JP6424412B1 - Fine bubble generating apparatus and method thereof - Google Patents

Fine bubble generating apparatus and method thereof Download PDF

Info

Publication number
JP6424412B1
JP6424412B1 JP2017111189A JP2017111189A JP6424412B1 JP 6424412 B1 JP6424412 B1 JP 6424412B1 JP 2017111189 A JP2017111189 A JP 2017111189A JP 2017111189 A JP2017111189 A JP 2017111189A JP 6424412 B1 JP6424412 B1 JP 6424412B1
Authority
JP
Japan
Prior art keywords
gas
liquid
mixing
flow
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017111189A
Other languages
Japanese (ja)
Other versions
JP2018192465A (en
Inventor
正隆 青柳
正隆 青柳
幸如 李
幸如 李
Original Assignee
株式会社カリタス&ベリタス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カリタス&ベリタス filed Critical 株式会社カリタス&ベリタス
Priority to JP2017111189A priority Critical patent/JP6424412B1/en
Priority to TW107115150A priority patent/TW201900270A/en
Application granted granted Critical
Publication of JP6424412B1 publication Critical patent/JP6424412B1/en
Publication of JP2018192465A publication Critical patent/JP2018192465A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 小型軽量な微細気泡生成装置【解決手段】 気液混合空間では、気液境界面(9)の同調を連続して協調制御することで、気層と液層に分かれ同期する動的均衡が形成されて高気液溶解効率が発生し、更に流体全体をいつまでも時間変化せず、動的に平衡状態に達した動的平衡の流れに転移させることで、流路上には、余剰気体を機械的又は電気的に排気処理する制御装置、気液溶解度を向上させる気液溶解貯留槽が一切不要となり、装置は小型軽量化する。【選択図】図1PROBLEM TO BE SOLVED: In a gas-liquid mixing space, a dynamic, divided and synchronized gas layer and liquid layer, by continuously and synchronously controlling the synchronization of a gas-liquid interface (9) in a small-sized and lightweight micro-bubble generating device. A balance is formed to generate high gas-liquid dissolution efficiency, and further, the entire fluid is converted to a dynamic equilibrium flow that has reached a dynamic equilibrium state without changing forever, and excess gas is generated on the flow path. The control device for exhausting the air mechanically or electrically, and the gas-liquid dissolving and storage tank for improving the gas-liquid solubility are not required at all, and the device is reduced in size and weight. [Selected figure] Figure 1

Description

本発明は、気液流体の動的均衡乃至動的平衡を通じて、小型軽量で高効率な気液混合溶解システムの微細気泡生成装置の開発及びその生成方法に関する。The present invention, through a dynamic equilibrium or dynamic equilibrium gas-liquid fluid, development and to its method of production of high-efficiency gas-liquid mixing dissolution system microbubble generating device is small and light.

通常の微細気泡生成装置は、流路間に気液溶解貯留槽などを併設して気液溶解効率を高めるタイプが一般的に多い。だが、気液溶解貯留槽内では気液溶解に一定の時間が掛かる他、槽内上層部には、溶存仕切れない余剰気体が自然と貯留してしまい内圧変化を引き起こす為、気液溶解にとっては最大の障害となっていた。その為、従来、溜まった余剰気体は、空気弁などの機械的な排気装置を用いて外界に排出させるか又は電気的に気液境界面を一定に制御する水位検知装置を用いて、気液溶解貯留槽内の圧力を常に一定に保つことが求められる。(特許文献1参照)In general, there are many types of general micro air bubble generation devices in which gas-liquid dissolving and storage tanks and the like are provided between flow paths to increase gas-liquid dissolving efficiency. However, it takes a certain time for gas-liquid dissolution in the gas-liquid dissolution storage tank, and excess gas that can not be dissolved is naturally stored in the upper layer inside the tank, causing internal pressure change, so for gas-liquid dissolution It was the biggest obstacle. Therefore, conventionally, excess gas that has accumulated is discharged to the outside using a mechanical exhaust device such as an air valve or a water level detection device that electrically controls the air-liquid interface uniformly. It is required to keep the pressure in the dissolution reservoir constant at all times. (See Patent Document 1)

従来の微細気泡生成装置では、大きく分けて加圧溶解方式か二相流旋回方式いずれかの発生方法が用いられるが、其々の能力や特性には区別があり、高濃度に発生可能な装置は、加圧溶解方式の方である。それは、強力な加圧ポンプを使用して気液流体を加圧混合し、気液溶解貯留槽などで更に気液溶解度を向上させた後、圧力解放して微細気泡を生成させる方式である。一方、二相流旋回方式は、気体と液体から成る二相流をある特定の流路内で同時に高速旋回させて、気体をその遠心力や向心力で剪断する剪断工程によって、微細化する発生方法である。(特許文献2及び3参照)In the conventional micro-bubble generator, although either the pressure dissolution method or the two-phase flow swirl generation method is used broadly, there is a distinction between the respective capabilities and characteristics, and an apparatus capable of high concentration generation Is the pressure dissolution method. In this method, gas-liquid fluid is pressurized and mixed using a strong pressure pump, and after the gas-liquid solubility is further improved in a gas-liquid dissolving tank or the like, pressure is released to generate fine bubbles. On the other hand, the two-phase flow swirling method is a generation method in which a gas and liquid two-phase flow is simultaneously swirled at a high speed in a certain flow path and the gas is refined by a shearing process of shearing by centrifugal force and centripetal force. It is. (Refer to patent documents 2 and 3)

例えば、従来の人工炭酸泉発生装置では、外部に業務用の高圧炭酸ボンベを併設する機構が主流であり、更に各種配管や各種制御弁等で構成された気液混合装置との接続が同時に必要になる他、壁面に掛けるタイプの気液混合装置の場合、専用に壁掛け用の工事が必要である。炭酸ボンベ自体も安全な設置場所が求められ、取り扱いに注意が必要となる。その外、使用形態は異なるが、炭酸ガスを直接、専用カランに供給して、炭酸泉シャワーとして使用する形態なども存在する。(特許文献4及び5参照)For example, in the conventional artificial carbon dioxide spring generating apparatus, the main mechanism is the mechanism of attaching high pressure carbon dioxide cylinder for business to the outside, and further, the connection with the gas-liquid mixing apparatus composed of various pipes and various control valves is required simultaneously. In addition, in the case of a gas-liquid mixing device of the type that hangs on the wall, work for hanging on the wall is necessary. The carbon dioxide cylinder itself is also required to have a safe installation site and requires careful handling. In addition to that, although the use form is different, there is also a form in which carbon dioxide gas is directly supplied to a dedicated caran and used as a carbonated spring shower. (Refer to patent documents 4 and 5)

気液噴射による混合過程に於いて、気体を液体に溶解させる方法には、大きく分けると二種類の形態がある。一つは、液体を気体中に勢いよく曝して、大量の液泡を発生させ、拡張した液泡表面に大量の気体を溶解させる曝気混合。もう一つは、大量の気体を液中に噴射して、夥しい気泡を発生させて散気することで、液体に気体を溶解させるエアレーション混合である。(特許文献6及び7参照)In the mixing process by gas-liquid injection, the method of dissolving the gas in the liquid can be roughly divided into two types. One is aeration mixing , in which the liquid is vigorously exposed to gas to generate a large amount of liquid bubbles and to dissolve a large amount of gas on the expanded liquid bubble surface. The other is an aeration mixture in which a large amount of gas is jetted into the liquid to generate a cool bubble and aeration , thereby dissolving the gas in the liquid. (Refer to patent documents 6 and 7)

上記以外に気液流体を混合する技術としては、所謂、スタテックミキサーと呼ばれる静態型撹拌混合器がある。例えば、気液流体が該混合器を通過する際、遠心力や向心力を伴う反復旋回運動流が発生し、液体と液体,液体と固体又は液体と気体を混合するミキシング技術である。それらは、各々の物性に基づき、流体を無数の粒子群として捉える考えから、主に粘度が高く、比重の異なる混合対象に適した技術である。装置の構造自体は、極めてシンプルであり、交互に向きを変えて配置されるスクリュー状の羽から、幾重にも一定の間隔で列なるキノコ状の突起物まで、様々な形状及び形態があり、微小な泡ながら強い圧力波を有するキャビテーションの発生や気液流体の互いの衝突や剪断によって、細分化することがその特徴である。(特許文献8参照)In addition to the above, as a technique for mixing gas-liquid fluid, there is a so-called static mixer called a static mixer. For example, when a gas-liquid fluid passes through the mixer, a repetitive swirling flow with centrifugal force and centripetal force is generated, which is a mixing technique in which liquid and liquid, liquid and liquid or solid and liquid and gas are mixed. They are techniques that are suitable mainly for mixing targets with high viscosity and different specific gravities, based on the idea of treating the fluid as an infinite number of particle groups based on their respective physical properties. The structure of the device itself is extremely simple and has various shapes and forms, from screw-like wings arranged in alternate orientations to mushroom-like projections arranged at regular intervals in multiple layers, It is characterized in that it is subdivided by the generation of cavitation having a strong pressure wave while being a fine bubble, the collision of gas and liquid fluid with each other and the shearing. (See Patent Document 8)

特開2002−336668号公報JP, 2002-336668, A 特許4129290号公報Patent 4129290 gazette 特許5660510号公報Patent No. 5660510 特許6032456号公報Patent 6032456 特開2012−95976号公報JP, 2012-95976, A 特許4057453号公報Patent No. 4057453 特許5800185号公報Patent No. 5800185 gazette 特開2014−226666号公報JP 2014-226666 A

従来の微細気泡生成装置は、気液溶解貯留槽を通じて二次的な気液溶解工程を一定時間必要とするものが多く、溶解仕切れずに余剰する一部気体は、自然と槽内上層部に貯留して、エアークッションとなり気液溶解を阻害する為、空気弁などの排気装置を用いて機械的に排出させるか又は水位検知装置などを用いて電気的に気液境界面を一定に制御し、内圧を常に一定に保つ必要がある。その為、出力規模が大きく、高濃度で大量の微細気泡を発生させる装置ほど、全体構造は大型化し又複雑になる傾向がある。因って、本発明の課題は、効率的且つ効果的な気液混合溶解システムによって、全体を可能な限り小型軽量化させ微細気泡生成装置を提供することである。Many of the conventional micro-bubble generating devices require a secondary gas-liquid dissolving process for a certain period of time through the gas-liquid dissolving and storing tank, and some gas surplus without dissolving and dividing is naturally in the upper layer inside the tank. To store the air cushion and inhibit gas and liquid dissolution, either mechanically discharge using an exhaust device such as an air valve, or electrically control the gas / liquid interface uniformly using a water level detection device or the like. , It is necessary to keep the internal pressure constant at all times. Therefore, the larger the output scale, the higher the concentration and the amount of fine bubbles generated by the apparatus, the larger the overall structure tends to be. Accordingly, an object of the present invention is to provide a micro-bubble generating device that is as compact and lightweight as possible by an efficient and effective gas-liquid mixing and dissolving system.

