JP6429024B2 - Greenhouse for plant cultivation - Google Patents

Greenhouse for plant cultivation Download PDF

Info

Publication number
JP6429024B2
JP6429024B2 JP2015124311A JP2015124311A JP6429024B2 JP 6429024 B2 JP6429024 B2 JP 6429024B2 JP 2015124311 A JP2015124311 A JP 2015124311A JP 2015124311 A JP2015124311 A JP 2015124311A JP 6429024 B2 JP6429024 B2 JP 6429024B2
Authority
JP
Japan
Prior art keywords
greenhouse
temperature
plant cultivation
planting area
house
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015124311A
Other languages
Japanese (ja)
Other versions
JP2017006040A (en
Inventor
佐藤 正幸
正幸 佐藤
Original Assignee
株式会社 光植栽研究所
株式会社 光植栽研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 光植栽研究所, 株式会社 光植栽研究所 filed Critical 株式会社 光植栽研究所
Priority to JP2015124311A priority Critical patent/JP6429024B2/en
Publication of JP2017006040A publication Critical patent/JP2017006040A/en
Application granted granted Critical
Publication of JP6429024B2 publication Critical patent/JP6429024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Description

本発明は太陽光を利用した植物栽培用の温室に関し、特に冬季等の日照の不足の際に補光が可能であるとともに、植栽区域の温度制御が容易な温室に係る。   The present invention relates to a greenhouse for plant cultivation using sunlight, and more particularly to a greenhouse that can be supplemented when sunlight is insufficient, such as in winter, and the temperature of a planting area can be easily controlled.

例えば特許文献1に示すように日照不足の場合にメタルハライドランプ,高圧ナトリウムランプ、超高圧ナトリウムランプ等の光源を用いた補光が提案されている。
しかし、補光光源の点灯制御に光子量計等の計測手段を用いることは、システムが複雑で高価なものになり実用的ではない。
また、例えば北陸地方等の冬季においては雨天等による日照不足の場合がある一方で、晴天時等には温室内が異常に高温になるのを防ぐ必要がある。
このような温度管理において、複雑なシステムは高価になるため実用的でなく、植物栽培の生産額を考慮した、できるだけ安価なシステムが期待される。
For example, as shown in Patent Document 1, supplementary light using a light source such as a metal halide lamp, a high-pressure sodium lamp, or an extra-high-pressure sodium lamp when sunshine is insufficient has been proposed.
However, it is not practical to use measurement means such as a photon meter for lighting control of an auxiliary light source because the system becomes complicated and expensive.
Further, for example, in the winter season such as the Hokuriku region, there is a case where there is a shortage of sunshine due to rainy weather or the like, but it is necessary to prevent an abnormally high temperature in the greenhouse during a sunny day.
In such temperature management, a complicated system is expensive and therefore not practical, and a system that is as inexpensive as possible considering the production value of plant cultivation is expected.

特開平10−201368号公報Japanese Patent Laid-Open No. 10-201368

本発明は、簡単な構造で補光及び温度管理が容易で実用的な植物栽培用温室の提供を目的とする。   An object of the present invention is to provide a practical greenhouse for greenhouse cultivation that has a simple structure and is easy to supplement and control temperature.

本発明に係る植物栽培用温室は、太陽光を利用した温室本体部と、前記温室本体部の内側に配置してあり、下部に開口部を形成するように植栽区域を上部から覆う透光体からなる内部ハウス部とを備え、前記温室本体部の内側天井部に温度センサー部を有し、前記内部ハウス部内に補光光源を有し、前記補光光源の点滅制御が前記温度センサー部の計測値に基づいて制御されていることを特徴とする。   The greenhouse for plant cultivation according to the present invention is a greenhouse body using sunlight, and is disposed inside the greenhouse body, and is a translucent covering a planting area from above so as to form an opening at the bottom. An internal house part composed of a body, a temperature sensor part in an inner ceiling part of the greenhouse main body part, a supplementary light source in the internal house part, and a flashing control of the supplemental light source in the temperature sensor part It is controlled based on the measured value.

