JP6426359B2 - 半導体発光素子及びその製造方法 - Google Patents

半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP6426359B2
JP6426359B2 JP2014060634A JP2014060634A JP6426359B2 JP 6426359 B2 JP6426359 B2 JP 6426359B2 JP 2014060634 A JP2014060634 A JP 2014060634A JP 2014060634 A JP2014060634 A JP 2014060634A JP 6426359 B2 JP6426359 B2 JP 6426359B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
concentration
barrier layer
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014060634A
Other languages
English (en)
Other versions
JP2015185678A (ja
Inventor
重哉 木村
重哉 木村
布上 真也
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2014060634A priority Critical patent/JP6426359B2/ja
Priority to US14/658,418 priority patent/US20150270440A1/en
Priority to KR1020150038063A priority patent/KR20150110368A/ko
Publication of JP2015185678A publication Critical patent/JP2015185678A/ja
Application granted granted Critical
Publication of JP6426359B2 publication Critical patent/JP6426359B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials

Description

本発明の実施形態は、半導体発光素子及びその製造方法に関する。
窒化ガリウム(GaN)などの窒化物系III−V族化合物半導体は、発光ダイオード(LED:Light Emitting Diode)や、レーザダイオード(LD:Laser Diode)などに応用されている。半導体発光素子において、発光効率を向上することが望まれている。
特開2009−200337号公報
本発明の実施形態は、高発光効率の半導体発光素子及びその製造方法を提供する。
本発明の実施形態によれば、第1半導体層と、第2半導体層と、発光部と、を含む半導体発光素子が提供される。前記第1半導体層は、第1濃度でn形不純物を含む。前記第2半導体層は、p形不純物を含む。前記発光部は、前記第1半導体層と前記第2半導体層との間に設けられる。前記発光部に含まれる複数の障壁層の数は、9であり、前記発光部に含まれる複数の井戸層の数は、8である。前記発光部は、前記複数の障壁層の1つである第1障壁層と、前記第1障壁層と前記第2半導体層との間に設けられ前記第1濃度よりも高い第2濃度でn形不純物を含み前記複数の障壁層の別の1つである第2障壁層と、前記第2障壁層と前記第2半導体層との間に設けられ前記複数の障壁層のさらに別の1つである第3障壁層と、前記第1障壁層と前記第2障壁層との間に設けられた第1井戸層と、前記第2障壁層と前記第3障壁層との間に設けられた第2井戸層と、を含む。前記第3障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に最も近い。前記第2障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に2番目に近い。前記第1障壁層における前記n形不純物の濃度は、前記第2濃度よりも低い。前記発光部に含まれる前記複数の障壁層のうちで、前記第2障壁層と前記第1半導体層との間に位置する障壁層における前記n形不純物の濃度は、前記第2濃度よりも低い。前記第2濃度は、5.0×10 18 毎立方センチメートルを超え、1.0×10 19 毎立方センチメートル以下である。前記第1障壁層と前記第1井戸層との間の境界を含む平面は、前記第1半導体層の(0001)面を含む平面と交差する。
本発明の実施形態によれば、半導体発光素子の製造方法は、基板の上に、第1濃度でn形不純物を含む第1半導体層を形成する工程と、前記第1半導体層の上に、発光部であって、前記発光部に含まれる複数の障壁層の数は、9であり、前記発光部に含まれる複数の井戸層の数は、8であり、前記複数の障壁層の1つである第1障壁層と、前記第1障壁層の上に設けられ前記第1濃度よりも高い第2濃度でn形不純物を含み前記複数の障壁層の別の1つである第2障壁層と、前記第2障壁層の上に設けられ前記複数の障壁層のさらに別の1つである第3障壁層と、前記第1障壁層と前記第2障壁層との間に設けられた第1井戸層と、前記第2障壁層と前記第3障壁層との間に設けられた第2井戸層と、を含む発光部を形成する工程と、前記発光部の上に、p形不純物を含む第2半導体層を形成する工程と、を含む。前記第3障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に最も近い。前記第2障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に2番目に最も近い。前記第1障壁層における前記n形不純物の濃度は、前記第2濃度よりも低い。前記発光部に含まれる前記複数の障壁層のうちで、前記第2障壁層と前記第1半導体層との間に位置する障壁層における前記n形不純物の濃度は、前記第2濃度よりも低い。前記第2濃度は、5.0×10 18 毎立方センチメートルを超え、1.0×10 19 毎立方センチメートル以下である。前記第1障壁層と前記第1井戸層との間の境界を含む平面は、前記第1半導体層の(0001)面を含む平面と交差する。