渦流ポンプの一種であるカスケードポンプは、円周外縁上に左右対称の溝がある羽根車がケーシング内を高速回転し、羽根の周囲に渦流を起こしながら、液体を吸い上げて圧送する形式の加圧ポンプである。家庭用の浅井戸ポンプ等は殆どがこのポンプ形式であり、又微細気泡発生装置用としても広く使用されている。カスケードポンプは、渦巻型遠心ポンプと比較しても吸い込みや押上揚程(圧力)ともに強力な反面、流量が比較的少ないことと完全な自吸式ではないことが欠点である。一方、渦巻型遠心ポンプの中には、多段式など高流量で高圧力なタイプの加圧遠心ポンプも存在するが、自吸式ではなく起動の際、呼び水が必要であり又価格が高額で重量も大きいこと等、家庭用として使用するには多くの課題が残る。中でも一番の課題は、駆動音や振動音が非常に大きく、夜間等の入浴時にトラブルの原因になりかねない。因って、本発明の課題は、呼び水を必要とせず簡単操作で、駆動音や振動音が気にならず而も流量が多い高性能な微細気泡生成装置を提供することである。A cascade pump, which is a type of eddy current pump, is a type of pressurized pump in which an impeller with symmetrical grooves on the outer periphery rotates at high speed in the casing and causes fluid to be drawn up and pumped while causing swirling around the blades. It is a pump. Almost all shallow well pumps for household use are of this pump type, and are also widely used as fine bubble generating devices. A cascade pump is stronger in suction and lift (pressure) as compared with a spiral centrifugal pump, but has a disadvantage that it has a relatively low flow rate and is not completely self-priming. On the other hand, among the centrifugal centrifugal pumps, there are high-flow, high-pressure type pressurized centrifugal pumps such as multi-stage type, but they are not self-priming type and require priming water at start-up. Many problems remain for use for household use, such as heavy weight. Among them, the first problem is that the driving noise and the vibration noise are very large, which may cause trouble at the time of bathing at night or the like. Accordingly, an object of the present invention is to provide a high-performance micro bubble generator having a high flow rate and a high flow rate without bothering water and vibration noise and requiring no priming.

現在、各家庭では一般に固形や液体又は粉末状の温泉の素を直接、浴槽に入れて、人工温泉浴を楽しむことが専ら主流ではあるが、各種有効成分を白濁した微細気泡の状態で而も簡単に発生させる微細気泡生成装置の普及は未だ見られない。従来の人工炭酸泉発生装置の殆どは、業務用の炭酸ボンベを併用するタイプが主流で、使用上又は構造上も家庭用として扱うには色々と不便であり、価格面でも高価である等々改善が必要である。近年、医療をはじめ健康や美容などの分野でも幅広く活用されている炭酸泉は、筋肉痛,関節痛,腰痛などの疼痛緩和や高血圧症,動脈硬化症,リウマチへの効果も期待されている。因って、本発明の課題は、炭酸ガスなど生理活性を高める有効威分が簡単に供給でき、且つ広く一般家庭へ普及し得る実効性や扱い易い操作性を兼ね備える微細気泡生成装置を提供することである。At present, in general, it is mainly mainstream to enjoy the artificial hot spring bath by putting solid, liquid or powdered hot spring elements directly into the bath in general, but it is mainly in the form of white bubbles of various active ingredients. The widespread use of a micro-bubble generator to generate easily is not seen yet. Most of the conventional artificial carbon dioxide spring generators are mainly of the type that uses carbonic acid cylinders for business use, and it is inconvenient to handle as household use in terms of use or structure, and the price is expensive etc. is necessary. In recent years, carbonated spring, which is widely used in medical and other fields such as health and beauty, is expected to be effective in alleviating pain such as muscle pain, arthralgia and back pain, hypertension, arteriosclerosis and rheumatism. Accordingly, the object of the present invention is to provide a micro-bubble generating device capable of easily supplying effective benefits to enhance physiological activity such as carbon dioxide gas, and having operability and easy operability which can be widely spread to general households. It is.

静態型撹拌混合器であるスタテックミキサーも、大変効果的な気液混合装置ではあるが、例えば、粘度の非常に低い水と空気をコンパクトな流路間で、過飽和状態の気液混合液に到達させることは、未だ多くの技術的課題が残るのが現状である。その為、静態型撹拌混合器の欠点を補いつつ、微細気泡の生成に必要な過飽和状態の気液混合液を、如何に短い流路間で完成させられるかが重要である。因って、本発明の課題は、気液流体が短い流路間にあって、過飽和状態の気液混合液へと最終的に変換可能な流路構造と気液圧縮機構を備える微細気泡生成装置を提供することである。The static mixer, which is a static stirring mixer, is also a very effective gas-liquid mixing device, but for example, supersaturated water and air can be converted into a supersaturated gas-liquid mixture between compact flow paths with very low viscosity water and air. At present, there are still many technical issues to be reached. Therefore, it is important to be able to complete the supersaturated gas-liquid mixture necessary for the generation of the fine bubbles between the short flow paths to compensate for the drawbacks of the static stirring mixer. Accordingly, an object of the present invention is to provide a micro-bubble generator having a flow path structure and a gas-liquid compression mechanism that can be finally converted to a supersaturated gas-liquid mixed liquid in which the gas-liquid fluid is between short flow paths. It is to provide.

気層に発生する曝気混合の利点は、カオス的な激しい気液噴射流によって生まれる数え切れない液泡に、大量の空気(気体の総称)が溶解して高い気液溶解効率を発生させることであるが、粘度の低い水と空気の単純な混合ではシャボン玉のような液泡は増殖し難く、大量の液胞を如何に持続して発生させるかが重要である。その一方で、液層に於いても直接、空気(気体の総称)を液中に射入して、数え切れない気泡を液体中に散気させるエアレーション混合も有効的な気液溶解方法の一つであることから、それら二つの混合形態が並存出来れば、即ち、それは極めて高い気液溶解装置と成り得る。因って、本発明の課題は、気液混合空間に曝気混合エアレーション混合が同期する状態を常態化させ、又安定的に制御維持する方法を提供することである。The advantage of aeration mixing generated in the air layer is that a large amount of air (generic gas) is dissolved in countless liquid bubbles generated by the chaotic and intense air-liquid jet flow to generate high gas-liquid dissolution efficiency. In a simple mixing of low viscosity water and air, bubbles such as bubbles are difficult to grow, and it is important how to sustain and generate a large amount of vacuoles. On the other hand, even in the liquid phase , air (a generic term of gas) is directly injected into the liquid, and aeration mixing in which countless bubbles are dispersed in the liquid is one of the effective gas-liquid dissolving methods. Therefore, if these two mixed forms can coexist, that is, it can be an extremely high gas-liquid dissolving apparatus. Accordingly, an object of the present invention is to provide a method for normalizing and stably controlling and maintaining a state in which aeration mixing and aeration mixing are synchronized in a gas-liquid mixing space.

本発明の微細気泡生成装置は、上記の諸課題を解決する為、以下の手段を特徴としている。The micro-bubble generating device of the present invention is characterized by the following means in order to solve the above-mentioned problems.

第一手段として、効率的且つ効果的な気液混合溶解システムによって、全体を可能な限り小型軽量化させた微細気泡生成装置の提供に関し、請求項1の通り、流路断面積が、進行方向に向かって漸次狭まり又は漸次広がることで水圧,流速が増減する水圧増減手段(2a,2b,2c)と、多方向に気液噴射して気液境界面(9)の同調を協調制御する気液噴射手段(8)と、気液境界面(9)の同調によって気液二層に同期する動的均衡が自発的に発生し、外界とは完全に隔離された場の気液混合手段(3)と、気液溶解度を促す気液溶解手段(4)と、そして、過飽和状態の気液混合液に混練,圧縮する気液圧縮手段(5)などから構成される一連の新規システム構築を解決手段とするAs a first means, the present invention relates to the provision of a micro-bubble generating device which is made as small and light as possible as a whole by an efficient and effective gas-liquid mixing / dissolving system. Water pressure increasing / decreasing means (2a, 2b, 2c) where water pressure and flow velocity increase / decrease by gradually narrowing toward or gradually expanding, and gas / liquid injection in multiple directions to coordinate control of synchronization of air / liquid interface (9) The synchronization of the liquid injection means (8) and the air-liquid interface (9) spontaneously generates a dynamic equilibrium synchronized with the gas-liquid two-layer, and the air-liquid mixing means of the field completely isolated from the outside 3) A series of new system construction consisting of gas-liquid dissolving means (4) for promoting gas-liquid solubility, and gas-liquid compression means (5) for kneading and compressing into supersaturated gas-liquid mixed liquid As a solution

第二手段として、呼び水を必要とせず簡単操作で、駆動音や振動音が気にならず而も流量が多い高性能な微細気泡生成装置の提供に関し、図11と図12で示した、ダイヤフラムポンプ(20)の吸水吐水ユニット裏で、気液流体を吸水経路から吸い込み又吐水経路から吐き出す為に往復運動するダイヤフラム弁(27)の数が、請求項2の通り、最少でも1、最多でも8とする、電動駆動モーター型のダイヤフラムポンプ(20)を用いることを解決手段とする。As a second measure, the diaphragm shown in FIGS. 11 and 12 is related to the provision of a high-performance micro-bubble generator having a large flow rate without bothering the driving noise and vibration noise and requiring no priming water and simple operation. As described in claim 2, the number of diaphragm valves (27) that reciprocate to suck gas / liquid fluid from the water absorption path and discharge it from the water discharge path behind the water absorption / discharge unit of the pump (20) is at least one or more The solution is to use an electrically driven motor type diaphragm pump (20).

第三手段として、炭酸ガスなど生理活性を高める有効成分が簡単に供給でき、且つ広く一般家庭へ普及し得る実効性や扱い易い操作性を兼ね備える微細気泡生成装置の提供に関し、請求項3の気液混合液供給手段(24)を請求項1の通り、ダイヤフラムポンプ(20)の吸込口に直結又は近させることで、良好な実効性並びに操作性を兼ねることを解決手段とする。As a third means, it relates provides microbubble generating apparatus having both the active ingredient can be easily supplied, and widely effective and easy to handle operability can spread to general households to improve the physiological activity such as carbon dioxide, air of claim 3 as in claim 1 liquid mixture supply means (24), by direct or proximity to the suction port of the diaphragm pump (20), and solutions that also serves as a good effectiveness and operability.

