JP6441946B2 - レーザシステム - Google Patents

レーザシステム Download PDF

Info

Publication number
JP6441946B2
JP6441946B2 JP2016547267A JP2016547267A JP6441946B2 JP 6441946 B2 JP6441946 B2 JP 6441946B2 JP 2016547267 A JP2016547267 A JP 2016547267A JP 2016547267 A JP2016547267 A JP 2016547267A JP 6441946 B2 JP6441946 B2 JP 6441946B2
Authority
JP
Japan
Prior art keywords
optical path
laser
prepulse
light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016547267A
Other languages
English (en)
Other versions
JPWO2016038657A1 (ja
Inventor
安藤 正彦
正彦 安藤
能史 植野
能史 植野
鈴木 徹
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2016038657A1 publication Critical patent/JPWO2016038657A1/ja
Application granted granted Critical
Publication of JP6441946B2 publication Critical patent/JP6441946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Lasers (AREA)

Description

本開示は、パルスレーザ光を極端紫外光チャンバに伝送する伝送システム及びレーザシステムに関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm〜45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系(reduced projection reflective optics)とを組み合わせた露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
米国特許出願公開第2013/0327963号 米国特許第8681427号 米国特許出願公開第2014/0077104号 米国特許出願公開第2011/0079736号 特表2010−514214号 特開2006−303461号
概要
本開示の一例の伝送システムは、極端紫外光チャンバに供給されるターゲットに照射される第1プリパルスレーザ光を出力する第1プリパルスレーザ装置と、前記第1プリパルスレーザ光と異なるタイミングで前記ターゲットに照射される第2プリパルスレーザ光を出力する第2プリパルスレーザ装置とを含むレーザ装置から出力されたパルスレーザ光を前記極端紫外光チャンバに伝送し、前記第1プリパルスレーザ光の光路と前記第2プリパルスレーザ光の光路とを略一致させる光路調節装置と、前記光路調節装置によって略一致させられた前記第1プリパルスレーザ光と前記第2プリパルスレーザ光の光路を、前記第1プリパルスレーザ光の光路と、前記第2プリパルスレーザ光の光路とに分離する、光路分離装置と、前記光路分離装置により分離された前記第1プリパルスレーザ光の光路上に配置され、前記第1プリパルスレーザ光のビームパラメータを調節する、第1ビーム調節装置と、前記光路分離装置により分離された前記第2プリパルスレーザ光の光路上に配置され、前記第2プリパルスレーザ光のビームパラメータを調節する、第2ビーム調節装置と、を含んでもよい。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成装置の構成を概略的に示している。 図2は、関連技術におけるEUV光生成システムの一部断面図を示している。 図3Aは、第1のプリパルスレーザ光が照射されるときのターゲットの様子を概略的に示している。 図3Bは、第2のプリパルスレーザ光が照射されるときのターゲットの様子を概略的に示している。 図3Cは、メインパルスレーザ光が照射されるときのターゲットの様子を概略的に示している。 図3Dは、メインパルスレーザ光が照射された後のターゲットの様子を概略的に示している。 図4は、実施形態1に係るEUV光生成システムの構成例を示している。 図5は、実施形態2に係るEUV光生成システムの構成例を示している。 図6は、実施形態3に係るEUV光生成システムの構成例を示している。 図7Aは、第1ビーム調節装置の構成例を示している。 図7Bは、ある状態の第1ビーム調節装置を示している。 図7Cは、他の状態の第1ビーム調節装置を示している。 図7Dは、他の状態の第1ビーム調節装置を示している。 図8は、第1ビーム調節装置の他の構成例を示している。 図9Aは、ビームモニタの構成例を示している。 図9Bは、ビームモニタの検出原理を説明するための図を示している。 図9Cは、ビームモニタの検出原理を説明するための図を示している。 図10は、ビームモニタの他の構成例を示している。
実施形態
内容
1.概要
2.EUV光生成システムの全体説明
構成
動作
3.レーザ光進行方向制御部を備えたEUV光生成装置の課題
構成
動作
ターゲット状態
課題
4.実施形態1
構成
動作
効果
5.実施形態2
実施形態1における課題
構成
効果
6.実施形態3
構成
動作
効果
7.ビーム調節装置
構成例1
構成例2
8.ビームモニタ
構成例1
構成例2
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示しているものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
本開示は、レーザ光進行方向制御部を備えたEUV光生成システムに関する。露光装置用のLPP方式のEUV光生成システムは、ターゲットがチャンバ内の所定位置に到達した時に、集光したプリパルスレーザ光及びメインパルスレーザ光を、ターゲットに順に照射することによってプラズマ化し、EUV光を生成してもよい。
プリパルスレーザ装置からチャンバまでの距離は、数十mであり得る。また、2種類のプリパルスレーザ装置により、プリパルスレーザ光を2段階照射してもよい。LPP方式のEUV光生成システムは、2種類のプリパルスレーザ光を、共通の伝送経路を介してチャンバまで伝送してもよい。これにより、場積を低減し、部品点数を削減し得る。
照射条件調整のために、伝送経路の手前においてプリパルスレーザ光のビームパラメータを変更すると、長距離の伝送経路において、ケラレや集光が生じ得る。さらに長距離の伝送のため、2種類のプリパルスレーザ光のビームパラメータは、近い値とすることが要求され得る。結果として、2種類のプリパルスレーザ光のビームパラメータの調整代が制限され、最適な照射条件の実現が困難となり得る。
本開示における一例は、レーザシステムから出力されたレーザ光をEUVチャンバに伝送するシステムであってもよい。レーザシステムは、第1プリパルスレーザ光を出力する第1プリパルスレーザ装置と、第2プリパルスレーザ光を出力する第2プリパルスレーザ装置と、を含んでもよい。光路調節装置は、第1プリパルスレーザ光と第2プリパルスレーザ光の光路を略一致させてもよい。
光路分離装置は、光路調節装置によって略一致させられた第1プリパルスレーザ光と第2プリパルスレーザ光の光路を、第1プリパルスレーザ光の光路と第2プリパルスレーザ光の光路とに分離してもよい。第1ビームパラメータ調節装置は、分離された第1プリパルスレーザ光の光路上に配置され、第1プリパルスレーザ光のビームパラメータを調節してもよい。第2ビームパラメータ調節装置は、分離された第2プリパルスレーザ光の光路上に配置され、第2プリパルスレーザ光のビームパラメータを調節してもよい。
上記構成により、長距離伝送しても第1プリパルスレーザ光と第2プリパルスレーザ光のビームパラメータを独立に調整し得るので、容易に照射条件を調整し得る。
2.EUV光生成システムの全体説明
<構成>
図1は、例示的なLPP方式のEUV光生成装置の構成を概略的に示している。EUV光生成装置1は、少なくとも1つのレーザシステム3と共に用いてもよい(EUV光生成装置1及びレーザシステム3を含むシステムを、以下、EUV光生成システム11と称する)。図1に示し、かつ以下に詳細に説明するように、EUV光生成装置1は、チャンバ2及びターゲット供給部26(例えばドロップレット発生器)を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えばチャンバ2の壁に取り付けられてもよい。ターゲット供給装置から供給されるターゲットの材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又はそれらのうちのいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
チャンバ2の壁には、少なくとも1つの貫通孔が設けられてもよい。その貫通孔をレーザシステム3から出力されたパルスメインパルスレーザ光M2が通過してもよい。チャンバ2には、レーザシステム3から出力されたパルスメインパルスレーザ光M2が透過する少なくとも1つのウインドウ21が設けられてもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1の焦点、及び第2の焦点を有する。EUV集光ミラー23の表面には例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ発生位置(プラズマ生成領域25)又はその近傍に位置し、その第2の焦点が露光装置の仕様によって規定される所望の集光位置(中間焦点(IF)292)に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には、パルスメインパルスレーザ光M3が通過することができる貫通孔24が設けられてもよい。
