the steel types of the preceding steel slab S1 and the succeeding steel slab S2 are not particularly limited. For example, at least one of the preceding steel slab S1 and the succeeding steel slab S2 has a melting point of steel (1400). It is possible to obtain a steel type containing 1% by mass or more of an element that generates an oxide having a melting point higher than ˜1600 ° C.). An oxide having a melting point higher than that of steel is an oxide such as Cr, Ti, Mn, Al, Si or the like (specifically, Cr oxide: melting point of about 2000 ° C., other TiO 2 , MnO, Al 2 O 3 , SiO 2, etc.).
本実施形態の鋼片の接合方法は、上述した連続熱間圧延ラインの仕上圧延機の入側で先行鋼片S1の尾端と後行鋼片S2の先端とを互いに非接触で対向配置し、先行鋼片S1の尾端と後行鋼片S2の先端とを加熱する加熱工程と、加熱された先行鋼片S1の尾端と後行鋼片S2の先端とを突き合わせて押圧接合する接合工程とを含む。 The method for joining steel slabs according to the present embodiment is such that the tail end of the preceding steel slab S1 and the tip of the subsequent steel slab S2 face each other in a non-contact manner on the entry side of the above-described finishing rolling mill of the continuous hot rolling line. The heating step of heating the tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2, and the joining that presses and joins the tail end of the heated preceding steel slab S1 and the tip of the succeeding steel slab S2 Process.
上記加熱工程では、誘導加熱装置10を用い、先行鋼片S1及び後行鋼片S2の各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱することを特徴とする。そして、接合工程では、アップセット量を、先行鋼片S1の最大溶融深さと後行鋼片S2の最大溶融深さとの和に対して1.1〜7.0倍とすることを特徴とする。
In the heating step, the
以下、加熱工程と接合工程におけるこれらの特徴を詳細に説明する。 Hereinafter, these features in the heating step and the bonding step will be described in detail.
まず、加熱工程の特徴について説明する。 First, the characteristics of the heating process will be described.
図5は、加熱時間を3秒、4秒、5秒または6秒とし、他の条件(入熱量)は同一にして加熱した場合の1.7%Si鋼の加熱完了時の鋼片長手方向の温度分布を示す。 FIG. 5 shows the length direction of a steel slab when heating of 1.7% Si steel is completed when the heating time is 3 seconds, 4 seconds, 5 seconds, or 6 seconds and the other conditions (heat input) are the same. Shows the temperature distribution.
ここで、図5に示す温度分布は、鋼板(鋼片)全厚をtとしたとき、板厚方向に鋼板表面からt/2位置での温度分布である。また、板幅は1000mmである。図5に示すように、接合界面の温度について、幅中央付近は液相線温度以上となりやすいが、幅端部は液相線温度未満である。接合界面の温度が液相線温度未満である部分は、アップセット後に接合界面に鋼の融点よりも高い融点のSi酸化物が固相として残って接合強度を著しく低下させ未接合部となる。 Here, the temperature distribution shown in FIG. 5 is a temperature distribution at the t / 2 position from the surface of the steel sheet in the thickness direction, where t is the total thickness of the steel sheet (steel piece). The plate width is 1000 mm. As shown in FIG. 5, the temperature at the joint interface tends to be equal to or higher than the liquidus temperature near the center of the width, but the end of the width is lower than the liquidus temperature. In the portion where the temperature of the bonding interface is lower than the liquidus temperature, Si oxide having a melting point higher than the melting point of steel remains as a solid phase at the bonding interface after upsetting, and the bonding strength is significantly reduced to become an unbonded portion.