ここで温室本体部とは、農業ハウス等とも称され、ビニルシート等の樹脂シートでドーム状にしたものや、ガラス等を枠組したハウス等、植物を栽培するのに用いられるすべての温室構造体が含まれる。
本発明において、内部ハウス部とは内部に設置した補光光源から発生する熱が植栽区域の暖房としても使用できるように、補光光源及びその下の植物を栽培している植栽区域をカバーシート等で覆った構造をいう。
この場合に植栽区域が異常高温にならないように内部ハウス部の下部は開口されている。
このように本発明は温室本体部と、その内側に配置した内部ハウス部との二重構造にするとともに、内部ハウス部内に補光光源を設けたことにより補光光源を暖房手段に活用できるだけでなく、温室本体部の内側天井部の温度にて日照の強弱を判断することができた点に特徴がある。
よって、光量子計等の高価な計測機器等を用いなくても、温度センサーとタイマー等の凡用性があり、安価な機器類で制御できる。
Here, the greenhouse main body is also called an agricultural house, etc., and all greenhouse structures used to grow plants, such as those made into a dome with a resin sheet such as a vinyl sheet, or a house framed with glass, etc. Is included.
In the present invention, the internal house part is a planting area where the supplementary light source and the plant under it are cultivated so that heat generated from the supplementary light source installed inside can also be used as heating of the planting area. A structure covered with a cover sheet.
In this case, the lower part of the inner house part is opened so that the planting area does not become abnormally hot.
As described above, the present invention has a double structure of the greenhouse main body portion and the internal house portion arranged inside thereof, and the supplementary light source can be used as a heating means by providing the supplementary light source in the internal house portion. The characteristic is that the intensity of sunshine could be determined by the temperature of the inner ceiling of the greenhouse main body.
Therefore, even without using expensive measuring equipment such as an optical quantum meter, it has versatility such as a temperature sensor and a timer, and can be controlled with inexpensive equipment.

本発明においては、前記内部ハウス部の下部開口部の周囲に冷気遮断フェンス部を有し、前記内側天井部の暖気を、前記内部ハウス部の内側の植栽区域に還流させるための暖気還流制御手段を有するようにしてもよい。
暖気は上部に発生し、冷気は下部に溜まりやすい性質を利用し、内部ハウス部内に下部の開口部から冷気が侵入するのを周囲の冷気遮断フェンス部で遮り、温室本体部の天井部の暖気を植栽区域部内に還流させることができる。
In the present invention, there is a cold air blocking fence around the lower opening of the internal house, and the warm air reflux control for returning the warm air from the inner ceiling to the planting area inside the internal house You may make it have a means.
Using the property that warm air is generated in the upper part and cold air is likely to accumulate in the lower part, the cold air intrusion into the internal house part is blocked by the surrounding cold air shielding fence part, and the warm air in the ceiling part of the greenhouse body part Can be refluxed into the planting area.

従来の温室においては、北側の壁面も他の壁面や屋根と同様にガラス、ビニルシート等で構成されているが、この北側壁面は光の吸収に効果がなく、かえって熱を外部に飛散させてしまう。
そこで本発明においては、前記温室本体部の北側に位置する側壁部に蓄熱部を形成してもよい。
この蓄熱部により早朝の外気温が低い時間帯において温室内が低下するのを抑えることができる。
ここで蓄熱部とは、太陽光の熱を吸収し蓄熱性を有するものをいい、安価である点からはポリ容器等に水を入れ、蓄熱部としてもよい。
In conventional greenhouses, the north side wall is made of glass, vinyl sheet, etc., just like other walls and roofs, but this north side wall surface has no effect on light absorption, but rather dissipates heat to the outside. End up.
Therefore, in the present invention, a heat storage part may be formed on the side wall part located on the north side of the greenhouse main body part.
With this heat storage section, it is possible to prevent the inside of the greenhouse from being lowered in a time zone when the outside air temperature is low in the early morning.
Here, the heat storage unit refers to one that absorbs the heat of sunlight and has heat storage properties. From the viewpoint of being inexpensive, water may be put into a plastic container or the like to form a heat storage unit.