図1(a)及び図1(b)は、第1の実施形態に係る半導体発光素子を示す模式的断面図である。 半導体発光素子の特性を示すグラフ図である。 半導体発光素子の特性を示すグラフ図である。 図4(a)〜図4(f)は、半導体発光素子の特性を示すグラフ図である。 半導体発光素子の特性を示すグラフ図である。 半導体発光素子の特性を示すグラフ図である。 半導体発光素子の特性を示すグラフ図である。 半導体発光素子の特性を示すグラフ図である。 半導体発光素子の特性を示すグラフ図である。 第1の実施形態に係る半導体発光素子の製造方法を示すフローチャート図である。
以下、本発明の実施の形態を図に基づき説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。
また、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施の形態)
図1(a)及び図1(b)は、第1の実施形態に係る半導体発光素子を示す模式的断面図である。
図1(a)は、第1の実施の形態に係る半導体発光素子の構成を例示する模式的断面図である。
図1(b)は、第1の実施の形態に係る半導体発光素子の一部の構成を例示する模式的断面図である。
図1(a)に表したように、本実施の形態に係る半導体発光素子110は、第1半導体層10と、第2半導体層20と、積層体30と、発光部40と、第1電極50と、第2電極60と、を含む。積層体30は、発光部40と第1半導体層10との間に設けられる。発光部40は、第1半導体層10と第2半導体層20との間に設けられる。発光部40は、主面40aを有する。第1半導体層10から第2半導体層20に向かう方向をZ軸方向とする。
基板5の上に、バッファ層6が設けられている。バッファ層6の上に、第1半導体層10、積層体30、発光部40、及び第2半導体層20がZ軸方向に順に設けられている。このような積層構造は、エピタキシャル成長によって形成される。エピタキシャル成長には、例えば、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)又はハライド気相成長法(Halide Vapor Phase Epitaxy:HVPE)が用いられる。このような積層構造を形成した後、基板5を除去しても良い。
化合物半導体において、一般的に、結晶構造の面方位は、4指数表記(六方晶指数)で表される。基本ベクトルcは、(0001)方向に延びており、この方向の軸は、c軸と呼ばれる。c軸に垂直な面は、c面(極性面)と呼ばれる。c面(極性面)は、(0001)面とも呼ばれる。このような結晶構造には、c面以外にも結晶面方位が存在する。例えば、m面及びa面は、c軸方向に平行な非極性面である。r面は、c軸方向に対して傾斜した半極性面である。
c面成長とは、c面に垂直な方向にエピタキシャル成長が生じることを意味する。m面成長、a面成長及びr面成長とは、それぞれ、m面成長、a面成長及びr面に垂直な方向にエピタキシャル成長が生じることを意味する。
c面成長によって形成された積層構造を用いて半導体発光素子110を形成すると、c面において、Ga原子とN原子との位置がc軸方向にずれることに起因する自発分極が生じる。発光部40に含まれるInGaNにおいて、歪みによるピエゾ分極が生じる。ピエゾ分極によって、発光部40におけるキャリアの発光再結合の確率が下がり、内部量子効率が低下する。発光ダイオード等の発光素子において、消費電力の増大、及び、発光効率の低下が引き起こされる。注入キャリア密度が増大すると、ピエゾ電界のスクリーニングが生じるので、発光波長に変化が生じる。
本実施形態において、例えば、非極性面(例えばm面またはa面)、又は、半極性面(例えばr面)を成長面として、積層構造が形成される。非極性面又は半極性面を成長面として積層構造を形成すると、発光部40のZ軸方向におけるピエゾ分極の影響を低減できる。非極性面又は半極性面を成長面として、c面に対して任意の角度で傾斜した傾斜角で積層構造を形成できる。例えば、発光部40の主面40aは、c面(極性面)から15度以上165度以下で傾斜している。15度以上の傾斜角において、半極性面の効果が大きくなりピエゾ分極の影響をより低減することができる。
基板5に、例えば、サファイア基板(m面又はr面サファイア基板)が用いられる。基板5として、Si、GaN、SiC又はZnOを含む基板を用いても良い。
バッファ層6に、例えば、AlN層、AlGaN層及びGaN層の少なくともいずれかを含む層が用いられる。
第1半導体層10は、窒化物半導体を含む。第1半導体層10は、例えば、n形半導体層である。第1半導体層10は、例えば、任意の濃度(第1濃度)でn形不純物を含む。n形不純物として、例えば、Siが用いられる。n形不純物として、Ge又はSnを用いても良い。
第1半導体層10は、第1n側層11と、第2n側層12と、を含む。第1n側層11は、第2n側層12と積層体30との間に配置される。例えば、第1n側層11は、n形GaNコンタクト層である。例えば、第2n側層12は、アンドープのGaN下地層である。
第1n側層11は、第1部分11aと、第2部分11bと、を含む。第1n側層11の不純物濃度は、第2n側層12の不純物濃度よりも高い。
第2半導体層20は、窒化物半導体を含む。第2半導体層20は、例えば、p形半導体層である。第2半導体層20は、例えば、p形不純物を含む。p形不純物として、例えば、Mgが用いられる。p形不純物として、Znを用いても良い。
第2半導体層20は、例えば、第1p側層21と、第2p側層22と、第3p側層23と、第4p側層24と、を含む。第2p側層22は、第1p側層21と発光部40との間に設けられる。第3p側層23は、第2p側層22と発光部40との間に設けられる。第4p側層24は、第3p側層23と発光部40との間に設けられる。
第1p側層21は、例えば、コンタクト層である。第1p側層21には、例えば、p形のGaNが用いられる。第2p側層22には、例えば、p形のGaNが用いられる。第1p側層21の不純物濃度は、第2p側層22の不純物濃度よりも高い。
第3p側層23には、例えば、p形のAlGaNが用いられる。第4p側層24には、例えば、p形のAlGaNが用いられる。第3p側層23及び第4p側層24は、電子のオーバーフローを抑制する層として機能する。
積層体30は、例えば、超格子層である。例えば、積層体30は、複数の層を含む。積層体30として、GaNを含む層と、InGaNを含む層と、がZ軸方向に沿って交互に積層される。積層体30は、必要に応じて設けられ、省略しても良い。