第四手段として、気液流体が短い流路間にあって、過飽和状態の気液混合液へと最終的に変換可能な流路構造と気液圧縮機構の提供に関し、請求項4の通り、先ず流路構造を気液混合手段(3)が主体となる様に改良を加えた上で、気液溶解手段(4)と気液圧縮手段(5)が、その長手方向の略中心軸と重力が直交する略水平の状態で横置きとするダイヤフラムポンプ(20)周縁に最短で周設させる。次に図8の通り、三層に折り返す流路経路で構成される気液圧縮手段(5)を強力な気液圧縮機構として用いることで、気液流体は、最終的に過飽和状態の気液混合液へと効率よく変換されることを解決手段とする。As a fourth means, the provision of a flow path structure and a gas-liquid compression mechanism which can be finally converted to a supersaturated gas-liquid mixed liquid in a short flow path of the gas-liquid fluid. The path structure is improved so that the gas-liquid mixing means (3) is the main component, and then the gas-liquid dissolving means (4) and the gas-liquid compression means (5) The diaphragm pump (20), which is placed horizontally in a substantially horizontal state orthogonal to the diaphragm pump (20), is provided at the shortest circumference . Next, as shown in FIG. 8, the gas-liquid fluid is finally supersaturated in the gas-liquid state by using the gas-liquid compression means (5) composed of the flow path that is folded back into three layers as a strong gas-liquid compression mechanism. The solution is to be efficiently converted into a mixed solution.

第五手段として、気液混合空間に曝気混合エアレーション混合が同期する状態を常態化させ、又安定的に制御維持する方法に関し、請求項5乃至請求項6の通り、気液噴射時、細長状で中空構造体の気液噴射手段(8)の斜倒に最適な勾配角調整を加え、気液噴射ノズルの外周に万遍なく穿孔した噴射孔群から激しく多方向に気液噴射することで、気層液層の境界を成す気液境界面(9)の同調が連続して協調制御され、同時に気層液層に分かれ同期する、空間的秩序形成としての動的均衡が自発的且つ恒常的に発生することを解決手段とする。The fifth means relates to a method for normalizing and stably controlling a state in which aeration mixing and aeration mixing are synchronized in the gas-liquid mixing space, and as in the fifth to sixth aspects, it is elongated at the time of gas-liquid jetting. In addition, it is possible to perform gas-liquid jet in many directions violently from the injection holes that are uniformly drilled around the outer periphery of the gas-liquid jet nozzle by adding slope angle adjustment that is optimal for tilting the gas-liquid jet means (8) in hollow shape and hollow structure. The coordination of the gas-liquid interface (9) that forms the boundary between the gas layer and the liquid layer is continuously coordinated and controlled, and at the same time the dynamic balance as spatial order formation is spontaneous, divided and synchronized with the gas layer and the liquid layer. It is a solution to occur regularly and constantly.

請求項1の新規システム構築によって、効率的且つ効果的な気液混合及び気液溶解が可能となる為、機械的に余剰気体を処理する排気装置や電気的に気液境界面を一定に制御して内圧を保持する水位検知装置、更には気液溶解度を促進する気液溶解貯留槽が一切設置不要となり、従来の装置と比べて小型軽量化が極めて効果的に実現する。又そのシンプルな構造から部品点数が少なくて済み、製造コストを抑えて低価格化が可能なことから、装置の普及にも効果的である。その他、部品点数の少なさは、部品同士が接触して摩耗する部分が少ない為、故障も少なく、修理やメンテナンスに掛かる費用も抑えられる。The new system construction of claim 1 enables efficient and effective gas-liquid mixing and gas-liquid dissolution, so that the exhaust system for mechanically processing the excess gas and the electric-gas-liquid interface are controlled uniformly. water level detection device for retaining the internal pressure and, further the gas-liquid dissolving reservoir to promote gas-liquid solubility one switching installation becomes unnecessary, reduction in size and weight is very effectively implemented as compared with the conventional device. In addition, since the number of parts can be reduced due to its simple structure, the manufacturing cost can be reduced and the price can be reduced, which is effective for the spread of the apparatus. In addition, because the number of parts is small, there are few parts where parts come into contact and wear, so there are few failures, and the cost for repair and maintenance can be reduced.

請求項2のダイヤフラムポンプ(20)は、加圧ポンプ手段として、静粛性が高く、高流量や高圧力にも対応可能なことや、又高い自吸能力による優れた汲み上げ復旧能力を有し、空転運転に対しても優れた耐久性を兼ね備える。駆動音の静かさは、夜間等の使用も想定される温浴装置にとって、正に有効な加圧ポンプ手段であり、更に1から8連のダイヤフラム弁(27)を各出力別に有することで、ダイヤフラムポンプ(20)は、様々な商品開発への対応が可能である。例えば、1又は2連のダイヤフラム弁(27)から成る超小型微細気泡生成装置は、携帯式の美容効果商品等に応用でき、3連,4連から成る生成装置は、ペットの入浴や炭酸泉による足湯などの健康商品の開発に最適で、又5連,6連から成る生成装置では、主に家庭入浴用の微細気泡装置としての利用が考えられる。この外、工業用として更に高流量が求められる場合は、ダイヤフラム弁(27)を七連乃至八連に増設すれば、理想的な流量が効果的に得られる。The diaphragm pump (20) according to claim 2 has high quietness and can cope with high flow rate and high pressure as pressurizing pump means, and also has excellent pumping recovery ability by high self-priming ability, It also has excellent durability against idling. The quietness of the drive noise is a pressure pump means that is very effective for a warm bath device that is also expected to be used at night, etc., and further having 1 to 8 diaphragm valves (27) separately for each output. The pump (20) can cope with various product developments. For example, a microminiature micro bubble generator consisting of one or two diaphragm valves (27) can be applied to a portable beauty effect product etc., and a generator consisting of three or four is by bathing pet's or carbonated spring It is most suitable for the development of health products such as foot baths, and the production apparatus consisting of 5 and 6 can be mainly used as a fine bubble apparatus for home bathing. In addition to this, when a higher flow rate is required for industrial use, an ideal flow rate can be effectively obtained by increasing the diaphragm valve (27) to seven or eight.

請求項3の気液混合液供給手段(24)は、ダイヤフラムポンプ(20)の吸込口側(28)に直結又は近させる一体型である為、例えば、高圧炭酸ボンベからの炭酸ガス供給システムなど、従来必要となる外部装備に代わり、炭酸ガスが簡単な取り扱い操作で得られる略箱状で供給源としての容器となる。システム自体も小型軽量なことから何処へでも自由に持ち運べ、更に気液混合装置の壁掛け取り付け工事も不要であること等、気液混合液供給手段(24)を用いる方式は、従来の炭酸泉発生装置と比べ、その利便性や実効性、そして操作性の面でも大変効果的な形態と言える。 Gas-liquid mixture supply means according to claim 3 (24), since a one-piece directly coupling or proximity to the suction port side (28) of the diaphragm pump (20), for example, carbon dioxide gas supply system from the high pressure carbon dioxide cylinder In place of the external equipment conventionally required, carbon dioxide gas becomes a container as a supply source in a substantially box shape obtained by a simple handling operation. Since the system itself is compact and lightweight, it can be freely carried anywhere, and there is no need for wall mounting installation of the gas-liquid mixing apparatus. The method using the gas-liquid mixed liquid supply means (24) is the conventional carbonated spring generator In comparison with it, it can be said that it is a very effective form also in terms of its convenience, effectiveness, and operability.

請求項4の通り、最短で周設される導管内には、気液流体の抵抗となる物理的要因が少なく、気液流体エネルギーの圧損が大幅に軽減され、気液流体の勢いは衰えることなく気液圧縮手段(5)へ効率よく送られる。その為、微細気泡の吐出量や勢いは、複雑な流路の装置に比べ効果的に増大し、起動から微細気泡生成までの立ち上がりも非常に素早くなる。又図8の通り、圧縮混合外装部(12)が圧縮混合内装部(11)を内包して形成された狭い流路間を気液流体が通過する際、等間隔で列なる環状溝(17)では、複雑な渦流及び旋回流が発生して、強力に混練,圧縮を繰り返す為、気液流体は、効率よく又素早く過飽和状態の気液混合液へと変換される。因みに、流路の大半を略水平に配設することによって、エアー噛みが起こる危険性を構造的にも効果的に防いでいる。According to the fourth aspect of the present invention, there are few physical factors that become resistance of gas-liquid fluid in the conduit installed at the shortest circumference, pressure loss of gas-liquid fluid energy is greatly reduced, and the force of gas-liquid fluid declines. It is efficiently sent to the gas-liquid compression means (5). Therefore, the discharge amount and force of the fine bubbles increase effectively as compared with a device having a complicated flow path, and the rising from the start to the formation of the fine bubbles becomes very quick. Also, as shown in FIG. 8, when the gas-liquid fluid passes between narrow flow paths formed by including the compression mixing interior part (11) by the compression mixing exterior part (12), annular grooves (17 In the above, complex vortices and swirls are generated, and the mixing and compression are repeated intensively, so that the gas-liquid fluid is efficiently and quickly converted into a supersaturated gas-liquid mixture . Incidentally, by arranging the majority of the flow path substantially horizontally, the risk of air entrapment is effectively prevented structurally.

請求項5乃至請求項6の通り、気液混合手段(3)内で気層と液層の境界を成す気液境界面(9)の同調が恒常的に協調制御されることで、気層では気液流体の飛散によって発生した大量の液泡が互いに衝突や摩擦を繰り返す曝気混合となり、液層でも夥しい気泡が液中に送り込まれ散気するエアレーション混合となって同期する為、非常に高い気液溶解効率が効率良く発生し、気液流体は、瞬時に略飽和状態の気液混合液に変換される。又残留する余剰気体は、気液噴射流によって微小気泡の一つ一つに分散し拡散されて、気泡同士が摩擦を繰り返し、表面にはマイナスの電荷が生じて、互いに反発し合う為、液は常に懸濁した状態のまま、内圧を略一定の状態に保ち続け、流体全体としては、いつまでも時間変化がなく、動的に平衡状態に達した動的平衡へ特別な装置を一切用いることなく転移することになる。As described in the fifth to sixth aspects of the present invention, the coordination of the gas-liquid interface (9) forming the boundary between the gas layer and the liquid layer in the gas-liquid mixing means (3) is constantly coordinated and controlled. In this case, a large amount of liquid bubbles generated by the scattering of the gas-liquid fluid become aeration mixtures that repeat collisions and frictions with one another, and even with the liquid layer, the limp bubbles are sent into the liquid and dispersed as aeration mixture to synchronize, so very high air content The liquid dissolution efficiency is efficiently generated, and the gas-liquid fluid is instantaneously converted to a substantially saturated gas-liquid mixture . Further, the remaining excess gas is dispersed and dispersed in each of the microbubbles by the gas-liquid jet flow, and the bubbles repeat friction and the negative charges are generated on the surface, and they repel each other. Keeps the internal pressure nearly constant, always suspended, and the fluid as a whole has no time-varying changes and does not use any special equipment for dynamic equilibrium that has reached dynamic equilibrium It will metastasize.