本発明においては、内部ハウス部の植栽区域が異常高温になるのを防ぐための散水噴霧型冷気発生手段又は/及び外気との換気手段を有するようにして、植栽区域が異常高温になるのを防ぐようにするのが好ましい。
ここで、散水噴霧型冷気発生手段とは水をキリ状に噴霧し、水の蒸発熱にて冷気を発生させる方法をいい、外気との換気手段は相対的に低温の外気を取り入れ、高温の内気を外側に排出することをいう。
In the present invention, the planting area becomes abnormally hot by having water spray type cold air generating means for preventing the planting area of the internal house part from becoming abnormally high temperature and / or ventilation means with outside air. It is preferable to prevent this.
Here, the water spray spray type cold air generating means is a method of spraying water in the form of a drill and generating cold air by the heat of evaporation of the water. It means to discharge inside air to the outside.

本発明に係る植物栽培用温室は、温度管理を温度センサーとタイマーとの組み合せによる簡単なシステムで構築でき、安価で実用的である。   The greenhouse for plant cultivation according to the present invention can be constructed with a simple system using a combination of a temperature sensor and a timer for temperature control, and is inexpensive and practical.

本発明に係る温室の構造例を示す。The structural example of the greenhouse which concerns on this invention is shown. 本発明に係る温室の内部写真を示す。The inside photograph of the greenhouse which concerns on this invention is shown. 本発明に係る温室の制御フローチャートを示す。The control flowchart of the greenhouse which concerns on this invention is shown. 金沢市と宇都宮市との比較例を示す。A comparative example of Kanazawa City and Utsunomiya City is shown. 温室内外の温度調査結果を示す。The temperature survey results inside and outside the greenhouse are shown. 北側の壁に設けた蓄熱層の例を示す。The example of the thermal storage layer provided in the north wall is shown. 蓄熱層の熱量と内部水温の測定結果を示す。The measurement results of heat quantity and internal water temperature of the heat storage layer are shown. 蓄熱層(槽)の予備実験を示す。The preliminary experiment of a heat storage layer (tank) is shown. 図8の蓄熱槽の水温変化を示す。The water temperature change of the thermal storage tank of FIG. 8 is shown.

植物の生育のためには光合成に必要な光の照射は不可欠である。
図4に示すように、例えば北陸地方は冬期の晴天日が少ないことが大きな要因となり、石川県では同緯度で平均気温がより低い北関東の栃木県との比較で野菜生産金額は10%程度にとどまる(図4の気象データは金沢地方気象台,宇都宮気象台の発表データに基づき、野菜生産金額は農林水産省の発表による。)。
降雨日には光合成有効光量子密度(PPFD)が60μmolm−2−1程度となり、光合成促進のための必要なPPFD150μmolm−2に対して不足する。
冬期等においても60μmolm−2−1程度の日射量があるので、補光単独の光強度は90μmolm−2−1を目標として光源および光源から培地までの距離を設定すれば良いことになる。
補光の点灯制御方法としては、光量子密度が100μmolm−2−1以下の時に点灯する制御が望ましい。
しかし光量子計は高価で制御システムも複雑となるため、一般の農業者には使い難い。
本発明ではこの光強さを温室天井部の温度を計測して、この温度が一定値以下(実験では20℃)になった時に補光点灯する方式を採用した。
予備調査として、北陸の厳冬期の温室本体部の天井部の気温(温度)と外気温との関係を調査した結果を図5のグラフに示す。
このグラフから雪等の日照不足時は、天井部の温度で判断できることが分かる。
Irradiation of light necessary for photosynthesis is indispensable for plant growth.
As shown in Figure 4, the Hokuriku region, for example, has a large number of sunny days in the winter, and in Ishikawa Prefecture, the amount of vegetable production is about 10% compared to Tochigi Prefecture in northern Kanto, where the average temperature is lower at the same latitude. (The meteorological data in Fig. 4 is based on the data published by Kanazawa Local Meteorological Observatory and Utsunomiya Meteorological Observatory, and the amount of vegetable production is based on the announcement by the Ministry of Agriculture, Forestry and Fisheries).
On rainy days, the photosynthetic effective photon density (PPFD) is about 60 μmol −2 s −1, which is insufficient for PPFD 150 μmol −2 s necessary for promoting photosynthesis.
Since there is an amount of solar radiation of about 60 μmolm −2 s −1 even in winter, etc., the light intensity of supplementary light alone may be set by setting the light source and the distance from the light source to the medium with a target of 90 μmolm −2 s −1. .
As the supplementary lighting control method, it is desirable to control the lighting when the photon density is 100 μmolm −2 s −1 or less.
However, photon meters are expensive and complicated to control, making them difficult for ordinary farmers to use.
In the present invention, a method is employed in which the light intensity is measured for the temperature of the ceiling of the greenhouse, and supplementary lighting is performed when the temperature falls below a certain value (20 ° C. in the experiment).
As a preliminary survey, the graph of FIG. 5 shows the results of investigating the relationship between the temperature (temperature) of the ceiling of the greenhouse main body in the severe winter season of Hokuriku and the outside air temperature.
From this graph, it can be seen that when there is insufficient sunlight such as snow, it can be determined by the temperature of the ceiling.