発光部40は、例えば、活性層である。発光部40は、例えば、多重量子井戸(MQW:Multiple Quantum Well)構造を有する。発光部40は、複数の障壁層41及び複数の井戸層42が、交互に繰り返し積層された構造を含んでいる。障壁層41及び井戸層42の構成の例については後述する。
第1電極50には、例えば、Ti膜/Pt膜/Au膜の積層膜が用いられる。Ti膜の厚さは、例えば、0.05マイクロメートル(μm)程度である。Pt膜の厚さは、例えば、0.05μm程度である。Au膜の厚さは、例えば、1.0μm程度である。
第1電極50は、第1半導体層10と電気的に接続される。例えば、第2半導体層20、積層体30及び発光部40に溝が形成される。溝の底面において、第1電極50が第1n側層11と接続される。第2部分11bは、Z軸方向に対して垂直な面内で、第1部分11aと並ぶ。第1電極50は、第1部分11aと接続される。発光部40は、第2部分11bと第2半導体層20との間に設けられる。
第2電極60は、第1導電部61と第2導電部62とを含む。第2導電部62は、第1導電部61と第2半導体層20との間に設けられる。第1導電部61は、第2導電部62と電気的に接続される。第1導電部61は、第2導電部62の一部と接触している。第2導電部62は、第2半導体層20に接触している。
第1導電部61には、例えば、Ni膜/Au膜の積層膜が用いられる。Ni膜の厚さは、例えば、0.05μm程度である。Au膜の厚さは、例えば、1.0μm程度である。
第2導電部62には、例えば、In、Sn、Zn及びTiから選択される少なくともいずれかの元素を含む酸化物が用いられる。第2導電部62には、例えば、ITO(Indium Tin Oxide)が用いられる。第2導電部62の厚さは、例えば、0.2μm程度である。
第1電極50と第2電極60との間に電圧を印加することで、第1半導体層10及び第2半導体層20を介して、発光部40に電流が流れる。発光部40に電流が流れると、発光部40から光が放出される。放出される光のピーク波長は、例えば、370ナノメートル以上650ナノメートル以下である。
発光部40から放出された光は、第2半導体層20の側から外部に出射する。第2半導体層20は、光出射面を有する。第1半導体層10の側から外部に出射しても良い。
本実施形態に係る半導体発光素子110は、例えば、発光ダイオードである。
図1(b)に表したように、発光部40は、障壁層41と、障壁層41と積層された井戸層42と、を含む。発光部40において、複数の障壁層41が設けられ、複数の井戸層42が設けられる。複数の障壁層41のそれぞれの間に、井戸層42のそれぞれが設けられる。
障壁層41及び井戸層42は、窒化物半導体を含む。井戸層42には、Inを含む窒化物半導体が用いられる。
障壁層41は、例えば、InGa1−bN(0≦b<1)を含む。障壁層41の厚さは、例えば、3ナノメートル(nm)以上20nm以下である。井戸層42は、例えば、InGa1−wN(0<w<1)を含む。井戸層42の厚さは、例えば、2nm以上10nm以下である。
井戸層42のIn組成比wは、障壁層41におけるIn組成比bよりも高い。b<wである。障壁層41のIn組成比bは0でも良い。例えば、障壁層41は、GaNでも良い。井戸層42のIn組成比wは0よりも高く、井戸層42は、InGaNを含む。
障壁層41がInを含む場合、障壁層41におけるInの組成比bは、井戸層42におけるInの組成比wよりも低い。井戸層42におけるバンドギャップエネルギーは、障壁層41におけるバンドギャップエネルギーよりも小さい。障壁層41及び井戸層42は、微量のAl等を含んでも良い。
発光部40は、例えば、(n+1)個の障壁層41と、n個の井戸層42とを含む。nは、2以上の整数である。障壁層BL(n+1)は、障壁層BLnと第2半導体層20との間に設けられる。井戸層WLnは、井戸層WL(n−1)と第2半導体層20との間に設けられる。障壁層BL1は、第1半導体層10と井戸層WL1との間に設けられる。井戸層WLnは、障壁層BLnと障壁層BL(n+1)との間に設けられる。障壁層BL(n+1)は、井戸層WLnと第2半導体層20との間に設けられる。複数の障壁層41の厚さは、互いに異なっても良い。例えば、障壁層BL(n+1)の厚さは、他の障壁層41の厚さと同じでも良く、異なっても良い。
(n+1)個の障壁層41において、障壁層BL(n+1)は、例えば、第2半導体層20に接触している。(n+1)個の障壁層41のうちで、障壁層BL(n+1)は、第2半導体層20に最も近い。障壁層BLnは、第2半導体層20に2番目に近い。障壁層BL(n−1)は、第2半導体層20に3番目に近い。障壁層BL1は、第2半導体層20に(n+1)番目に近い。
障壁層BL1は、例えば、第1障壁層BLaに対応する。障壁層BL2〜障壁層BLnは、例えば、第2障壁層BLbに対応する。障壁層BL(n+1)は、例えば、第3障壁層BLcに対応する。
n個の井戸層42のうちの井戸層WLnは、第2半導体層20に最も近い。井戸層WL(n−1)は、第2半導体層20に2番目に近い。井戸層WL1は、第2半導体層20にn番目に近い。
井戸層WL1は、例えば、第1井戸層WLaに対応する。井戸層WLnは、例えば、第2井戸層WLbに対応する。
実施形態において、第1障壁層BLaと第1井戸層WLaとの間の境界43を含む平面は、第1半導体層10の(0001)面を含む平面と交差する。境界43は、例えば、(0001)面に対して傾斜している。境界43を含む平面と、(0001)面と、の間の角度は、例えば、15度以上165度以下である。
境界43を含む平面と、(0001)面と、の間の角度は、例えば、X線回折により知ることができる。この角度は、例えば、TEM(透過型電子顕微鏡)像等によって知ることもできる。
発光部40として(n+1)個の障壁層41及びn個の井戸層42を設ける場合、障壁層BL2〜障壁層BLnのうちの少なくとも1つの障壁層のn形不純物濃度は、第1半導体層10のn形不純物濃度以上である。第2障壁層BLbは、第1半導体層10の第1濃度よりも高い第2濃度でn形不純物を含む。非極性又は半極性の多重量子井戸構造において、このように濃度を設定すると、第2半導体層20に最も近い井戸層WLnに電子が供給される。この井戸層WLnにおいては、発光への寄与の程度が大きい。これにより、発光効率の高い半導体発光素子が提供される。
以下、上記のような条件を見出す基となった検討結果について説明する。
