JP6435694B2 - 移動情報計測装置、装置及び走行体 - Google Patents

移動情報計測装置、装置及び走行体 Download PDF

Info

Publication number
JP6435694B2
JP6435694B2 JP2014158478A JP2014158478A JP6435694B2 JP 6435694 B2 JP6435694 B2 JP 6435694B2 JP 2014158478 A JP2014158478 A JP 2014158478A JP 2014158478 A JP2014158478 A JP 2014158478A JP 6435694 B2 JP6435694 B2 JP 6435694B2
Authority
JP
Japan
Prior art keywords
movement information
movement
measuring device
information measuring
moving speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014158478A
Other languages
English (en)
Other versions
JP2016035420A (ja
Inventor
高浦 淳
淳 高浦
工藤 宏一
宏一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014158478A priority Critical patent/JP6435694B2/ja
Priority to EP15177729.9A priority patent/EP2982990B1/en
Publication of JP2016035420A publication Critical patent/JP2016035420A/ja
Application granted granted Critical
Publication of JP6435694B2 publication Critical patent/JP6435694B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • G01P3/806Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means in devices of the type to be classified in G01P3/68

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、移動情報計測装置、装置及び走行体に係り、更に詳しくは、光を用いて対象物の移動情報を計測する移動情報計測装置、該移動情報計測装置を備える装置及び走行体に関する。
表面に微細な凹凸を有する対象物にコヒーレントな光を照射すると、対象物の表面及び表面近傍の空間にスペックルパターンが発生する。このスペックルパターンは、対象物の表面で反射された光の相互干渉によって生成されるものであり、表面の凹凸に応じたパターンとなる。
そして、対象物が移動すると、その移動に伴ってスペックルパターンも移動することを利用して、対象物の移動情報を計測する装置(移動情報計測装置)が考案された。なお、本明細書における移動情報とは、移動に関する情報であり、移動量及び移動速度の少なくとも一方を含む。
例えば、特許文献1には、レーザ光源と、エリアセンサと、レーザ光源から射出されたビームを移動部材に照射し、その散乱光をレンズでエリアセンサ上に結像し、移動部材の移動とともに一定時間間隔で画像パターンを取得する画像パターン取得手段と、画像パターン取得手段で取得した画像パターンを演算することにより、移動部材の速度を算出する速度算出手段と、を有する速度検出装置が開示されている。
また、非特許文献1には、広い環境温度範囲での精度向上、及び高速対応を目的とする移動量センサが開示されている。
しかしながら、従来の移動情報計測装置では、対象物の移動情報を高い精度で安定して計測するのは困難であった。
本発明は、対象物の移動情報を計測する移動情報計測装置であって、前記対象物に向けて光を射出する光源と、前記光源から射出され前記対象物で反射された光によって生じたスペックルパターンを撮像する撮像素子と、前記スペックルパターンの移動量に基づいて前記対象物の移動情報を求めるとともに、前記対象物の移動速度に基づいて、前記撮像素子でのフレームレート及び露光時間、並びに前記光源の発光パワーを調整する処理装置と、を備える移動情報計測装置である。
本発明の移動情報計測装置によれば、対象物の移動情報を高い精度で安定して計測することができる。
本発明の一実施形態に係るカラープリンタの概略構成を説明するための図である。 移動情報計測装置の構成を説明するための図である。 対象物の移動速度が125±5(mm/sec)で、フレームレートが760.803(fps)、露光時間が86.8(μsec)、光源101の発光パワーが17(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が135±5(mm/sec)で、フレームレートが876.578(fps)、露光時間が86.8(μsec)、光源101の発光パワーが17(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が70±2(mm/sec)で、フレームレートが445.553(fps)、露光時間が124.0(μsec)、光源101の発光パワーが11.42(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が48.1〜51.0(mm/sec)で、フレームレートが320.02(fps)、露光時間が173.6(μsec)、光源101の発光パワーが7.85(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が125±5(mm/sec)で、フレームレートが320.02(fps)、露光時間が86.8(μsec)、光源101の発光パワーが16.8(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が125±5(mm/sec)で、フレームレートが321.295(fps)、露光時間が86.8(μsec)、光源101の発光パワーが16.8(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が28.1〜30.5(mm/sec)で、フレームレートが191.556(fps)、露光時間が285.2(μsec)、光源101の発光パワーが4.85(mW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度が28.1〜30.5(mm/sec)で、フレームレートが91.4344(fps)、露光時間が86.8(μsec)、光源101の発光パワーが16.8(mmW)のときのサブピクセル移動量と測定誤差との関係を説明するための図である。 対象物の移動速度と最適フレームレートとの関係を説明するための図である。 対象物の移動速度と最適露光時間との関係を説明するための図である。 対象物の移動速度と最適発光パワーとの関係を説明するための図である。 正弦関数のフィッティングを説明するための図である。 移動情報計測処理を説明するためのフローチャート(その1)である。 移動情報計測処理を説明するためのフローチャート(その2)である。 更に中間転写ベルト2040の移動情報を計測するための移動情報計測装置10が設けられたカラープリンタを説明するための図である。 直接転写方式の画像形成装置を説明するための図である。 印字ヘッドにより記録紙に印字記録する画像形成装置を説明するための図である。 図19の画像形成装置における記録紙の搬送を説明するための図である。