<天井部の暖気環流制御>
北陸等の冬期間の作物栽培施設では補光にエネルギーを使わざるを得ないため、いかに省エネルギーで温度を制御するかに技術的な工夫が必要となる。
図5に示したように、少しでも日照があると温室の温度は上昇し、特に天井付近には暖気が溜まる。
そこで、このような温室の特性を利用し、日照不足を補光で補う本発明に係る温室構造の例を図1に示し、実験評価に用いた温室の内部の写真を図2に示す。
屋根及び四方の壁部を透光体で形成した温室本体部11の内部に棚を設置し、植栽棚からなる植栽区域20を設けた。
植栽棚の高さは、作業性,補光光源13の高さ等を考慮して設定されるが、0.8〜1.2mのレベルである。
植栽区域20の上部を覆うように、透光性のカバー体からなる内部ハウス部12を設ける。
内部ハウス部12は、上面部12aとその周縁部から垂下し、四方を囲む側辺部12bからなる。
側辺部12bの下端には、床面との間に0.6〜0.8mの隙間からなる開口部12cを有する。
この開口部12cの外側の周囲部には、側辺部12bと水平方向の隙間0.1〜0.2m空けて、高さ0.9〜1.0mの高さのビニルシート等からなる冷気遮断フェンス部14を立設してある。
この冷気遮断フェンス部14は、下に溜まった冷気が植栽区域20側に流れ込むのを防止する作用を有する。
また、逆に内部ハウス部を後述する散水噴霧冷気にて温度を下げる場合には、その冷気保持として作用する。
内部ハウス部12の内部には、日照不足を補うための補光光源13を配置してある。
内部ハウス部12の内側に、このように補光光源13を適宜の高さで複数個設けることで光源から発生する熱を暖房として活用できる。
温室本体部11の内側天井部の暖気を植栽区域20内に還流するための暖気還流制御手段として吸引口15cを天井部に有し、吐出口15dを内部ハウス部12内に配置したダクト15を設けた。
本実施例では、温室本体部11の内側天井部から植栽区域まで150mm直径のアルミ箔ダクトを設置した。
このダクト15に天井暖気をダクト経由でサーモスタットセンサー設置位置まで還流させるブースターファン15aを設置した。
またサーモスタットが適正温度範囲であることを感知したら作動する換気ファン15bをブースターファンの床側に設置した。
これにより温度が20℃以上で32℃以下の時に天井暖気を培地近傍に還流させる。
<Ceiling warm air recirculation control>
In winter crop cultivation facilities such as Hokuriku, energy must be used for supplementary light, so it is necessary to devise technical measures to control temperature with energy conservation.
As shown in FIG. 5, when there is even a little sunshine, the temperature of the greenhouse rises, and warm air accumulates particularly near the ceiling.
Therefore, FIG. 1 shows an example of a greenhouse structure according to the present invention that uses such characteristics of the greenhouse to compensate for the lack of sunshine with supplementary light, and FIG. 2 shows a photograph of the inside of the greenhouse used for the experimental evaluation.
The shelf was installed in the greenhouse main body part 11 which formed the roof and the four wall parts with the translucent body, and the planting area 20 which consists of a planting shelf was provided.
The height of the planting shelf is set in consideration of workability, the height of the supplementary light source 13, and the like, but is at a level of 0.8 to 1.2 m.
An internal house portion 12 made of a translucent cover is provided so as to cover the upper portion of the planting area 20.
The internal house portion 12 is composed of an upper surface portion 12a and side portions 12b that hang from the peripheral portion and surround the four sides.
At the lower end of the side part 12b, there is an opening 12c having a gap of 0.6 to 0.8 m between the floor 12b and the floor.
Cold air made of a vinyl sheet or the like having a height of 0.9 to 1.0 m is formed in the peripheral portion outside the opening 12c with a horizontal clearance of 0.1 to 0.2 m from the side portion 12b. A barrier fence 14 is erected.
This cold air interception fence part 14 has the effect | action which prevents that the cold air accumulated under flows into the planting area 20 side.
Conversely, when the temperature of the internal house portion is lowered by water spray cold air described later, it acts as cold air retention.
A supplementary light source 13 for compensating for the lack of sunshine is arranged inside the internal house portion 12.
By providing a plurality of supplementary light sources 13 at an appropriate height inside the internal house portion 12, heat generated from the light sources can be used as heating.
A duct 15 having a suction port 15c in the ceiling as a warm air recirculation control means for returning the warm air in the inner ceiling portion of the greenhouse main body 11 into the planting area 20, and a discharge port 15d disposed in the internal house portion 12. Was provided.
In this example, an aluminum foil duct having a diameter of 150 mm was installed from the inner ceiling of the greenhouse main body 11 to the planting area.
A booster fan 15a for returning the ceiling warm air to the thermostat sensor installation position via the duct was installed in the duct 15.
In addition, a ventilation fan 15b that operates when it senses that the thermostat is in the proper temperature range was installed on the floor side of the booster fan.
Thereby, when the temperature is 20 ° C. or more and 32 ° C. or less, the ceiling warm air is refluxed to the vicinity of the medium.