以下においては、第1半導体層10、積層体30、発光部40及び第2半導体層20を含む積層構造が、半極性面に基づいてZ軸方向に積層されている。発光部40は、障壁層41と、障壁層41と積層された井戸層42と、を含む。以下の例では、障壁層41の数が9(n=8)であり、井戸層42の数が8である。障壁層41のそれぞれの間に、井戸層42のそれぞれが設けられる。このような積層構造における特性がシミュレーションにより評価される。
図2は、半導体発光素子の特性を例示するグラフ図である。
図2は、後述する5種類の条件の半導体発光素子の特性のシミュレーション結果を例示している。図2の横軸は、発光部40に注入される電流密度J(A/cm)を表している。縦軸は、内部量子効率IQEを表している。以下の説明において、「Siをドープしない場合」におけるSiの濃度は、1.0×1016/cmである。
図2に例示した条件S10においては、複数の障壁層41の全てにおいて、Siをドープしない。条件S20においては、障壁層BL2におけるSi濃度が第1半導体層10におけるSi濃度よりも高い。条件S30においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSi濃度よりも高い。条件S40においては、障壁層BL2〜障壁層BL8におけるSi濃度が、第1半導体層10におけるSi濃度よりも高い。複数の障壁層41において、特に言及していない障壁層においては、Siがドープされない。
条件Sc0においては、c面(極性面)の積層構造において、複数の障壁層41の全てにSiをドープしない。
図2において、内部量子効率IQEは、条件Sc0における内部量子効率の最大値を1とした相対値である。
この例では、第1半導体層10におけるSi濃度は、2.0×1018毎立方センチメートル(/cm)である。第1半導体層10におけるSi濃度よりも高い場合における障壁層41におけるSi濃度は、5.0×1018/cmである。複数の障壁層のそれぞれ厚さは、5.0nmである。複数の井戸層のそれぞれ厚さは、3.5nmである。
条件S10(複数の障壁層41の全てにおいてSiをドープしない)と比べて、条件S20、S30、及びS40においては、内部量子効率IQEが高い。
条件S30(第2半導体層20側に位置する障壁層BL8のSi濃度が第1半導体層10におけるSiよりも高い)における内部量子効率IQEは、条件S20(第1半導体層10側に位置する障壁層BL2のSi濃度が第1半導体層10におけるSi濃度よりも高い)における内部量子効率IQEよりも高い。
条件S30(障壁層BL8のSi濃度が高い)における内部量子効率IQEは、条件S40(障壁層BL2〜障壁層BL8のSi濃度が高い)における内部量子効率IQEと同程度である。
図2に示した例おいては、バンドシュミレーションの結果であるため、Si濃度を高くすることによる結晶品質の低下は考慮されていない。Si濃度が過度に上昇すると結晶欠陥が生じ易い。このことから、条件S30(障壁層BL8のSi濃度が第1半導体層10におけるSi濃度よりも高い)が、内部量子効率IQEの上昇に効果的であると考えられる。
図3は、半導体発光素子の特性を例示するグラフ図である。
図3は、図2に例示した条件S30(障壁層BL8のSi濃度が第1半導体層10におけるSi濃度よりも高い)において、Si濃度を変えた場合のシミュレーション結果を示している。横軸は、発光部40に注入される電流密度J(A/cm)を表しており、縦軸は、内部量子効率IQEを表している。
図3に示した条件S30は、図2と同様であり、障壁層BL8におけるSi濃度が5.0×1018/cmである。条件S31においては、障壁層BL8におけるSi濃度が1.0×1019/cmである。図3には、図2に示した条件S10及び条件Sc0の結果も示されている。このときも、Siをドープしない場合の障壁層41におけるSi濃度は、1.0×1016/cmである。第1半導体層10におけるSi濃度は、2.0×1018/cmである。
図2及び図3から、条件S30(障壁層BL8のSi濃度が5.0×1018/cm)が、内部量子効率IQEの上昇に効果的であると考えられる。図3から分かるように、Si濃度が1.0×1019/cm程度になると、内部量子効率IQEの向上効果は、飽和状態になる。
図4(a)〜図4(f)は、半導体発光素子の特性を例示するグラフ図である。
図4(a)〜図4(c)は、条件S10(複数の障壁層41のいずれにもSiをドープしない)に対応する。図4(d)〜図4(f)は、条件S30(障壁層BL8のSi濃度が第1半導体層10におけるSi濃度よりも高い)に対応する。条件S30においては、障壁層BL8におけるSi濃度は、5.0×1018/cmである。
これらの図において横軸は、位置zである。図4(a)及び図4(d)の縦軸は、伝導帯のエネルギーEcである。図4(b)及び図4(e)の縦軸は、価電子帯Evのエネルギーである。図4(c)及び図4(f)は、電子及び正孔のキャリア密度Ccである。実線が電子に対応し、破線が正孔に対応する。これらの図において、電流密度Jは、21(A/cm)である。
図4(a)〜図4(c)に表したように、電子が井戸層WL1に大量に供給されている。正孔が井戸層WL8に大量に供給されている。電子密度と正孔密度との空間的な重なりが小さい。電子と正孔との分布がマッチしないので、重なり積分が増加する効果が限定的になる。その結果、内部量子効率IQEが低下する。
図4(d)〜図4(f)に表したように、電子が井戸層WL8にも十分に供給されている。電子密度と正孔密度との空間的な重なりが大きい。その結果、内部量子効率IQEが上昇する。
図5は、半導体発光素子の特性を例示するグラフ図である。
図5は、条件S30(障壁層BL8におけるSi濃度が第1半導体層10におけるSiよりも高い)において、複数の障壁層41のそれぞれの厚さを変えたときの特性のシミュレーション結果を例示している。横軸は、Si濃度Cs(/cm)である。縦軸は、内部量子効率IQEである。
図5に示した条件S32においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSiよりも高く、複数の障壁層41のそれぞれの厚さが3.0nmである。条件S30においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSiよりも高く、複数の障壁層41のそれぞれの厚さが5.0nmである。条件S33においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSiよりも高く、複数の障壁層41のそれぞれの厚さが7.0nmである。図5には、既に説明した条件Sc0の特性も例示されている。条件Sc0においては、複数の障壁層41のそれぞれの厚さは5.0nmである。図5において、内部量子効率IQEは、条件Sc0における内部量子効率の最大値を1としたときの相対値である。