図5中の加熱時間が3秒の場合のように、全幅に対する幅端部の未接合部(液相線温度以上になっていない部分)の割合が大きい場合(鋼の液相線温度以上に加熱する領域を板幅に対し50%未満とした場合)は、後工程の仕上圧延において接合部(液相線温度以上に加熱されていた部分)に張力が集中し、接合部が分離する可能性がある。これに対し、例えば加熱時間をより長くし、鋼の液相線温度以上に加熱する領域を全幅に対し50%以上とした場合は、未接合部の割合が低いため、後述するように接合工程においてアップセット量を最大溶融深さの1.1〜7.0倍とすることで、例えば、7スタンドからなる仕上圧延機により板厚2mmまで圧延を施しても、接合部が分離することなく良好な連続圧延を継続できる。 As in the case where the heating time in FIG. 5 is 3 seconds, when the ratio of the unjoined portion (the portion not higher than the liquidus temperature) of the width end to the full width is large (above the liquidus temperature of the steel) When the heating area is less than 50% of the plate width), tension is concentrated on the joint (part heated to the liquidus temperature or higher) in the subsequent finishing rolling, and the joint can be separated. There is sex. On the other hand, for example, when the heating time is longer and the region heated to the temperature higher than the liquidus temperature of steel is 50% or more with respect to the entire width, the ratio of the unbonded portion is low, so that the bonding process is described later. In this case, the upset amount is 1.1 to 7.0 times the maximum melting depth, so that, for example, even if rolling is performed to a plate thickness of 2 mm by a finishing mill consisting of 7 stands, the joint portion does not separate. Good continuous rolling can be continued.
なお、本実施形態では、鋼の液相線温度以上となる領域については、電磁−熱伝導連成有限要素法解析により計算することができる。この電磁−熱伝導連成有限要素法解析は、汎用計算ソフトJMAGを使用し、対象とするシートバー、コイル、磁極芯をモデル化し、シートバーの寸法及び接合面間隙、鋼の電気抵抗、比熱、熱伝導率、密度及び比透磁率、コイル・磁極芯の寸法及びシートバーとの相対的な位置関係、並びに加熱条件(加熱時間、投入電力及び周波数)を適宜設定して行うことができる。 In the present embodiment, the region that is equal to or higher than the liquidus temperature of steel can be calculated by electromagnetic-heat conduction coupled finite element analysis. This electromagnetic-heat conduction coupled finite element method analysis uses general-purpose calculation software JMAG to model the target sheet bar, coil, and magnetic pole core, and the dimensions of the sheet bar, the gap between the joint surfaces, the electrical resistance of the steel, and the specific heat. , Thermal conductivity, density and relative permeability, coil / pole core dimensions and relative positional relationship with the sheet bar, and heating conditions (heating time, input power and frequency) can be set as appropriate.
また、本実施形態では、先行鋼片の尾端及び後行鋼片の先端の各接合面の全幅に対して50〜100%の幅範囲の温度を鋼片の液相線温度以上になるまで加熱するために、加熱条件として加熱時間を調整する例を示したが、かかる例に限定されず、投入電力、周波数等を調整する方法を採用してもよい。 Moreover, in this embodiment, until the temperature of the width range of 50 to 100% is equal to or higher than the liquidus temperature of the steel slab with respect to the full width of each joint surface at the tail end of the preceding steel slab and the tip of the subsequent steel slab. In order to heat, although the example which adjusts heating time as a heating condition was shown, it is not limited to this example, You may employ | adopt the method of adjusting input electric power, a frequency, etc.
図6は、投入電力が5200kWである場合において、全幅の50%の溶融に必要な加熱時間が誘導加熱周波数(kHz)に応じて変化する様子の一例を示すグラフである。例えば、投入電力が5200kWである場合、各誘導加熱周波数(kHz)において、図6のグラフに示す加熱時間以上の加熱時間を確保すれば、全幅に対する液相線以上の温度になる幅範囲が50〜100%になる。 FIG. 6 is a graph showing an example of a state in which the heating time required for melting 50% of the full width changes according to the induction heating frequency (kHz) when the input power is 5200 kW. For example, when the input power is 5200 kW, if a heating time equal to or greater than the heating time shown in the graph of FIG. 6 is secured at each induction heating frequency (kHz), the width range where the temperature is equal to or higher than the liquidus relative to the full width is 50. ~ 100%.
以上、本発明では、加熱工程において、先行鋼片S1の尾端及び後行鋼片S2の先端の各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱する。好ましくは、上記幅範囲は、70〜100%であり、より好ましくは、85〜100%である。 As described above, in the present invention, in the heating step, the temperature in the range of 50 to 100% of the total width of each joint surface at the tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2 is a liquidus line of the steel slab. Heat until above temperature. Preferably, the width range is 70 to 100%, more preferably 85 to 100%.
次に、接合工程の特徴について説明する。 Next, features of the joining process will be described.