従来温室北側の壁面は、他の壁面や屋根と同様に、ガラスまたはビニールで構成するのが一般的である。
しかし温室北側壁面は光の吸収に効果がなく、熱貫流率が大きいことから低温防止の面で損失となっている。
そこで本発明では、北側の壁面に沿って蓄熱部材を配置したので、以下説明する。
この北側壁に沿って棚を作り、水を封入したポリタンクを図6(a),(b)のように並べて設置する。
例えば、長さ50m,軒高さ2mの温室の北壁面には20L入りポリタンクを長さ方向に137個、高さ方向に4段で、合計538個設置できる。
すなわち10.8tonの水を北側壁に蓄積可能である。
晴天の冬至日の想定で最大で1300MJの蓄積が可能となり、蓄熱槽内の最高水温は晴天の冬至日の想定では最高28,3℃に達する。
このポリタンクで構成した蓄熱槽は床に垂直な北側の壁際に並べると、下記のように試算でき、その試算値を図7に示す。
A:蓄熱槽の吸収熱量.
B:吸収熱量による水温の上昇量
蓄熱槽の吸収熱量の計算は下記による。
At:538個のポリタンクの南側向きの表面積
W:直達日射量:1000Jm−2−1
θ:太陽高度:位置と時刻で計算可能
k:温室ガラスの反射と吸収率:0.1(透過光は0.9となる)
Q=Σ(1−k)・W・At・COSθ
このことから、太陽光の入射角が低くなる冬期間ほど、蓄熱効果が高いことが分かる。
Conventionally, the wall surface on the north side of the greenhouse is generally made of glass or vinyl, like other wall surfaces and roofs.
However, the north side wall of the greenhouse has no effect on light absorption, and has a large heat flow rate, which is a loss in terms of preventing low temperatures.
Therefore, in the present invention, the heat storage member is disposed along the north wall surface, and will be described below.
A shelf is made along the north side wall, and a poly tank filled with water is arranged side by side as shown in FIGS. 6 (a) and 6 (b).
For example, on the north wall of a greenhouse with a length of 50 m and an eave height of 2 m, a total of 538 20L plastic tanks with a length of 137 can be installed with 137 pieces in the length direction and four levels in the height direction.
That is, 10.8 ton of water can be accumulated on the north side wall.
Accumulation of 1300 MJ is possible on the assumption of a sunny day on the winter solstice, and the maximum water temperature in the heat storage tank reaches a maximum of 28.3 ° C on the assumption of a sunny day on the winter solstice.
When heat storage tanks composed of this polytank are arranged on the north wall perpendicular to the floor, they can be calculated as follows, and the calculated values are shown in FIG.
A: The amount of heat absorbed by the heat storage tank.
B: Amount of increase in water temperature due to the amount of absorbed heat Calculation of the amount of absorbed heat in the heat storage tank is as follows.
At: Surface area facing south side of 538 plastic tanks W: Direct solar radiation: 1000 Jm −2 S −1
θ: Solar altitude: Calculateable with position and time k: Greenhouse glass reflection and absorptance: 0.1 (transmitted light is 0.9)
Q = Σ (1-k) · W · At · COSθ
From this, it can be seen that the heat storage effect is higher in the winter period when the incident angle of sunlight is lower.