この例において、第1半導体層10におけるSi濃度Csは、2.0×1018/cmである。電流密度Jは、30(A/cm)である。複数の井戸層42のそれぞれの厚さは、3.5nmである。
図5に表したように、条件S30及びS32のいずれにおいても、Si濃度Csが高くなると内部量子効率IQEは高くなる。内部量子効率IQEの上昇する割合は、複数の障壁層41のそれぞれの厚さによって異なる。内部量子効率IQEがピークとなるSi濃度Csは、障壁層41の厚さによって異なる。
図6は、半導体発光素子の特性を例示するグラフ図である。
図6は、条件S30において、複数の井戸層42のそれぞれの厚さを変えたときの特性をシミュレーションした結果を例示している。横軸は、Si濃度Cs(/cm)である。縦軸は、内部量子効率IQEである。
図6に示した条件S34においては、障壁層BL8のSi濃度が第1半導体層10のSi濃度よりも高く、複数の井戸層42のそれぞれの厚さが3.5nmである。条件S30においては、障壁層BL8のSi濃度が第1半導体層10のSi濃度よりも高く、複数の井戸層42のそれぞれの厚さは5.5nmである。条件S35においては、障壁層BL8のSi濃度が第1半導体層10のSi濃度よりも高く、複数の井戸層42のそれぞれの厚さは7.5nmである。図6には、既に説明した条件Sc0の特性も例示されている。条件Sc0においては、複数の井戸層42のそれぞれの厚さは3.5nmである。図6において、内部量子効率IQEは、条件Sc0における内部量子効率の最大値を1としたときの相対値である。
この例において、第1半導体層10におけるSi濃度Csは、2.0×1018/cmである。電流密度Jは、30(A/cm)である。複数の障壁層41のそれぞれの厚さは、5.0nmである。
図6に表したように、条件S30、S34及びS35のいずれにおいても、Si濃度Csが高くなると、内部量子効率IQEは高くなる。内部量子効率IQEの上昇する割合は、複数の井戸層41のそれぞれの厚さによって異なる。
図7は、半導体発光素子の特性を例示するグラフ図である。
図7は、Si濃度を第1半導体層10よりも高くする障壁層の位置を変えたときの特性をシミュレーションした結果を例示している。図7の縦軸は、内部量子効率IQEである。
図7において、条件SB8においては、障壁層BL8において、Si濃度が第1半導体層10よりも高い。条件SB7−8においては、障壁層BL7及びBL8においてSi濃度が第1半導体層10よりも高い。条件SB6−8においては、障壁層BL6〜BL8において、Si濃度が第1半導体層10よりも高い。条件SB7においては、障壁層BL7においてSi濃度が第1半導体層10よりも高い。条件SB6においては、障壁層BL6において、Si濃度が第1半導体層10よりも高い。図7には、既に説明した条件Sc0の特性も例示されている。これらの条件において、Si濃度が第1半導体層10よりも高くされない障壁層41においては、Siがドープされない。
既に説明したように、条件Sc0においては、c面(極性面)の積層構造が適用され、複数の障壁層41のいずれにもSiをドープしない。図7において、内部量子効率IQEは、条件Sc0における内部量子効率を1としたときの相対値である。
この例において、第1半導体層10におけるSi濃度は、2.0×1018/cmである。第1半導体層10よりもSi濃度を高くする場合において、障壁層41(例えば、BL6〜BL8)のそれぞれのSi濃度は、7.0×1018/cmである。Siをドープしない場合の障壁層におけるSi濃度は、1.0×1016/cmである。電流密度Jは、30(A/cm)である。
図7からわかるように、条件SB8、条件SB7−8、及び、条件SB6−8において、高い内部量子効率IQEが得られる。既に説明したように、この例では、障壁層41の数が9である。従って、複数の障壁層41のうちで、第2半導体層20に2番目に近い障壁層BL8のSi濃度を第1半導体層10のSi濃度よりも高くすると、内部量子効率IQEが高くなる。条件SB8、条件SB7−8、及び、条件SB6−8において、内部量子効率IQEに大きな差は見られない。少なくとも障壁層BL8におけるSi濃度を第1半導体層10におけるSi濃度よりも高くすると、内部量子効率IQEの上昇に効果的であると考えられる。なお、最もp側に配置される障壁層におけるSi濃度が高過ぎると、p形半導体層(第2半導体層20)と、n形半導体層(Si濃度が高い障壁層)と、が接する場合があり、効率が低下する場合がある。
図8は、半導体発光素子の特性を例示するグラフ図である。
図8は、条件S30(障壁層BL8におけるSi濃度が第1半導体層10におけるSi濃度よりも高い)において、積層体30におけるSi濃度を変えた場合の特性を例示している。横軸は、発光部40に注入される電流密度J(A/cm)である。縦軸は、内部量子効率IQEである。
図8に示した条件S36においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSi濃度よりも高く、積層体30におけるSi濃度が第1半導体層10のSi濃度よりも高い。条件S37においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSi濃度よりも高く、積層体30にSiをドープしない。条件S38においては、障壁層BL8におけるSi濃度が第1半導体層10におけるSi濃度よりも高く、積層体30が設けられない。図8において、内部量子効率IQEは、条件Sc0における内部量子効率を1としたときの相対値である。
この例においては、第1半導体層10におけるSi濃度は、2.0×1018/cmである。障壁層BL8のSi濃度は、7.0×1018/cmである。条件S36において、積層体30におけるSi濃度は2.0×1018/cmである。条件S37において、積層体30におけるSi濃度は、1.0×1016/cmである。
図8に表したように、条件S36〜S38において、電流密度Jに対する内部量子効率IQEの変化量に大きな差は見られない。
図9は、半導体発光素子の特性を例示するグラフ図である。
図9は、障壁層BL2におけるSi濃度を変更したときの特性のシミュレーション結果を例示している。横軸は、発光部40に注入される電流密度J(A/cm)である。縦軸は、内部量子効率IQEである。