ここで、図7および図8を参照する。図7は、溶融深さの定義を説明するための図であり、図8は、最大溶融深さの定義を説明するための図である。溶融深さとは、図7に示すように、各鋼片における、加熱により液相線温度以上となった範囲の圧延方向長さのことであり、最大溶融深さとは、図8に示すように、接合面内全体(全幅・全厚)での溶融深さの最大値のことである。最大溶融深さは、加熱条件により、板厚中心が最大になる場合もあるし、上面あるいは下面の方が最大になる場合もある。 Reference is now made to FIGS. FIG. 7 is a diagram for explaining the definition of the melting depth, and FIG. 8 is a diagram for explaining the definition of the maximum melting depth. As shown in FIG. 7, the melting depth is the length in the rolling direction of each steel slab in the range of the liquidus temperature or higher due to heating, and the maximum melting depth is as shown in FIG. It is the maximum value of the melting depth in the entire joining surface (full width and full thickness). Depending on the heating conditions, the maximum melting depth may be the maximum at the center of the plate thickness, or the upper surface or the lower surface may be the maximum.
また、このアップセット量とは、接合工程における圧延方向の鋼片の押し込み量(接合する先行鋼片の尾端の接合面と後行鋼片の先端の接合面との距離がゼロになった状態(2つの面がぴったり合わさった状態)からの押し込み量)のことである。アップセット量は、先行鋼片と後行鋼片との相対的な距離によるので、先行鋼片と後行鋼片とのそれぞれの押し込み量の和とする。そのアップセット量の範囲内の値となる条件であれば、先行鋼片と後行鋼片のそれぞれの押し込み量は任意に決めることが出来る。例えば、先行鋼片は押し込まず(動かさず)に、後行鋼片のみを所望のアップセット量で押し込んでもよい。 In addition, the amount of upset is the pushing amount of the steel slab in the rolling direction in the joining process (the distance between the joining surface at the tail end of the preceding steel slab to be joined and the joining surface at the tip of the succeeding steel slab has become zero. It is the amount of pushing from the state (the state in which the two surfaces are in perfect alignment). The amount of upset depends on the relative distance between the preceding steel slab and the succeeding steel slab, and is therefore the sum of the pushing amounts of the preceding steel slab and the subsequent steel slab. If it is the conditions which become the value within the range of the upset amount, each pushing amount of a preceding steel slab and a succeeding steel slab can be determined arbitrarily. For example, only the subsequent billet may be pushed in a desired upset amount without pushing (moving) the preceding billet.
このアップセット量と、先行鋼片S1の最大溶融深さと後行鋼片S2の最大溶融深さとの和との関係について詳細に説明する。図9は、図5に示した条件と同様の条件で加熱した場合の加熱完了時の溶融深さの分布を示した図である。 The relationship between this upset amount and the sum of the maximum melting depth of the preceding steel slab S1 and the maximum melting depth of the succeeding steel slab S2 will be described in detail. FIG. 9 is a diagram showing the distribution of the melting depth at the completion of heating when heating is performed under the same conditions as those shown in FIG.
図9に示すように、加熱時間の増加に伴い、溶融深さは大きくなり、加熱時間を6秒としたときの最大溶融深さは12.4mmである。そして、図10では、このように加熱時間を6秒として加熱した後に、アップセット量を12.4mm(最大溶融深さの和の1.0倍)として鋼片を接合した場合、及びアップセット量を13.7mm(最大溶融深さの和の約1.1倍)として鋼片を接合した場合の板幅方向の各位置での接合部強度を示す。本発明者らは、図10に示すように、アップセット量の増加に伴い、接合部強度が大きく増加する点に着目し、鋭意検討した。 As shown in FIG. 9, as the heating time increases, the melting depth increases, and the maximum melting depth when the heating time is 6 seconds is 12.4 mm. In FIG. 10, after heating with a heating time of 6 seconds in this way, the steel piece was joined with an upset amount of 12.4 mm (1.0 times the sum of the maximum melting depth), and upset. The joint strength at each position in the plate width direction when steel pieces are joined with an amount of 13.7 mm (about 1.1 times the sum of the maximum melting depths) is shown. As shown in FIG. 10, the present inventors have intensively studied paying attention to the fact that the joint strength greatly increases as the amount of upset increases.
図11では、板幅1200mmの接合部において、板幅中央から幅方向350mmの箇所における接合部熱間引張強度(加熱温度:1000℃)を示す。図11から明らかなように、アップセット量を最大溶融深さの和の1.1倍以上にすることにより、接合部強度が急激に向上し、母材の強度の80%以上の接合部強度が得られることを、本発明者らは知見した。一方、アップセット量が最大溶融深さの和の7.0倍を超えると、その強度は飽和し、かえって座屈が発生しやすくなることも知見した。 FIG. 11 shows the hot tensile strength (heating temperature: 1000 ° C.) of the joint at a location 350 mm from the center of the plate width in the joint having a plate width of 1200 mm. As is apparent from FIG. 11, by increasing the amount of upset to 1.1 times or more of the sum of the maximum melting depths, the joint strength is rapidly improved, and the joint strength is 80% or more of the strength of the base material. The present inventors have found that can be obtained. On the other hand, it has also been found that when the amount of upset exceeds 7.0 times the sum of the maximum melt depth, the strength is saturated and buckling is more likely to occur.
よって、本発明では、接合工程において、アップセット量を、先行鋼片S1の最大溶融深さと後行鋼片S2の最大溶融深さとの和の1.1〜7.0倍とする。好ましくは、1.3〜7.0倍である。 Therefore, in the present invention, in the joining step, the amount of upset is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab S1 and the maximum melting depth of the succeeding steel slab S2. Preferably, it is 1.3 to 7.0 times.
アップセット量は、本実施形態では、主に上述したように、先行鋼片S1の尾端と後行鋼片S2の先端それぞれで最大溶融深さに対して1.1〜7.0倍とし、そのアップセット量で先行鋼片の尾端と後行鋼片の先端をそれぞれ移動させる場合について説明した。しかし、アップセットは先行鋼片と後行鋼片の相対的な距離によるので、先行鋼片S1の最大溶融深さと後行鋼片S2の最大溶融深さの和の1.1〜7.0倍のアップセット量であれば、例えば、先行鋼片S1を固定させたままで後行鋼片S2のみを移動させても良い。 In this embodiment, the upset amount is 1.1 to 7.0 times the maximum melting depth at the tail end of the preceding steel slab S1 and the tip of the succeeding steel slab S2 as described above mainly. The case where the tail end of the preceding steel slab and the tip of the succeeding steel slab are respectively moved by the upset amount has been described. However, since the upset depends on the relative distance between the preceding steel slab and the succeeding steel slab, 1.1 to 7.0 of the sum of the maximum melting depth of the preceding steel slab S1 and the maximum melting depth of the succeeding steel slab S2. If it is a double upset amount, for example, only the subsequent steel piece S2 may be moved while the preceding steel piece S1 is fixed.
なお、本実施形態では、接合工程における押圧力については特に限定されない。 In the present embodiment, the pressing force in the joining process is not particularly limited.
以上説明したように、本発明では、加熱工程で先行鋼片及び後行鋼片の各接合面における全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱し、接合工程におけるアップセット量を、前記先行鋼片の最大溶融深さと前記後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍とすることで、幅端部の加熱にのみ用いる装置を必要とせず、簡便に、後工程の仕上圧延にて接合部が破断することを防止できる。 As described above, in the present invention, in the heating process, the temperature in the range of 50 to 100% with respect to the entire width of each joining surface of the preceding steel slab and the subsequent steel slab becomes equal to or higher than the liquidus temperature of the steel slab. And the amount of upset in the joining process is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab and the maximum melting depth of the succeeding steel slab, An apparatus used only for heating the end portion is not required, and it is possible to easily prevent the joint portion from being broken by finish rolling in the subsequent process.
また、本発明の連続熱間圧延方法では、上述した連続熱間圧延における接合方法を用いれば、他の条件については、従来公知の条件を採用し、鋼種や鋼の形状に応じて適宜設定することができる。さらに、本発明の熱延鋼板の製造方法は、この連続熱間圧延方法を用いれば、他の条件については、従来公知の条件を採用することができる。 Moreover, in the continuous hot rolling method of this invention, if the joining method in the continuous hot rolling mentioned above is used, about other conditions, a conventionally well-known condition is employ | adopted and it sets suitably according to a steel type and the shape of steel. be able to. Furthermore, the manufacturing method of the hot-rolled steel sheet of the present invention can adopt conventionally known conditions for other conditions if this continuous hot rolling method is used.
なお、上記説明では、1.7%Si鋼のみを例に挙げたが、鋼組成として、Cの場合最大1.2質量%、Siの場合最大4.0質量%、Mnの場合最大6.2質量%、Crの場合最大35.0質量%、Tiの場合最大0.5質量%、Alの場合最大0.5質量%、Pの場合最大0.5質量%、Sの場合最大0.4質量%、Niの場合最大25.0質量%、Moの場合最大1.0質量%、Vの場合最大0.5質量%含有していても、同様の条件で、接合部が分離することなく仕上げ板厚2mmまで良好な連続圧延を継続可能である。 In the above description, only 1.7% Si steel is taken as an example, but the steel composition is 1.2 mass% at the maximum in the case of C, 4.0 mass% at the maximum in Si, and 6. in the case of Mn. 2% by mass, Cr: 35.0% by mass, Ti: 0.5% by mass, Al: 0.5% by mass, P: 0.5% by mass, S: 0. 4 mass%, Ni 25.0 mass% maximum, Mo Mo maximum 1.0 mass%, V 0.5 mass% maximum Good continuous rolling can be continued up to a finished sheet thickness of 2 mm.
以下、実施例に基づき、本発明について説明する。 Hereinafter, the present invention will be described based on examples.
先行鋼片、後行鋼片としてそれぞれ幅1200mm、厚み30mmになるシートバーを図1に示した連続熱間圧延ラインに供した。 Sheet bars each having a width of 1200 mm and a thickness of 30 mm as the preceding steel piece and the subsequent steel piece were subjected to the continuous hot rolling line shown in FIG.
表1に示すNo.1〜44では、先行鋼片および後行鋼片としては、共に質量%で、Si:1.7%、C:0.12%、Mn:2.0%、Cr:0.1%を有し、残部がFeおよび不可避的不純物からなる鋼組成を有するものを用いた。 No. shown in Table 1. 1-44, both the preceding steel slab and the succeeding steel slab have mass%, Si: 1.7%, C: 0.12%, Mn: 2.0%, Cr: 0.1%. And what has the steel composition which remainder consists of Fe and an unavoidable impurity was used.
また、表2に示すNo.45〜55では、先行鋼片は上記No.1〜44と同様にして、後行鋼片に異なる成分を持つ鋼を用いた。後行鋼片としては、質量%で、Si:0.5%、C:0.12%、Mn:2.0%、Cr:0.1%を有し、残部がFeおよび不可避的不純物からなる鋼組成を有するものを用いた。 No. 2 shown in Table 2 In Nos. 45-55, the preceding steel slab is No. 1 above. In the same manner as in 1-44, steel having different components in the succeeding steel piece was used. The trailing steel slab has, in mass%, Si: 0.5%, C: 0.12%, Mn: 2.0%, Cr: 0.1%, and the balance from Fe and inevitable impurities A steel having the following steel composition was used.
そして、接合装置3内で先行シートバーと後行シートバーの各接合面を5mmの間隙を隔てて対向配置した後、誘導加熱装置10(幅方向の寸法1300mm、長手方向の寸法240mm)によって各接合面を加熱した。このときの加熱条件は投入電力が1000kW、周波数1000Hzである。
Then, after the joining surfaces of the preceding sheet bar and the succeeding sheet bar are opposed to each other with a gap of 5 mm in the joining
加熱時間、アップセット量について数条件実施した結果を表1、表2に示す。鋼の液相線温度以上となる領域については、電磁−熱伝導連成有限要素法解析により計算した結果を表1に示す。 Tables 1 and 2 show the results of several conditions for the heating time and the amount of upset. Table 1 shows the results calculated by the electromagnetic-heat conduction coupled finite element method analysis for the region where the temperature is higher than the liquidus temperature of steel.
表1に示すNo.1〜44では、最大溶融深さ、アップセット量は、先行鋼材の尾端と後行鋼材の先端とで同じ値であり、片側の値を示した。 No. shown in Table 1. In 1-44, the maximum melting depth and the amount of upset were the same values at the tail end of the preceding steel material and the tip end of the succeeding steel material, indicating values on one side.
表2に示すNo.45〜55では、最大溶融深さ、アップセット量は、先行鋼材の尾端と後行鋼材の先端とで異なる場合があり、夫々の値を示した。 No. shown in Table 2 In 45-55, the maximum melting depth and the amount of upset may differ between the tail end of the preceding steel material and the tip end of the following steel material, and each value is shown.