EUV光生成装置1は、EUV光生成制御部5を含んでもよい。また、EUV光生成装置1は、ターゲットセンサ4を含んでもよい。ターゲットセンサ4は、ターゲットの存在、軌道、位置の少なくとも1つを検出してもよい。ターゲットセンサ4は、撮像機能を有していてもよい。
更に、EUV光生成装置1は、チャンバ2内部と露光装置6内部とを連通する接続部29を含んでもよい。接続部29内部には、アパーチャが形成された壁291を設けてもよい。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点位置に位置するように配置してもよい。
更に、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するターゲット回収部28などを含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を制御するために、レーザ光の進行方向を規定する光学素子と、この光学素子の位置または姿勢を調整するためのアクチュエータとを備えてもよい。
<動作>
図1を参照すると、レーザシステム3から出力されたパルスメインパルスレーザ光M1は、レーザ光進行方向制御部34を経てパルスメインパルスレーザ光M2としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスメインパルスレーザ光M2は、少なくとも1つのレーザ光経路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスメインパルスレーザ光M3として少なくとも1つのターゲット27に照射されてもよい。
ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力してもよい。ターゲット27には、パルスメインパルスレーザ光M3に含まれる少なくとも1つのパルスが照射される。レーザ光が照射されたターゲット27はプラズマ化し、そのプラズマからEUV光251が生成される。EUV光251は、EUV集光ミラー23によって反射されるとともに集光されてもよい。EUV集光ミラー23に反射されたEUV光252は、中間焦点292を通って露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスメインパルスレーザ光M3に含まれる複数のパルスが照射されてもよい。
EUV光生成制御部5は、EUV光生成システム11全体の制御を統括してもよい。EUV光生成制御部5はターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理してもよい。EUV光生成制御部5は、例えば、ターゲット27を出力するタイミングの制御及びターゲット27の出力方向の制御の内の少なくとも1つを行ってもよい。EUV光生成制御部5は、例えば、レーザシステム3のレーザ発振タイミングの制御、パルスメインパルスレーザ光M2の進行方向の制御、及びパルスメインパルスレーザ光M3の集光位置の制御の内の少なくとも1つを行ってもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御を追加してもよい。
3.レーザ光進行方向制御部を備えたEUV光生成装置の課題
<構成>
図2は、関連技術におけるEUV光生成システムの一部断面図を示している。チャンバ2は、クリーンルームフロアに配置され、レーザシステム3は、サブファブフロアに配置されてもよい。サブファブフロアはクリーンルームフロアの階下に位置してもよい。
レーザシステム3は、第1プリパルスレーザ装置35と、第2プリパルスレーザ装置36と、メインパルスレーザ装置30とを備えてもよい。第1プリパルスレーザ装置35は、ピコ秒オーダのパルス幅のプリパルスレーザ光P1を出力するNd:YVO4レーザ装置等であってもよい。
第2プリパルスレーザ装置36は、ナノ秒オーダのパルス幅のプリパルスレーザ光P2を出力するNd:YAGレーザ装置等であってもよい。プリパルスレーザ光P2は、プリパルスレーザ光P1と同波長のレーザ光であってもよい。
ピコ秒オーダのパルス幅は、100fs以上1ns未満であってもよい。パルス幅上限は、分散したターゲットが半球ドーム的な低密度分散をするパルス幅であればよい。100fs−50psのパルス幅のレーザ装置は、モードロックレーザをオシレータとして含む構成を有してよい。50ps以上のパルス幅のレーザ装置は、半導体レーザをオシレータとして含む構成を有してよい。
ピコ秒オーダのパルス幅のプリパルスレーザ光を出力するレーザ装置に代えて、フェムト秒オーダのパルス幅のプリパルスレーザ光を出力するレーザ装置を使用してもよい。フェムト秒オーダのパルス幅は、1fs以上100fs未満であってもよい。フェムト秒オーダのレーザ装置として、再生増幅モードロックレーザを使用してよい。例えば、カー・レンズ・モードロック方式を利用したレーザ装置が使用されてもよい。
ナノ秒オーダのパルス幅は、1ns以上であってもよい。ナノ秒オーダのパルス幅の上限は、ターゲットの分散が不十分となる光強度、又はターゲットの一部が電離しない光強度として決定されてよい。さらに、ターゲットの膨張拡散による時間的制限によって決定されてもよい。
数ns〜数十nsのパルス幅のレーザ装置は、Qスイッチ発振を利用した構成を有してもよい。それ以上のパルス幅のレーザ装置は、MOPA構成を有してもよい。例えば、レーザ装置は、オシレータとして半導体レーザやCWレーザ等を用い、光路上の光スイッチでレーザ光を時間的に切り出して所望のパルス幅を実現する構成を有してもよい。
メインパルスレーザ装置30は、メインパルスレーザ光Mを出力するCOレーザ装置であってもよい。メインパルスレーザ光Mは、プリパルスレーザ光P1及びプリパルスレーザ光P2と異なる波長のレーザ光であってもよい。
レーザシステム3からチャンバ2内に供給されるレーザ光の進行方向を制御するためのレーザ光進行方向制御部34は、クリーンルームフロアとサブファブフロアとにまたがって配置されてもよい。
レーザシステム3は、図示しない固定装置により筐体310内部に固定されていてもよい。筐体310はエアサスペンション320によってサブファブフロアの床上に設置されていてもよい。エアサスペンション320を他の振動低減装置に置き換えてもよい。
サブファブフロアにおいて、レーザ光進行方向制御部34は、λ/2波長板311、λ/2波長板312、第1ビーム調節装置71、第2ビーム調節装置72、高反射ミラー313、光路調節装置としての偏光ビームスプリッタ314、高反射ミラー51A、高反射ミラー52Aを含んでもよい。
λ/2波長板311は、第1プリパルスレーザ装置35が出力するプリパルスレーザ光P1の光路上に配置されてもよい。λ/2波長板312は、第2プリパルスレーザ装置36が出力するプリパルスレーザ光P2の光路上に配置されてもよい。
λ/2波長板311及びλ/2波長板312は、プリパルスレーザ光P1及びプリパルスレーザ光P2の偏光状態が異なる偏光状態となるよう構成されてよい。例えば、後述する偏光ビームスプリッタ314の入射面に対して、プリパルスレーザ光P1がS偏光、プリパルスレーザ光P2がP偏光で入射するよう構成されてもよい。
第1ビーム調節装置71は、第1プリパルスレーザ装置35が出力するプリパルスレーザ光P1の光路上に配置されてもよい。第1ビーム調節装置71はプリパルスレーザ光P1のビームパラメータを調節するよう構成されてもよい。
第2ビーム調節装置72は、第2プリパルスレーザ装置36が出力するプリパルスレーザ光P2の光路上に配置されてもよい。第2ビーム調節装置72はプリパルスレーザ光P2のビームパラメータを調節するよう構成されてもよい。
第1ビーム調節装置71及び第2ビーム調節装置72は、それぞれ、複数のミラー又は複数のレンズを含んでもよい。第1ビーム調節装置71及び第2ビーム調節装置72は、少なくとも1つのミラーと少なくとも1つのレンズとの組合せを含んでもよい。
第1ビーム調節装置71及び第2ビーム調節装置72が、それぞれ調節するビームパラメータは、例えば、ビーム位置、ビーム形状、ビーム断面積、ダイバージェンス、波面、ビーム進行方向の少なくとも一部を含んでもよい。
高反射ミラー313は、第1ビーム調節装置71から出力されたプリパルスレーザ光P1を、偏光ビームスプリッタ314に向けて反射してもよい。偏光ビームスプリッタ314は、第1ビーム調節装置71及び第2ビーム調節装置72からそれぞれ出力されたプリパルスレーザ光P1及びP2の光路を、略一致させるよう配置されてもよい。偏光ビームスプリッタ314は、例えば、P偏光で入射する光を透過し、S偏光で入射する光を反射するように構成されてもよい。
高反射ミラー51Aは、偏光ビームスプリッタ314からのプリパルスレーザ光P1及びP2の光路上に配置されてよい。高反射ミラー51Aは、プリパルスレーザ光P1及びP2を、光路管510に向けて反射してもよい。
高反射ミラー52Aは、メインパルスレーザ装置30が出力するメインパルスレーザ光Mの光路上に配置されてよい。高反射ミラー52Aは、メインパルスレーザ光Mを光路管520に向けて反射してもよい。
レーザ光進行方向制御部34は、サブファブフロアにおいて高反射ミラー51Aに反射されたプリパルスレーザ光P1及びP2を、クリーンルームフロアに導いてもよい。レーザ光進行方向制御部34は、サブファブフロアにおいて高反射ミラー52Aに反射されたメインパルスレーザ光Mを、クリーンルームフロアに導いてもよい。
サブファブフロアとクリーンルームフロアとにまたがる領域において、レーザ光進行方向制御部34は、中空の光路管510及び520を含んでもよい。光路管510は、プリパルスレーザ光P1及びP2を、サブファブフロアからクリーンルームフロアに伝送してもよい。光路管520は、メインパルスレーザ光Mを、サブファブフロアからクリーンルームフロアに伝送してもよい。
光路管510及び520内は真空でもよく、光路管510及び520内には乾燥空気又は不活性ガス等が導入されてもよい。光路管510及び520内に乾燥空気又は不活性ガス等が導入される場合、それらの気体は真空に近い低圧であってもよい。
光路管510内に、複数の高反射ミラー51B〜51Dが配置されてもよい。高反射ミラー51A〜51Dは、レーザシステム3からのプリパルスレーザ光P1及びP2を、サブファブフロアからクリーンルームフロアまで導く伝送経路を構成し得る。複数の高反射ミラー51B〜51Dは、それぞれ、プリパルスレーザ光P1及びP2を反射してもよい。
光路管520内に、複数の高反射ミラー52B〜52Dが配置されてもよい。複数の高反射ミラー52B〜52Dは、レーザシステム3からのメインパルスレーザ光Mをチャンバ2まで導く伝送経路を構成し得る。複数の高反射ミラー52B〜52Dは、それぞれ、メインパルスレーザ光Mを反射してもよい。
クリーンルームフロアにおいて、チャンバ2は、チャンバ基準部材10上に固定されてもよい。チャンバ基準部材10は、設置機構9によってクリーンルームフロアの床上に固定されてもよい。チャンバ基準部材10は、レーザ光進行方向制御部34の一部を構成する光学素子群を収容してもよい。
クリーンルームフロアにおいて、レーザ光進行方向制御部34は、ビームコンバイナ62、ビームモニタ66、コントローラ58、高反射ミラー61及び63、を含んでもよい。ビームコンバイナ62、ビームモニタ66、高反射ミラー61及び63は、チャンバ基準部材10内に配置されてもよい。
ビームコンバイナ62は、プリパルスレーザ光P1及びP2の光路と、メインパルスレーザ光Mの光路とを、略一致させるよう配置されてもよい。例えば、ビームコンバイナ62は、プリパルスレーザ光P1及びP2の波長の光を高反射し、メインパルスレーザ光Mの波長の光を高透過する、ダイクロイックミラーであってもよい。
高反射ミラー61は、高反射ミラー51Dに反射されたプリパルスレーザ光P1及びP2を、ビームモニタ66に向けて反射してもよい。ビームコンバイナ62は、高反射ミラー61で反射されたプリパルスレーザ光P1及びP2を、高い反射率で高反射ミラー63に向けて反射するとともに、高反射ミラー61で反射されたプリパルスレーザ光P1及びP2の一部を、サンプル光として、ビームモニタ66に透過させてもよい。ビームコンバイナ62は、高反射ミラー52Dで反射されたメインパルスレーザ光Mを、高反射ミラー63に向けて透過させてもよい。
ビームモニタ66は、ビームコンバイナ62を透過した僅かな光量のプリパルスレーザ光P1及びP2のビームパラメータを計測するよう構成されてもよい。ビームモニタ66は、サンプル光が入射する受光面を有してもよい。ビームモニタ66は、受光面におけるサンプル光のビーム幅及び波面に関するパラメータを、算出するための検出値をコントローラ58へ出力するよう構成されてもよい。波面に関するパラメータは、上述のように、ビームダイバージェンス等であってもよい。
コントローラ58は、第1ビーム調節装置71、第2ビーム調節装置72、ビームモニタ66、及びEUV光生成制御部5に接続されてもよい。コントローラ58は、ビームモニタ66から出力される検出値に基づいて、サンプル光のビーム幅及び波面に関するパラメータ値を算出してもよい。
コントローラ58は、上記パラメータ値を利用して、予め定めた範囲内のビーム幅及び波面を有するサンプル光がビームモニタ66の受光面に入射するように、第1ビーム調節装置71及び第2ビーム調節装置72をフィードバック制御してもよい。
高反射ミラー63は、ビームコンバイナ62からのプリパルスレーザ光P1及びP2並びにメインパルスレーザ光Mを、平面ミラー64に向けて反射してもよい。プリパルスレーザ光P1及びP2並びにメインパルスレーザ光Mは、平面ミラー64及びレーザ光集光ミラー65において高い反射率で反射されて、プラズマ生成領域25に供給されるターゲットに集光されてもよい。ターゲット27は、プリパルスレーザ光P1及びP2並びにメインパルスレーザ光Mに照射されることによってプラズマ化し、当該プラズマからEUV光を含む放射光が放射され得る。
<動作>
レーザシステム3は、プリパルスレーザ光P1、プリパルスレーザ光P2、メインパルスレーザ光Mの順に、各パルスレーザ光を出力してもよい。プリパルスレーザ光P1及びP2の光路は、偏光ビームスプリッタ314にて略一致させられてよい。プリパルスレーザ光P1の光路は、λ/2波長板311及び第1ビーム調節装置71を経て、偏光ビームスプリッタ314に至ってもよい。プリパルスレーザ光P2の光路は、λ/2波長板312及び第2ビーム調節装置72を経て、偏光ビームスプリッタ314に至ってもよい。
ビームコンバイナ62に導かれたプリパルスレーザ光P1及びP2の一部は、ビームコンバイナ62を透過してビームモニタ66に入射してもよい。ビームコンバイナ62にて反射されたプリパルスレーザ光P1及びP2は、チャンバ2に導入されてもよい。一方、メインパルスレーザ光Mは、ビームコンバイナ62を透過してチャンバ2に導かれてもよい。
ビームモニタ66は、プリパルスレーザ光P1及びP2のビームパラメータを計測してもよい。ビームパラメータの計測値はコントローラ58に入力され、コントローラ58は、計測されたビームパラメータが所望の値となるよう、第1ビーム調節装置71及び第2ビーム調節装置72を制御してもよい。
チャンバ2に導かれたプリパルスレーザ光P1に照射されることでターゲット27は分散され、分散されたターゲット27はプリパルスレーザ光P2の照射によってさらに細かな粒径で拡散されたターゲット27となり得る。その後、メインパルスレーザ光Mが拡散されたターゲット27に照射されてプラズマが生成され、プラズマからEUV光が放射し得る。
<ターゲット状態>
図3Aは、プリパルスレーザ光P1が照射されるときのターゲットの様子を概略的に示している。破線270は、ターゲット27の軌道及びその延長線を示している。プリパルスレーザ光P1は、ターゲット27の径と略同じか、ターゲット27の径より少し大きい集光径D1を有してもよい。例えば、プリパルスレーザ光P1の集光径D1は、20μm〜100μmであってもよい。
図3Bは、プリパルスレーザ光P2が照射されるときのターゲットの様子を概略的に示している。液滴状のターゲット27にプリパルスレーザ光P1が照射されると、液滴状のターゲット27が複数の微粒子状に破壊されて拡散することにより、2次ターゲット271が生成され得る。
図3Bにおけるドットの粗密は、ターゲット物質の分布密度に対応し得る。図3Bに示されるように、プリパルスレーザ光P1が照射されて生成された2次ターゲット271は、円盤部273と、ドーム部272とを有し得る。
円盤部273は、プリパルスレーザ光P1の光路の下流側に拡散し、ターゲット物質の密度が比較的高くなり得る。ドーム部272は、プリパルスレーザ光P1の光路の上流側に拡散し、ターゲット物質の密度が比較的低くなり得る。ドーム部272の内側には、さらにターゲット物質の密度が低い部分274が生成され得る。
図3Bに示されるように、この拡散した2次ターゲット271に、プリパルスレーザ光P2が照射されてもよい。プリパルスレーザ光P2は、拡散した2次ターゲット271の径とほぼ同じか、それより少し大きい集光径D2を有してもよい。集光径D2は、例えば、300μm〜400μmでもよい。集光径D2は焦点におけるスポット径でなくともよい。つまり、プリパルスレーザ光P2は、デフォーカスで照射されてもよい。
図3Cは、メインパルスレーザ光Mが照射されるときのターゲットの様子を概略的に示している。図3Bに示された2次ターゲット271にプリパルスレーザ光P2が照射されると、蒸気又はプリプラズマ276を少なくとも含む3次ターゲット275が生成され得る。
図3Cに示されるように、蒸気又はプリプラズマ276を少なくとも含む3次ターゲット275に、メインパルスレーザ光Mが照射されてもよい。メインパルスレーザ光Mは、3次ターゲット275の分散径とほぼ同じか、それより少し大きい集光径D3を有していてもよい。集光径D3は、例えば、300μm〜400μmでもよい。
図3Dは、メインパルスレーザ光Mが照射された後のターゲットの様子を概略的に示している。図3Cに示された3次ターゲット275にメインパルスレーザ光Mが照射されると、3次ターゲット275はプラズマ化し、このプラズマから、EUV光が放射し得る。
<課題>
上記構成のように、同一波長の2つのプリパルスレーザ光P1及びP2のビームパラメータを、光路を略一致させる前に調整してもよい。しかし、プリパルスレーザ光P1及びP2の伝送距離が長い場合、例えば、光路を略一致させる前にダイバージェンスを大きく調整しすぎると、伝送中のビーム径が光路管510の直径より大きくなり、ケラレが発生し、プリパルスレーザ光P1及びP2の光量が低下して伝送され得る。
つまり、伝送距離が長くなるほどビームパラメータの調整代が小さくなり得る。特に、ビームパラメータの内、ダイバージェンスやビーム進行方向の調整代は、同一光路で伝送するという制約を受けて、非常に小さくなり得る。さらに、伝送距離が長くなるほど、プリパルスレーザ光P1のビームパラメータとプリパルスレーザ光P2のビームパラメータとを近い値とすることが必要となり、最適なレーザ光照射条件を実現する妨げとなり得る。
4.実施形態1
<構成>
図4は、本実施形態に係るEUV光生成システム11の構成例を示している。以下において、図2に示している関連技術との相違点を主に説明する。レーザ光進行方向制御部34において、図2を参照して説明したサブファブフロアの第1ビーム調節装置71及び第2ビーム調節装置72は、省略されていてもよい。なお、第1ビーム調節装置71及び第2ビーム調節装置72は、省略されていなくともよい。この点は他の実施形態において同様である。
クリーンルームフロアにおいて、レーザ光進行方向制御部34は、図2に示している構成要素に加え、λ/2波長板75、光路分離装置としての偏光ビームスプリッタ76、高反射ミラー77、高反射ミラー78、偏光ビームスプリッタ79、第1ビーム調節装置81、及び第2ビーム調節装置82、を含んでもよい。
偏光ビームスプリッタ314は、第1プリパルスレーザ装置35及び第2プリパルスレーザ装置36からそれぞれ出力されたプリパルスレーザ光P1及びP2の光路を、略一致させるよう配置されてもよい。偏光ビームスプリッタ314は、高反射ミラー313及びλ/2波長板312それぞれの下流側に配置されてもよい。
λ/2波長板75は、偏光ビームスプリッタ314によって略一致したプリパルスレーザ光P1及びP2の光路上に、配置されてもよい。λ/2波長板75は、高反射ミラー51Dの下流側に位置し、高反射ミラー51Dに反射されたプリパルスレーザ光P1及びP2を受光してもよい。
偏光ビームスプリッタ76は、プリパルスレーザ光P1及びP2の略一致した光路上において、λ/2波長板75の下流側に配置されてもよい。偏光ビームスプリッタ76は、偏光ビームスプリッタ314によって略一致したプリパルスレーザ光P1及び光P2の光路を、プリパルスレーザ光P1の光路と、プリパルスレーザ光P2の光路とに分離するよう配置されてもよい。偏光ビームスプリッタ76は、例えば、偏光ビームスプリッタ314と同様に、P偏光で入射する光を透過し、S偏光で入射する光を反射するよう構成されてもよい。
第1ビーム調節装置81は、偏光ビームスプリッタ76により分離されたプリパルスレーザ光P1の光路上に配置されてもよい。第2ビーム調節装置82は、偏光ビームスプリッタ76により分離されたプリパルスレーザ光P2の光路上に配置されてもよい。
高反射ミラー77は、プリパルスレーザ光P1の光路上において、第1ビーム調節装置81の上流側に配置されてもよい。高反射ミラー77は、偏光ビームスプリッタ76により分離されたプリパルスレーザ光P1を、第1ビーム調節装置81に向けて反射してもよい。
高反射ミラー78は、プリパルスレーザ光P1の光路上において、第1ビーム調節装置81の下流側に配置されてもよい。高反射ミラー78は、第1ビーム調節装置81からのプリパルスレーザ光P1を偏光ビームスプリッタ79に向けて反射してもよい。
偏光ビームスプリッタ79は、第1ビーム調節装置81及び第2ビーム調節装置82からそれぞれ出力されたプリパルスレーザ光P1及びP2の光路を再度略一致させるよう配置されてもよい。
偏光ビームスプリッタ79は、プリパルスレーザ光P1の光路上において、高反射ミラー78の下流側に配置されてもよい。偏光ビームスプリッタ79は、プリパルスレーザ光P2の光路上において、第2ビーム調節装置82の下流側に配置されてもよい。偏光ビームスプリッタ79は、例えば、偏光ビームスプリッタ314と同様、P偏光で入射する光を透過し、S偏光で入射する光を反射するよう構成されてもよい。
ビームコンバイナ62は、偏光ビームスプリッタ79から出力され、高反射ミラー61により反射されたプリパルスレーザ光P1及びP2の光路と、メインパルスレーザ光Mの光路とを、略一致させるよう配置されてもよい。
第1プリパルスレーザ装置35及び第2プリパルスレーザ装置36が、それぞれ異なる偏光状態のプリパルスレーザ光P1及びP2を出力する場合、λ/2波長板311と、λ/2波長板312とは省略されてもよい。
例えば、第1プリパルスレーザ装置35は、偏光ビームスプリッタ314の入射面にS偏光で入射するプリパルスレーザ光P1を出力し、第2プリパルスレーザ装置36は、偏光ビームスプリッタ314の入射面にP偏光で入射するプリパルスレーザ光P2を出力してもよい。
<動作>
以下において、本実施形態のEUV光生成システム11の動作を説明する。図2に示している関連技術との相違点を主に説明する。図4において、第1プリパルスレーザ装置35及び第2プリパルスレーザ装置36は、それぞれ、プリパルスレーザ光P1及びP2を出力してもよい。ここで、プリパルスレーザ光P1及びP2の出力タイミングは異なっていて、プリパルスレーザ光P1が出力された後にプリパルスレーザ光P2が出力されてもよい。
プリパルスレーザ光P1及びP2は、それぞれ、λ/2波長板311及び312を経て、偏光ビームスプリッタ314に入射してもよい。プリパルスレーザ光P1及びP2の光路は、偏光ビームスプリッタ314によって略一致させられてもよい。
偏光ビームスプリッタ314に入射するプリパルスレーザ光P1及びP2は、異なる状態の直線偏光であってもよい。例えば、プリパルスレーザ光P1はS偏光であり、プリパルスレーザ光P2はP偏光であってもよい。
偏光ビームスプリッタ314にて光路が略一致するプリパルスレーザ光P1及びP2は、それぞれ、高反射ミラー51A〜51Dで規定される伝送路を介して、λ/2波長板75に入射してもよい。
λ/2波長板75は、プリパルスレーザ光P1とプリパルスレーザ光P2との間の偏光角の差を保持した状態で、それぞれの偏光角を所定量回転させてもよい。高反射ミラー51A〜51Dで規定される伝送経路において、プリパルスレーザ光P1及びP2は、所定の様々な方向に反射され伝送され得る。この際、プリパルスレーザ光P1とプリパルスレーザ光P2との間の偏光角の差は維持され得るが、特定の基準面、例えば地平面に対する偏光角は、偏光ビームスプリッタ314に入射した時点の偏光角と比べて変動し得る。
λ/2波長板75の光学軸の傾斜を調節することで、偏光ビームスプリッタ76が、プリパルスレーザ光P1の光路とプリパルスレーザ光P2の光路とを適切に分離するように、偏光ビームスプリッタ76に入射するプリパルスレーザ光P1及びP2の偏光角を補正し得る。
異なる状態の直線偏光であるプリパルスレーザ光P1及びP2の光路を、偏光ビームスプリッタ314を使用して略一致させると共に、偏光ビームスプリッタ76によってプリパルスレーザ光P1及びP2の光路を分離することで、効率的にプリパルスレーザ光P1及びP2を伝送し得る。
偏光ビームスプリッタ76に入射したプリパルスレーザ光P1及びP2の略一致した光路は、それぞれ、偏光ビームスプリッタ76によって、プリパルスレーザ光P1の光路と、プリパルスレーザ光P2の光路とに、偏光角に応じて分離されてもよい。
分離されたプリパルスレーザ光P1は、高反射ミラー77により第1ビーム調節装置81に向けて反射され、第1ビーム調節装置81よってビームパラメータを調整されてもよい。分離されたプリパルスレーザ光P2は、第2ビーム調節装置82によってビームパラメータを調整されてもよい。
ビームパラメータを調整されたプリパルスレーザ光P1は高反射ミラー78に反射されて、偏光ビームスプリッタ79に入射してもよい。ビームパラメータを調整されたプリパルスレーザ光P2は、偏光ビームスプリッタ79に入射してもよい。偏光ビームスプリッタ79は、プリパルスレーザ光P1を反射し、プリパルスレーザ光P2を透過させてもよい。偏光ビームスプリッタ79は、プリパルスレーザ光P1及びP2の光路を、再度、略一致させてもよい。
偏光ビームスプリッタ79を介してビームコンバイナ62に導かれたプリパルスレーザ光P1及びP2の一部は、ビームコンバイナ62を透過してビームモニタ66に入射してもよい。
ビームモニタ66にてプリパルスレーザ光P1及びP2それぞれのビームパラメータが計測され得る。ビームパラメータの計測値はコントローラ58に入力されてもよい。コントローラ58は、プリパルスレーザ光P1及びP2それぞれの計測されたビームパラメータが所望の値となるよう、第1ビーム調節装置81及び第2ビーム調節装置82を制御してもよい。
<効果>
本実施形態は、プリパルスレーザ光P1の光路とプリパルスレーザ光P2の光路を、サブファブフロアとメインフロアをつなぐ伝送経路を経た後に分離し、プリパルスレーザ光P1及びP2それぞれのビームパラメータを調節してもよい。したがって、本実施形態は、伝送距離が長くなっても、プリパルスレーザ光P1及びP2のビームパラメータの調整代が小さくなることを抑制し得る。
また、本実施形態は、伝送経路においてプリパルスレーザ光P1及びP2のビームパラメータを近い値とし、伝送経路を経た後、プリパルスレーザ光P1及びP2のビームパラメータそれぞれを独立に調整し得る。これにより、プリパルスレーザ光P1及びP2それぞれの最適なレーザ光照射条件を容易に実現し得る。
なお、プリパルスレーザ装置の数は、3以上であってもよい。複数のプリパルスレーザ光のビームパラメータ値は、上記例に限定されず、例えば、異なる波長を有し同一のパルス幅を有していてもよい。ビームパラメータを調整されたプリパルスレーザ光P1及びP2の光路は、分離されたままチャンバ2に導かれてもよい。EUV光生成システムは、同一フロア上で構成されていてもよい。これらの点は他の実施形態において同様である。
5.実施形態2
<実施形態1における課題>
図4に示している実施形態1のEUV光生成システム11は、偏光ビームスプリッタ76を用いてプリパルスレーザ光P1の光路とプリパルスレーザ光P2の光路とを分離してもよい。プリパルスレーザ光P2は、偏光ビームスプリッタ76で反射される偏光状態の光を含み得る。そのため、偏光ビームスプリッタ76は、本来反射するべきプリパルスレーザ光P1の他に、僅かにプリパルスレーザ光P2の一部を反射し得る。
このように本来意図しない偏光状態の光の成分を、偏光エラー成分と呼んでもよい。偏光エラー成分の光路は、偏光ビームスプリッタ76を透過したプリパルスレーザ光P2の光路と、偏光ビームスプリッタ79により一致させられ得る。
この際、偏光エラー成分と、偏光ビームスプリッタ76を透過したプリパルスレーザ光P2とが干渉してスペックルを生じ得る。同様の現象がプリパルスレーザ光P1についても起こり得る。スペックルはビームモニタ66におけるプリパルスレーザ光の正確な観測を困難にし、良好な照射条件の実現を困難にし得る。