図9に示した条件R20においては、障壁層41の数が3であり井戸層42の数が2であり、障壁層BL2におけるSi濃度が第1半導体層10におけるSi濃度よりも高い。条件R21においては、障壁層41の数が3であり井戸層42の数が2であり、障壁層BL2にSiをドープしない。Siをドープしない場合のSi濃度は1.0×1016/cmである。
図9には、条件S30(障壁層41の数が9であり、障壁層BL8におけるSi濃度が第1半導体層10におけるSi濃度よりも高い)の特性も例示されている。図9において、内部量子効率IQEは、条件Sc0における内部量子効率を1としたときの相対値である。
この例において、第1半導体層10におけるSi濃度は、2.0×1018/cmである。条件R20において、障壁層BL2におけるSi濃度は、7.0×1018/cmである。障壁層BL8におけるSi濃度は、7.0×1016/cmである。
図9から分かるように、条件R20においては、条件R21よりも高い内部量子効率IQEが得られる。障壁層41の数が3であり井戸層42の数が2であるときに、障壁層BL2のSi濃度が第1半導体層10におけるSi濃度よりも高いと、内部量子効率IQEが上昇する。このような積層構造においても、障壁層41にSi濃度を第1半導体層10のSi濃度よりも高くすることで、内部量子効率IQEが上昇できる。
本実施形態によれば、例えば、非極性又は半極性の多重量子井戸構造において、高発光効率の半導体発光素子が提供される。
図10は、第1の実施の形態に係る半導体発光素子の製造方法を例示するフローチャートである。
基板5の上に第1半導体層10を形成する(ステップS110)。基板5と第1半導体層10との間にバッファ層6を形成しても良い。第1半導体層10は、第1n側層11と、第2n側層12との多層構造を有しても良い。
第1半導体層10の上に、発光層40を形成する(ステップS120)。発光層40は、(n+1)個の障壁層41とn個の井戸層42とを含む。nは、2以上の整数である。第1半導体層10と発光部40との間に積層体30を形成しても良い。
発光部40を形成するステップは、障壁層BL2〜障壁層BLnの少なくとも1つの障壁層のn形不純物濃度が第1半導体層10のn形不純物濃度よりも高くなるように、障壁層41を形成するステップを含む。例えば、障壁層BL2〜障壁層BLnの少なくとも1つの障壁層にSiをドープすることで、その障壁層のn形不純物濃度を第1半導体層10のn形不純物濃度よりも高くする。すなわち、発光部40は、第1障壁層と、第1障壁層の上に設けられ第1半導体層10のn形不純濃度(第1濃度)よりも高い第2濃度でn形不純物を含む第2障壁層と、第2障壁層の上に設けられた第3障壁層と、第1障壁層と第2障壁層との間に設けられた第1井戸層と、第2障壁層と前記第3障壁層との間に設けられた第2井戸層と、を含む。このような発光部を形成する。
発光部40の上に、第2半導体層20を形成する(ステップS130)。第2半導体層20の形成の後、第1電極50及び第2電極60を形成する。
本実施形態によれば、高発光効率の半導体発光素子及びその製造方法が提供される。
なお、本明細書において「窒化物半導体」とは、BαInβAlγGa1−α−β−γN(0≦α≦1,0≦β≦1,0≦γ≦1,α+β+γ≦1)なる化学式において組成比α、β及びγをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むものや、導電形などを制御するために添加される各種のドーパントのいずれかをさらに含むものも、「窒化物半導体」に含まれるものとする。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子に含まれる第1半導体層、第2半導体層、発光部、井戸層、障壁層、第1電極及び第2電極などの各要素の具体的な構成の、形状、サイズ、材質、配置関係などに関して当業者が各種の変更を加えたものであっても、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した半導体発光素子及びその製造方法を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子及びその製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
5…基板、 6…バッファ層、 10…第1半導体層、 11…第1n側層、 12…第2n側層、 20…第2半導体層、 21…第1p側層、 22…第2p側層、 23…第3p側層、 24…第4p側層、 30…積層体、 40…発光部、 41…障壁層、 42…井戸層、 43…境界、 50…第1電極、 60…第2電極、 61…第1導電部、 62…第2導電部、 110…半導体発光素子、 BLa…第1障壁層、 BLb…第2障壁層、 BLc…第3障壁層、 IQE…内部量子効率、 J…電流密度、 WLa…第1井戸層、 WLb…第2井戸層

Claims (12)

  1. 第1濃度でn形不純物を含む第1半導体層と、
    p形不純物を含む第2半導体層と、
    前記第1半導体層と前記第2半導体層との間に設けられた発光部であって、
    前記発光部に含まれる複数の障壁層の数は、9であり、前記発光部に含まれる複数の井戸層の数は、8であり、
    前記複数の障壁層の1つである第1障壁層と、
    前記第1障壁層と前記第2半導体層との間に設けられ前記第1濃度よりも高い第2濃度でn形不純物を含み前記複数の障壁層の別の1つである第2障壁層と、
    前記第2障壁層と前記第2半導体層との間に設けられ前記複数の障壁層のさらに別の1つである第3障壁層と、
    前記第1障壁層と前記第2障壁層との間に設けられた第1井戸層と、
    前記第2障壁層と前記第3障壁層との間に設けられた第2井戸層と、
    を含む発光部と、
    を備え、
    前記第3障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に最も近く、
    前記第2障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に2番目に近く、
    前記第1障壁層における前記n形不純物の濃度は、前記第2濃度よりも低く、
    前記発光部に含まれる前記複数の障壁層のうちで、前記第2障壁層と前記第1半導体層との間に位置する障壁層における前記n形不純物の濃度は、前記第2濃度よりも低く、