本発明の一実施形態による微細気泡生成装置の俯瞰図である。  1 is an overhead view of a micro-bubble generating device according to an embodiment of the present invention. 本発明の一実施形態による気液混合液供給手段の内部構造概略図である。It is the internal structure schematic of the gas-liquid mixed liquid supply means by one Embodiment of this invention. 本発明の一実施形態による水圧増減手段と気液噴射手段の関係図である。  It is a related view of the water pressure increase-decrease means and gas-liquid injection means by one Embodiment of this invention. 本発明の一実施形態による気液混合手段の側面図である。  It is a side view of the gas-liquid mixing means by one Embodiment of this invention. 本発明の一実施形態による気液混合手段内の気層液層概略図である。  It is the gas phase liquid layer schematic in the gas-liquid mixing means by one Embodiment of this invention. 本発明の一実施形態による気液溶解手段内の静態型混合器概略図である。  FIG. 5 is a schematic view of a static mixer in a gas-liquid dissolving means according to an embodiment of the present invention. 本発明の一実施形態による気液圧縮手段内部の流路経路図である。  It is a flow-path path | route figure inside the gas-liquid compression means by one Embodiment of this invention. 本発明の一実施形態による気液圧縮手段内部の環状構概略図である。  It is the ring-shaped schematic diagram inside gas-liquid compression means by one Embodiment of this invention. 本発明の一実施形態による気液解放手段内部の構造詳細図である。  FIG. 5 is a detailed structural view of the inside of the gas-liquid release means according to an embodiment of the present invention. 本発明の一実施形態による円板部材の噴射孔正面図である。  It is an injection hole front view of a disk member by one embodiment of the present invention. 本発明の一実施形態によるダイヤフラム弁の概略図である  FIG. 5 is a schematic view of a diaphragm valve according to an embodiment of the present invention 本発明の一実施形態による吸水吐水ユニットの概略図である。  It is the schematic of the water absorption / discharge unit by one Embodiment of this invention.

現在、完成している試作品を一つの実施例として、以下本発明が、どのように微細気泡を発生させ、又如何に小型軽量化が実現されるかを、各図面を添えて実施形態を詳細に説明する。ただし以下に示す実施形態は、本発明の技術思想を具体化する為の一つの例示であって、本発明は、以下のものに特定されない。特に構成部品の寸法,材質,形状又はその相対的配置等は、特に特異的に限定する記載がない限りは、単なる一つの説明例に過ぎず、構成する各部材や各要素は、単数の部材や要素が複数の部材や要素で構成されてもよいし、逆に複数の部材や要素を単数の部材や要素に集約して作ることも可能である。The embodiment of the present invention will be described below with reference to the drawings, showing how to generate fine air bubbles and how to realize a reduction in size and weight by taking the prototype currently completed as an example. It will be described in detail. However, the embodiment shown below is one example for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes or relative arrangements of components, etc. are merely one example of description unless specifically limited otherwise, and each component or each component to be configured is a single component. The elements may be composed of a plurality of members or elements, or conversely, the plurality of members or elements may be integrated into a single member or element.

例えば、工業向けの微細気泡生成装置には、高圧力高流量に対応する多段式遠心加圧ポンプ等が適宜として使用されることが多く見受けられるが、本発明の趣旨でもある、小型軽量による様々な場面への対応や低振動,低駆動音の微細気泡生成装置としては、以下の理由から電動型のダイヤフラムポンプ(20)を最適と判断した。For example, although it is often found that a multistage centrifugal pressure pump or the like corresponding to a high pressure and a high flow rate is appropriately used as an industrial fine bubble generating apparatus, it is also a gist of the present invention . The electric diaphragm pump (20) was judged to be the best solution for dealing with various situations and for generating micro bubbles of low vibration and low driving noise for the following reasons.

ダイヤフラムポンプ(20)は、図12の通り、吸水経路(25)と吐出経路(26)から成る吸水吐水ユニットの後方で、図11の様な四連型など、往復運動するダイヤフラム弁(27)の数を、請求項2の通り、最小でも1.最多でも8とすることで、各使用用途に応じた様々な出力規模の微細気泡生成装置の製造に対応でき、美肌効果を謳った超小型の美容関連装置から大流量を必要とする工業用関連の装置まで開発可能である。本発明の実施形態では、5連のダイヤフラム弁(27)から成るダイヤフラムポンプ(20)を用いた試作品が完成しているが、それは八連以上であっても構わない。尚、ポンプヘッド内で気液流体の一部を迂回させ水圧の過上昇や流体の脈動を抑制するリリース経路は、設置しないことが望ましい。The diaphragm pump (20), as shown in FIG. 12, is a diaphragm valve (27) that reciprocates, such as a quadruple type as shown in FIG. 11, behind a water suction and discharge unit consisting of a water suction path (25) and a discharge path (26). Of at least 1. By setting the number to at most 8, it is possible to cope with the production of micro bubble generation devices of various output scales according to each use application, and industrial related applications requiring a large flow rate from a very small beauty related device with skin care effect. Devices can be developed. In the embodiment of the present invention, a prototype using a diaphragm pump (20) consisting of five diaphragm valves (27) is completed, but it may be eight or more. In addition, it is desirable not to install the release path which diverts a part of gas-liquid fluid in the pump head and suppresses the excessive rise of water pressure and the pulsation of the fluid.

〔以下は主に気体導入手段(22)の概略と気液混合液供給手段(24)に関する。〕
図1と図2は、其々、微細気泡生成装置図の基本構造と気液混合液供給手段(24)の内部構造を示した俯瞰図と概略図である。
[The following mainly relates to the outline of the gas introduction means (22) and the gas-liquid mixed liquid supply means (24). ]
1 and 2 are a bird's-eye view and a schematic view showing the basic structure of the micro-bubble generator and the internal structure of the gas-liquid mixed liquid supply means (24), respectively.

図2の通り、気液混合液供給手段(24)は、ダイヤフラムポンプ(20)吸込口に直結又は近し、略箱状で炭酸ガスなどの供給源となる容器で、内部には先端口が網状体で覆われる筒状管(16)が備わる。又略円環形状,略紛体形状,略粗粒体形状又は塊体形状のいずれかに加工された固体発泡剤(33)が充填されており、固形発泡剤から生まれた炭酸ガスが水に溶解することで気液が混合され、気液混合液となって、直にダイヤフラムポンプ(20)へ供給される。因みに、固体発泡剤(33)に取って代わり、外部から前記気液混合液を注入しても構わない。 As Figure 2, the gas-liquid mixture supply means (24) is a diaphragm pump (20) directly connected or proximity to the suction port, in a container comprising a supply source such as carbon dioxide gas in a substantially box shape, inside the tip opening Is provided with a tubular tube (16) covered with a mesh. Also, it is filled with a solid foaming agent (33) processed into any of a substantially annular shape, a substantially powder shape, a roughly coarse particle shape or a lump shape, and carbon dioxide gas produced from the solid foaming agent is dissolved in water As a result, the gas and liquid are mixed to form a gas and liquid mixed liquid, which is directly supplied to the diaphragm pump (20). Incidentally, the gas-liquid mixture may be injected from the outside instead of the solid foaming agent (33).

気液混合液供給手段(24)には、ゴムホースなどフレキシブルで又先端に固形異物を取り除く為に用いる網状の器具を装着させた液体導入管(31)を介し、液体供給源から導入された水(液体の総称)と気体導入手段(22)から供給された空気(気体の総称)が、図2の通り、気液流体となって吸水口(21)を通過し、ダイヤフラムポンプ(20)へ供給される。 In the gas-liquid mixed liquid supply means (24), water introduced from a liquid supply source via a liquid introduction pipe (31) to which a flexible material such as a rubber hose or the like reticulated device used for removing solid foreign matter is attached. (Generic term for liquid) and air (generic term for gas) supplied from the gas introducing means (22) become gas-liquid fluid and pass through the water inlet (21) as shown in FIG. 2 to the diaphragm pump (20) Supplied.

気液混合液供給手段(24)は、図2の通り、略箱状の容器本体(1)と該容器本体(1)に開閉自在で嵌合又は螺合する蓋体(32)から成り、内部の吐出口には気液流体を旋回させ整流効果から充填効率を高める筒状管(16)が設置され、容器本体(1)の外壁及び内壁,蓋体(32)の蓋外壁及び蓋内壁,筒状管(16)は、それぞれが金属や非金属又はそれらの複合材料のいずれかの部材から作られる。 As shown in FIG. 2, the gas-liquid mixture supply means (24) comprises a substantially box-like container body (1) and a lid (32) fitted openably and closably to the container body (1). A cylindrical tube (16) is installed at the discharge port inside to increase the filling efficiency from swirling gas-liquid fluid, and the outer wall and inner wall of the container body (1), lid outer wall and lid inner wall of lid (32) The tubular tubes 16 are each made of a metal, a nonmetal, or a composite material thereof.

気体導入手段(22)は、空気(気体の総称)の供給元であり、又気体供給量の増減によってダイヤフラムポンプ(20)の圧送圧力を調整している。The gas introducing means (22) is a supply source of air (generally referred to as gas), and adjusts the pumping pressure of the diaphragm pump (20) by increasing or decreasing the gas supply amount.

又気液流体の圧送圧力の変化は、微細気泡の径,数密度とも密接に連動し相関関係にある。Further, the change in the pressure of the gas-liquid fluid is closely correlated with the diameter and the number density of the microbubbles and is correlated.

〔以下は主に気液混合手段(3)で起こる気液混合の状態と効果及びその実施形態に関する。〕
本発明の実施形態は、主に二つの系統に分けられる。先ず気液混合手段(3)内で細長状の中空構造体である気液噴射手段(8)がその噴射孔群から多方向に激しく気液噴射することで高い気液溶解効率が発生し、気液流体は、瞬時に略飽和状態の気液混合液へと恒常的に変換され、同時に大量の微小気泡によって、懸濁する気液混合液も生じる系統。もう一つは、その懸濁した気液混合液が気液圧縮手段(5)内の狭い多層流路構造を通過する際、渦流及び旋回流を発生させながら混錬,圧縮を繰り返し、最終的に過飽和状態へと動的に変換される系統である。図6の通り、途中、気液混合液は、気液溶解手段(4)内の静態型撹拌混合器(18)を通過する際、反復旋回運動流の発生から気液溶解度が向上し、最後は気液解放手段(7)からの急激な圧力解放によって微細気泡が生成される。
[The following mainly relates to the state and effect of gas-liquid mixing which occurs in the gas-liquid mixing means (3) and the embodiment thereof. ]
Embodiments of the present invention can be divided mainly into two families. First, a high gas-liquid dissolution efficiency is generated by the gas-liquid jetting means (8) which is a slender hollow structure in the gas-liquid mixing means (3) violently jetting the gas-liquid from the jetting holes in multiple directions. A system in which gas-liquid fluid is instantaneously converted constantly into a substantially saturated gas-liquid mixture , and at the same time, a large amount of microbubbles also causes the gas-liquid mixture to be suspended. The other is that when the suspended gas-liquid mixture passes through the narrow multi-layer flow path structure in the gas-liquid compression means (5), kneading and compression are repeated while generating vortex and swirl, and the final Is a system that is dynamically converted to a supersaturated state. As shown in FIG. 6, when the gas-liquid mixture passes through the static stirring mixer (18) in the gas-liquid dissolving means (4), the gas-liquid solubility is improved due to the generation of repetitive swirling flow, The microbubbles are generated by the rapid pressure release from the gas-liquid release means (7).