<構成>
図5は、本実施形態に係るEUV光生成システム11の構成例を示している。以下において、図4に示している実施形態1に係るEUV光生成システム11との相違点を主に説明する。
本実施形態に係るレーザ光進行方向制御部34は、図4に示している構成における高反射ミラー77、高反射ミラー78のそれぞれに代えて、偏光ビームスプリッタ86,87を含んでもよい。さらに、偏光ビームスプリッタ76、86,87、79は、キューブ偏光ビームスプリッタ85〜88であってもよい。
キューブ偏光ビームスプリッタ85は、プリパルスレーザ光P2の光路上において、λ/2波長板75と第2ビーム調節装置82との間に配置されてもよい。キューブ偏光ビームスプリッタ85は、プリパルスレーザ光P1の光路上において、λ/2波長板75とキューブ偏光ビームスプリッタ86との間に配置されてもよい。
キューブ偏光ビームスプリッタ85は、略一致したプリパルスレーザ光P1とプリパルスレーザ光P2の光路を、プリパルスレーザ光P1の光路と、プリパルスレーザ光P2の光路とに分離させるよう配置されてもよい。例えば、キューブ偏光ビームスプリッタ85は、P偏光で入射する光を透過し、S偏光で入射する光を反射するよう構成されてもよい。
キューブ偏光ビームスプリッタ86は、偏光ビームスプリッタ85によって分離されたプリパルスレーザ光P1の光路上において、第1ビーム調節装置81の上流側に配置されてもよい。キューブ偏光ビームスプリッタ86は、プリパルスレーザ光P1の偏光状態の光を、第1ビーム調節装置81に向けて反射するように配置されてもよい。例えば、キューブ偏光ビームスプリッタ86は、P偏光で入射する光を透過し、S偏光で入射する光を反射するよう構成されてもよい。
キューブ偏光ビームスプリッタ87は、第1ビーム調節装置81を経たプリパルスレーザ光P1の光路上に、配置されてもよい。キューブ偏光ビームスプリッタ87は、プリパルスレーザ光P1の偏光状態の光を、キューブ偏光ビームスプリッタ88に向けて反射するように配置されてもよい。例えば、キューブ偏光ビームスプリッタ87は、P偏光で入射する光を透過し、S偏光で入射する光を反射するよう構成されてもよい。
キューブ偏光ビームスプリッタ88は、第1ビーム調節装置81及び第2ビーム調節装置82からそれぞれ出力されたプリパルスレーザ光P1及びP2の光路を、再度略一致させるよう配置されてもよい。
キューブ偏光ビームスプリッタ88は、プリパルスレーザ光P1の光路上において、キューブ偏光ビームスプリッタ87の下流側に配置されてもよい。キューブ偏光ビームスプリッタ88は、プリパルスレーザ光P2の光路上において、第2ビーム調節装置82の下流側に配置されてもよい。例えば、キューブ偏光ビームスプリッタ88は、P偏光で入射する光を透過し、S偏光で入射する光を反射するよう構成されてもよい。
キューブ偏光ビームスプリッタ85〜88は、それぞれ、他の形状の偏光ビームスプリッタであってもよい。例えば、キューブ偏光ビームスプリッタ85〜88は、それぞれ、平板型偏光ビームスプリッタ又はウェッジ基板型偏光ビームスプリッタであってもよい。
<効果>
本実施形態は、特定の直線偏光のプリパルスレーザ光が伝搬すべき光路に、ミラーに代えて、多段に配置された偏光ビームスプリッタを含むので、偏光エラー成分の伝搬を抑制し、スペックルを低減し得る。
さらに、板状の偏光ビームスプリッタに代えてキューブ偏光ビームスプリッタを含むので、偏光ビームスプリッタを透過する前後における光路のズレを小さくし得る。このため、光路調整が容易となり得る。
6.実施形態3
<構成>
図6は、本実施形態に係るEUV光生成システム11の構成例を示している。以下において、図4に示している実施形態1に係るEUV光生成システム11との相違点を主に説明する。
本実施形態に係るレーザ光進行方向制御部34は、サブファブフロアにおいて、図4に示している構成におけるλ/2波長板311、λ/2波長板312、及び偏光ビームスプリッタ314のそれぞれに代えて、λ/4波長板911、λ/4波長板912、及びビームスプリッタ914を含んでもよい。レーザ光進行方向制御部34は、クリーンルームフロアにおいて、図4に示している構成におけるλ/2波長板75に代えてλ/4波長板91を含んでよく、さらに、ポッケルスセル92を含んでもよい。
λ/4波長板911は、プリパルスレーザ光P1の光路上において、第1プリパルスレーザ装置35と高反射ミラー313との間に配置されてもよい。λ/4波長板912は、プリパルスレーザ光P2の光路上において、第2プリパルスレーザ装置36とビームスプリッタ914との間に配置されてもよい。
ビームスプリッタ914は、第1プリパルスレーザ装置35及び第2プリパルスレーザ装置36からそれぞれ出力されたプリパルスレーザ光P1及びP2の光路を略一致させるよう配置されてもよい。ビームスプリッタ914の反射率は例えば50%でもよい。ビームスプリッタ914は、高反射ミラー313及びλ/4波長板912それぞれの下流側に配置されてもよい。
λ/4波長板91は、ビームスプリッタ914によって略一致したプリパルスレーザ光P1及びP2の光路上に、配置されてもよい。λ/4波長板91は、高反射ミラー51Dの下流側に位置し、高反射ミラー51Dに反射されたプリパルスレーザ光P1及びP2を受光してもよい。
ポッケルスセル92は、λ/4波長板91を透過したプリパルスレーザ光P1及びP2の光路上に配置されてもよい。ポッケルスセル92は、第1ビーム調節装置81及び第2ビーム調節装置82の上流側に配置されてもよい。ポッケルスセル92と、第1プリパルスレーザ装置35とはコントローラ58に接続されてもよい。
<動作>
プリパルスレーザ光P1及びP2は、λ/4波長板911及び912によって、同一の偏光状態となってもよい。例えば、プリパルスレーザ光P1及びP2は、共に円偏光状態となってもよい。λ/4波長板911を通過したプリパルスレーザ光P1は、高反射ミラー313に反射され、ビームスプリッタ914に入射してもよい。λ/4波長板912を通過したプリパルスレーザ光P2は、ビームスプリッタ914に入射してもよい。ビームスプリッタ914は、プリパルスレーザ光P1及びP2の光路を、略一致させてもよい。
略同一の光路上を進むプリパルスレーザ光P1及びP2は、それぞれ、高反射ミラー51A〜51Dで規定される伝送経路を介して、λ/4波長板91に入射してもよい。λ/4波長板91は、プリパルスレーザ光P1及びP2を、同一状態の直線偏光に変換してもよい。例えば、プリパルスレーザ光P1及びP2は、偏光ビームスプリッタ76の入射面に対してS偏光に変換されてもよい。
偏光ビームスプリッタ76は、S偏光を反射し、P偏光を通過させるように構成されていてもよい。偏光ビームスプリッタ76は、プリパルスレーザ光P1の光路とプリパルスレーザ光P2の光路とを、プリパルスレーザ光P1及びP2の偏光角に応じて、分離してもよい。
ポッケルスセル92は、プリパルスレーザ光P1の偏光状態を変化させることなく、プリパルスレーザ光P1を通過させてもよい。ポッケルスセル92を通過したプリパルスレーザ光P1は、偏光ビームスプリッタ76に入射してもよい。偏光ビームスプリッタ76は、プリパルスレーザ光P1を反射してもよい。偏光ビームスプリッタ76によって反射されたプリパルスレーザ光P1は、高反射ミラー77を介して、第1ビーム調節装置81に入射してもよい。
プリパルスレーザ光P2がポッケルスセル92に達すると、コントローラ58はポッケルスセル92の図示しない電源を駆動して電圧を印加することで、プリパルスレーザ光P2の偏光状態を他の直線偏光に変換してよい。
例えば、プリパルスレーザ光P2は、偏光ビームスプリッタ76の入射面に対してP偏光に変換されてもよい。偏光ビームスプリッタ76は、入射したプリパルスレーザ光P2を通過させてもよい。偏光ビームスプリッタ76を通過したプリパルスレーザ光P2は、第2ビーム調節装置82に入射してもよい。
コントローラ58は、プリパルスレーザ光P2がポッケルスセル92に入射するタイミングを決定するため、第1プリパルスレーザ装置35から出力タイミングを受信してもよい。コントローラ58は、受信した出力タイミングにプリパルスレーザ光P1とプリパルスレーザ光P2との間の出力タイミングの差及び光路長を考慮した遅延時間を付加することで、ポッケルスセル92の電源に駆動信号を送信してもよい。コントローラ58は、第2プリパルスレーザ装置36からの出力タイミングを受信し、ポッケルスセル92を制御してもよい
<効果>
本実施形態は、高反射ミラー51A〜51Dで規定される伝送経路上において、円偏光のプリパルスレーザ光P1及びP2を伝送するため、伝送経路におけるプリパルスレーザ光P1及びP2の偏光状態の変化を抑制し得る。
7.ビーム調節装置
<構成例1>
図7Aは、第1ビーム調節装置81の構成例を示している。図7B〜図7Dは、第1ビーム調節装置81の動作を示している。第2ビーム調節装置82も、同様の構成を有してよい。
図7Aに示しているように、第1ビーム調節装置81は、レンズホルダ813に保持された球面凸レンズ811と、レンズホルダ814に保持された球面凹レンズ812と、を含んでもよい。レンズホルダ813及び814は、それぞれ、支持部815及び816によって支持されてもよい。支持部816は固定ステージ817に固定されてもよい。支持部815は、固定ステージ817上をスライドするスライダ819に固定されてもよい。ドライバ818は、コントローラ58からの指示に従ってスライダ819を移動させてもよい。
球面凸レンズ811は焦点距離F1を有し、球面凹レンズ812は焦点距離F2を有してもよい。図7Aが示している状態において、球面凸レンズ811の焦点位置と球面凹レンズ812の焦点位置は、共焦点位置800において一致してもよい。
図7Bに示している状態において、球面凸レンズ811の焦点位置と球面凹レンズ812の焦点位置は、共焦点位置800において一致してもよい。第1ビーム調節装置81は、入射した平面波を、断面積が異なる平面波に変換してもよい。
図7Cに示しているように、スライダ819は、図7Bに示している位置から下流側にスライドして、球面凸レンズ811を球面凹レンズ812から離れる方向に移動してもよい。球面凸レンズ811の焦点位置801は、球面凹レンズ812の焦点位置802よりも下流側に位置してよい。第1ビーム調節装置81は、入射した平面波を凹面波に変換してもよい。
図7Dに示しているように、スライダ819は、図7Bに示している位置から上流側にスライドして、球面凸レンズ811を球面凹レンズ812に近づく方向に移動してもよい。球面凸レンズ811の焦点位置801は、球面凹レンズ812の焦点位置802よりも上流側に位置してよい。第1ビーム調節装置81は、入射した平面波を凸面波に変換してもよい。
上述のように、第1ビーム調節装置81は、レーザ光の波面、レーザ光の断面積、ビームダイバージェンスを調節し得る。第1ビーム調節装置81は、高反射ミラー及び当該高反射ミラーの角度を制御するアクチュエータを含んでもよい。これにより、レーザ光の進行方向を制御し得る。
<構成例2>
図8は、第1ビーム調節装置81の他の構成例を示している。第2ビーム調節装置82も、同様の構成を有してよい。第1ビーム調節装置81は、軸外放物面凸面ミラー851、軸外放物面凹面ミラー852、平面ミラー853、平面ミラー854、ミラー固定プレート855、及び不図示の駆動機構、を含んでもよい。
軸外放物面凸面ミラー851は、レーザ光が入射する位置に、不図示のミラーホルダによって固定されていてもよい。軸外放物面凸面ミラー851は、レーザ光を軸外放物面凹面ミラー852に向けて反射してもよい。
軸外放物面凸面ミラー851からの反射光は、軸外放物面凹面ミラー852の焦点の位置から放射した光と同等の波面を有する光と見なせる様に調整可能であってもよい。平面波が入射する場合、軸外放物面凸面ミラー851の焦点の位置と軸外放物面凹面ミラー852の焦点の位置とは同じであってもよい。
軸外放物面凹面ミラー852は、軸外放物面凸面ミラー851によって反射されたレーザ光の光路に沿って移動できるように、不図示のミラーホルダを介してミラー固定プレート855に固定されていてもよい。軸外放物面凹面ミラー852は、軸外放物面凸面ミラー851によって反射されたレーザ光を平面ミラー853に向けて反射してもよい。
平面ミラー853は、軸外放物面凹面ミラー852とともに移動できるように、不図示のミラーホルダを介してミラー固定プレート855に固定されていてもよい。平面ミラー853は、軸外放物面凹面ミラー852によって反射されたレーザ光を、平面ミラー854に向けて反射してもよい。
平面ミラー854は、平面ミラー853によって反射されたレーザ光の光路に、不図示のミラーホルダによって固定されていてもよい。平面ミラー854は、平面ミラー853によって反射されたレーザ光を、チャンバ2との間に配置された光学素子に向けて反射してもよい。
ミラー固定プレート855と、軸外放物面凸面ミラー851及び平面ミラー854との間隔が伸縮するように、ミラー固定プレート825が駆動機構によって紙面上下方向に移動させられてもよい。ミラー固定プレート825と軸外放物面凸面ミラー851及び平面ミラー854との間隔を伸縮させることにより、レーザ光のビーム断面積の大きさを調節し得る。
8.ビームモニタ
<構成例1>
図9Aは、ビームモニタ66の構成例を示している。図9B、図9Cは、ビームモニタ66の検出原理を説明するための図を示している。ビームモニタ66は、ビームスプリッタ661によってサンプル光を分岐させ、ビームスプリッタ661を透過した光及び反射した光に異なる光路長を持たせて、それぞれのビームプロファイルを検出してもよい。
ビームプロファイルは、例えばレーザ光断面の光強度分布であってもよい。これにより、サンプル光の進行方向における2つの異なる位置におけるビームプロファイルを検出してもよい。なお、サンプル光とは、レーザシステム3からチャンバ2に至る光路から分岐されてビームモニタ66に入射するレーザ光でもよい。
図9Aに示しているように、ビームモニタ66は、ビームスプリッタ661、高反射ミラー664、転写光学系662、転写光学系665、第1イメージセンサ663、及び第2イメージセンサ666を含んでもよい。第1イメージセンサ663及び第2イメージセンサ666は、2次元イメージセンサでもよい。
ビームスプリッタ661は、サンプル光の一部を転写光学系662に向けて透過させ、他の一部を高反射ミラー664に向けて反射してもよい。高反射ミラー664は、ビームスプリッタ661によって反射された光を高い反射率で転写光学系665に向けて反射してもよい。
転写光学系662は、サンプル光の光路上のビームコンバイナ62とビームスプリッタ661との間の任意の位置A1におけるビームプロファイルを第1イメージセンサ663の受光面に転写してもよい。転写光学系665は、サンプル光の光路上の位置A2におけるビームプロファイルを第2イメージセンサ666の受光面に転写してもよい。
位置A1と第1イメージセンサ663の受光面との間のサンプル光の光路に沿った距離は、位置A2と第2イメージセンサ666の受光面との間のサンプル光の光路に沿った距離に等しくてもよい。第1イメージセンサ663及び第2イメージセンサ666は、受光面に転写されたビームプロファイルのデータをコントローラ58に出力してもよい。
例えば、コントローラ58は、第1イメージセンサ663及び第2イメージセンサ666からの出力データに基づいて、レーザ光の波面に関するパラメータを算出してもよい。
図9Bに示しているように、コントローラ58は、第1イメージセンサ663からの出力データに基づいて、位置A1におけるレーザ光のビーム幅Da1を算出してもよい。図9Cに示しているように、ビームプロファイルにおけるビーム幅は、例えば、光強度分布内のピーク強度に対して1/e以上の強度を有する部分の幅でもよい。さらに、コントローラ58は、第2イメージセンサ666からの出力に基づいて、位置A2におけるレーザ光のビーム幅Da2を算出してもよい。
コントローラ58は、レーザ光のビーム幅Da1及びDa2の差から、レーザ光の波面に関するパラメータを算出してもよい。コントローラ58は、波面に関するパラメータとして、ビームダイバージェンスθを下式によって算出してもよい。
以下、A=θ/2とする。
A=tan−1{(Da2−Da1)/2L}
ここで、Lは、サンプル光の光路に沿った位置A1と位置A2との間の距離でもよい。
コントローラ58は、位置A1における波面の曲率Xを下式によって算出してもよい。
X=2sinA/(Da1)
コントローラ58は、レーザ光の位置を、2次元イメージセンサ上に結像された像の重心位置と決定してもよい。
以上の算出結果に基づいて、コントローラ58は、第1ビーム調節装置81及び第2ビーム調節装置82を制御してもよい。
<構成例2>
図10は、ビームモニタ66の他の構成例を示している。以下において、主に図9に示している構成例との差異を説明する。ビームモニタ66は、転写光学系665に代えて、集光光学系667を含んでもよい。ビームスプリッタ661は、サンプル光の一部を転写光学系662に向けて透過させ、他の一部を高反射ミラー664及び集光光学系667に向けて反射してもよい。
集光光学系667は、ビームスプリッタ661によって反射された光を、集光光学系667から所定距離F離れた位置に配置された第2イメージセンサ666の受光面に集光してもよい。所定距離Fは、要求された波面を有するレーザ光が集光光学系667によって焦点を結ぶ距離であってもよい。要求された波面とは、プラズマ生成領域25において所定の集光性能を実現できるよう設定された波面であってよい。
要求された波面が平面波である場合には、所定距離Fは集光光学系667の焦点距離でもよい。要求された波面が凸面波である場合には、所定距離Fは集光光学系667の焦点距離よりも長い距離でもよい。要求された波面が凹面波である場合には、所定距離Fは集光光学系667の焦点距離よりも短い距離でもよい。
コントローラ58は、第1イメージセンサ663からの出力に基づいて、位置A1におけるレーザ光のビーム幅Dを算出してもよい。ビーム幅Dは、第1イメージセンサ663で検出された光強度分布内のピーク強度に対して1/e以上の強度を有する部分の幅でもよい。
さらに、コントローラ58は、第2イメージセンサ666からの出力に基づいて、波面に関するパラメータとして、集光されたサンプル光のスポット幅Sdを算出してもよい。スポット幅Sdは、第2イメージセンサ666に集光されたスポットの1/eの径であってもよい。
コントローラ58は、波面に関するパラメータとして、ビームダイバージェンスθを下式によって算出してもよい。
θ=Sd/F
コントローラ58は、位置A1における波面の曲率Xを下式によって算出してもよい。
X=2sinA/D
以上の算出結果に基づいて、コントローラ58は、第1ビーム調節装置81及び第2ビーム調節装置82を制御してもよい。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の請求の範囲を逸脱することなく本開示の実施形態に変更を加えてもよいことは、当業者には明らかであろう。
ある実施形態の構成の一部を他の実施形態の構成に置き換え得る。ある実施形態の構成に他の実施形態の構成を加え得る。各実施形態の構成の一部について、削除、他の構成の追加、他の構成による置換をし得る。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
3 レーザシステム、11 EUV光生成システム、30 メインパルスレーザ装置、35 第1プリパルスレーザ装置、36 第2プリパルスレーザ装置、58 コントローラ、66 ビームモニタ、75 λ/2波長板、76 偏光ビームスプリッタ、81 第1ビーム調節装置、82 第2ビーム調節装置、85〜88 偏光ビームスプリッタ、314 偏光ビームスプリッタ

Claims (6)

  1. 極端紫外光チャンバに供給されるターゲットに照射される第1プリパルスレーザ光を出力する第1プリパルスレーザ装置と、
    前記第1プリパルスレーザ光と異なるタイミングで前記ターゲットに照射される第2プリパルスレーザ光を出力する第2プリパルスレーザ装置と
    前記第1プリパルスレーザ光と前記第2プリパルスレーザ光のいずれとも異なるタイミングで前記ターゲットに照射されるメインパルスレーザ光を出力するメインパルスレーザ装置と、を含むレーザ装置と、
    前記レーザ装置から出力されたパルスレーザ光を前記極端紫外光チャンバに伝送する伝送システムと、を含み、
    前記伝送システムは、
    前記第1プリパルスレーザ光の光路と前記第2プリパルスレーザ光の光路とを略一致させる、光路調節装置と、
    前記光路調節装置によって略一致させられた前記第1プリパルスレーザ光と前記第2プリパルスレーザ光の光路を、前記第1プリパルスレーザ光の光路と、前記第2プリパルスレーザ光の光路とに分離する、光路分離装置と、
    前記光路分離装置により分離された前記第1プリパルスレーザ光の光路上に配置され、前記第1プリパルスレーザ光のビームパラメータを調節する、第1ビーム調節装置と、
    前記光路分離装置により分離された前記第2プリパルスレーザ光の光路上に配置され、前記第2プリパルスレーザ光のビームパラメータを調節する、第2ビーム調節装置と、を含むレーザシステム
  2. 請求項1に記載のレーザシステムであって、
    前記第1プリパルスレーザ光と前記第2プリパルスレーザ光とは、同波長を有し、異なるパルス幅を有する、レーザシステム。
  3. 請求項1に記載のレーザシステムであって、
    前記光路調節装置によって略一致させられた前記第1プリパルスレーザ光と前記第2プリパルスレーザ光の光路において、前記第1プリパルスレーザ光と前記第2プリパルスレーザ光とは異なる直線偏光状態を有し、
    前記光路分離装置は、第1偏光ビームスプリッタで構成されている、レーザシステム。
  4. 請求項3に記載のレーザシステムであって、
    前記光路調節装置によって略一致させられた前記第1プリパルスレーザ光と前記第2プリパルスレーザ光の光路上において、前記光路分離装置の上流側にλ/2波長板が配置されている、レーザシステム。
  5. 請求項3に記載のレーザシステムであって、
    前記光路分離装置により分離された前記第1プリパルスレーザ光の光路上において、前記第1偏光ビームスプリッタの上流側及び下流側の少なくとも一方に、第2偏光ビームスプリッタが配置されている、レーザシステム。
  6. 請求項1に記載のレーザシステムであって、
    前記第1ビーム調節装置により調節された前記第1プリパルスレーザ光及び前記第2ビーム調節装置により調節された前記第2プリパルスレーザ光をモニタする、ビームモニタと、
    前記ビームモニタのモニタ結果に基づいて、前記第1ビーム調節装置及び前記第2ビーム調節装置を制御する、コントローラと、をさらに含む、レーザシステム。
JP2016547267A 2014-09-08 2014-09-08 レーザシステム Active JP6441946B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073661 WO2016038657A1 (ja) 2014-09-08 2014-09-08 パルスレーザ光を極端紫外光チャンバに伝送する伝送システム及びレーザシステム

Publications (2)

Publication Number Publication Date
JPWO2016038657A1 JPWO2016038657A1 (ja) 2017-06-15
JP6441946B2 true JP6441946B2 (ja) 2018-12-19

Family

ID=55458450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016547267A Active JP6441946B2 (ja) 2014-09-08 2014-09-08 レーザシステム

Country Status (3)

Country Link
US (1) US9888555B2 (ja)
JP (1) JP6441946B2 (ja)
WO (1) WO2016038657A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364002B2 (ja) * 2013-05-31 2018-07-25 ギガフォトン株式会社 極端紫外光生成システム
WO2017090167A1 (ja) * 2015-11-26 2017-06-01 ギガフォトン株式会社 極端紫外光生成装置
WO2018083727A1 (ja) * 2016-11-01 2018-05-11 ギガフォトン株式会社 極端紫外光生成装置
JP6838155B2 (ja) 2017-07-06 2021-03-03 ギガフォトン株式会社 レーザシステム、極端紫外光生成装置、及び極端紫外光生成方法
KR20200092962A (ko) * 2017-11-29 2020-08-04 에이에스엠엘 네델란즈 비.브이. 레이저 빔 모니터링 시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
DE102005014433B3 (de) 2005-03-24 2006-10-05 Xtreme Technologies Gmbh Verfahren und Anordnung zur effizienten Erzeugung von kurzwelliger Strahlung auf Basis eines lasererzeugten Plasmas
JP5675127B2 (ja) * 2009-02-27 2015-02-25 ギガフォトン株式会社 レーザ装置および極端紫外光源装置
JP2013004258A (ja) 2011-06-15 2013-01-07 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光の生成方法
US9113540B2 (en) 2010-02-19 2015-08-18 Gigaphoton Inc. System and method for generating extreme ultraviolet light
US8604452B2 (en) 2011-03-17 2013-12-10 Cymer, Llc Drive laser delivery systems for EUV light source
JP6080481B2 (ja) 2012-01-26 2017-02-15 ギガフォトン株式会社 極端紫外光生成装置
US8681427B2 (en) 2012-05-31 2014-03-25 Cymer, Inc. System and method for separating a main pulse and a pre-pulse beam from a laser source
DE102012209837A1 (de) * 2012-06-12 2013-12-12 Trumpf Laser- Und Systemtechnik Gmbh EUV-Anregungslichtquelle mit einer Laserstrahlquelle und einer Strahlführungsvorrichtung zum Manipulieren des Laserstrahls

Also Published As

Publication number Publication date
JPWO2016038657A1 (ja) 2017-06-15
WO2016038657A1 (ja) 2016-03-17
US20170150591A1 (en) 2017-05-25
US9888555B2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
US9574935B2 (en) System for generating extreme ultra violet light
US8242472B2 (en) Extreme ultraviolet light source device and control method for extreme ultraviolet light source device
EP2856583B1 (en) System and method for separating a main pulse and a pre-pulse beam from a laser source
US9128391B2 (en) Optical device including wavefront correction parts and beam direction parts, laser apparatus including the optical device, and extreme ultraviolet light generation system including the laser apparatus
US9055657B2 (en) Extreme ultraviolet light generation by polarized laser beam
JP6441946B2 (ja) レーザシステム
US10027084B2 (en) Alignment system and extreme ultraviolet light generation system
JP2012510156A (ja) Euv光源における駆動レーザビーム送出のためのシステム及び方法
JP2012178534A (ja) 光学システムおよびそれを用いた極端紫外光生成システム
JP5711326B2 (ja) 極端紫外光生成装置
US20190289707A1 (en) Extreme ultraviolet light generation system
US20190239329A1 (en) Extreme ultraviolet light generation apparatus
WO2016098240A1 (ja) 極端紫外光生成装置
US11374379B2 (en) Laser system, extreme ultraviolet light generation apparatus, and extreme ultraviolet light generation method
US10582601B2 (en) Extreme ultraviolet light generating apparatus using differing laser beam diameters
JP6232462B2 (ja) アライメントシステム
JP2016154156A (ja) 極端紫外光生成装置
KR20220030350A (ko) 광원 및 이를 이용한 극자외선 광원 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181122

R150 Certificate of patent or registration of utility model

Ref document number: 6441946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250