    前記第2濃度は、5.0×10 18 毎立方センチメートルを超え、1.0×10 19 毎立方センチメートル以下であり、
    前記第1障壁層と前記第1井戸層との間の境界を含む平面は、前記第1半導体層の(0001)面を含む平面と交差する半導体発光素子。
  2. 前記境界と前記(0001)面との間の角度は、15度以上165度以下である請求項1記載の半導体発光素子。
  3. 前記境界は、前記(0001)面に対して傾斜している請求項1または2に記載の半導体発光素子。
  4. 前記第2障壁層の厚さは、3.0ナノメートル以上7.0ナノメートル以下である請求項1〜のいずれか1つに記載の半導体発光素子。
  5. 前記第1障壁層及び前記第3障壁層のそれぞれの厚さは、3.0ナノメートル以上7.0ナノメートル以下である請求項1〜のいずれか1つに記載の半導体発光素子。
  6. 前記第1井戸層及び前記第2井戸層のそれぞれの厚さは、3.5ナノメートル以上7.5ナノメートル以下である請求項1〜のいずれか1つに記載の半導体発光素子。
  7. 基板の上に、第1濃度でn形不純物を含む第1半導体層を形成する工程と、
    前記第1半導体層の上に、発光部であって、前記発光部に含まれる複数の障壁層の数は、9であり、前記発光部に含まれる複数の井戸層の数は、8であり、前記複数の障壁層の1つである第1障壁層と、前記第1障壁層の上に設けられ前記第1濃度よりも高い第2濃度でn形不純物を含み前記複数の障壁層の別の1つである第2障壁層と、前記第2障壁層の上に設けられ前記複数の障壁層のさらに別の1つである第3障壁層と、前記第1障壁層と前記第2障壁層との間に設けられた第1井戸層と、前記第2障壁層と前記第3障壁層との間に設けられた第2井戸層と、を含む発光部を形成する工程と、
    前記発光部の上に、p形不純物を含む第2半導体層を形成する工程と、
    を備え、
    前記第3障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に最も近く、
    前記第2障壁層は、前記発光部に含まれる障壁層のうちで前記第2半導体層に2番目に近く、
    前記第1障壁層における前記n形不純物の濃度は、前記第2濃度よりも低く、
    前記発光部に含まれる前記複数の障壁層のうちで、前記第2障壁層と前記第1半導体層との間に位置する障壁層における前記n形不純物の濃度は、前記第2濃度よりも低く、
    前記第2濃度は、5.0×10 18 毎立方センチメートルを超え、1.0×10 19 毎立方センチメートル以下であり、
    前記第1障壁層と前記第1井戸層との間の境界を含む平面は、前記第1半導体層の(0001)面を含む平面と交差する半導体発光素子の製造方法。
  8. 前記境界と前記(0001)面との間の角度は、15度以上165度以下である請求項記載の半導体発光素子の製造方法。
  9. 前記境界は、前記(0001)面に対して傾斜している請求項7または8に記載の半導体発光素子の製造方法。
  10. 前記第2障壁層の厚さは、3.0ナノメートル以上7.0ナノメートル以下である請求項のいずれか1つに記載の半導体発光素子の製造方法。
  11. 前記第1障壁層及び前記第3障壁層のそれぞれの厚さは、3.0ナノメートル以上7.0ナノメートル以下である請求項〜1のいずれか1つに記載の半導体発光素子の製造方法。
  12. 前記第1井戸層及び前記第2井戸層のそれぞれの厚さは、3.5ナノメートル以上7.5ナノメートル以下である請求項〜1のいずれか1つに記載の半導体発光素子の製造方法。
JP2014060634A 2014-03-24 2014-03-24 半導体発光素子及びその製造方法 Active JP6426359B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014060634A JP6426359B2 (ja) 2014-03-24 2014-03-24 半導体発光素子及びその製造方法
US14/658,418 US20150270440A1 (en) 2014-03-24 2015-03-16 Semiconductor light emitting element and method for manufacturing same
KR1020150038063A KR20150110368A (ko) 2014-03-24 2015-03-19 반도체 발광 소자 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060634A JP6426359B2 (ja) 2014-03-24 2014-03-24 半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015185678A JP2015185678A (ja) 2015-10-22
JP6426359B2 true JP6426359B2 (ja) 2018-11-21

Family

ID=54142915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060634A Active JP6426359B2 (ja) 2014-03-24 2014-03-24 半導体発光素子及びその製造方法

Country Status (3)

Country Link
US (1) US20150270440A1 (ja)
JP (1) JP6426359B2 (ja)
KR (1) KR20150110368A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044822B1 (fr) * 2015-12-03 2018-01-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optoelectronique comprenant un composant electroluminescent et un transistor
US11195973B1 (en) * 2019-05-17 2021-12-07 Facebook Technologies, Llc III-nitride micro-LEDs on semi-polar oriented GaN
US11175447B1 (en) 2019-08-13 2021-11-16 Facebook Technologies, Llc Waveguide in-coupling using polarized light emitting diodes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298090A (ja) * 1998-04-09 1999-10-29 Nichia Chem Ind Ltd 窒化物半導体素子
US6586762B2 (en) * 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
JP2004200362A (ja) * 2002-12-18 2004-07-15 Toshiba Corp 窒化物半導体発光素子
US20050218414A1 (en) * 2004-03-30 2005-10-06 Tetsuzo Ueda 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
KR20070013320A (ko) * 2004-05-10 2007-01-30 더 리전트 오브 더 유니버시티 오브 캘리포니아 유기금속 화학기상증착법을 이용한 비극성 질화인듐갈륨박막들, 이중 구조들 및 소자들의 제조
JP4956924B2 (ja) * 2005-06-29 2012-06-20 豊田合成株式会社 半導体デバイス、及びその電極の製造方法
DE102007046027A1 (de) * 2007-09-26 2009-04-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip mit einer Mehrfachquantentopfstruktur
JP2009081374A (ja) * 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
JP5156347B2 (ja) * 2007-11-21 2013-03-06 ローム株式会社 半導体発光素子およびその製造方法
JP5003527B2 (ja) * 2008-02-22 2012-08-15 住友電気工業株式会社 Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
JP2010123920A (ja) * 2008-10-20 2010-06-03 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子を作製する方法、及びエピタキシャルウエハを作製する方法
JP2010219310A (ja) * 2009-03-17 2010-09-30 Sharp Corp 光デバイスおよび光デバイス構造
KR101173072B1 (ko) * 2009-08-27 2012-08-13 한국산업기술대학교산학협력단 경사진 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
JP4891462B2 (ja) * 2009-11-12 2012-03-07 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子
JP2011159771A (ja) * 2010-01-29 2011-08-18 Nec Corp 窒化物半導体発光素子、窒化物半導体発光素子の製造方法、および電子装置
US8908161B2 (en) * 2011-08-25 2014-12-09 Palo Alto Research Center Incorporated Removing aluminum nitride sections
JP2014022647A (ja) * 2012-07-20 2014-02-03 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法

Also Published As

Publication number Publication date
US20150270440A1 (en) 2015-09-24
KR20150110368A (ko) 2015-10-02
JP2015185678A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
US9590141B2 (en) Semiconductor light emitting device having a p-type semiconductor layer with a p-type impurity
US8525203B2 (en) Semiconductor light emitting device
US20150349199A1 (en) Semiconductor light emitting device and wafer
JP6426359B2 (ja) 半導体発光素子及びその製造方法
US9331237B2 (en) Semiconductor light emitting device, including a plurality of barrier layers and a plurality of well layers, and method for manufacturing the same
JP6483566B2 (ja) 半導体発光素子
JP5337862B2 (ja) 半導体発光素子
JP5889981B2 (ja) 半導体発光素子
US8704268B2 (en) Semiconductor light emitting device
JP5615334B2 (ja) 半導体発光素子
JP5973006B2 (ja) 半導体発光素子
US9006709B2 (en) Semiconductor light emitting element and method for manufacturing the same
JP5554387B2 (ja) 半導体発光素子
JP5694476B2 (ja) 半導体発光素子
US20170025578A1 (en) Nitride semiconductor element
JP5764184B2 (ja) 半導体発光素子
JP5651758B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250