以下、本発明の一実施形態を図1〜図16に基づいて説明する。図1には、一実施形態に係る装置としてのカラープリンタ2000の概略構成が示されている。
このカラープリンタ2000は、4色(ブラック、シアン、マゼンタ、イエロー)を重ね合わせて多色のカラー画像を形成するタンデム方式のカラープリンタであり、4つの感光体ドラム(K1、C1、M1、Y1)、4つのドラム帯電装置(K2、C2、M2、Y2)、4つの現像装置(K4、C4、M4、Y4)、4つのドラムクリーニング装置(K5、C5、M5、Y5)、4つの転写装置(K6、C6、M6、Y6)、光走査装置2010、中間転写ベルト2040、転写ローラ2042、搬送装置2044、定着装置2050、給紙コロ2054、排紙ローラ2058、給紙トレイ2060、通信制御装置2080、移動情報計測装置10、及び上記各部を統括的に制御するプリンタ制御装置2090などを備えている。
通信制御装置2080は、ネットワークなどを介した上位装置(例えばパソコン)との双方向の通信を制御する。
プリンタ制御装置2090は、CPU、該CPUにて解読可能なコードで記述されたプログラム及び該プログラムを実行する際に用いられる各種データが格納されているROM、作業用のメモリであるRAM、増幅回路、アナログ信号をデジタル信号に変換するAD変換器などを有している。そして、プリンタ制御装置2090は、上位装置からの画像情報を光走査装置2010に送る。
感光体ドラムK1、ドラム帯電装置K2、現像装置K4、ドラムクリーニング装置K5、及び転写装置K6は、組として使用され、ブラックの画像を形成する画像形成ステーション(以下では、便宜上「Kステーション」ともいう)を構成する。
感光体ドラムC1、ドラム帯電装置C2、現像装置C4、ドラムクリーニング装置C5、及び転写装置C6は、組として使用され、シアンの画像を形成する画像形成ステーション(以下では、便宜上「Cステーション」ともいう)を構成する。
感光体ドラムM1、ドラム帯電装置M2、現像装置M4、ドラムクリーニング装置M5、及び転写装置M6は、組として使用され、マゼンタの画像を形成する画像形成ステーション(以下では、便宜上「Mステーション」ともいう)を構成する。
感光体ドラムY1、ドラム帯電装置Y2、現像装置Y4、ドラムクリーニング装置Y5、及び転写装置Y6は、組として使用され、イエローの画像を形成する画像形成ステーション(以下では、便宜上「Yステーション」ともいう)を構成する。
各感光体ドラムはいずれも、その表面に感光層が形成されている。各感光体ドラムは、不図示の回転機構により、図1における面内で矢印方向に回転する。
各ドラム帯電装置は、対応する感光体ドラムの表面をそれぞれ均一に帯電させる。
光走査装置2010は、プリンタ制御装置2090からの多色の画像情報(ブラック画像情報、シアン画像情報、マゼンタ画像情報、イエロー画像情報)に基づいて色毎に変調された光により対応する帯電された感光体ドラムの表面をそれぞれ走査する。すなわち、各感光体ドラムの表面がそれぞれ被走査面である。これにより、画像情報に対応した潜像が各感光体ドラムの表面にそれぞれ形成される。ここで形成された潜像は、感光体ドラムの回転に伴って対応する現像装置の方向に移動する。
現像装置K4は、感光体ドラムK1の表面に形成された潜像にブラックのトナーを付着させて顕像化させる。
現像装置C4は、感光体ドラムC1の表面に形成された潜像にシアンのトナーを付着させて顕像化させる。
現像装置M4は、感光体ドラムM1の表面に形成された潜像にマゼンタのトナーを付着させて顕像化させる。
現像装置Y4は、感光体ドラムY1の表面に形成された潜像にイエローのトナーを付着させて顕像化させる。
各現像装置によってトナーが付着した像(以下、便宜上「トナー画像」ともいう)は、感光体ドラムの回転に伴って対応する転写装置の方向に移動する。
各転写装置は、トナー画像を中間転写ベルト2040に転写する。この中間転写ベルト2040は、駆動ローラによって図1における面内で矢印方向に移動する。ここでは、イエロー、マゼンタ、シアン、ブラックの各トナー画像は、所定のタイミングで中間転写ベルト2040に順次転写され、重ね合わされてカラー画像が形成される。
給紙トレイ2060には記録紙が格納されている。この給紙トレイ2060の近傍には給紙コロ2054が配置されており、該給紙コロ2054は、記録紙を給紙トレイ2060から1枚ずつ取り出す。該記録紙は、所定のタイミングで中間転写ベルト2040と転写ローラ2042との間隙に向けて送り出される。これにより、中間転写ベルト2040上のトナー画像が記録紙に転写される。トナー画像が転写された記録紙は、搬送装置2044を介して定着装置2050に送られる。
定着装置2050では、熱と圧力とが記録紙に加えられ、これによってトナーが記録紙上に定着される。トナーが定着された記録紙は、排紙ローラ2058を介して排紙トレイに送られ、排紙トレイ上に順次積み重ねられる。
各ドラムクリーニング装置は、対応する感光体ドラムの表面に残ったトナー(残留トナー)を除去する。残留トナーが除去された感光体ドラムの表面は、再度対応する帯電装置に対向する位置に戻る。
移動情報計測装置10は、搬送装置2044によって搬送される記録紙の移動情報が含まれる信号を出力する。すなわち、ここでは、記録紙が、移動情報計測装置10の対象物である。移動情報計測装置10の出力信号は、プリンタ制御装置2090に送られる。
この移動情報計測装置10は、一例として図2に示されるように、照明系100、撮像光学系110、撮像素子120、カバーガラス121、基板130、処理部131、光源駆動用ICチップ132、及びケース部材140などを有している。ここでは、XYZ3次元直交座標系において、記録紙の−Z側に移動情報計測装置10が配置されているものとする。そして、記録紙の表面は、Z軸方向に直交している。
照明系100は、光源101、カップリングレンズ102を有し、記録紙の−Z側の表面を照明する。なお、以下では、記録紙において、照明系100からの光によって照明される部分を「被検面」ともいう。
光源101は、発振波長が655nmのレーザダイオード(LD)を含み、コヒーレントな光を中間転写ベルト2040に向けて射出する。光源101は、処理部131の指示に応じて光源駆動用ICチップ132から出力される駆動信号によって駆動制御される。
カップリングレンズ102は、光源101から射出された光の光路上に配置されており、該光を略平行光とする。カップリングレンズ102を介した光が照明系100から射出される光(照明光)である。
撮像光学系110は、第1レンズ111、アパーチャ部材112、第2レンズ113、及びそれらを所定の位置関係で保持する鏡筒114を有し、被検面で反射された光が入射する。第1レンズ111、アパーチャ部材112、及び第2レンズ113は、テレセントリックな光学配置になっている。また、第1レンズ111、アパーチャ部材112、及び第2レンズ113の光軸は、被検面に直交している。
ここでは、撮像光学系110の結像倍率は0.88771である。
撮像素子120は、+Z側に複数の受光部(以下では「画素」という)からなる受光面を有している。この受光面は、カバーガラス121によって保護されている。そして、カバーガラス121が、鏡筒114の−Z側端部に固定されている。すなわち、撮像素子120は、カバーガラス121を介して鏡筒114に固定されている。
ここでは、撮像素子120として、いわゆるCMOSセンサが用いられている。このCMOSセンサは、画素ピッチが7.4μmである。
撮像光学系110は、照明系100が被検面を照明した際に発生するスペックルパターンの像が撮像素子120の受光面に形成されるように設定されている。
そこで、撮像素子120は、スペックルパターンの像を撮像する。なお、以下では、撮像素子120で撮像されたスペックルパターンの像を、便宜上、「スペックルパターン画像」ともいう。スペックルパターン画像は、処理部131に送られる。
なお、撮像光学系110によって倒立の実像が形成される場合には、例えば対象物が+Y方向に移動すると、受光面上のスペックルパターンの像は−Y方向に移動する。
基板130は、いわゆる回路基板であり、撮像素子120、処理部131及び光源駆動用ICチップ132が実装されている。
ケース部材140は、照明系100、撮像光学系110、及び基板130を保持している。
処理部131は、プログラム可能なデバイスであるFPGA(Field Programmable Gate Array)を有している。処理部131は、プリンタ制御装置2090との双方向の通信が可能である。
処理部131は、撮像素子120におけるフレームレート及び露光時間、並びに光源101の発光パワーを設定することができる。
そして、計測中は、設定されたフレームレートに応じた時間間隔で、複数のスペックルパターン画像が撮像素子120から処理部131に送られることとなる。なお、以下では、説明を分かりやすくするため、計測中に処理部131に送られたn番目のスペックルパターン画像をG(n)と表記する。
処理部131は、撮像素子120からG(n)を受け取ると、その前に受け取ったスペックルパターン画像であるG(n−1)との相関強度を画素毎に求める。このとき、処理部131は、背景ノイズ成分をフィルタリングによって除去する。具体的には、時間的、空間的に近接した2枚のスペックルパターン画像であるG(n)とG(n−1)の各々について離散フーリエ変換を行い、それらを掛け合わせて得られる周波数空間上の相関強度において、フィルタリングの対象周波数帯の画素の相関強度に対してフィルタリング係数をかけることにより、背景ノイズ成分を除去している。
次に、処理部131は、相関強度と画素位置との関係において、相関強度がピークになると予想される部分が含まれる領域を所定の関数(以下では、「フィッティング関数」ともいう)でフィッティングさせる。ここでは、フィッティング関数として、最も誤差が小さい等角パラボラフィッティング関数を用いた(非特許文献1参照)。なお、以下では、相関強度がピークとなる画素位置を「ピーク位置」と略述する。
処理部131は、上記フィッティング関数を用いて、ピーク位置を求める。これにより、ピーク位置を画素ピッチよりも小さい分解能で求めることができる。そこで、画素位置を画素ピッチを単位として表記すると、ピーク位置は、小数点以下の値を持つこととなる。なお、画像情報は画素単位で得られるので、フィッティングを行わない場合には、ピーク位置の精度は画素ピッチ以下にはならない。
そして、処理部131は、得られたピーク位置と対象物が移動していないと仮定したときのピーク位置との差である「ピーク位置の移動量」を求める。なお、ピーク位置が小数点以下の値を持つため、ピーク位置の移動量も小数点以下の値を持つこととなる。本実施形態では、便宜上、ピーク位置の移動量における小数点以下の値を「サブピクセル移動量」ともいう。ここでは、このサブピクセル移動量の単位を[pixel/frame]と表記する。
それから、処理部131は、サブピクセル移動量に基づいてピーク位置の移動量を補正する。さらに、処理部131は、補正後のピーク位置の移動量に対して倍率補正演算を行い対象物の移動量を求める。なお、ピーク位置の移動量の補正、及び倍率補正演算については後述する。
処理部131は、得られた対象物の移動量とG(n)のフレーム番号nを組として、プリンタ制御装置2090に出力する。なお、処理部131は、プリンタ制御装置2090に限定せず、GPIBやIMAC形式で任意の先へ出力可能である。
ここで、対象物の移動量の計測誤差について説明する。
位置決め精度が0.2(μm)、繰り返し位置決め精度が±0.1(μm)のリニアステージに対象物を載置させ、リニアステージを移動させながら対象物の移動量を移動情報計測装置10で計測する。但し、処理部131では、上記ピーク位置の移動量の補正は行わないものとする。そして、このときの計測結果とリニアステージの移動量との差を対象物の移動量の計測誤差とする。なお、ここでは、リニアステージの移動量を10mmとしており、この場合、リニアステージの移動量の繰り返し精度は±0.001(%)である。この繰り返し精度は、移動情報計測装置10の繰り返し精度よりも一桁高い。
なお、以下では、煩雑さを避けるため、対象物の移動量の計測誤差を単に「計測誤差」ともいう。
先ず、サブピクセル移動量と計測誤差との関係に及ぼす、撮像素子120のフレームレート、スペックルパターン画像を取得する際の露光時間、光源101の発光パワーの影響について実験を行った。
「実験1」
図3には、フレームレートを760.803(fps)、露光時間を86.8(μsec)、光源101の発光パワーを17(mW)とし、リニアステージの移動速度を120(mm/sec)〜130(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、計測誤差の変動は、サブピクセル移動量が画素ピッチの1/2の整数倍のときに0となる1位相周期の正弦関数特性を示している。
「実験2」
図4には、フレームレートを876.578(fps)、露光時間を86.8(μsec)、光源101の発光パワーを17(mW)とし、リニアステージの移動速度を130(mm/sec)〜140(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、計測誤差の変動は、1位相周期の正弦関数特性を示している。ここでの微小量は0.1mm/sec程度の量である。
「実験3」
図5には、フレームレートを445.553(fps)、露光時間を124.0(μsec)、光源101の発光パワーを11.42(mW)とし、リニアステージの移動速度を68(mm/sec)〜72(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、計測誤差の変動は、1位相周期の正弦関数特性を示している。ここでの微小量は0.1mm/sec程度の量である。
「実験4」
図6には、フレームレートを320.02(fps)、露光時間を173.6(μsec)、光源101の発光パワーを7.85(mW)とし、リニアステージの移動速度を48.1(mm/sec)〜51.0(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、サブピクセル誤差の変動特性は、1位相周期の正弦関数特性を示している。ここでの微小量は0.1mm/sec程度の量である。
「実験5」
図7には、フレームレートを320.02(fps)、露光時間を86.8(μsec)、光源101の発光パワーを16.8(mW)とし、リニアステージの移動速度を120(mm/sec)〜130(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、計測誤差の変動は、正弦関数特性を示していない。
「実験6」
図8には、フレームレートを321.295(fps)、露光時間を86.8(μsec)、光源101の発光パワーを16.8(mW)とし、リニアステージの移動速度を120(mm/sec)〜130(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、計測誤差の変動は、正弦関数特性を示していない。
「実験7」
図9には、フレームレートを191.556(fps)、露光時間を285.2(μsec)、光源101の発光パワーを4.85(mW)とし、リニアステージの移動速度を28.1(mm/sec)〜30.5(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、計測誤差の変動は、1位相周期の正弦関数特性を示している。
「実験8」
図10には、フレームレートを91.4344(fps)、露光時間を86.8(μsec)、光源101の発光パワーを16.8(mmW)とし、リニアステージの移動速度を28.1(mm/sec)〜30.5(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係が示されている。このとき、サブピクセル誤差の変動は、正弦関数特性が崩れるともに、位相が反転している。
図3〜図10の結果から、サブピクセル移動量に対して計測誤差が正弦関数状に変化するケースと、そうでないケースがあることがわかる。そこで、サブピクセル移動量に対して計測誤差が正弦関数状に変化するケースについて、対象物の移動速度とフレームレートの関係、対象物の移動速度と露光時間の関係、対象物の移動速度と光源101の発光パワーの関係について解析を行った。
なお、以下では、便宜上、計測誤差が正弦関数的な変動を示すときの、フレームレートを「最適フレームレート」、露光時間を「最適露光時間」、光源101の発光パワーを「最適発光パワー」ともいう。そして、フレームレートが最適フレームレートのときの正弦関数の振幅と、露光時間が最適露光時間のときの正弦関数の振幅と、発光パワーが最適発光パワー」のときの正弦関数の振幅とは、ほぼ同じである。
図11には、上記実験を含む種々の実験結果から得られた対象物の移動速度と最適フレームレートとの関係が示されている。対象物の移動速度と最適フレームレートとの間には強い1次相関が認められる。ここでは、相関係数Rの2乗の値は0.9969であり、次の(1)式が近似式である。
最適フレームレート=6.3973×対象物の移動速度 ……(1)
そこで、上記(1)式を用いることによって、実験結果が得られていない移動速度についても、そのときの最適フレームレートを推定することができる。
上記(1)式が満足されていれば、対象物の移動速度によらず、フレーム間での対象物の移動量はほぼ同一となる。
図12には、上記実験を含む種々の実験結果から得られた対象物の移動速度の逆数と最適露光時間との関係が示されている。対象物の移動速度の逆数と最適露光時間の間にも高い1次相関が認められる。ここでは、相関係数Rの2乗の値は0.9329であり、次の(2)式が近似式である。
最適露光時間=9010.6×対象物の移動速度の逆数 ……(2)
そこで、上記(2)式を用いることによって、実験結果が得られていない移動速度についても、そのときの最適露光時間を推定することができる。
ところで、移動物体をカメラで撮影するときに、シャッター速度が遅いと、移動物体の像は移動方向にぶれた像となる。移動物体の像を点像と仮定すると、シャッターが開いている間に点像が移動するため、露光された像は点像にはなっておらず、前記の移動量相当分だけ移動方向に流れた像になる。このときの点像の移動量を「画像流れ量」と定義すると、上記(2)式が満足されていれば、移動物体の移動速度によらず、各フレームの画像における画像流れ量はほぼ同一となる。
図13には、上記実験を含む種々の実験結果から得られた対象物の移動速度と光源101の最適発光パワーとの関係が示されている。対象物の移動速度と最適発光パワーとの間にも高い1次相関が認められる。ここでは、相関係数Rの2乗の値は0.9796であり、次の(3)式が近似式である。
最適発光パワー=0.1529×対象物の移動速度 ……(3)
そこで、上記(3)式を用いることによって、実験結果が得られていない移動速度についても、最適発光パワーを推定することができる。
そして、露光時間を変えたときに、計測誤差とサブピクセル移動量との関係において、計測誤差の変動が1位相周期の正弦関数特性を示すように発光パワーを調整すると、撮像素子上の積算露光量は一定値になる。そこで、対象物の移動速度が変動したときには、積算露光量が一定値になるように発光パワーを調整すれば良いともいえる。この場合、対象物の移動速度によらず、各フレームの画像における画像コントラストはほぼ同一となる。
そして、フレームレートを「最適フレームレート」に、露光時間を「最適露光時間」に、光源101の発光パワーを「最適発光パワー」に調整すると、計測誤差とサブピクセル移動量との関係を、正弦関数でフィッティングすることができる。
図14には、一例として、フレームレートを320.02(fps)、露光時間を173.6(μsec)、光源101の発光パワーを7.85(mW)とし、リニアステージの移動速度を48.1(mm/sec)〜50.1(mm/sec)の範囲内で微小量ずつ変更しながら計測誤差を求めたときの、該計測誤差とサブピクセル移動量との関係を、正弦関数でフィッティングした結果が示されている。このときの実測値の数は30個であり、該30個の実測値におけるフィッティング誤差の平均は0.004%と極めて小さく、大きくても±0.023%以内であった。
対象物の移動速度と最適フレームレートとの関係、対象物の移動速度と最適露光時間との関係、対象物の移動速度と光源101の最適発光パワーとの関係、及び計測誤差とサブピクセル移動量との関係を表す正弦関数は、実験によって予め取得され、処理部131のメモリに格納されている。
次に、処理部131で行われる上記ピーク位置の移動量の補正について説明する。
処理部131は、ピーク位置の移動量を求めると、メモリに格納されている正弦関数を参照し、ピーク位置の移動量におけるサブピクセル移動量に対応する計測誤差を求める。そして、処理部131は、該計測誤差が相殺されるようにピーク位置の移動量を補正する。
次に、処理部131で行われる上記倍率補正演算について説明する。
倍率補正演算は、撮像光学系110の結像倍率をMとすると、被検面におけるスペックルパターンの移動速度がV1であるとき、撮像素子120の受光面でのスペックルパターンの像の移動速度V2がV2=−M×V1となることから、被検面の移動速度を求めるために必要な演算である。
そこで、処理部131は、補正されたピーク位置の移動量に、(−1/M)を掛けることにより、倍率補正演算を行う。
プリンタ制御装置2090は、印刷ジョブが要求されると、処理部131に計測要求を出力する。そして、処理部131は、計測要求を受け取ると、移動情報計測処理を開始する。
処理部131で行われる移動情報計測処理について、図15のフローチャートを用いて説明する。
最初のステップS401では、フレームレート、露光時間、及び光源101の発光パワーに、それぞれのデフォルト値を設定する。
次のステップS403では、フレーム番号が格納される変数nに初期値1をセットする。
次のステップS405では、光源101を点灯させる。
次のステップS407では、撮像素子120からスペックルパターン画像G(n)を送られてくるのを待ち、スペックルパターン画像G(n)を受け取るとステップS409に移行する。
このステップS409では、スペックルパターン画像G(n)を処理部131のメモリに保存する。
次のステップS411では、変数nにセットされている値を+1する。
次のステップS413では、撮像素子120からスペックルパターン画像G(n)を送られてくるのを待ち、スペックルパターン画像G(n)を受け取るとステップS415に移行する。
このステップS415では、スペックルパターン画像G(n)を処理部131のメモリに保存する。
次のステップS417では、スペックルパターン画像G(n)とスペックルパターン画像G(n−1)との間の相関強度を演算する。
次のステップS419では、相関強度に含まれる背景ノイズを低減させる(例えば、非特許文献1参照)。
次のステップS501では、相関強度と画素位置との関係を表すフィッティング関数を求める。
次のステップS503では、フィッティング関数に基づいてピーク位置の移動量を求める。
次のステップS505では、サブピクセル移動量を求める。
次のステップS507では、サブピクセル移動量と計測誤差との関係を表す正弦関数を参照し、ステップS505で得られたサブピクセル移動量に応じた計測誤差を求める。
次のステップS509では、ステップS507で得られた計測誤差に応じてピーク位置の移動量を補正する。
次のステップS511では、倍率補正演算を行い、対象物の移動量を求める。
次のステップS513では、対象物の移動量とフレームレートとから対象物の移動速度を算出する。
次のステップS515では、上記(1)式〜(3)式を用いて、対象物の移動速度に応じた最適フレームレート、最適露光時間、及び最適発光パワーを求める。
次のステップS517では、フレームレート、露光時間、及び光源101の発光パワーがそれぞれ最適値となるように、フレームレート、露光時間、及び光源101の発光パワーを調整する。
次のステップS519では、対象物の移動速度及び変数nの値をプリンタ制御装置2090に送出する。
次のステップS521では、プリンタ制御装置2090から計測終了を受け取ったか否かを判断する。計測終了を受け取っていなければ、ここでの判断は否定され、上記ステップS411に戻る。一方、計測終了を受け取っていれば、ここでの判断は肯定され、ステップS523に移行する。
このステップS523では、光源101を消灯させる。そして、移動情報計測処理を終了する。
プリンタ制御装置2090は、移動情報計測装置10からの移動情報に基づいて、予め設定されている所望の移動速度が維持されるように、搬送装置2044の駆動ローラを制御する。
ところで、カラープリンタ2000によって形成される画像の解像度が300dpiのときには、1ドットが約84.7μmとなる。記録紙の送り量の累積誤差が±0.0285%以内であれば、A4サイズの記録紙の長手方向に297mm移動したときの累積誤差は±84.7μm以内である。この場合、表裏の画像のずれは±1ドットライン以内にできる。これは、比較的よいレベルの仕様である。
上記実験では、対象物の移動速度の変動に伴う計測誤差は±0.023%以内である。これは、上記送り量の累積誤差の目標である±0.0285%以内である。そして、移動情報計測装置10では、フレーム単位で逐次的に計測誤差が補正されるため、送り方向のドット位置精度が向上するとともに、送り量の累積誤差も改善されて、±1ドットライン以内のずれにおさめることが可能である。
このように、記録紙を対象物とする移動情報計測装置10を用いることによって、画像の位置ずれを高精度に抑制することができる。
ところで、記録紙は、搬送方向における移動量の誤差のほかに、搬送方向に直交する方向にも移動することによってスキューしてしまうことがある。この場合、移動情報計測装置10を複数用いて、搬送方向とそれに直交する方向とで移動量を計測したり、搬送方向に関して離れた複数位置での移動量の差を計測し、その計測結果に基づいてフィードバック制御を行うことにより、スキューに対しても高い精度で制御することができる。
以上説明したように、本実施形態に係る移動情報計測装置10は、照明系100、撮像光学系110、撮像素子120、カバーガラス121、基板130、処理部131、光源駆動用ICチップ132、ケース部材140などを有している。
処理部131は、計測誤差とサブピクセル移動量との関係において、計測誤差の変動が1位相周期の正弦関数特性を示すように、フレームレート、露光時間、及び光源101の発光パワーを調整する。
照明系100は、光源101を処理部131から設定された発光パワーで発光させ、コヒーレントな光を被検面に照射する。撮像光学系110は、被検面にコヒーレントな光を照射することによって発生したスペックルパターンの像を撮像素子120の受光面に形成する。撮像素子120は、処理部131から設定されたフレームレート及び露光時間に応じてスペックルパターンの像を撮像し、スペックルパターン画像を処理部131に出力する。
処理部131は、2つのスペックルパターン画像について画素毎に相関強度を求め、フィッティングによって、画素ピッチよりも小さい分解能でピーク位置の移動量を求める。そして、処理部131は、サブピクセル移動量に基づいてピーク位置の移動量を補正し、さらに、補正後のピーク位置の移動量に対して倍率補正演算を行い対象物の移動量を求める。
この場合は、移動情報計測装置10は、対象物の移動速度が変動しても、その移動情報を高い精度で計測することができる。すなわち、移動情報計測装置10によれば、対象物の移動情報を高い精度で安定して計測することができる。
また、処理部131は、2つのフレームについて、フレーム間での対象物の移動量とフレーム間での経過時間とから、フレーム間での対象物の移動速度を求めることができる。
また、処理部131は、3つのフレームについて、連続した2つのフレーム間での対象物の移動速度から、加速度を求めることができる。
また、上記実施形態では、第1レンズ111、アパーチャ部材112、及び第2レンズ113がテレセントリックな光学配置になっている。この場合は、光源の波長変動や温度変動に伴う倍率の補償を行う必要がなく、煩雑な倍率補正を回避することができる。
また、移動情報計測装置10は、対象物の移動速度が一定のとき、温度変動や光源の波長変動、被険面のデフォーカス移動に対して高精度に安定して計測することができる。例えば、移動速度が100mm/secに制御された対象物について、撮像素子120、処理部131、及び光源駆動用ICチップ132の発熱に伴い、温度が室温から約60℃に上昇していく過程における繰り返し誤差の変動幅は0.028%程度であった。また、被険面のデフォーカス量が±1mmのときの繰り返し誤差の変動幅は0.008%であった。
なお、光源の波長変動や温度変動のおそれがないときには、第1レンズ111、アパーチャ部材112、及び第2レンズ113が非テレセントリックな光学配置であっても良い。
そして、カラープリンタ2000は、移動情報計測装置10を備えているため、記録紙の移動速度を安定して所望の移動速度とすることができ、結果として、位置ずれが抑制され、高品質の画像を形成することができる。
なお、上記移動情報計測処理において、ステップS401では、フレームレート、露光時間、及び光源101の発光パワーに、それぞれのデフォルト値を設定する場合について説明したが、これに限定されるものではない。
例えば、使用者によって対象物の予想される移動速度が入力されているときは、該移動速度に応じたフレームレート、露光時間、及び光源101の発光パワーを設定しても良い。
また、対象物の予想される移動速度が前回の移動情報計測処理のときと同じであれば、例えば、前回の移動情報計測処理の最後に調整されたフレームレート、露光時間、及び光源101の発光パワーを設定しても良い。
なお、上記実施形態において、記録紙の移動情報を求める際に、移動情報計測装置10の処理部131で行われる処理の少なくとも一部が、プリンタ制御装置2090で行われても良いし、プリンタ制御装置2090で行われる処理の少なくとも一部が、移動情報計測装置10の処理部131で行われても良い。
例えば、上記倍率補正演算がプリンタ制御装置2090で行われても良い。この場合は、処理部131は、補正されたピーク位置の移動量とG(n)のフレーム番号を組として、プリンタ制御装置2090に出力する。
また、上記実施形態において、任意のフレーム番号での移動速度を、それ以前の2つ以上のフレーム番号における移動速度の計測値から推定し、フレームレート、露光時間、光源の発光パワーを調整しても良い。
例えば、フレーム番号n−1での移動速度v1と、フレーム番号nでの移動速度v2から、加速度Aを求めて、フレーム番号n+1のスペックルパターン画像の取得時刻t3における移動速度V3をV3=V2+A×ΔTの式から予測し、V3に対して最適なフレームレート、露光時間、光源の発光パワーに調整した状態で時刻t3における計測を行っても良い。
また、上記実施形態において、上記(1)式、上記(2)式、上記(3)式を、使用者が修正するための入力手段が設けられていても良い。この場合、使用者は、定期的に移動情報計測装置10の測定精度を検定し、その検定結果に基づいて、上記(1)式、上記(2)式、及び上記(3)式の少なくともいずれかを修正することができる。
また、上記実施形態において、移動情報計測装置10と同等以上の送り精度を有する装置を用いて、所定の移動速度Vで対象物を移動させ、該移動速度Vにおける最適フレームレート、最適露光時間、最適発光パワーに設定した移動情報計測装置10を用いて計測したときに、その計測誤差がゼロとなるように撮像光学系110の結像倍率を補正するための補正係数を求めても良い。この補正係数は、上記ステップS511における倍率補正演算の際に用いることができる。
また、上記実施形態では、移動情報計測装置10が記録紙の移動情報を計測する場合について説明したが、これに限定されるものではなく、例えば、移動情報計測装置10が搬送装置2044の移動情報を計測しても良い。この場合、プリンタ制御装置2090は、移動情報計測装置10からの搬送装置2044の移動情報に基づいて、予め設定されている所望の搬送速度が維持されるように、搬送装置2044を制御する。
また、上記実施形態において、一例として図17に示されるように、更に、中間転写ベルト2040の移動情報を計測するための移動情報計測装置10が設けられていても良い。この場合、中間転写ベルト2040の移動速度が所望の移動速度となるように制御することが可能となり、所望のタイミングで各色のトナー像が中間転写ベルト2040へ転写され、その結果、色ずれを抑制することができる。ここでは、移動情報計測装置10は、感光体ドラムM1と感光体ドラムY1との間に設けられており、速度差の影響を少なくしている。
また、上記実施形態では、画像形成装置が、中間転写ベルト方式の画像形成装置である場合について説明したが、これに限定されるものではなく、一例として図18に示されるように、直接転写方式の画像形成装置2000Aであっても良い。
この画像形成装置2000Aでは、前記中間転写ベルト2040に代えて、搬送ベルト2040Aを有しており、該搬送ベルト2040A上の記録紙に、各感光体ドラム上のトナー画像が順次転写される。ここでは、搬送ベルト2040Aの近傍に移動情報計測装置10が配置されている。
この場合、プリンタ制御装置2090は、印刷ジョブが要求されると、所定のタイミング毎に移動情報計測装置10を用いて搬送ベルト2040Aあるいは記録紙の移動情報を求める。そして、プリンタ制御装置2090は、移動情報計測装置10からの搬送ベルト2040Aあるいは記録紙の移動情報に基づいて、予め設定されている所望の移動速度が維持されるように、搬送ベルト2040Aの駆動ローラを制御する。
これにより、画像形成装置2000Aでは、記録紙の移動速度を安定して所望の移動速度とすることができ、結果として、色ずれが抑制され、高品質の画像を形成することができる。
また、画像形成装置が、一例として図19に示されるように、インクを吐出する印字ヘッドにより、記録紙に画素を直接印字する画像形成装置2000Bであっても良い。なお、図19には、要部のみが示されている。印字ヘッドは、図19の紙面に直交する方向に移動(走査)可能である。
用紙トレイに装填されている記録紙は、フィードローラによって1枚のみが取り出され、送りローラ対1に挟まれて、印字ヘッドに対向する位置に送られる。記録紙はさらに送りローラ対2に挟まれて(図20参照)、間欠的に搬送される。
印字ヘッドは、上記移動(走査)しながら記録紙に画素を印字する。印字ヘッドによって印字されている間は、記録紙の送りは停止される。そして、印字ヘッドの1回の移動(走査)が終わると、記録紙は、各送りローラ対によって所定量送られる。この印字ヘッドによる印字と、記録紙の所定量の送りは、記録紙1枚分の印字が完了するまで、繰返し行われる。
移動情報計測装置10は、印字ヘッドの近傍に配置され、記録紙の移動速度及び(あるいは)変位量を直接検出する。そして、不図示の制御装置は、移動情報計測装置10の計測結果に基づいて各送りローラ対を制御する。
すなわち、画像形成装置2000Bにおいても、移動情報計測装置10を用いることにより、記録紙を高い精度で送ることができ、その結果、画像品質を向上させることが可能となる。
また、移動情報計測装置10は、単色のレーザプリンタ、複写機、プロッタ、ファクシミリ、及びこれらの複合機などの画像形成装置にも用いることができる。
また、移動情報計測装置10は、画像形成装置以外の装置にも用いることができる。例えば、搬送機構を有する装置や機械に、移動情報計測装置10を用いても良い。
例えば、長尺のフィルム材料を搬送ベルトによって搬送し、所定の長さ毎に切断する装置に移動情報計測装置10を用いても良い。この場合、搬送ベルトの移動速度の検出精度が低いと、安定して所定の長さ毎に切断するのは困難である。搬送ベルトを対象物として移動情報計測装置10を用いると、搬送ベルトの移動速度を安定して精度良く計測することができるため、長尺のフィルム材料を安定して所定の長さ毎に切断することができる。その結果、歩留まりが向上し、低コスト化を図ることができる。
また、搬送されている材料に対して所定の位置で加工を行うような装置に、移動情報計測装置10を用いると、位置精度を高めることができるため、製品の品質向上を図ることができる。
また、例えば、搬送されている材料に圧延加工を行う装置では、材料の搬送速度によって材料特性が変わることがある。この装置に、搬送されている材料を対象物とする移動情報計測装置10を用いると、材料の搬送速度を安定して精度良く計測することができるため、搬送速度を高精度に制御することが可能であり、その結果、材料特性を安定化させることができる。
ところで、駆動ローラに対して搬送ベルトがスリップしたり、駆動ローラの回転軸が偏芯していたり、周囲の機構で発生した振動が伝わったりすると、搬送ベルトの移動速度に誤差が生じることがある。搬送機構の改良のみでこの誤差を解消するのは難しいが、移動情報計測装置10を用いると、安価に安定して上記誤差を解消することができる。
また、搬送機構を有する装置や機械において、高コスト化を招くことなく搬送機構の搬送精度を向上させるために、移動情報計測装置10を用いても良い。
また、例えば、自動車などの走行体に移動情報計測装置10を用いても良い。自動車などの走行体を自動運転させる場合、走行速度や走行距離の検出精度が低いと、検出結果から得られた走行体位置と実際の走行体位置とがずれてしまい、衝突事故につながるなどの不具合が生じる。また、タイヤに連動しているシャフトの回転速度を高精度に検出することができたとしても、タイヤが路面上でスリップすると上記ずれが発生することになる。走行体に移動情報計測装置10が搭載されていれば、路面にコヒーレント光を照射して得られるスペックルパターン画像から、走行体の走行速度を求めることができるので、タイヤのスリップがあったとしても、上記ずれの発生を抑制することができる。
同様に、室内を走行する走行体に移動情報計測装置10を用いても良い。
また、例えば、惑星探査用の自律走行機に移動情報計測装置10を用いても良い。惑星探査用の自律走行機が走行する路面の状態は大変悪く、スリップやスタックが頻繁に生じる。そして、タイヤの回転速度を制御するだけでは自律走行機の正確な走行は困難である。この場合、自律走行機に移動情報計測装置10を搭載すれば、比較的低コストで走行精度を改善することができる。また、遠隔操作が難しい場合や、自律走行させたい場合においても、高い精度の走行が可能となる。
また、対象物の加速度あるいは減速度を計測する用途に移動情報計測装置10を用いても良い。この場合であっても、対象物の加速度あるいは減速度を高い精度で安定して計測することができる。
要するに、移動情報計測装置10は、コヒーレント光を照射したときにスペックルパターンを形成する物体全般の相対的な移動情報を安定して精度良く計測するのに好適である。
10…移動情報計測装置、100…照明系、101…光源、102…カップリングレンズ、110…撮像光学系、111…第1レンズ、112…アパーチャ部材、113…第2レンズ、114…鏡筒、120…撮像素子、121…カバーガラス、130…基板、131…処理部(処理装置)、132…光源駆動用ICチップ、140…ケース部材、2000…カラープリンタ(装置)、2000A…画像形成装置(装置)、2010…光走査装置、2040…中間転写ベルト、2040A…搬送ベルト(搬送機構)、2044…搬送装置(搬送機構)、2090…プリンタ制御装置(制御部)、K1,C1,M1,Y1…感光体ドラム。
特開2010−55064号公報
高浦 淳、他5名、「レーザスペックルによる高精度移動量センサの開発」、リコーテクニカルレポート、2014年1月、No.39、p.40−48

Claims (10)

  1. 対象物の移動情報を計測する移動情報計測装置であって、
    前記対象物に向けて光を射出する光源と、
    前記光源から射出され前記対象物で反射された光によって生じたスペックルパターンを撮像する撮像素子と、
    前記スペックルパターンの移動量に基づいて前記対象物の移動情報を求めるとともに、前記対象物の移動速度に基づいて、前記撮像素子でのフレームレート及び露光時間、並びに前記光源の発光パワーを調整する処理装置と、を備える移動情報計測装置。
  2. 前記処理装置は、2つのスペックルパターン間の相関強度を演算し、前記撮像素子の1画素以下の分解能で前記相関強度のピーク位置の移動量を求めることを特徴とする請求項1に記載の移動情報計測装置。
  3. 前記ピーク位置の移動量と前記対象物の移動量の計測誤差との関係に規則性があることを特徴とする請求項2に記載の移動情報計測装置。
  4. 前記処理装置は、ピーク位置の移動量を画素単位の値としたときの小数値をサブピクセル移動量とし、該サブピクセル移動量と前記対象物の移動量の計測誤差との関係を表す正弦関数を参照して前記対象物の移動量の計測誤差を求め、ピーク位置の移動量を補正することを特徴とする請求項2又は3に記載の移動情報計測装置。
  5. 前記調整された前記フレームレートは、前記フレームレートF、前記対象物の移動速度V、係数k1を用いて、F=k1×Vの関係が満たされていることを特徴とする請求項1〜4のいずれか一項に記載の移動情報計測装置。
    報計測装置。
  6. 前記調整された前記露光時間は、前記露光時間T、前記対象物の移動速度V、係数k2を用いて、V×T=k2の関係が満たされていることを特徴とする請求項1〜5のいずれか一項に記載の移動情報計測装置。
  7. 前記調整された前記発光パワーは、前記発光パワーP、前記対象物の移動速度V、係数k3を用いて、P=k3×Vの関係が満たされていることを特徴とする請求項1〜6のいずれか一項に記載の移動情報計測装置。
  8. 前記処理装置は、フレーム番号n(nは2以上の整数)とフレーム番号n+1の間での前記対象物の移動速度V(n)を計測するのに先だって、フレーム番号nより前のフレームによって得られた前記対象物の移動速度を用いて前記V(n)を推定し、推定したV(n)に基づいて、前記フレームレート、前記露光時間、及び前記発光パワーを調整することを特徴とする請求項1〜7のいずれか一項に記載の移動情報計測装置。
  9. 物体を搬送する搬送機構を有する装置において、
    前記物体及び前記搬送機構の少なくとも一方を対象物とする請求項1〜8のいずれか一項に記載の移動情報計測装置と、
    前記移動情報計測装置からの移動情報に基づいて、前記搬送機構を制御する制御部と、を備えることを特徴とする装置。
  10. 走行機構を有する走行体において、
    移動情報を計測する請求項1〜8のいずれか一項に記載の移動情報計測装置と、
    前記移動情報計測装置からの移動情報に基づいて、前記走行機構を制御する制御部と、を備えることを特徴とする走行体。
JP2014158478A 2014-08-04 2014-08-04 移動情報計測装置、装置及び走行体 Active JP6435694B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014158478A JP6435694B2 (ja) 2014-08-04 2014-08-04 移動情報計測装置、装置及び走行体
EP15177729.9A EP2982990B1 (en) 2014-08-04 2015-07-21 Movement information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158478A JP6435694B2 (ja) 2014-08-04 2014-08-04 移動情報計測装置、装置及び走行体

Publications (2)

Publication Number Publication Date
JP2016035420A JP2016035420A (ja) 2016-03-17
JP6435694B2 true JP6435694B2 (ja) 2018-12-12

Family

ID=53785452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158478A Active JP6435694B2 (ja) 2014-08-04 2014-08-04 移動情報計測装置、装置及び走行体

Country Status (2)

Country Link
EP (1) EP2982990B1 (ja)
JP (1) JP6435694B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6747266B2 (ja) * 2016-11-21 2020-08-26 コニカミノルタ株式会社 移動量検出装置、画像形成装置および移動量検出方法
EP3296749B1 (en) * 2017-01-27 2019-01-23 Sick IVP AB Motion encoder
US10675899B2 (en) 2017-06-14 2020-06-09 Ricoh Company, Ltd. Detector, image forming apparatus, reading apparatus, and adjustment method
CN113568596A (zh) * 2020-04-29 2021-10-29 阿里巴巴集团控股有限公司 电子设备
JP2022170550A (ja) 2021-04-28 2022-11-10 キヤノン株式会社 変位計及び物品の製造方法
CN114785962A (zh) * 2022-06-21 2022-07-22 威海凯思信息科技有限公司 拍摄参数获取方法、装置、电子设备及可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995748B2 (en) * 2003-01-07 2006-02-07 Agilent Technologies, Inc. Apparatus for controlling a screen pointer with a frame rate based on velocity
US7646373B2 (en) * 2004-12-17 2010-01-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods and systems for measuring speckle translation with spatial filters
US7400415B2 (en) * 2005-03-15 2008-07-15 Mitutoyo Corporation Operator interface apparatus and method for displacement transducer with selectable detector area
JP5531458B2 (ja) 2008-08-01 2014-06-25 株式会社リコー 速度検出装置及び多色画像形成装置
JP2011013083A (ja) * 2009-07-01 2011-01-20 Canon Inc 測定装置及びそれを用いた機器
JP2013195287A (ja) * 2012-03-21 2013-09-30 Sharp Corp 変位量検出装置、電子機器

Also Published As

Publication number Publication date
EP2982990B1 (en) 2018-04-04
JP2016035420A (ja) 2016-03-17
EP2982990A1 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP6435694B2 (ja) 移動情報計測装置、装置及び走行体
US9919479B2 (en) Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system
JP6364971B2 (ja) 画像形成装置
US9020406B2 (en) Image forming apparatus and method of correcting color registration error
JP5976618B2 (ja) 画像形成装置
US20180084145A1 (en) Image forming system and reading device
EP3118688A1 (en) Image forming apparatus and image forming method
JP2014232141A (ja) 画像形成装置及び位置合わせ方法
JP2013238673A (ja) 画像形成装置
JP2008076474A (ja) 光学装置と画像形成装置
JP6308846B2 (ja) 画像形成装置
JP6171772B2 (ja) 光書き込み制御装置、画像形成装置及び光書き込み装置の制御方法
JP2013233687A (ja) プリントヘッドの光量調整方法、画像形成装置の製造方法、及びプロセスカートリッジの製造方法
JP2006256047A (ja) 画像形成装置
JP6747266B2 (ja) 移動量検出装置、画像形成装置および移動量検出方法
JP2014219608A (ja) 画像形成装置、及び画像形成方法
JP2016170237A (ja) 画像形成装置
JP2017111232A (ja) 画像形成装置、制御方法、および制御プログラム
JP2007148296A (ja) 位置ずれ補正方法及びカラー画像形成装置
JP4227847B2 (ja) 画像形成装置及び位置ずれ補正方法
US10185269B2 (en) Image forming apparatus and method for forming an image
JP2009037030A (ja) 光走査装置及び画像形成装置
JP5999578B2 (ja) 装置及び画像形成装置
JP2016018193A (ja) 画像形成装置、制御方法およびプログラム
JP5672865B2 (ja) 画像形成装置及び画像形成装置の制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R151 Written notification of patent or utility model registration

Ref document number: 6435694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151