電磁−熱伝導連成有限要素法解析では汎用計算ソフトJMAGを使用しており、シートバー、コイル、磁極芯をモデル化している。当モデルにおいて、シートバーの寸法および接合面間隙は前述の当実施例と同等の寸法とし、物性値については、表1に示すNo.1〜44の先行鋼片および後行鋼片、表2に示すNo.45〜55の先行鋼片では、電気抵抗:125μΩ・cm、比熱:350J/kg/degC、熱伝導率:30W/m/degC、密度:7850kg/m3、比透磁率:8とした。また、表2に示すNo.45〜55の後行鋼片では、電気抵抗:110μΩ・cm、比熱:350J/kg/degC、熱伝導率:32W/m/degC、密度:7850kg/m3、比透磁率:8とした。コイル・磁極芯の寸法及びシートバーとの相対的な位置関係は、当実施例にて使用の接合機と同等としており、加熱条件(投入電力・周波数)は当実施例と同等としている。 In the electromagnetic-heat conduction coupled finite element method analysis, general-purpose calculation software JMAG is used to model a sheet bar, a coil, and a magnetic pole core. In this model, the size of the sheet bar and the gap between the joint surfaces are the same as those of the above-described embodiment, and the physical property values are No. 1 shown in Table 1. No. 1 to 44 preceding steel slab and trailing steel slab, No. 2 shown in Table 2. In the preceding steel slabs of 45 to 55, electric resistance: 125 μΩ · cm, specific heat: 350 J / kg / degC, thermal conductivity: 30 W / m / degC, density: 7850 kg / m 3 , and relative magnetic permeability: 8. No. 2 shown in Table 2 In the subsequent steel slabs of 45 to 55, electric resistance: 110 μΩ · cm, specific heat: 350 J / kg / degC, thermal conductivity: 32 W / m / degC, density: 7850 kg / m 3 , and relative magnetic permeability: 8. The dimensions of the coil and magnetic pole core and the relative positional relationship with the seat bar are the same as those of the joining machine used in this embodiment, and the heating conditions (input power and frequency) are the same as in this embodiment.
引き続き接合面同士を突き合わせて押圧シリンダ11によって押圧力3.4kg/mm2で押圧して接合を完了させた。 Subsequently, the joining surfaces were brought into contact with each other and pressed by the pressing cylinder 11 with a pressing force of 3.4 kg / mm 2 to complete the joining.
接合完了後、仕上圧延機の7スタンドミルにより板厚2mmまで圧延を施した。 After the joining was completed, rolling was performed to a plate thickness of 2 mm using a 7 stand mill of a finish rolling mill.
本発明例(No.1〜25)では、板厚2mmまでの圧延後、接合部が分離することなく良好な連続圧延を継続することができた。 In the present invention examples (Nos. 1 to 25), it was possible to continue good continuous rolling without separation of the joints after rolling up to a plate thickness of 2 mm.
一方、比較例(No.34〜43)では、加熱工程で鋼片の液相線温度以上に加熱された幅範囲の全幅にする割合が50%未満のため、上記の連続圧延中に接合部が分離した。 On the other hand, in the comparative example (Nos. 34 to 43), the ratio of making the full width of the width range heated to the temperature higher than the liquidus temperature of the steel slab in the heating process is less than 50%. Separated.
また、比較例(No.26〜34、40)では、接合工程で、アップセット量/(最大溶融深さの和)が1.1未満のため、上記の連続圧延中に接合部が分離した。 Moreover, in the comparative examples (Nos. 26 to 34, 40), in the joining process, the upset amount / (the sum of the maximum melting depths) was less than 1.1, so the joints were separated during the continuous rolling. .
また、比較例(No.44)では、接合工程で、アップセット量/(最大溶融深さの和)が7.0超のため、上記の連続圧延中に座屈が発生した。 In the comparative example (No. 44), buckling occurred during the continuous rolling because the upset amount / (the sum of the maximum melting depths) exceeded 7.0 in the joining step.
以上の結果を図12に示す。図12は、鋼の液相線温度以上に加熱する領域の全幅にする割合と、液相線温度以上となった範囲の圧延方向長さとアップセット量の比に対する、仕上げ圧延可否を示したものである。図12中、「○」「◎」「×」は下記をしめす。
○:仕上圧延機の7スタンドミルにより板厚2mmまで圧延を施して10回以上連続して接合および仕上げ圧延を行っても破断が起きなかった。
◎:○の条件を満たし、さらに、接合部が評価部の中央となるようにし、試験片の軸方向が圧延方向と位置するように、幅中央板厚中央から採取したJIS14A号の引張試験での破断伸びが通常部と比較して80%以上であったことを意味している。
(もしくは、外見上接合部に欠陥がなかったことを意味している。)
×:仕上圧延機の7スタンドミルにより板厚2mmまで圧延を施して10回以上連続して接合および仕上げ圧延を行うと1回以上破断が生じた。
The above results are shown in FIG. FIG. 12 shows whether or not finish rolling is possible with respect to the ratio of the total width of the region heated above the liquidus temperature of the steel and the ratio of the length in the rolling direction and the amount of upset in the range where the liquidus temperature is exceeded. It is. In FIG. 12, “◯”, “◎”, and “×” indicate the following.
◯: No breakage occurred even when the sheet was rolled up to a plate thickness of 2 mm by a 7 stand mill of a finishing mill and continuously joined and finish-rolled 10 times or more.
◎: JIS14A tensile test taken from the center of the width center plate thickness so that the condition of ○ is satisfied, the joint portion is at the center of the evaluation portion, and the axial direction of the test piece is positioned as the rolling direction. This means that the elongation at break was 80% or more compared to the normal part.
(Alternatively, this means that there was no defect in the joint.)
X: When the sheet was rolled to a thickness of 2 mm with a 7 stand mill of a finish rolling mill and continuously joined and finish-rolled 10 times or more, one or more breaks occurred.
図12に示すように、加熱工程で先行鋼片及び後行鋼片の各接合面における全幅にして50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱し、接合工程におけるアップセット量を、先行鋼片の最大溶融深さと後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍とすることで、後工程の仕上圧延にて接合部が破断することを防止できることが分かった。 As shown in FIG. 12, heating is performed until the temperature in the width range of 50 to 100% is equal to or higher than the liquidus temperature of the steel slab in the entire width in each joining surface of the preceding steel slab and the subsequent steel slab in the heating process, In the finish rolling of the subsequent process, the upset amount in the joining process is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab and the maximum melting depth of the subsequent steel slab. It was found that the joint can be prevented from breaking.
本発明例(No.45〜50)では、板厚2mmまでの圧延後、接合部が分離することなく良好な連続圧延を継続することができた。 In the present invention examples (Nos. 45 to 50), good rolling could be continued without separation of the joints after rolling up to a plate thickness of 2 mm.
一方、比較例(No.51、52)では、加熱工程で鋼片の液相線温度以上に加熱された全幅にする割合が先行鋼片と後行鋼片のどちらか、もしくは先行鋼片と後行鋼片の両方で50%未満のため、上記の連続圧延中に接合部が分離した。 On the other hand, in the comparative example (No. 51, 52), the ratio of making the full width heated above the liquidus temperature of the steel slab in the heating step is either the preceding steel slab or the subsequent steel slab, or the preceding steel slab. Since both the subsequent steel slabs were less than 50%, the joint part was separated during the continuous rolling.
また、比較例(No.53、54)では、接合工程で、アップセット量/(最大溶融深さの和)が1.1未満のため、上記の連続圧延中に接合部が分離した。 In Comparative Examples (Nos. 53 and 54), the upset amount / (the sum of the maximum melting depths) was less than 1.1 in the joining process, so the joints were separated during the continuous rolling.
また、比較例(No.55)では、接合工程で、アップセット量/(最大溶融深さの和)が7.0超のため、上記の連続圧延中に座屈が発生した。 Moreover, in the comparative example (No. 55), buckling occurred during the above-described continuous rolling because the amount of upset / (sum of maximum melting depth) exceeded 7.0 in the joining process.
1 コイルボックス
2 クロップシャー
3 接合装置
4 レベラー
5 ピンチロール
6 脱スケール装置
7 仕上圧延機の第1スタンド
8、9 クランプ装置
10 誘導加熱装置
11 押圧シリンダ
13 磁極芯
14 コイル
15 電源
16 ルーパ
17 台車
18 鋼片搬送用テーブルローラ
19 レール
20 目違い防止板
S1 先行鋼板
S2 後行鋼片
DESCRIPTION OF
Claims (3)
前記加熱工程で前記先行鋼片の尾端及び前記後行鋼片の先端の各接合面の全幅に対して50〜100%の幅範囲の温度が鋼片の液相線温度以上になるまで加熱し、
かつ、前記接合工程におけるアップセット量を、前記先行鋼片の最大溶融深さと前記後行鋼片の最大溶融深さとの和に対して1.1〜7.0倍とすることを特徴とする連続熱間圧延における鋼片の接合方法。 The leading edge of the preceding steel slab and the leading edge of the following steel slab are placed in contact with each other in a non-contact manner on the entry side of the finish rolling mill of the continuous hot rolling line, and the tail edge of the preceding steel slab and the following steel slab A method for joining steel slabs in continuous hot rolling, comprising: a heating step for heating the tip, and a joining step for pressing and joining the tail end of the heated preceding steel slab and the tip of the succeeding steel slab In
In the heating step, heating is performed until the temperature in the range of 50 to 100% of the total width of the joining surface at the tail end of the preceding steel slab and the tip of the subsequent steel slab becomes equal to or higher than the liquidus temperature of the steel slab. And
And the amount of upset in the joining step is 1.1 to 7.0 times the sum of the maximum melting depth of the preceding steel slab and the maximum melting depth of the succeeding steel slab. A method of joining steel slabs in continuous hot rolling.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016086857 | 2016-04-25 | ||
JP2016086857 | 2016-04-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017196660A JP2017196660A (en) | 2017-11-02 |
JP6409848B2 true JP6409848B2 (en) | 2018-10-24 |
Family
ID=60238609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016212373A Active JP6409848B2 (en) | 2016-04-25 | 2016-10-29 | Steel slab joining method, continuous hot rolling method, and hot rolled steel sheet manufacturing method in continuous hot rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6409848B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3340696B2 (en) * | 1999-03-26 | 2002-11-05 | 川崎製鉄株式会社 | Method of joining billets in continuous hot rolling |
JP4081910B2 (en) * | 1999-03-29 | 2008-04-30 | Jfeスチール株式会社 | Steel slab joining method in continuous hot rolling |
JP2014184445A (en) * | 2013-03-22 | 2014-10-02 | Jfe Steel Corp | Manufacturing method of hot rolled steel sheet |
-
2016
- 2016-10-29 JP JP2016212373A patent/JP6409848B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017196660A (en) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5691231B2 (en) | Cold rolling method | |
JP6643279B2 (en) | High-grade steel continuous hot rolling method | |
JP6409848B2 (en) | Steel slab joining method, continuous hot rolling method, and hot rolled steel sheet manufacturing method in continuous hot rolling | |
JP6443411B2 (en) | Steel slab joining method in continuous hot rolling | |
JP6421793B2 (en) | Method of joining steel slabs in continuous hot rolling, continuous hot rolling method, and manufacturing method of hot rolled steel sheet | |
JP3340696B2 (en) | Method of joining billets in continuous hot rolling | |
JP2014176879A (en) | Manufacturing method for hot rolled steel sheet | |
JP2018027556A (en) | Plate passing method in continuous hot rolling and hot-rolled steel strip manufacturing method | |
KR101990946B1 (en) | Equipment and method for endless hot strip rolling of difficult-to-joining steel | |
JP4081910B2 (en) | Steel slab joining method in continuous hot rolling | |
KR101580589B1 (en) | Method for joining sheet bars in continuous hot rolling | |
JP5817430B2 (en) | Sheet bar joining method | |
JP2905377B2 (en) | Method of joining billets in hot rolling | |
JP2014176864A (en) | Manufacturing method for hot rolled steel sheet | |
JP6036031B2 (en) | Metal plate joining apparatus and metal plate joining method | |
KR101778160B1 (en) | Method for increasing efficiency for surface modification of hot rolling material | |
JP2938689B2 (en) | Method of joining billets in hot rolling | |
JP3126875B2 (en) | Continuous hot rolling of billets | |
JP2905347B2 (en) | Method of joining billets in hot rolling | |
JP6583256B2 (en) | Clamp for joining steel slabs in continuous hot rolling | |
JP2905399B2 (en) | Method of joining billets in hot rolling | |
KR101778171B1 (en) | Endless hot rolling method of high grade steel | |
JP2014184445A (en) | Manufacturing method of hot rolled steel sheet | |
JP3629120B2 (en) | Rolling fracture prevention method for different width bonded plates | |
JP2981089B2 (en) | Method of joining billets in continuous hot rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171122 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180502 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6409848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |