JP6429663B2 - 脈拍計、周波数解析装置及び脈拍測定方法 - Google Patents

脈拍計、周波数解析装置及び脈拍測定方法 Download PDF

Info

Publication number
JP6429663B2
JP6429663B2 JP2015025253A JP2015025253A JP6429663B2 JP 6429663 B2 JP6429663 B2 JP 6429663B2 JP 2015025253 A JP2015025253 A JP 2015025253A JP 2015025253 A JP2015025253 A JP 2015025253A JP 6429663 B2 JP6429663 B2 JP 6429663B2
Authority
JP
Japan
Prior art keywords
data
sampling data
pulse
frequency analysis
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025253A
Other languages
English (en)
Other versions
JP2016146933A (ja
Inventor
茜 廣島
茜 廣島
直也 時本
直也 時本
清水 裕司
裕司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2015025253A priority Critical patent/JP6429663B2/ja
Priority to TW104138776A priority patent/TW201630567A/zh
Priority to US14/956,593 priority patent/US10568581B2/en
Priority to CN201610034237.0A priority patent/CN105877726B/zh
Priority to KR1020160013997A priority patent/KR102503024B1/ko
Publication of JP2016146933A publication Critical patent/JP2016146933A/ja
Application granted granted Critical
Publication of JP6429663B2 publication Critical patent/JP6429663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Description

本発明は脈拍計、周波数解析装置及び脈拍測定方法に関し、例えば周波数解析を行う脈拍計、周波数解析装置及び脈拍測定方法に関する。
LED(light emitting diode)などの発光器と、フォトトランジスタ、フォトダイオードなどの光検出器とで構成される脈拍センサを使った脈拍計が知られている。脈拍センサからの出力から脈拍数を得る方法としては、センサからの出力に対してフーリエ変換処理を行うことで周波数解析を行い、解析結果に基づいて算出する方法がある。
フーリエ変換処理は、入力データの周波数成分を算出するという性格上、ある程度の入力データ数、すなわちサンプル数が必要となる。入力データ数は測定時間に依存し、脈拍数をより高分解能で演算し、かつ、測定範囲の上限をより拡げるためには入力データ数をより多くする必要がある。そのため、システムに求められる要求性能を満たすために、予め定められたサンプル数のデータ系列に対してフーリエ変換処理を行う場合には、入力データ数が揃うまではフーリエ変換処理ができず、脈拍数の出力までに時間がかかってしまう。
これに対し、特許文献1では、128個のサンプリングデータを処理単位とする高速フーリエ変換(FFT:Fast Fourier Transform)において、脈波データが32個取得される毎に、直近の128個の脈波データにFFT処理を行うことで、結果出力までの時間を短縮する技術が開示されている。
特開平10−258039号公報
特許文献1に記載された技術では、取得されたサンプリングデータ数が、128個に満たない場合、脈波データの中心値のデータとして0データを用いて補完することでサンプリングデータ数を128個にしている。
しかしながら、FFTの処理単位であるデータ数とするために0データで補完すると、脈波データに含まれる脈波以外の信号成分の影響により、脈拍数を正しく取得することが困難な場合があるという課題がある。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態によれば、脈拍計は、取得したサンプリングデータの数がn個(nは正整数)になった時、当該n個のサンプリングデータと、n番目のサンプリングデータを複製したデータとで、m個(mは正整数、かつ、m>n)のサンプリングデータを生成する複製部と、m個のサンプリングデータに対して周波数解析を行う周波数解析部とを有するものである。
前記一実施の形態によれば、周波数解析時の分解能を劣化させず、かつ、測定範囲が狭くなることを抑制しつつ、測定時間を短縮することができる。
実施の形態1にかかる脈拍計の構成を示すブロック図である。 発光器及び光検出器により脈拍データを取得する様子を示す模式図である。 実際に測定されたサンプリングデータ系列を複製して生成されるデータ系列の一例を示すグラフである。 実施の形態1にかかる脈拍計の動作の流れを説明する模式図である。 0データで補完したデータ系列の一例を模式的に示すグラフである。 図5に示されるデータ系列に対する周波数解析結果の一例を模式的に示すグラフである。 実施の形態1にかかる複製部により複製されたデータで補完したデータ系列の一例を模式的に示すグラフである。 図7に示されるデータ系列に対する周波数解析結果の一例を模式的に示すグラフである。 実施の形態2にかかる脈拍計の動作の流れを説明する模式図である。 実施の形態3にかかる脈拍計の構成を示すブロック図である。 カウンタ方式による脈拍数の測定について説明する模式図である。 実施の形態3にかかる脈拍計の動作の流れを説明する模式図である。
説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェアとしては、CPU、メモリ、その他の回路で構成することができ、ソフトウェアとしては、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non−transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<実施の形態1>
図1は、本実施の形態にかかる脈拍計1の構成を示すブロック図である。脈拍計1は、脈拍データ取得部100と、複製部16と、周波数解析部17と、脈拍数演算部18とを有する。脈拍データ取得部100は、脈拍数算出用のサンプリングデータを順次取得する構成であれば任意の構成が可能であるが、本実施の形態では、発光器10、発光制御部11、光検出器12、増幅器13、AD変換器14及びバッファ15を有する構成により脈拍データ取得部100が実現されている。
発光器10は、例えばLEDであり、発光制御部11の制御にしたがって発光する。脈拍の測定の際、発光器10は、測定対象者の血管に対して発光する。発光器10は、LEDを複数備えていてもよいし、単数であってもよい。発光器10により発する光としては、例えば緑色、赤色、赤外色など任意の色を用いることができる。発光制御部11は、発光器10の発光タイミングを制御する。発光制御部11は、例えば、常時発光、または予め定められた周期で点灯及び消灯を繰り返すなどの動作を行うよう制御信号を発光器10に送信する。なお、発光制御部11は、発光器10の発光量を制御してもよい。この場合、例えば、発光制御部11は、光検出器12で検出される信号の強さに応じて発光量を制御してもよい。
光検出器12は、例えば、フォトトランジスタやフォトダイオードを用いて構成されており、脈拍の測定の際、測定対象者の血管を介した発光器10からの光を検出する。本実施の形態では、図2に示されるように、発光器10と光検出器12は、測定対象者の人体(図2に示した例では、指50)に対して同じ向きとなるよう配置されている。このため、光検出器12は、発光器10が発した光が測定対象者の人体により反射された反射光を検出する。より具体的には、光検出器12は、測定対象者の血管に反射した、発光器10からの光を検出する。なお、発光器10による光が照射される人体は、指に限定されない。例えば腕などであってもよい。このように反射型のセンサを用いる場合、発光器と光検出器とを人体を挟んで対向して配置する必要がないため、装置を小型化することができる。また、本実施の形態のように、提示された人体に光を照射することにより脈拍を測定する構成であるため、測定対象者に対する負担が低減される。
血管における拍動に応じて光検出器12により検出される光の強度が変動する。脈拍計1は、この変動をとらえることにより後述するように脈拍数を演算している。
増幅器13は、例えば、アンプにより構成されており、光検出器12により検出された信号を増幅する。なお、増幅器13は、ゲインを変更可能なプログラマブル計装アンプや電流−電圧変換アンプであってもよい。ただし、光検出器12からの出力が十分である場合には、増幅器13は必ずしも設けられなくてもよい。
AD変換器14は、増幅器13により増幅された信号を予め定められたサンプリング周期でアナログデジタル変換する。これにより、増幅器13から出力されたアナログ信号は、脈拍数算出用のサンプリングデータであるデジタルデータに変換される。測定が開始されると発光器10による発光が繰り返されるため、AD変換器14は順次サンプリングデータを出力することとなる。
バッファ15は、例えばメモリなどの記憶部であり、AD変換器14から出力されたサンプリングデータを一時的に記憶する。
周波数解析を行う場合、予め定められた数のサンプリングデータ数を必要とする。例えば、フーリエ変換の場合、解析に必要となるサンプル数は、脈拍計1に仕様として要求される分解能及び測定範囲により定まる。なお、分解能とは、解析される周波数すなわち脈拍数の分解能をいう。測定範囲とは、測定可能な周波数の範囲、すなわち測定可能な脈拍数の範囲をいう。フーリエ変換の場合、サンプリングデータ数が多ければ多いほど、分解能は高くなり測定範囲も広くなる一方、サンプリングデータ数が少なければ少ないほど、分解能は低くなり測定範囲も狭くなる。このため、周波数解析を行うために、脈拍計1に仕様として要求される分解能及び測定範囲等により定まる予め定められた数のサンプリングデータ数が必要となる。以下の説明において、脈拍計1に仕様として要求される分解能及び測定範囲等により定まる予め定められたサンプル数について、要求サンプル数ということがある。
スマートウォッチ、フィットネスマシン、ライフログ計等のように運動中や歩行中などの脈拍数を測定する場合は、脈拍の変動に計測が追い付かなくなる恐れがあるため、測定時間を短くする必要がある。このため、要求サンプル数のサンプリングデータ数が取得される時間間隔で周波数解析を行うのではなく、より短時間で周波数解析を行うことが求められる。分解能や測定範囲を犠牲にすることなく、これを実現するため、本実施の形態では、データ数が要求サンプル数となるようサンプリングデータの複製を行う。
ここで、周波数解析処理に用いられるデータ数が要求サンプル数となるよう複製データで補完する方法としては、図3に示されるように、実際に測定された複数のサンプリングデータ系列を複製した複製データ系列を、複製元のサンプリングデータ系列の後に配列することが考えられる。しかし、このようにデータを補完した場合、データ系列のつなぎ目部分20、21に歪みが発生し、信号の周波数を変調してしまう。その結果、複製による歪みにより発生した周波数成分が脈拍の周波数として誤検出される恐れがある。
そこで、複製部16は、以下のように複製を行う。
複製部16は、バッファ15に格納されたサンプリングデータがある一定の個数に達するとデータを取り出し、データを複製する。具体的には、複製部16は、順次取得された予め定められた第1のデータ数のサンプリングデータのうち、最後に取得されたサンプリングデータを予め定められた第2のデータ数だけ複製する。すなわち、複製部16は、取得したサンプリングデータの数がn個(nは正整数)になった時、当該n個のサンプリングデータと、n番目のサンプリングデータを複製したデータとで、m個(mは正整数、かつ、m>n)のサンプリングデータを生成する。なお、第1のデータ数は、第2のデータ数と同じであってもよいし、第1のデータ数が第2のデータ数よりも多くてもよい。第2のデータ数が第1のデータ数よりも多くてもよい。ただし、第1のデータ数と第2のデータ数の和は、要求サンプル数に等しい。
また、複製部16は、第1のデータ数のサンプリングデータの後に、第2のデータ数の複製されたデータを挿入し、要求サンプル数のデータからなるデータ系列を周波数解析部17に出力する。複製部16は、バッファ15に新たに格納されたサンプリングデータ数が第1のデータ数に到達する毎に、新たに格納された第1のデータ数のサンプリングデータに対して上記の複製を行い、要求サンプル数のデータからなるデータ系列を周波数解析部17に出力する。
周波数解析部17は、複製部16から出力された要求サンプル数のデータ系列に対し、周波数解析を行う。すなわち、周波数解析部17は、上記m個のサンプリングデータに対して周波数解析を行う。具体的には、周波数解析部17はFFT処理を実施する。
すなわち、周波数解析部17は、脈拍の測定開始後、第1のデータ数のサンプリングデータが取得されると、1回目の周波数解析を行う。また、周波数解析部17は、第1のデータ数のサンプリングデータが一旦取得された後は、さらに第1のデータ数のサンプリングデータが取得される毎に、直近の第1のデータ数のサンプリングデータの後に直近の第1のデータ数のサンプリングデータのうち最後に取得されたサンプリングデータを第2のデータ数だけ複製したデータが続くデータ系列に対し、周波数解析を行う。つまり、脈拍データ取得部100が上記n個のサンプリングデータを取得する毎に、複製部16はm個のサンプリングデータを生成し、周波数解析部17はm個のサンプリングデータに対して周波数解析を行う。なお、本実施の形態における複製部16と周波数解析部17の動作については、具体例に基づいて図4を参照して後述する。
脈拍数演算部18は、周波数解析部17による解析結果から脈拍数を演算する。具体的には、脈拍数演算部18は、周波数解析部17により解析された周波数成分のうち、スペクトル値が一番大きいものを脈拍に対応する周波数として抽出し、抽出した周波数から脈拍数を演算する。なお、脈拍数は、抽出した周波数を、1分あたりの振動数に換算することで算出される。脈拍数演算部18は、演算した脈拍数を出力する。例えば、脈拍数演算部18は、図示しないディスプレイなどの表示部に脈拍数を表示出力してもよい。
以下、図4を参照して、脈拍計1の動作について説明する。図4に示した例では、要求サンプル数が128、実際に測定されたサンプリングデータ数である上記第1のデータ数が48、要求サンプル数を確保するために補完する複製データ数である上記第2のデータ数が80であるものとする。なお、これらの個数は一例であり、これらに限られない。図4において、実線で表された矩形は、実際に計測されたサンプリングデータを表しており、破線で表された矩形は、複製されたサンプリングデータを表している。
この具体例では、測定が開始されて、サンプリングデータ数が48個取得されると、1回目の脈拍数の測定がなされる。すなわち、サンプリングデータ数が48個取得されると、1回目の脈拍数の出力が得られる。そして、さらにサンプリングデータ数が48個取得されると、2回目の脈拍数の測定がなされる。より具体的には、計測開始から時間が経つにつれて、サンプリングデータd1、サンプリングデータd2、・・・、と順にバッファ15に蓄積される。そして、計測開始から48個目のサンプリングデータd48がバッファ15に蓄積されると、複製部16は、サンプリングデータd48を80個複製する。複製が完了すると、複製部16は周波数解析部17に周波数解析処理の開始を指示する。これにより周波数解析部17は、サンプリングデータd1からサンプリングデータd48の計48個のデータ系列の後に、80個のサンプリングデータd48が続く、合計128個のデータ系列に対して周波数解析を行う。これによって、実際の計測により取得されたサンプリングデータ数が要求サンプル数に到達する前に、脈拍数が得られる。
計測開始からさらに時間が経過し、計測開始から96個目のサンプリングデータd96がバッファ15に蓄積されると、複製部16は、サンプリングデータd96を80個複製する。さらに、周波数解析部17は、計測開始から49個目のサンプリングデータd49から、計測開始から96個目のサンプリングデータd96までの計48個のデータ系列の後に、80個のサンプリングデータd96が続く、合計128個のデータ系列に対して周波数解析を行う。このように、脈拍計1によれば第1のデータ数(ここでの例では48個)のサンプリングデータが取得される毎に脈拍数が得られる。
次に、本実施の形態にかかる脈拍計1の効果について、比較例を参照して説明する。比較例では、不足するデータ数を0値のデータで補完して周波数解析を行うものとする。
人体に対して発光した光を検出して得られるサンプリングデータには、脈拍による信号成分以外に、脈以外の反射(皮膚や骨等の反射)で得られる信号成分が含まれる。このような他の信号成分の混入は、図2に示されるような反射型のセンサの場合、指に対し発光し、指を透過した光を発光側とは逆側で受光する透過型のセンサに比べて、より顕著である。また、上記他の信号成分は、脈拍による信号成分よりも値が大きく、脈拍による信号成分に対してDCオフセット信号と捉えることができる。
このため、サンプリングデータに0データを補完する場合、図5に示されるようなデータ系列が生成されることを意味する。このように、人体に対して発光した光を検出して得られるサンプリングデータにおいては、実際には、0データは、脈拍による信号の中心値にはなりにくい。そして、図5に示されるようなデータ系列に対してFFT処理を実施すると、図6に示されるように、例えば本来取得すべき脈拍の周波数成分60よりも低周波数帯において、脈拍の周波数成分よりも大きなスペクトル値が検出されることがありうる。このため、脈拍数を誤って測定してしまう恐れがある。
このような問題に対し、FFT実行前にDCオフセットを除去する方法や実際の脈拍信号の振幅の中心値を算出する方法も考えられるが、計測される信号成分は測定時の装着具合や体勢などにより計測中に変化する。そのため、中心値を算出して元の信号から除去して0データで補完した場合でも0データと除去された信号との間で非連続性が生じてしまう。したがって、このような方法は現実的ではない。また、脈拍による信号の下限周波数が0.5Hz程度であることから、0.5Hz以下の信号を除去するローパスフィルタを構成することも考えられるが、このようなローパスフィルタを設けると、処理時間が増大する。また、電源電圧立ち上げ時やDC変動の発生、又は測定対象の変化が生じると、フィルタの出力が安定するまでに時間がかかり、さらに測定に時間を要することとなる。
これに対し、本実施の形態にかかる脈拍計1では、DCオフセットの影響を抑えるよう、図7に示されるように、実際に測定されたサンプリングデータの最後のものを複製している。このため、図8に示されるようにDCオフセットの影響を抑制することができる。すなわち、本来取得すべき脈拍の周波数成分60以外の周波数成分が抑制されるため、周波数解析結果から最大のスペクトル値を有する周波数を抽出して脈拍の演算を行うことができる。また、要求サンプル数を確保して周波数解析が行われるため、周波数解析時の分解能を劣化させず、かつ、測定範囲が狭くなることを抑制することができる。そして、実際に測定されたサンプリングデータの数が要求サンプル数に到達することを待つことなく周波数解析を行うので、脈拍の測定時間を短縮することができる。なお、0データによる補完ではなく、実際に測定されたサンプリングデータの最終値で補完した後に、最終値を元の信号から除去しても同様の効果が得られる。これに対し、中心値を除去した場合には、上述の非連続性が発生するため、効果は期待できない。
なお、複製部16、周波数解析部17、脈拍数演算部18は、マイコン(マイクロコントローラユニット)で実現される。より具体的には、マイコンはCPU(Central Processing Unit)、不揮発性メモリ等で構成され、不揮発性メモリに複製部16、周波数解析部17、脈拍数演算部18に相当するプログラムが格納され、CPUが該当するプログラムを実行することでそれぞれの処理が行われる。また、増幅器13、AD変換器14、バッファ15を当該マイコンに内蔵してもよい。
<実施の形態2>
次に実施の形態2について説明する。実施の形態1にかかる周波数解析部17は、第1のデータ数のサンプリングデータが取得される毎に、要求サンプル数のデータに対して周波数解析を行った。本実施の形態では、2回目以降の周波数解析は、第1のデータ数よりも少ない予め定められた第3のデータ数のデータが取得される毎に、第3のデータ数のサンプリングデータを含む直近の第1のデータ数のサンプリングデータの後に直近の第1のデータ数のサンプリングデータのうち最後に取得されたサンプリングデータを第2のデータ数だけ複製したデータが続くデータ系列に対し行われる。つまり、n個のサンプリングデータを取得後、脈拍データ取得部100が更にk個(kは正整数、かつ、k<n)のサンプリングデータを取得した時、複製部16は、(k+1)番目から(n+k)番目のサンプリングデータと、(n+k)番目のデータを複製したデータとでm個のサンプリングデータを生成し、周波数解析部17は、m個のサンプリングデータに対して周波数解析を行う。上記第3のデータ数は、ユーザからの指示に従い変更可能であってもよい。なお、実施の形態2は、周波数解析部17の周波数解析が行われるタイミングが異なる点を除き、他の構成については実施の形態1と同様である。
以下、図9を参照して、実施の形態2にかかる脈拍計1の動作について説明する。図9に示した例では、要求サンプル数が128、実際に測定されたサンプリングデータ数である第1のデータ数が48、要求サンプル数を確保するために補完する複製データ数である第2のデータ数が80、2回目以降の周波数解析を行う間隔に相当するデータ数である上記第3のデータ数が8であるものとする。なお、これらの個数は一例であり、これらに限られない。図9において、図4と同様、実線で表された矩形は実際に計測されたサンプリングデータを表しており、破線で表された矩形は複製されたサンプリングデータを表している。また、黒く塗りつぶされた矩形は前回の脈拍測定の際にも周波数解析で用いられたサンプリングデータを表している。
この具体例では、1回目の脈拍の測定は、図4に示される実施の形態1と同様である。すなわち、測定が開始されて、サンプリングデータ数が48個取得されると、1回目の脈拍数の測定がなされる。しかしながら、図4に示した例では、2回目以降の脈拍数の測定が、サンプリングデータ数が48個取得される毎に行われたのに対し、図9に示される例では、サンプリングデータ数が8個取得される毎に行われる。
より具体的には、計測開始から時間が経つにつれて、サンプリングデータd1、サンプリングデータd2、・・・、と順にバッファ15に蓄積される。そして、計測開始から48個目のサンプリングデータd48がバッファ15に蓄積されると、複製部16は、サンプリングデータd48を80個複製する。複製が完了すると、複製部16は周波数解析部17に周波数解析処理の開始を指示する。これにより周波数解析部17は、サンプリングデータd1からサンプリングデータd48の計48個のデータ系列の後に、80個のサンプリングデータd48が続く、合計128個のデータ系列に対して周波数解析を行う。これにより1回目の脈拍の測定結果が得られる。
計測開始からさらに時間が経過し、第3のデータ数、すなわち8個のデータがさらに取得されると、複製部16は新たに取得された8個目のデータの複製を行う。つまり、計測開始から56個目のサンプリングデータd56がバッファ15に蓄積されると、複製部16は、サンプリングデータd56を80個複製する。さらに、周波数解析部17は、直近の第1のデータ数のサンプリングデータであるサンプリングデータd9からサンプリングデータd56までの計48個のデータ系列の後に、80個のサンプリングデータd56が続く、合計128個のデータ系列に対して周波数解析を行う。これにより2回目の脈拍の測定結果が得られる。
次に、計測開始から64個目のサンプリングデータd64がバッファ15に蓄積されると、複製部16は、サンプリングデータd64を80個複製する。さらに、周波数解析部17は、直近の第1のデータ数のサンプリングデータであるサンプリングデータd17からサンプリングデータd64までの計48個のデータ系列の後に、80個のサンプリングデータd64が続く、合計128個のデータ系列に対して周波数解析を行う。これにより3回目の脈拍の測定結果が得られる。
また、同様に、計測開始から72個目のサンプリングデータd72がバッファ15に蓄積されると、複製部16は、サンプリングデータd72を80個複製する。さらに、周波数解析部17は、直近の第1のデータ数のサンプリングデータであるサンプリングデータd25からサンプリングデータd72までの計48個のデータ系列の後に、80個のサンプリングデータd72が続く、合計128個のデータ系列に対して周波数解析を行う。これにより4回目の脈拍の測定結果が得られる。以降、同様に、測定が行われる。このように、2回目以降の測定は、サンプリングデータが8個取得される毎に行われることとなる。つまり、図4に示した例に比べ、測定時間を6分の1に短縮することができる。
以上説明したように、実施の形態2にかかる脈拍計1によれば、2回目以降の測定において、さらに測定間隔を短くすることができる。なお、図9に示されるように、周波数解析は、回を重ねるごとに、サンプリングデータを第3のデータ数だけシフトさせたデータ系列を用いて行われる。このため、バッファ15はリングバッファとして構成されていることが好ましい。
<実施の形態3>
上述した実施の形態1及び実施の形態2にかかる脈拍計1では、サンプリングデータが第1のデータ数まで貯まるまで初回の脈拍数の出力がされない。そのため、初回の脈拍数の出力が得られるまでに時間がかかる。本実施の形態では、これを解決するため、周波数解析による脈拍測定に加え、カウンタ方式の脈拍測定を併用する。
ここで、カウンタ方式の脈拍測定とは、脈拍波形が基準値を超えたタイミングを検出することで脈拍数を演算する方法である。図11は、カウンタ方式による脈拍数の測定について説明する模式図である。図11に示されるように、カウンタ方式では、サンプリングデータの値を監視し、予め定められた基準値を超えるタイミングを毎回検出する。隣接する2つのタイミングの時間間隔は脈拍間隔に相当するため、この時間間隔から1分間あたりの脈拍数が演算される。カウンタ方式は、FFTを用いた脈拍数の測定に比べて、測定時間が短い特徴がある。具体的には、カウンタ方式では人間の脈の1拍分のサンプリングデータで測定することが可能であるのに対し、FFTを用いた脈拍数の測定では、1拍〜数拍分のサンプリングデータを必要とする。しかし、カウンタ方式の場合、適切な基準値の設定が必要である。また、特に図2に示される反射型の光センサを用いた場合には、例えば指などの測定対象の位置が測定中に変動する等のために測定環境が不安定であり、基準値を一意に定めることが難しい。また、カウンタ方式では、脈拍波形を再現可能なようサンプリングする必要があるため、サンプリング周期をFFTによる脈拍測定の場合に比べて高くすることが好ましい。このため、LEDの点灯時間が増え、システム全体の消費電流が上がってしまう恐れがある。そこで、本実施の形態では、周波数解析に必要なデータ数が不足している状態ではカウンタ方式による脈拍測定を行い、周波数解析に必要なデータ数が貯まった後は、周波数解析による脈拍測定に切り替える。
図10は、本実施の形態にかかる脈拍計2の構成を示すブロック図である。脈拍計2は、脈拍データ取得部100と、複製部16と、周波数解析部17と、脈拍数演算部18と、切替部30と、カウント部31と、脈拍数演算部32とを有する。すなわち、脈拍計2は、脈拍計1の構成に、切替部30、カウント部31、脈拍数演算部32が追加されている。以下、脈拍計2の構成のうち、脈拍計1と重複する構成については説明を省略し、追加された構成について説明する。
切替部30は、周波数解析による脈拍数の測定と、カウンタ方式による脈拍数の測定とを切替える。具体的には、切替部30は、取得されたサンプリングデータ数が第1のデータ数に達するまでの間、カウンタ方式による脈拍数の測定を実行するように制御し、サンプリングデータ数が第1のデータ数に達した後は、周波数解析による脈拍数の測定を実行するように制御する。なお、切替部30は、さらに、カウンタ方式による脈拍数の測定時と、周波数解析による脈拍数の測定時とで、サンプリング周期を切替えてもよい。例えば、取得されたサンプリングデータ数が第1のデータ数に達するまでの間、第1のサンプリング周期でサンプリングデータを取得し、サンプリングデータ数が第1のデータ数に達した後は、第1のサンプリング周期よりも長い第2のサンプリング周期でサンプリングデータを取得するよう切替を行ってもよい。
カウント部31及び脈拍数演算部32は、カウンタ方式の脈拍数の測定を実現する構成部分である。
カウント部31は、検出部として機能し、順次取得されるサンプリングデータの値が予め定められた基準値を超えるタイミングを検出する。カウント部31は、サンプリングデータの値が予め定められた基準値を超える度に、超えたタイミングを検出する。
脈拍数演算部32は、カウント部31により検出されたタイミングの時間間隔から脈拍数を演算する。なお、脈拍数演算部32は、切替部30の切替により、第1のデータ数のサンプリングデータが取得するまでの間、脈拍数の測定を行う。
以下、図12を参照して、脈拍計2の動作について説明する。本実施の形態では、周波数解析による脈拍数の測定においては、実施の形態1に示した方法も実施の形態2に示した方法も適用可能であるが、ここでは実施の形態1に示した方法により周波数解析による脈拍数の測定を行う場合を例に説明する。図12に示した例では、図4と同様、要求サンプル数が128、実際に測定されたサンプリングデータ数である第1のデータ数が48、要求サンプル数を確保するために補完する複製データ数である第2のデータ数が80であるものとする。なお、これらの個数は一例であり、これらに限られない。また、図12において、図4と同様、実線で表された矩形は実際に計測されたサンプリングデータを表しており、破線で表された矩形は複製されたサンプリングデータを表している。
この具体例では、測定が開始されて、サンプリングデータ数が48個取得されるまでの間、カウンタ方式による測定が繰り返され、サンプリングデータ数が48個取得された後は、周波数解析による脈拍測定が繰り返される。より具体的には、以下のように脈拍計2は動作する。まず、計測開始から時間が経つにつれて、サンプリングデータd1、サンプリングデータd2、・・・、と順にバッファ15に蓄積されるが、計測開始から48個目のサンプリングデータd48がバッファ15に蓄積されるまでの間は、切替部30はカウント部31及び脈拍数演算部32による測定を選択する。そのため、この間、カウント部31は、順次取得されるサンプリングデータを監視し、サンプリングデータの値(AD変換値)が、基準値未満から基準値以上へと変化するタイミングを検出する。脈拍数演算部32は、カウント部31が検知した隣接する2つのタイミングの時間間隔から脈拍数を演算する。カウント部31及び脈拍数演算部32による脈拍数の測定は、サンプリングデータ数が48個取得されるまでの間、繰り返される。図12に示した例では、カウント部31及び脈拍数演算部32による脈拍数の測定はn回繰り返されている。なお、カウント部31及び脈拍数演算部32による脈拍数の測定は、このようにカウント部31によりカウントが行われる毎に行われてもよいが、1回であってもよい。このようにカウンタ方式の脈拍測定を行うことで、第1のデータ数のデータが取得されるよりも前の段階で、脈拍数を測定することができる。
そして、サンプリングデータd48がバッファ15に蓄積されると、切替部30は周波数解析による脈拍測定に切り替える。複製部16は、サンプリングデータd48を80個複製し、周波数解析部17は、サンプリングデータd1からサンプリングデータd48の計48個のデータ系列の後に、80個のサンプリングデータd48が続く、合計128個のデータ系列に対して周波数解析を行う。そして、得られた周波数解析結果に基づいて、脈拍数演算部18が脈拍数を演算し、n+1回目の測定が完了する。
計測開始からさらに時間が経過し、計測開始から96個目のサンプリングデータd96がバッファ15に蓄積されると、複製部16は、サンプリングデータd96を80個複製する。さらに、周波数解析部17は、計測開始から49個目のサンプリングデータd49から、計測開始から96個目のサンプリングデータd96までの計48個のデータ系列の後に、80個のサンプリングデータd96が続く、合計128個のデータ系列に対して周波数解析を行う。そして、得られた周波数解析結果に基づいて、脈拍数演算部18が脈拍数を演算し、n+2回目の測定が完了する。以降、同様に、第1のデータ数(ここでの例では48個)のサンプリングデータが取得される毎に、周波数解析に基づく脈拍数の測定が繰り返される。なお、上述の通り、図12に示した例では、第1のデータ数のサンプリングデータが取得される毎に周波数解析が行われるが、上述の第3のデータ数のサンプリングデータが取得される毎に周波数解析が行われてもよい。
以上説明したように、本実施の形態によれば、第1のデータ数のサンプリングデータが取得されるまでの間、カウンタ方式の脈拍測定が行われるため、第1のデータ数が取得されるのを待たずに初回の脈拍数を測定することができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。例えば、上記実施の形態では、図2に示される反射型のセンサにより脈拍データを取得する構成となっているが、指に対し発光し、指を透過した光を発光側とは逆側で受光して脈拍データを取得する透過型のセンサが用いられてもよい。なお、測定対象は人体に限らず動物でもよい。また、測定部位は指以外に腕や手のひら、足でもよい。また、パルスオキシメータにおける脈拍測定において適用されてもよい。さらに、脈拍の測定に限らず、周波数解析装置として、歩行周期などの周期的な体動の測定に適用されてもよいし、構造物の振動検知等に用いられてもよい。また、実施の形態3では、初回にカウンタ方式に切り替える構成について示しているが、初回に限らず、例えば測定中に外的要因によりデータが乱れた場合などの不測の事態が起こった時もカウンタ方式に切り替えるよう構成してもよい。
1、2 脈拍計
10 発光器
11 発光制御部
12 光検出器
13 増幅器
14 AD変換器
15 バッファ
16 複製部
17 周波数解析部
18 脈拍数演算部
18、32 脈拍数演算部
30 切替部
31 カウント部
100 脈拍データ取得部

Claims (12)

  1. 脈拍数算出用のサンプリングデータを順次取得する脈拍データ取得部と、
    前記取得したサンプリングデータの数がn個(nは正整数)になった時、当該n個のサンプリングデータと、n番目のサンプリングデータを複製したデータとで、m個(mは正整数、かつ、m>n)のサンプリングデータを生成する複製部と、
    前記m個のサンプリングデータに対して周波数解析を行う周波数解析部と、
    前記周波数解析部による解析結果から脈拍数を演算する第一の脈拍数演算部と
    を有する脈拍計。
  2. 前記脈拍データ取得部が前記n個のサンプリングデータを取得する毎に、前記複製部は前記m個のサンプリングデータを生成し、前記周波数解析部は前記m個のサンプリングデータに対して周波数解析を行う
    請求項1に記載の脈拍計。
  3. 前記n個のサンプリングデータを取得後、前記脈拍データ取得部が更にk個(kは正整数、かつ、k<n)のサンプリングデータを取得した時、前記複製部は、(k+1)番目から(n+k)番目のサンプリングデータと、前記(n+k)番目のデータを複製したデータとで前記m個のサンプリングデータを生成し、前記周波数解析部は、前記m個のサンプリングデータに対して周波数解析を行う
    請求項1に記載の脈拍計。
  4. 前記脈拍データ取得部により順次取得されるデータが予め定められた基準値を超えるタイミングを検出する検出部と、
    前記n個のサンプリングデータを前記脈拍データ取得部が取得するまでの間、前記検出部により検出されたタイミングの時間間隔から脈拍数を演算する第二の脈拍数演算部と
    をさらに有する請求項1に記載の脈拍計。
  5. 前記脈拍データ取得部は、
    測定対象の血管に対して発光する発光器と、
    前記血管を介した前記発光器からの光を検出する光検出器と、
    前記光検出器からの信号をアナログデジタル変換する変換器と
    を有する請求項1に記載の脈拍計。
  6. 前記光検出器は、前記血管に反射した前記発光器からの光を検出する
    請求項5に記載の脈拍計。
  7. 前記周波数解析部は、高速フーリエ変換により周波数解析を行う
    請求項1に記載の脈拍計。
  8. サンプリングデータを順次取得するデータ取得部と、
    前記取得したサンプリングデータの数がn個(nは正整数)になった時、当該n個のサンプリングデータと、n番目のサンプリングデータを複製したデータとで、m個(mは正整数、かつ、m>n)のサンプリングデータを生成する複製部と、
    前記m個のサンプリングデータに対して周波数解析を行う周波数解析部と
    を有する周波数解析装置。
  9. 脈拍数算出用のサンプリングデータを順次取得する脈拍データ取得ステップと、
    前記取得したサンプリングデータの数がn個(nは正整数)になった時、当該n個のサンプリングデータと、n番目のサンプリングデータを複製したデータとで、m個(mは正整数、かつ、m>n)のサンプリングデータを生成する複製ステップと、
    前記m個のサンプリングデータに対して周波数解析を行う周波数解析ステップと、
    前記周波数解析ステップでの解析結果から脈拍数を演算する第一の脈拍数演算ステップと
    を含む脈拍測定方法。
  10. 前記脈拍データ取得ステップにより前記n個のサンプリングデータを取得する毎に、前記複製ステップは前記m個のサンプリングデータを生成し、前記周波数解析ステップは前記m個のサンプリングデータに対して周波数解析を行う
    請求項9に記載の脈拍測定方法。
  11. 前記n個のサンプリングデータを取得後、前記脈拍データ取得ステップによりk個(kは正整数、かつ、k<n)のサンプリングデータを取得した時、前記複製ステップは、(k+1)番目から(n+k)番目のサンプリングデータと、前記(n+k)番目のデータを複製したデータとで前記m個のサンプリングデータを生成し、前記周波数解析ステップは、前記m個のサンプリングデータに対して周波数解析を行う
    請求項9に記載の脈拍測定方法。
  12. 順次取得されるデータが予め定められた基準値を超えるタイミングを検出する検出ステップと、
    前記n個のサンプリングデータが取得されるまでの間、検出された前記タイミングの時間間隔から脈拍数を演算する第二の脈拍数演算ステップと
    をさらに含む
    請求項9に記載の脈拍測定方法。
JP2015025253A 2015-02-12 2015-02-12 脈拍計、周波数解析装置及び脈拍測定方法 Active JP6429663B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015025253A JP6429663B2 (ja) 2015-02-12 2015-02-12 脈拍計、周波数解析装置及び脈拍測定方法
TW104138776A TW201630567A (zh) 2015-02-12 2015-11-23 脈搏計、頻率解析裝置及脈搏測定方法
US14/956,593 US10568581B2 (en) 2015-02-12 2015-12-02 Pulsimeter, frequency analysis device, and pulse measurement method
CN201610034237.0A CN105877726B (zh) 2015-02-12 2016-01-19 脉搏计、频率分析装置和脉搏测量方法
KR1020160013997A KR102503024B1 (ko) 2015-02-12 2016-02-04 맥박계, 주파수 해석 장치 및 맥박 측정 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025253A JP6429663B2 (ja) 2015-02-12 2015-02-12 脈拍計、周波数解析装置及び脈拍測定方法

Publications (2)

Publication Number Publication Date
JP2016146933A JP2016146933A (ja) 2016-08-18
JP6429663B2 true JP6429663B2 (ja) 2018-11-28

Family

ID=56620545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025253A Active JP6429663B2 (ja) 2015-02-12 2015-02-12 脈拍計、周波数解析装置及び脈拍測定方法

Country Status (5)

Country Link
US (1) US10568581B2 (ja)
JP (1) JP6429663B2 (ja)
KR (1) KR102503024B1 (ja)
CN (1) CN105877726B (ja)
TW (1) TW201630567A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934309B2 (ja) 2017-03-30 2021-09-15 ルネサスエレクトロニクス株式会社 脈拍計測装置、脈拍計測方法、及びプログラム
CN108968935A (zh) * 2018-08-10 2018-12-11 章立美 一种适用于老人的生命特征监测报警装置及方法
EP3920787A1 (en) * 2019-02-07 2021-12-15 Happitech B.V. Method of providing spoken instructions for a device for determining a heartbeat
WO2021102908A1 (zh) * 2019-11-29 2021-06-03 深圳市汇顶科技股份有限公司 信号调整方法、装置及计算机存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225937A (en) * 1978-09-18 1980-09-30 Xerox Corporation Method and apparatus for suppression of error accumulation in recursive computation of a discrete Fourier transform
JPS6289176A (ja) * 1985-10-15 1987-04-23 Mitsubishi Electric Corp 核磁気共鳴画像の補間拡大方法
JP3564255B2 (ja) * 1997-03-17 2004-09-08 セイコーエプソン株式会社 脈拍計
US5924980A (en) * 1998-03-11 1999-07-20 Siemens Corporate Research, Inc. Method and apparatus for adaptively reducing the level of noise in an acquired signal
CN1527513A (zh) * 2003-03-07 2004-09-08 北京三星通信技术研究有限公司 Ofdm系统中使用时域导频序列的信息处理方法和装置
JP4528710B2 (ja) * 2005-11-09 2010-08-18 株式会社東芝 睡眠状態計測装置、睡眠状態計測方法及び睡眠状態計測システム
JP2007190281A (ja) * 2006-01-20 2007-08-02 Konica Minolta Sensing Inc 生体情報測定方法、生体情報測定装置
CN100499610C (zh) * 2006-04-14 2009-06-10 中国人民解放军理工大学 一种基于正交序列设计的低复杂度信道估计方法
US20090326351A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Signal Processing Mirroring Technique
US8644397B2 (en) * 2008-09-23 2014-02-04 Qualcomm Incorporated Efficient multiplexing of reference signal and data in a wireless communication system
CN101751375B (zh) * 2008-12-12 2011-12-21 普天信息技术研究院有限公司 一种dft/idft的快速计算方法和装置
US8484274B2 (en) * 2009-08-27 2013-07-09 The United States of America represented by the Administrator of the National Aeronautics Space Administration Optimal padding for the two-dimensional fast fourier transform
JP4916561B2 (ja) * 2010-03-26 2012-04-11 株式会社エヌ・ティ・ティ・ドコモ 信号生成装置及び信号生成方法
CN102164104A (zh) * 2011-01-12 2011-08-24 深圳市蓝韵实业有限公司 一种信号基线快速处理方法及装置
JP5652266B2 (ja) * 2011-03-04 2015-01-14 セイコーエプソン株式会社 計測装置
US8954135B2 (en) * 2012-06-22 2015-02-10 Fitbit, Inc. Portable biometric monitoring devices and methods of operating same
CN103595677B (zh) * 2012-08-08 2016-11-16 北京泰美世纪科技有限公司 通信系统中信标信号的生成方法及装置
JP6251997B2 (ja) * 2012-09-18 2017-12-27 カシオ計算機株式会社 脈拍データ検出装置、脈拍データ検出方法、および脈拍データ検出プログラム
CN109410289B (zh) * 2018-11-09 2021-11-12 中国科学院精密测量科学与技术创新研究院 一种深度学习的高欠采样超极化气体肺部mri重建方法

Also Published As

Publication number Publication date
US20160235371A1 (en) 2016-08-18
CN105877726B (zh) 2020-08-18
KR102503024B1 (ko) 2023-02-24
CN105877726A (zh) 2016-08-24
US10568581B2 (en) 2020-02-25
TW201630567A (zh) 2016-09-01
KR20160099489A (ko) 2016-08-22
JP2016146933A (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6429663B2 (ja) 脈拍計、周波数解析装置及び脈拍測定方法
US10058289B2 (en) Pulsimeter and adjustment method of pulsimeter
WO2017076105A1 (zh) 一种用于直流输电线路的故障辨识系统
US9808162B2 (en) Pulse wave sensor and semiconductor module
KR100963253B1 (ko) 맥박 신호에서 잡음을 제거하기 위한 방법 및 장치와기록매체
JP2019510558A5 (ja)
JP2008132012A (ja) 脈波検出装置
EP3485807A1 (en) Measurement device, measurement method, and measurement program
CN106456025B (zh) 光学生命体征传感器
JP2013055982A (ja) 心房細動判定装置、心房細動判定方法およびプログラム
US20180368700A1 (en) System and Method for Monitoring a Heart Rate
JP6934309B2 (ja) 脈拍計測装置、脈拍計測方法、及びプログラム
US9714969B2 (en) Systems and methods for spectroscopic measurement of a characteristic of biological tissue
JP2022160608A (ja) 生体信号処理装置およびその制御方法
CN107661094B (zh) 用于光体积描记传感器的电路及方法
KR102364842B1 (ko) 맥파 측정 장치 및 방법
KR102390368B1 (ko) 맥파 측정 장치 및 방법
RU2786310C1 (ru) Пульсовой оксиметр
JP2016214336A (ja) 脈拍計
JP6098673B2 (ja) 心房細動判定装置、心房細動判定装置の作動方法およびプログラム
JP7281930B2 (ja) 生体情報の測定装置及びプログラム
KR20220148631A (ko) 광 신호 검출 장치 및 방법
RU2332165C2 (ru) Пульсовой оксиметр
RU2022106452A (ru) Обеспечение указания состояния десен человека
UA18471U (en) Photopletismograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6429663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150