PETボトルで代用した蓄熱槽の予備実験の構造写真を図8に示し、その構成例を下記に示す。
また、測定結果を図9に示す。
<蓄熱槽の予備実験>
4種類のPETボトルを使った蓄熱試験
A.透明なPETボトルに水封入
B.個別のPETボトルを黒ビニールカバーかけし、水封入
C.Aと同じ透明PETボトルに水を封入し棚全体を黒色ビニールで覆った。
D.ブラックリキッドを封入したPETボトル。ブラックリキッドは0.5%
の活性炭と1%の分散剤(ポリビニルピロリドン)および40%の凍結防止用エチレングリコールと残量は水で構成。
この予備実験にても蓄熱効果が確認でき、例えば温室内1m高さで0℃近辺まで低下する早期においても10℃前後の水温を維持している。
A structural photograph of a preliminary experiment of a heat storage tank substituted with a PET bottle is shown in FIG.
The measurement results are shown in FIG.
<Preliminary experiment of heat storage tank>
Thermal storage test using four types of PET bottles A. Water is sealed in a transparent PET bottle. Cover individual PET bottles with black vinyl cover and fill with water. Water was enclosed in the same transparent PET bottle as A, and the whole shelf was covered with black vinyl.
D. PET bottle filled with black liquid. Black liquid is 0.5%
Activated carbon, 1% dispersant (polyvinylpyrrolidone), 40% ethylene glycol for freezing prevention and the remaining amount is water.
Even in this preliminary experiment, the heat storage effect can be confirmed. For example, the water temperature of about 10 ° C. is maintained even at the early stage when the temperature is lowered to about 0 ° C. at a height of 1 m in the greenhouse.

<散水噴霧冷房と冷気保持のフェンス>
温室内の気温は図5に示したように冬期の晴天日には40℃を超える。
この高温対策として図2にしめしたように不織布(Nonwoven)で囲った空間内に園芸用の1流体散水噴霧ノズルで散水する。
外部からファン(Mist fan)で送風して水の蒸散熱により低下した冷気を培地方向へ送風する。
散水噴霧冷房とパッドアンドファンのメカニズムを合体させた冷却システムで植栽に水滴がかかることを防ぎながら冷気を培地近傍へ供給できる。
冷気は下に溜まるので植栽の高さまでの冷気遮断フェンス部14を設置することで、植栽近傍の高温を防止する。
散水噴霧冷房の冷却効果は空気の飽和水蒸気圧に依存するため、温度を5℃程度低下させるのが限度となることが多い。
そこで、不足する部分は外気との換気を使う。
外気を直接内部ハウス部に導入しても、暖気が上方に停滞したままで、冷気が下方から通り抜けて植栽域全体の温度が下がらない現象が起きる。
これを防止するためには、外気の導入のファン17a付のダクト17を内部ハウス部の中段に設置し、暖気の排出ファン16aを内部ハウス部12上段からダクト16経由で温室外部へと接続することで植栽部分の高温を避けることができる。
<温度と光を制御するフローチャート>
図3に温度と光を制御するフローチャートをしめすが、タイマーとサーミスタの信号だけで光源とファンと水供給の電磁弁を制御している。
単純な構造のため安価でかつ制御の信頼度は高い。
より具体的に以下説明する。
8:00〜17:00の間で天井部の温度(Ceiling temp.)が20℃以下のときは、補光光源を点灯する。
8:00〜17:00の間で植栽区域の温度が28℃を超えるときは、散水ポンプ及びミストファンを稼働し、また必要に応じて熱気排出ファン及び外気導入ファンを作動させる。
8:00〜16:30の間で天井部の温度が20℃以上で32℃以下であれば、暖気還流ダクトファンを作動する。
<Fence with water spray cooling and cold air retention>
The temperature in the greenhouse exceeds 40 ° C. on a sunny day in winter as shown in FIG.
As a countermeasure against this high temperature, water is sprayed by a one-water spray nozzle for gardening in a space surrounded by a non-woven fabric (Nonwoven) as shown in FIG.
Cool air that has been blown from the outside by a fan (Mist fan) and decreased due to the heat of transpiration of water is blown toward the medium.
Cooling air can be supplied to the vicinity of the medium while preventing water droplets from being applied to the planting with a cooling system that combines the mechanism of water spray cooling and pad and fan.
Since the cold air accumulates below, the high temperature in the vicinity of the planting is prevented by installing the cold air blocking fence 14 up to the height of the planting.
Since the cooling effect of water spray cooling depends on the saturated water vapor pressure of air, it is often the limit to lower the temperature by about 5 ° C.
Therefore, ventilation with outside air is used for the lacking part.
Even if the outside air is directly introduced into the internal house, the phenomenon that the warm air stays upward and the cold air passes from below and the temperature of the entire planting area does not drop occurs.
In order to prevent this, the duct 17 with the fan 17 a for introducing the outside air is installed in the middle stage of the internal house part, and the warm air exhaust fan 16 a is connected from the upper stage of the internal house part 12 to the outside of the greenhouse via the duct 16. The high temperature of the planting part can be avoided.
<Flow chart for controlling temperature and light>
FIG. 3 shows a flow chart for controlling temperature and light. The light source, the fan, and the water supply electromagnetic valve are controlled only by the signals from the timer and the thermistor.
The simple structure is inexpensive and the control reliability is high.
More specific description will be given below.
When the ceiling temperature (Ceiling temp.) Is 20 ° C. or lower between 8:00 and 17:00, the auxiliary light source is turned on.
When the temperature of the planting area exceeds 28 ° C. between 8:00 and 17:00, the watering pump and the mist fan are operated, and the hot air discharge fan and the outside air introduction fan are operated as necessary.
If the temperature of the ceiling is between 20 ° C. and 16:30 and not higher than 32 ° C., the warm air reflux duct fan is operated.

11 温室本体部
12 内部ハウス部
13 補光光源
14 冷気遮断フェイス部
20 植栽区域
11 Greenhouse Body 12 Internal House 13 Auxiliary Light Source 14 Cold Air Blocking Face 20 Planting Area

Claims (4)

太陽光を利用した温室本体部と、前記温室本体部の内側に配置してあり、下部に開口部を形成するように植栽区域を上部から覆う透光体からなる内部ハウス部とを備え、
前記温室本体部の内側天井部に温度センサー部を有し、
前記内部ハウス部内に補光光源を有し、
前記補光光源の点滅制御が前記温度センサー部の計測値に基づいて制御されていることを特徴とする植物栽培用温室。
A greenhouse main body using sunlight, and an inner house portion made of a translucent material that is disposed inside the greenhouse main body and covers the planting area from above so as to form an opening in the lower portion,
A temperature sensor on the inner ceiling of the greenhouse body,
Having an auxiliary light source in the internal house part,
The greenhouse for plant cultivation, wherein blinking control of the supplementary light source is controlled based on a measurement value of the temperature sensor unit.
前記内部ハウス部の下部開口部の周囲に冷気遮断フェンス部を有し、前記内側天井部の暖気を、前記内部ハウス部の内側の植栽区域に還流させるための暖気還流制御手段を有することを特徴とする請求項1記載の植物栽培用温室。   Having a cold air blocking fence around the lower opening of the internal house, and having warm air recirculation control means for recirculating the warm air from the inner ceiling to the planting area inside the internal house. The greenhouse for plant cultivation according to claim 1 characterized by the above-mentioned. 前記温室本体部の北側に位置する側壁部に蓄熱部を形成してあることを特徴とする請求項1又は2記載の植物栽培用温室。   The greenhouse for plant cultivation according to claim 1 or 2, wherein a heat storage part is formed in a side wall part located on a north side of the greenhouse main body part. 前記内部ハウス部の植栽区域が異常高温になるのを防ぐための散水噴霧型冷気発生手段又は/及び外気との換気手段を有することを特徴とする請求項1〜3のいずれかに記載の植物栽培用温室。   The water spray type cold air generating means for preventing the planting area of the internal house part from becoming an abnormally high temperature or / and a ventilation means with outside air according to any one of claims 1 to 3 Greenhouse for plant cultivation.
JP2015124311A 2015-06-22 2015-06-22 Greenhouse for plant cultivation Active JP6429024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124311A JP6429024B2 (en) 2015-06-22 2015-06-22 Greenhouse for plant cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124311A JP6429024B2 (en) 2015-06-22 2015-06-22 Greenhouse for plant cultivation

Publications (2)

Publication Number Publication Date
JP2017006040A JP2017006040A (en) 2017-01-12
JP6429024B2 true JP6429024B2 (en) 2018-11-28

Family

ID=57760321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124311A Active JP6429024B2 (en) 2015-06-22 2015-06-22 Greenhouse for plant cultivation

Country Status (1)

Country Link
JP (1) JP6429024B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174775A (en) * 2017-04-10 2018-11-15 株式会社 光植栽研究所 House for plant cultivation
CN108733004A (en) * 2017-04-20 2018-11-02 沈阳农业大学 A kind of novel greenhouse automatic control system
CN112868419B (en) * 2019-12-01 2024-06-18 广州清凉农业科技有限公司 Agricultural sunlight transmission lighting system, matched greenhouse and lighting method
KR102649588B1 (en) * 2023-08-30 2024-03-20 (주)이온플러스 Method for providing uniform light environment in natural light hybrid-type multi-layered plant cultivation system and System using the same method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088817B2 (en) * 1987-03-10 1996-01-31 松下電器産業株式会社 House for plant cultivation
JP4677537B1 (en) * 2009-12-18 2011-04-27 株式会社小笠原設計 Automatic sunshine system in a three-dimensional garden laid in a multi-story building
JP5603658B2 (en) * 2010-05-21 2014-10-08 出光興産株式会社 Plant environmental management system
JP3165392U (en) * 2010-10-19 2011-01-20 吉武 一男 Greenhouse curtain

Also Published As

Publication number Publication date
JP2017006040A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
Bouadila et al. Assessment of the greenhouse climate with a new packed-bed solar air heater at night, in Tunisia
JP5224895B2 (en) House for plant cultivation
JP6429024B2 (en) Greenhouse for plant cultivation
EP2892320B1 (en) Method for controlling the environment in a greenhouse
Ghosal et al. Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy
JP5595452B2 (en) House for plant cultivation
KR101433227B1 (en) Automatic solar heating system for greenhouses
CN110178601A (en) The intelligent greenhouse and ring prosecutor method to be exchanged heat using greenhouse effects thermal-arrest and aqueous vapor film
CN110178600A (en) Utilize the intelligent greenhouse and ring prosecutor method of greenhouse effects thermal-arrest and fan coil heat exchange
El-Gayar et al. Greenhouse operation and management in Egypt
JP6379432B1 (en) Heat shielding material for agricultural house, heat shielding structure for agricultural house, and agricultural house
JP6221334B2 (en) Plant cultivation system
Kittas et al. 1. Structures: design, technology and climate control
Öztürk et al. Effect of thermal screens on the microclimate and overall heat loss coefficient in plastic tunnel greenhouses
RU2304876C1 (en) Greenhouse
Misra et al. Performance study of a floricultural greenhouse surrounded by shallow water ponds
Baytorun et al. Climate control in mediterranean greenhouses
JP5851577B2 (en) House cultivation facility
Garzoli Energy efficient greenhouses
Ntinas et al. The influence of a hybrid solar energy saving system on the growth and the yield of tomato crop in greenhouses
Sánchez-Guerrero et al. Influence of a passive heating system that combines heat accumulators and thermal screen on the greenhouse microclimate
RU2723036C1 (en) Greenhouse device with soil heating
US20150068114A1 (en) Control of ground surface radiative effects
CN217336667U (en) Wisdom agricultural greenhouse controlling means
Teitel An overview of methods for the reduction of heat load in protected crops under warm climatic conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6429024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250