図3の通り、ダイヤフラムポンプ(20)の吐出口側(29)と継手連通管(19a)を介し螺接している水圧増減手段(2a)は、略L字方向への流れを作り又当該流路断面積が進行方向に漸次狭まる異径型管材で、水圧や流速を増大させ、ネジ山継手管(30)に圧入した気液噴射手段(8)の噴射圧,噴射速度を付勢している。水圧増減手段(2a)下流側出口とネジ山継手管(30)を介し螺接する圧力栓部(6a)は、略円筒形の気液混合手段(3)上流端部とも螺合し、そうすることで気液噴射手段(8)を上流端部から下流方向へ突出した状態で気液混合手段(3)の略同心上に軸止させている。尚、圧力栓部(6a)は、部品交換やメンテナンスの便宜上、開閉自在な密閉方式とすることが好ましい。As shown in FIG. 3, the water pressure increasing / decreasing means (2a) screwed on the discharge port side (29) of the diaphragm pump (20) via the joint communication pipe (19a) creates a flow in a substantially L-shaped direction and the flow Water pressure and flow velocity are increased by the different diameter type pipe material whose path sectional area gradually narrows in the direction of travel, and the injection pressure and injection speed of the gas-liquid injection means (8) pressed into the threaded joint pipe (30) are energized. There is. Water pressure increasing / decreasing means (2a) The downstream outlet and the pressure plug portion (6a) screwed in contact via the threaded joint pipe (30) are also screwed with the generally cylindrical gas-liquid mixing means (3) upstream end As a result, the gas-liquid injection means (8) is pivoted substantially concentrically with the gas-liquid mixing means (3) in a state where it protrudes in the downstream direction from the upstream end. The pressure plug portion (6a) is preferably in the form of an openable / closable sealed system for the convenience of component replacement and maintenance.

実施形態35の通り、上流端部が密閉された気液混合手段(3)が所望の勾配角に斜倒される際、内部の同心上に軸止されている気液噴射手段(8)にも同様の勾配角が加わり、連動して調整可能であることが適宜である。尚、気液混合手段(3)の寸法、材質、形状、又相対的配置位置等は、その内部に気液境界面(9)の同調が恒常的に協調制御され、又気液二層に分かれ同期する動的均衡が連続して形成されることに於いて、それらは一様ではなく、随時、変更しても良い。As in the embodiment 35, when the gas-liquid mixing means (3) whose upstream end is sealed is inclined to a desired inclination angle, the gas-liquid injection means (8) axially fixed on the inside is also supported. It is appropriate that similar gradient angles be added and be adjustable in tandem. In addition, the size, material, shape, relative arrangement position, etc. of the gas-liquid mixing means (3) are such that the tuning of the gas-liquid interface (9) is constantly coordinated and controlled internally, and the gas-liquid two layers In the continuous formation of the divided and synchronized dynamic balances , they are not uniform and may be changed at any time.

図5の通り、先端が閉塞している気液噴射手段(8)外周には、噴射孔群が万遍なく穿孔されており、気液流体は、気液噴射手段(8)の軸方向に対して30度から150度の範囲で多方向に噴射され、気液混合手段(3)内壁に激しく衝打させてミキシングすることが望ましい。尚、気液噴射手段(8)の形状及び噴射形態も、実施形態36と同様の意義に於いて、本発明の実施形態に必ずしも拘る必要はなく、その他の形状,形態としても良い。As shown in FIG. 5, a group of injection holes are drilled all around the gas-liquid jetting means (8) whose tip is closed, and the gas-liquid fluid is in the axial direction of the gas-liquid jetting means (8) On the other hand, it is desirable that the gas be jetted in multiple directions in the range of 30 degrees to 150 degrees, and the gas-liquid mixing means (3) be violently hit against the inner wall and mixed. The shape and the injection form of the gas-liquid injection means (8) are not necessarily limited to the embodiment of the present invention in the same meaning as in the 36th embodiment, and may be another shape and form.

気液噴射手段(8)外周の噴射孔群の位置は、先ず気液混合手段(3)の上流付近の内壁を利用して、気液流体を下流方向へ押し出すに十分な推進力の発生と理想的な気層容積を確保する観点から、その位置は、図3の通り、気液噴射手段(8)長手方向の略中心から閉塞している下流先端の間に万遍なく穿孔させ、穿孔した部分と穿孔していない部分の画成によって、流速乃至水圧に変化が生じることが好ましい。噴射孔群より高圧でジェット噴出される気液流体は、その急激な圧力開放と共に複雑な乱流同士の干渉や破壊作用を伴う激しいミキシングの衝撃波によって、瞬時に略飽和状態の気液混合液へと変換される。The positions of the injection holes on the outer periphery of the gas-liquid injection means (8) are generated by using an inner wall near the upstream of the gas-liquid mixing means (3) to generate sufficient propulsive force to push the gas-liquid fluid downstream. From the viewpoint of securing an ideal air layer volume, as shown in FIG. 3, the positions of the gas-liquid jetting means (8) are perforated in a uniform manner between the downstream tips closed from the approximate center in the longitudinal direction. It is preferable that changes in flow velocity or water pressure occur due to the definition of the non-perforated part and the non-perforated part. The gas-liquid fluid jetted at a high pressure from the injection holes is instantaneously released to a nearly saturated gas-liquid mixture by the rapid pressure release and the shock wave of intense mixing accompanied by complex turbulent interference and destruction. Is converted to

図5が示す通り、気層での曝気混合液層でのエアレーション混合が並存する動的均衡は、気液噴射手段(8)が気液境界面(9)の同調を協調制御すると共に自発的に発生する訳だが、重要な点としては、曝気空間(15)が最大化されるように気液噴射手段(8)の全長や口径,噴射孔の孔数や孔径又はその穿孔位置を十分考慮して加工調整して、気層空間を最大化し、十分に曝気混合させることが大事である。「発明の効果23」の動的均衡からその後の動的平衡へと連動する過程に於いて、全ての大前提となる気液噴射手段(8)の気液噴射形態は、極めて重要な構成要素であり、又本発明の核心である。As shown in FIG. 5, the dynamic equilibrium aeration mixing in the aeration mixing the liquid layer in the vapor layer coexist is spontaneous with gas-liquid injection means (8) are coordinated control the tuning of the gas-liquid boundary surface (9) However, it is important that the length and diameter of the gas-liquid injection means (8), the number and diameter of the injection holes, and the position of the holes should be sufficient to maximize the aeration space (15). It is important to process and adjust in consideration to maximize the air space and to perform sufficient aeration mixing . In the process of interlocking from the dynamic balance of “effect of the invention 23” to the subsequent dynamic balance , the gas-liquid jet form of all the gas-liquid jet means (8), which is the main premise, is a very important component And is the core of the present invention.

最後は図7の通り、内部に二本の外管と内管が互いに同心上で遊挿して、装置全体で三層に折り返す流路構造が形成された気液圧縮手段(5)を通じ、気液流体は、複雑で大小様々な渦流及び旋回流を発生されながら圧縮,混錬を繰り返し、又図8の通り、幾重にも列なる環状溝(17)上では、石臼の様な粉砕,磨砕効果が加わることで、効率よく過飽和状態の気液混合液へと変換される。Finally, as shown in FIG. 7, through the gas-liquid compression means (5) in which two outer pipes and an inner pipe are loosely inserted concentrically inside each other to form a flow path structure which is folded back into three layers in the entire device. Liquid fluid is repeatedly compressed and mixed while generating complex and large and small vortices and swirls, and as shown in Fig. 8, grinding and grinding like a millstone is performed on an annular groove (17) in several rows. By the addition of the crushing effect, it is efficiently converted to a supersaturated gas-liquid mixture .

〔以下は主に気液混合手段(3)乃至気液噴射手段(8)の斜倒とその効果に関する。〕
先ず、ダイヤフラムポンプ(20)を稼働させ気液流体を自吸させる。微細気泡吐出ノズル(23)から液体が吐出され始めたことを確認した後、気体導入手段(22)を徐々に開放して空気を注入し水圧を上昇させる。凡そ圧力計で0,5〜0,8Mpaを示す辺りから、気液流体は、次第に白濁した微細気泡となって次々と放出され始める。しかしながら、略水平を保って配設された気液混合手段(3)内部では、未だ気液境界面(9)の同調は発生しておらず、一時的な気液二層の形成はあるものの、暫くすると気層液層に取って代わられ、気液噴射手段(8)は完全に液体に埋没して、白濁していた微細気泡も透明な液に逆戻りする。
[The following mainly relates to the tilting of the gas-liquid mixing means (3) to the gas-liquid injection means (8) and the effect thereof. ]
First, the diaphragm pump (20) is operated to self-suck gas fluid. After confirming that the liquid has started to be discharged from the fine bubble discharge nozzle (23), the gas introduction means (22) is gradually opened to inject air to raise the water pressure. The gas-liquid fluid begins to be released one after another in the form of increasingly turbid fine bubbles, starting from about 0 to 5 to 8 Mpa in a pressure gauge. However, within the gas-liquid mixing means (3) arranged almost horizontally, synchronization of the gas-liquid interface (9) has not yet occurred, and there is a temporary formation of a gas-liquid bilayer. After a while, the air layer is replaced by the liquid layer , and the gas-liquid jetting means (8) is completely buried in the liquid, and the turbid fine bubbles are also returned to the transparent liquid.

それは、噴射当初、気液噴射手段(8)周囲に一時的とは言え、一定の曝気空間(15)が形成されて曝気混合が始まるが、気液境界面(9)の同調が確立されていない状況下では、気液噴射の始まりと同時に気液二層状態は徐々に失われて行き、最終的に気液噴射手段(8)は液層に水没する為で、その結果、曝気混合の効力は発揮出来ず、エアレーション混合のみの単純な散気となってしまい、気液溶解効率を著しく低下させる。その為、気液圧縮手段(5)に至っては、過飽和状態の気液混合液を連続して作り出すことが困難になり、微細気泡の生成も当然、継続不可能となってしまう。Although it is temporary around the air-liquid injection means (8) at the beginning of injection, a constant aeration space (15) is formed and aeration mixing starts, but the synchronization of the air-liquid interface (9) is established. Under no circumstances, the gas-liquid two-layer state is gradually lost at the same time as the start of the gas-liquid injection, and finally the gas-liquid injection means (8) is submerged in the liquid layer. The effect can not be exhibited, resulting in simple aeration with only aeration mixing, which significantly reduces the gas-liquid dissolution efficiency. Therefore, it becomes difficult to continuously produce the supersaturated gas-liquid mixed liquid in the gas-liquid compression means (5), and it becomes impossible naturally to generate the fine bubbles.

その反対に、今度は気液混合手段(3)を俯角方向に90度下垂させた状態で気液噴射して見る。実施形態42同様に、初め気液混合手段(3)上流側には、相応の曝気空間(15)が一時的に形成されるが、やはり時間と共に失われて行き、今度は余剰空気が高圧エアーとなって貯留してしまい、気液噴射手段(8)周囲は、高圧エアーによって終に覆われてしまう。その為、曝気混合は失われ、更には高圧エアーがクッションとなって気液溶解自体を完全に阻害してしまう結果、順調に吐出していた白濁する微細気泡は、矢張りここでも、単なる透明の流水に再び舞い戻ってしまう。On the other hand, this time, the gas-liquid mixing means (3) is dropped 90 degrees in the depression angle direction, and the gas-liquid injection is performed. As in Embodiment 42, initially, the corresponding aeration space (15) is temporarily formed on the upstream side of the gas-liquid mixing means (3), but it is also lost over time, and this time excess air is high pressure air. As a result, the area around the gas-liquid injection means (8) is finally covered with high-pressure air. Therefore, the aeration mixture is lost, and furthermore, the high pressure air acts as a cushion and completely inhibits the gas-liquid dissolution itself. As a result, the turbid fine air bubbles which were being discharged smoothly are mere transparent even with the arrows. I will return to the running water again.

そこで、実施形態41並びに43の不完全な気液混合状態を、図4のように気液噴射手段(8)を略水平の状態から俯角方向へ最大45度の範囲で徐々に斜倒させ調整して行く。そうすることで気液混合手段(3)内部には、図5の通り、気層液層の境界を成す気液境界面(9)の同調が次第に誘発され始め、最終的には、安定した協調制御が始まる。その結果、混合空間では液層に水没することも又は気層の高圧エアーに覆い尽くされることもない動的均衡の同期サイクルが自発的且つ恒常的に形成され、一度、最適な勾配角に調整が完了すれば、次回もダイヤフラムポンプ(20)を水平状態に保つことで、前回同様の動的均衡が連続して発生することから、基本的に勾配角の再調整は不要である。Therefore, as shown in FIG. 4, the incomplete gas / liquid mixing state of the embodiments 41 and 43 is gradually inclined by adjusting the gas / liquid jetting means (8) gradually from the substantially horizontal state in the range of 45 degrees at maximum. I will go. By doing so, as shown in FIG. 5, in the gas-liquid mixing means (3), synchronization of the gas-liquid interface (9) that forms the boundary between the gas layer and the liquid layer starts to be induced gradually, and finally stability is achieved. Coordinated control begins. As a result, in the mixing space, a synchronous cycle of dynamic equilibrium is formed spontaneously and constantly without being submerged in the liquid layer or being overwhelmed by the high pressure air of the air layer , and once adjusted to the optimum gradient angle When the above is completed, the diaphragm pump (20) is kept in the horizontal state next time, and the same dynamic balance as in the previous time occurs continuously, so that the readjustment of the gradient angle is basically unnecessary.

因みに、気液混合手段(3)を俯角方向ではなく、仰角方向に斜倒させて勾配調整を加えることは可能である。つまり、気液混合手段(3)の上流側端部付近に気液流体が移送される経路として新たな流路を確保した上で、気液噴射手段(8)を延長化し、更に噴射孔群の位置を本来の位置とは180度対向する正反対側に同様の孔を穿孔して、斜倒の際、流れ方向が真逆に成るように改良すればよい。この時、気液噴射手段(8)には、ノズルの延長化と噴射孔群の位置変更以外、特別な加工は特に必要としない。Incidentally, it is possible to incline the gas-liquid mixing means (3) not in the depression angle direction but in the elevation angle direction to add a slope adjustment. That is, after securing a new flow path as a path along which the gas-liquid fluid is transferred in the vicinity of the upstream end of the gas-liquid mixing means (3), the gas-liquid injection means (8) is extended and the injection holes are further arranged. The same position may be drilled on the opposite side 180 degrees opposite to the original position so that the flow direction is reversed in the case of tilting. At this time, no special processing is required for the gas-liquid injection means (8) other than the extension of the nozzle and the change of the position of the injection hole group.

動的均衡が恒常的に再現されることによって、実施形態41と実施形態43の双方の課題を解決できる他、又動的均衡の発生過程に於いて、実施形態38で述べた通り、余剰気体は、無数の微小な気泡に分散し拡散されて、激しく摩擦を繰り返し、気泡表面に発生する静電気によって反発し合う為、常に懸濁した状態が維持され、内圧を略一定に保ち続ける。つまり、流体全体としては、いつまでもそのままの状態で時間変化せず、動的に平衡に達している動的平衡状態へと転移して、滞ることなく気液流体を移送し続ける。 While the dynamic balance is constantly reproduced, the problems of both the embodiment 41 and the embodiment 43 can be solved, and in the generation process of the dynamic balance , as described in the embodiment 38, the surplus gas is Is dispersed and diffused into innumerable minute air bubbles, and the friction is repeated repeatedly, and since it is mutually repelled by the static electricity generated on the air bubble surface, the suspended state is always maintained, and the internal pressure is kept approximately constant. That is, the fluid as a whole does not change with time as it is forever, transitions to a dynamic equilibrium state which has reached a dynamic equilibrium state, and continues to transport the gas-liquid fluid without any delay.

以上の様に、動的均衡による高い気液溶解効率と動的平衡による恒常的な気液流体移送の結合によって、本発明の微細気泡生成装置は、流路上に空気弁や気液溶解貯留槽等の余計装置一切設置する必要がなく、その非常にコンパクトな構造から、従来の微細気泡生成装置と比べ、大幅な小型軽量化を実現している。As described above, by the combination of high gas-liquid dissolution efficiency by dynamic balance and constant gas-liquid fluid transfer by dynamic balance , the micro-bubble generating device of the present invention is characterized by including an air valve and a gas-liquid dissolution reservoir on the flow path. all without the need to install extra equipment etc., from its very compact structure, compared to conventional fine bubble generating device, thereby realizing a significant reduction in size and weight.

〔以下は気液混合手段(3)以降、継合する各部材の実施形態に関する。〕
図6の通り、気液混合手段(3)下流端部は圧力栓部(6b)と螺合し、更に継手連通管(19b)を介して、略L字方向への流れを作り又流路断面積が漸次狭まる異径型管材の水圧増減手段(2b)と螺接し、更に気液溶解手段(4)がそれに略水平の状態で略L字状に継合している。気液溶解手段(4)は、気液混合手段(3)よりも直径が細くなるように設定し、水圧と流速を増大させて、反復旋回運動流を強力に発生させることが好ましい。その後、気液流体は、流路断面積が漸次広がる水圧増減手段(2c)を通過し、略水平の状態で略L字方向に継合している気液圧縮手段(5)へ送られる。
[The following relates to the embodiment of each member joined after the gas-liquid mixing means (3). ]
As shown in FIG. 6, the downstream end of the gas-liquid mixing means (3) is screwed with the pressure plug (6b), and further a flow in the substantially L-shaped direction is made through the joint communication pipe (19b). It screw-connects with the water pressure increasing / decreasing means (2b) of the different diameter type pipe material whose cross sectional area gradually narrows, and further, the gas / liquid dissolving means (4) is joined in a substantially L shape in a substantially horizontal state. Preferably, the gas-liquid dissolving means (4) is set to be smaller in diameter than the gas-liquid mixing means (3), and the water pressure and the flow velocity are increased to generate a repetitive swirling flow strongly. Thereafter, the gas-liquid fluid passes through the water pressure adjusting means (2c) in which the flow passage cross-sectional area gradually spreads, and is sent to the gas-liquid compression means (5) joined in the substantially L-shape direction in a substantially horizontal state.

図6の通り、水圧増減手段(2c)は、継手連通管(19c)を介して、圧力栓部(6c)と螺接し、更に圧力栓部(6c)は、略水平の状態で配設された気液圧縮手段(5)上流端部を螺合によって密閉している。全般的に言えることだが、流路に使用される導管部材は、例えば、塩ビ管を用いて制作された気液混合手段(3)の場合、塩ビ管自体が気液噴射流衝突の衝撃を吸収してしまう緩衝材に成り得る部材であることや、又塩ビ管自体も微妙に収縮と膨張を繰り返し、内圧を常に変化させて、気液溶解に影響を及ぼしている為、流路に使用される導管部材は、金属製など膨張しない部材を用いることが好ましい。As shown in FIG. 6, the water pressure increasing / decreasing means (2c) is screwed to the pressure plug portion (6c) via the joint communication pipe (19c), and the pressure plug portion (6c) is disposed substantially horizontally. The upstream end of the gas-liquid compression means (5) is sealed by screwing. It can generally be said that, for example, in the case of a gas-liquid mixing means (3) manufactured using a polyvinyl chloride pipe, the polyvinyl chloride pipe itself absorbs the impact of the gas-liquid jet flow collision, as can be said for the channel Because it is a member that can be a shock-absorbing material, and the polyvinyl chloride pipe itself also slightly repeats contraction and expansion, constantly changing the internal pressure, and affecting gas-liquid dissolution, Preferably, the conduit member is a non-inflatable member such as metal.

気液圧縮手段(5)内部の構造は、図7の通り、略円筒形で直径の異なる二本の導管が略同心上で相互に遊挿しながら係止され、一端は、気液圧縮手段(5)の袋小路を密閉している圧力栓部(6d)との螺合によって軸止され、他端は、先端を開放させた圧縮混合内装部(11)を先端が閉塞した圧縮混合外装部(12)が内包して、二層に折り返す流路経路が内部に形成される。気液圧縮手段(5)全体では、三層に折り返しているが、それは三層以上でも構わない。圧縮混合外装部(12)に穿孔する気液二相取込口(13)の位置は、出来るだけ長い流路経路を確保する観点から、気液圧縮手段(5)袋小路端部寄りに出来るだけ寄せて、穿孔することが好ましい。又周方向の180度正反対側にも同様の進入口を穿孔し、計二か所の進入口を構成してもよい。又二本の導管が遊挿する遊挿幅は、出力規模により、1mmから20mmの範囲とする。The internal structure of the gas-liquid compression means (5) is, as shown in FIG. 7, two substantially cylindrical tubes of different diameters are engaged with each other while being loosely inserted on one another. The compression / mixture sheath (5) is closed by screwing with a pressure plug (6d) sealing the dead end of the cul-de-sac, and the other end of the compression / mixture interior (11) is open at the tip. 12) is contained, and a channel path which is folded back to two layers is formed inside. Although the gas-liquid compression means (5) as a whole is folded in three layers, it may be three or more layers. The position of the gas-liquid two-phase inlet (13) to be bored in the compression mixing exterior part (12) can be as close as possible to the end of the bag channel from the viewpoint of securing a long flow path as long as possible. It is preferred that the holes be drilled. Also, the same entrance may be formed on the diametrically opposite side of 180 degrees to form a total of two entrances. In addition, the loose insertion width at which the two conduits are loosely inserted is in the range of 1 mm to 20 mm, depending on the output scale.

気液二相取込口(13)より進入する気液流体は、渦流旋回運動流を発生させながら、再び、圧縮混合内装部(11)の先端流入口(14)より折り返し進入して、高圧状態の中、遠心力や向心力などの力が加わり、再度、混錬,圧縮を繰り返す。その際、図8のように、圧縮混合内装部(11)の内外周及び圧縮混合外装部(12)の内周表面上には、等間隔で幾重にも列なる環状溝(17)を刻設して、複雑な大小様々な渦を同時に発生させることが好ましい。最後は図9の通り、圧縮混合内装部(11)の最終地点に微細気泡吐出ノズル(23)によって押止されている円板部材(10)から、急激な圧力解放によって大量の微細気泡が生成される。The gas-liquid fluid entering from the gas-liquid two-phase intake port (13) turns back again from the tip inlet port (14) of the compression mixing interior part (11) while generating a swirling swirling flow, so that high pressure is generated. In the state, force such as centrifugal force and centripetal force is added, and kneading and compression are repeated again. At this time, as shown in FIG. 8, annular grooves (17) are formed on the inner and outer peripheries of the compression and mixing interior portion (11) and the inner peripheral surface of the compression and mixing exterior portion (12). Preferably, complex vortices of various sizes are generated simultaneously. Finally, as shown in FIG. 9, a large amount of fine bubbles are generated by the rapid pressure release from the disc member (10) held down by the fine bubble discharge nozzle (23) at the final point of the compression mixing interior part (11). Be done.

コンパクトな構造の気液圧縮手段(5)に於いて、混錬,圧縮を通じて、気液流体を強力に又効率よく混合する為には、実施形態51の内外周壁の周方向に刻設した環状溝(17)は非常に重要で、本発明に於いては、10mmの等間隔に深さ2mmの溝が妥当と判断し、試作品に採用した。溝の刻設は、剪断効果,磨砕効果を伴う石臼の様な効果を発生させて混錬することが目的であり、深すぎる溝は、気液流体にとっては反対に過剰な抵抗と成り得ることから、効果的な環状溝(17)の深さや間隔幅、更には導管同士の遊挿幅も、装置の出力規模によって、随時、適宜の変更が好ましい。In the gas-liquid compression means (5) of a compact structure, in order to mix the gas-liquid fluid strongly and efficiently through kneading and compression, an annular ring cut in the circumferential direction of the inner and outer peripheral walls of the embodiment 51. The grooves (17) are very important, and in the present invention, grooves of 2 mm in depth at equal intervals of 10 mm were judged to be appropriate, and were adopted for the prototype. The incising of the groove is intended to generate and knead a millstone-like effect with a shearing effect and a grinding effect, and a groove that is too deep can, on the contrary, be an excessive resistance to gas-liquid fluid Therefore, it is preferable that the effective depth and interval width of the annular groove (17), and also the loose insertion width between the conduits, be appropriately changed as needed depending on the output size of the device.

微細気泡が生成する起点である円板部材(10)は、図10の通り、中心に一箇所とその周囲に4か所、計五か所の貫通孔からなり、図9の通り、円板部材(10)は圧力栓部(6d)に螺入する着脱自在な微細気泡吐出ノズル(23)と圧縮混合内装部(11)下流側端部との間に拘止される状態で気液解放手段(7)に内蔵されている。この円板部材(10)の構造は、ベンチュリ管のような括れ構造ではなく、ただ円形の金属円板というシンプルな形態がその特徴である。  As shown in FIG. 10, the disc member (10), which is the starting point for the generation of the fine bubbles, comprises one through the center and four through holes in total, and a total of five through holes, as shown in FIG. The member (10) is held between the removable fine air bubble discharge nozzle (23) screwed into the pressure plug portion (6d) and the downstream end of the compression mixing interior portion (11) It is incorporated in the means (7). The structure of the disc member (10) is characterized in that it is not a narrow structure like a Venturi tube, but a simple form of only a circular metal disc.

微細気泡を白濁させるのに効果的な孔径としては、多くの実証実験を試みた結果、装置の出力規模ごと、噴射孔の直径を8mmから12mmの間で変更させることが適宜である。円板部材(10)の孔径は、微細気泡の径や数密度と密接な関係にあり、もし仮に使用期間中、円板部材(10)に気泡崩壊のエローション砲撃による孔の欠損又は拡径が見られても、微細気泡吐出ノズル(23)を着脱自在な螺合タイプとしたことで、円板部材(10)交換が簡単に行え、メンテナンスも容易である。As an effective hole diameter for making the microbubbles white, as a result of attempting many demonstration experiments, it is appropriate to change the diameter of the injection hole between 8 mm and 12 mm for each output scale of the device. The hole diameter of the disc member (10) is closely related to the diameter and number density of the microbubbles, and if the disc member (10) is temporarily used during the period of use, the hole loss or diameter increase by erosion of the cell collapse. Even if it can be seen, the fine bubble discharge nozzle (23) is of a detachable screw type so that the disc member (10) can be easily replaced and maintenance is easy.

図9の通り、微細気泡吐出ノズル(23)の先端口周縁には、張り出た円環状凸輪とノズル本体外周に数本の半円状環状凸輪のみで特別なロックアップ構造は無く、市販用の水道ホース等が直ぐに嵌められ、強く嵌めれば抜けることは無く、経済的で且つ便利である。As shown in FIG. 9, there is no special lock-up structure due to the protruding annular annular ring and the few semicircular annular ring on the outer periphery of the nozzle body on the periphery of the tip of the fine bubble discharge nozzle (23). It is economical and convenient if the water hose etc. is fitted immediately and firmly fitted without coming off.

本発明は、上記で述べた実施形態の他、本発明の趣旨の範囲内で、その構成要素の個数、配置、組み合わせ又は素材を適宜に変更し、従来の技術手段を追加するなど、種々な設計変更が可能である。本発明に於いて、これより派生する多種多様な実施形態が存在する可能性がある為、特許請求の範囲に記載した発明の本質を逸脱しない限り、種々の改変をなし得ることは勿論である。上記の実施形態やその変形は、特許請求の範囲に記載された発明とその均等の範囲に含まれる。In addition to the above-described embodiments, the present invention can be variously modified within the scope of the present invention, for example, by appropriately changing the number, arrangement, combination or material of its components and adding conventional technical means. Design changes are possible. In the present invention, since there may be a wide variety of embodiments derived therefrom, it goes without saying that various modifications can be made without departing from the essence of the invention described in the claims. . The above embodiments and the modifications thereof are included in the invention described in the claims and the equivalents thereof.

「実施形態の効果」
本発明の実施形態に依れば、必要とする部品数は大変少なく済み、非常にコンパクトでシンプルな構造から、場所を取らず、どこでも設置が可能である。それは、特に工業用など大型の微細気泡発生装置に於いて恩恵が大きく、又製造コストの削減に於いても無論である。部品点数が少ないことから故障も少なく、メンテナンスの頻度やそれに掛かるコストを含め、ランニングコストを大幅に削減出来る外、これまで事業用から一般家庭向け対象の製品を含めた微細気泡生成装置が、本発明の実施形態に依れば、小型軽量化と低価格化が達成可能であり、特に一般家庭向けでは、微細気泡が誰でも手軽に享受でき。又外界から完全に遮断された空間内での恒常的で高効率な気液混合溶解システムが可能とするものは、例えば、化石燃料の予混合など、決められた空気量を燃料に予め混合することで理想的な空燃比が得られるなどが期待される。
「他の実施形態1」
他の実施形態では、気体導入手段(22)に取って代わり、気液混合手段(3)以降、任意に定めた流路上から気液流体の一部を追加設置したアスピレーターへ迂回させ、その負圧から大量の空気(気体の総称)を吸引し、ダイヤフラムポンプ(20)へ直接又は人工水供給手段(24)を介し供給する。アスピレーターは、単独で又は気体導入手段(22)と同時に併用しても良い。
「他の実施形態2」
実施形態32の通り、気体導入手段(22)による圧送圧力の調整と微細気泡の径と数密度は密接に連動している為、他の実施形態では、任意に入力したある電気的信号に対し、注入される気体供給量と圧送圧力の相互関係から、微細気泡の径及び数密度をある一定状態に自動で制御する電子システムを構築し設置させても良い。
「他の実施形態3」
他の実施形態では、微細気泡生成装置の水平の状態が一目で分かる様に水平計を取り付けたり、更には水平角の調整が容易に行える様な調整機構を設置させたりしても良い。
"Effect of the embodiment"
According to the embodiment of the present invention, the number of parts required is very small, and because of the very compact and simple structure, it can be installed anywhere without taking up space. This is a great benefit, especially in large-scale microbubble generators for industrial use, and of course also in the reduction of production costs. The number of parts at least failure because it is small, including the cost of it and the frequency of maintenance, outside that can significantly reduce the running cost, micro-fine bubble generating apparatus, including the products of homes for the subject from for business until this is, According to an embodiment of the present invention, it is achievable reduction in size and weight and low cost, especially in the general households, fine Hosoki foam Ru can be enjoyed by anyone with ease. Also, what enables a constant and highly efficient gas-liquid mixing and dissolving system in a space completely shielded from the outside, pre-mixes a predetermined amount of air with the fuel, for example, the premixing of fossil fuels. It is expected that an ideal air-fuel ratio can be obtained.
"Other embodiment 1"
In another embodiment, instead of the gas introducing means (22), a portion of the gas-liquid fluid is diverted to an aspirator additionally installed from the arbitrarily defined flow path after the gas-liquid mixing means (3), and A large amount of air (generic gas) is drawn from pressure and supplied to the diaphragm pump (20) directly or through artificial water supply means (24). The aspirator may be used alone or in combination with the gas introduction means (22).
"Other embodiment 2"
As in the embodiment 32, since the adjustment of the pumping pressure by the gas introducing means (22) and the diameter and the number density of the fine bubbles are closely linked, in another embodiment, with respect to a certain electrical signal inputted arbitrarily An electronic system may be constructed and installed to automatically control the diameter and number density of the microbubbles in a certain state from the relationship between the supplied gas supply amount and the pumping pressure.
"Other embodiment 3"
In another embodiment, a level gauge may be attached so that the horizontal state of the micro-bubble generating device can be seen at a glance, or an adjustment mechanism may be provided to easily adjust the horizontal angle.

1…容器本体 18…静態型撹拌混合器
2a,2b,2c…水圧増減手段 19a,19b,19c,19d…継手連通管
3…気液混合手段 20…ダイヤフラムポンプ
4…気液溶解手段 21…吸水口
5…気液圧縮手段 22…気体導入手段
6a,6b,6c,6d…圧力栓部 23…微細気泡吐出ノズル
7…気液解放手段 24…気液混合液供給手段
8…気液噴射手段 25…吸水経路
9…気液境界面 26…吐水経路
10…円板部材 27…ダイヤフラム弁
11…圧縮混合内装部 28…吸込口側
12…圧縮混合外装部 29…吐出口側
13…気液二相取込口 30…ネジ山継手管
14…先端流入口 31…液体導入管
15…曝気空間 32…蓋体
16…筒状管 33…固形発泡剤
17…環状溝
DESCRIPTION OF SYMBOLS 1 ... Container main body 18 ... Static type stirring mixer 2a, 2b, 2c ... Water pressure increase / decrease means 19a, 19b, 19c, 19d ... Joint connecting pipe 3 ... Gas-liquid mixing means 20 ... Diaphragm pump 4 ... Gas-liquid dissolution means 21 ... Water absorption Port 5 ... gas-liquid compression means 22 ... gas introduction means 6a, 6b, 6c, 6d ... pressure plug portion 23 ... fine air bubble discharge nozzle 7 ... gas-liquid release means 24 ... gas-liquid mixed liquid supply means 8 ... gas-liquid injection means 25 ... Water absorption path 9 ... Air / liquid interface 26 ... Water discharge path 10 ... Disk member 27 ... Diaphragm valve 11 ... Compression mixing interior part 28 ... Suction port side 12 ... Compression mixing exterior part 29 ... Discharge port side 13 ... Gas and liquid two-phase Intake port 30 ... threaded joint pipe 14 ... tip inflow port 31 ... liquid introduction pipe 15 ... aeration space 32 ... lid 16 ... cylindrical tube 33 ... solid foaming agent 17 ... annular groove

Claims (3)

加圧ポンプ手段が液体,気体を導入する際、炭酸ガスを発生させる固形発泡剤(33)が溶解することにより、気液混合液が生まれ、気液混合空間では、多孔型気液噴射ノズルが気液境界面(9)の同調を恒常的に協調制御することで、気液二層に分かれ同期する空間的秩序形成が自発的に発生し、最終的に前記気液混合液は、過飽和状態にまで高められた後、急減圧によって微細気泡が生成される微細気泡生成装置であって、
液体供給源から前記液体を導入するフレキシブルな液体導入管(31)と、
前記液体に注入する前記気体の量を増減させ、水圧,微細気泡の径及び数密度を調整する気体導入手段(22)と、
前記加圧ポンプ手段の吸込口に直結又は近接し、内部には、炭酸ガスを発生させる固形発泡剤(33)が充填されており、前記固形発泡剤から生まれた炭酸ガスが水に溶解することで気液が混合される気液混合液供給手段(24)と、
前記加圧ポンプ手段であって、電動駆動モーターの回転軸を略水平に保ち横置させるダイヤフラムポンプ(20)と、
略L字方向への流れを作り、又当該流路断面積が進行方向に漸次狭まり又は広がる異径型管材で、水圧,流速を増減させる水圧増減手段(2a,2b,2c)と、
前記多孔型気液噴射ノズルであって、噴射孔群から多方向に気液噴射する細長状で中空構造体の気液噴射手段(8)と、
前記気液混合空間であって、上流端部から下流内方へ突出する前記多孔型気液噴射ノズルを内蔵し、外界とは完全に隔離される略円筒形の導管で、斜倒自在の気液混合手段(3)と、
内部には静態型撹拌混合器が設置され、反復旋回運動流を発生させて、前記気液混合液の気液溶解度を向上させる気液溶解手段(4)と、
内部には環状溝(17)がそれぞれ刻設された二本の管が略同心上で遊挿し、外管である圧縮混合外装部(12)が内管である圧縮混合内装部(11)を包み込むことで前記外管内には二層に折り返す流路が形成され、前記気液混合液を過飽和状態まで混錬,圧縮する気液圧縮手段(5)と、
着脱自在な微細気泡吐出ノズル(23)との螺合によって押止される交換自在な円板部材(10)を用いて、前記微細気泡が生成される気液解放手段(7)と、
を備えていることを特徴とする微細気泡生成装置。
When the pressurizing pump means introduces a liquid or gas, the solid foaming agent (33) which generates carbon dioxide gas dissolves to form a gas-liquid mixed liquid, and in the gas-liquid mixed space, a porous gas-liquid jet nozzle The constant coordination control of the gas-liquid interface (9) spontaneously generates spatial order formation divided and synchronized in the gas-liquid two layers, and finally the gas-liquid mixture is supersaturated A micro-bubble generating device in which micro-bubbles are generated by rapid pressure reduction,
A flexible liquid inlet tube (31) for introducing said liquid from a liquid source;
A gas introducing means (22) for adjusting the water pressure, the diameter of the fine bubbles and the number density by increasing or decreasing the amount of the gas injected into the liquid;
A solid blowing agent (33) which is directly connected to or in close proximity to the suction port of the pressure pump means and generates carbon dioxide gas is filled therein, and the carbon dioxide gas generated from the solid blowing agent dissolves in water. Gas-liquid mixed liquid supply means (24) in which the gas and liquid are mixed in
A diaphragm pump (20) for maintaining the horizontal axis of the motor drive motor substantially horizontal, which is the pressure pump means;
Water pressure increase / decrease means (2a, 2b, 2c) for changing the water pressure and the flow velocity with a different diameter type pipe material which creates a flow in a substantially L-shaped direction and the flow passage cross-sectional area gradually narrows or spreads in the traveling direction;
The porous gas-liquid jet nozzle according to the above-mentioned porous type, wherein the gas-liquid jet means (8) is an elongated hollow structural body that jets gas-liquid in multiple directions from the jet holes.
This is a substantially cylindrical conduit that incorporates the porous gas-liquid jet nozzle that projects inward from the upstream end in the gas-liquid mixing space, and is completely isolated from the external environment, and can be turned over in an oblique direction. Liquid mixing means (3),
A gas-liquid dissolving means (4) which is internally provided with a static stirring mixer and generates a repetitive swirling movement flow to improve the gas-liquid solubility of the gas-liquid mixture;
Inside the compression mixing interior part (11) where the compression mixing exterior part (12), which is the outer pipe, is an inner pipe. By enclosing, a flow path is formed in the outer pipe to be folded back into two layers, and the gas-liquid compression means (5) kneads and compresses the gas-liquid mixed liquid to a supersaturated state;
A gas-liquid release means (7) in which the fine bubbles are generated using a replaceable disc member (10) which is held down by screwing with the fine bubble discharge nozzle (23) which can be removed;
A micro-bubble generator comprising:
前記ダイヤフラムポンプ(20)のポンプヘッドには、気液流体を吸い込み又吐き出す為に往復運動するダイヤフラム弁(27)の数が、最少でも1、最多でも8である、請求項1に記載の微細気泡生成装置。          The micro-machine according to claim 1, wherein the number of diaphragm valves (27) reciprocatingly moved for sucking in and discharging gas-liquid fluid is at least one and at most eight at the pump head of said diaphragm pump (20). Air bubble generator. 前記気液混合液供給手段(24)は、略箱状の容器本体(1)と当該容器本体(1)に開閉自在で嵌合又は螺合する蓋体(32)と前記気液流体を旋回させ整流効果から気液充填効率を高める筒状管(16)から成り、前記容器本体(1)の外壁及び内壁,前記蓋体(32)の蓋外壁及び蓋内壁,前記筒状管(16)は、其々の部材が金属,非金属又はそれらの複合材のいずれかの材料で形成され、略円環形状,略紛体形状,略粗粒体形状又は塊体形状のいずれかに加工された固体発泡剤(33)が充填されることを特徴とする、請求項1に記載の微細気泡生成装置。          The gas-liquid mixture supply means (24) comprises a substantially box-like container body (1), a lid (32) fitted openably and closably to the container body (1), and the gas-liquid fluid It consists of a cylindrical tube (16) that increases gas-liquid filling efficiency from the flow straightening effect, and the outer wall and inner wall of the container body (1), the outer wall of the lid (32) and the inner wall of the lid, the cylindrical tube (16) The respective members are formed of any material of metal, nonmetal or composite material thereof, and processed into any of a substantially annular shape, a substantially powder shape, a substantially coarse particle shape or a lump shape The micro-bubble generating device according to claim 1, characterized in that it is filled with a solid blowing agent (33).
JP2017111189A 2017-05-18 2017-05-18 Fine bubble generating apparatus and method thereof Expired - Fee Related JP6424412B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017111189A JP6424412B1 (en) 2017-05-18 2017-05-18 Fine bubble generating apparatus and method thereof
TW107115150A TW201900270A (en) 2017-05-18 2018-05-04 Multifunctional fine bubble generating device and method thereof dissolving a solid foaming agent in water in a gas-liquid mixed liquid supply unit and supplying various warm bath effect components to the impeller pump or the diaphragm pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111189A JP6424412B1 (en) 2017-05-18 2017-05-18 Fine bubble generating apparatus and method thereof

Publications (2)

Publication Number Publication Date
JP6424412B1 true JP6424412B1 (en) 2018-11-21
JP2018192465A JP2018192465A (en) 2018-12-06

Family

ID=64379106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111189A Expired - Fee Related JP6424412B1 (en) 2017-05-18 2017-05-18 Fine bubble generating apparatus and method thereof

Country Status (2)

Country Link
JP (1) JP6424412B1 (en)
TW (1) TW201900270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550719A (en) * 2019-10-08 2019-12-10 上海亮仓能源科技有限公司 Aeration head of hydrogen bath machine
CN111115787A (en) * 2020-01-17 2020-05-08 南京昭凌精密机械有限公司 Fusion device for preparing high-concentration carbonic acid spring

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872459B2 (en) * 2006-05-26 2012-02-08 パナソニック電工株式会社 Gas dissolving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550719A (en) * 2019-10-08 2019-12-10 上海亮仓能源科技有限公司 Aeration head of hydrogen bath machine
CN111115787A (en) * 2020-01-17 2020-05-08 南京昭凌精密机械有限公司 Fusion device for preparing high-concentration carbonic acid spring

Also Published As

Publication number Publication date
TW201900270A (en) 2019-01-01
JP2018192465A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
TWI414347B (en) Microscopic air bubble generator
JP6169749B1 (en) Microbubble generator
JP2006289183A (en) Nano-bubble forming method and apparatus
JP6424412B1 (en) Fine bubble generating apparatus and method thereof
KR20170104351A (en) Apparatus for generating micro bubbles
JP2015077566A (en) Air-containing liquid generation device and ejection mechanism for air-containing liquid
JPH0737702Y2 (en) Micro bubble generator
CN103102021B (en) High oxygen ejector
JPWO2019026195A1 (en) Fine bubble generator, fine bubble generation method, shower device and oil / water separator having the fine bubble generator
WO2023040755A1 (en) Micro-nano bubble generation system
JP6449531B2 (en) Microbubble generator
KR102313214B1 (en) Ultra fine bubble generating system with coil-shaped nozzle
US20110115105A1 (en) Device for mixing gas into a flowing liquid
JP2011218343A (en) Nozzle for gas-liquid mixing, gas-liquid mixing mechanism and application of the same
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
KR200497600Y1 (en) Connector for nano bubble generator
JP6968405B2 (en) Gas-liquid mixing nozzle
JP2009106918A (en) Fine bubble generator
JP2006212098A (en) Hot carbonated water preparation apparatus and method
WO2002002216A1 (en) Method and device for feeding fine bubbles
JP2011194391A (en) Gas-liquid mixing nozzle
KR102550186B1 (en) Nano-bubble generator
RU85838U1 (en) EJECTOR WITH GAS-JET ULTRASONIC GENERATORS
JP2004195403A (en) Liquid mixing apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R150 Certificate of patent or registration of utility model

Ref document number: 6424412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees