JP6422666B2 - Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method - Google Patents

Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method Download PDF

Info

Publication number
JP6422666B2
JP6422666B2 JP2014091645A JP2014091645A JP6422666B2 JP 6422666 B2 JP6422666 B2 JP 6422666B2 JP 2014091645 A JP2014091645 A JP 2014091645A JP 2014091645 A JP2014091645 A JP 2014091645A JP 6422666 B2 JP6422666 B2 JP 6422666B2
Authority
JP
Japan
Prior art keywords
area
novolac resin
phenol
phenol novolac
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014091645A
Other languages
Japanese (ja)
Other versions
JP2015209489A (en
Inventor
成剛 宅和
成剛 宅和
宮崎 徹
徹 宮崎
弘樹 野口
弘樹 野口
吉村 康男
康男 吉村
泰圭 申
泰圭 申
鎭洙 李
鎭洙 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokdo Chemical Co ltd
Original Assignee
Kokdo Chemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokdo Chemical Co ltd filed Critical Kokdo Chemical Co ltd
Priority to JP2014091645A priority Critical patent/JP6422666B2/en
Priority to KR1020140186194A priority patent/KR101644946B1/en
Priority to CN201510192581.8A priority patent/CN105001385B/en
Priority to TW104113177A priority patent/TWI537294B/en
Publication of JP2015209489A publication Critical patent/JP2015209489A/en
Application granted granted Critical
Publication of JP6422666B2 publication Critical patent/JP6422666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は狭分散フェノールノボラック樹脂の製造方法、及びその製造方法から得られる狭分散フェノールノボラック樹脂に関する。   The present invention relates to a method for producing a narrowly dispersed phenol novolac resin and a narrowly dispersed phenol novolak resin obtained from the method.

フェノールノボラック樹脂は、有機または無機基材結合材として優れた性質を有しており、IC、LSI等の半導体素子などの半導体装置を封止するエポキシ樹脂組成物の硬化剤、あるいは耐熱性、電気絶縁性に優れた成形材料用樹脂として用いられている。近年の電子機器の市場動向は、小型化、軽量化、高性能化が進んできており、これに対応するため、半導体素子の高集積化が年々進んできている。また、半導体装置は、表面実装化が促進されており、半導体素子の高集積化において、半導体素子は大型化し、これを搭載する半導体装置は、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)、BGA(Ball Grid Array)等の形態となり、表面実装型の半導体装置になってきている。 このため、硬化剤であるフェノールノボラック樹脂に対する要求性能もより高流動性、高耐熱性、高強度、低吸湿性等、より一層高い水準性能が求められている。これらの性能を向上させるために、分子量分布の狭い狭分子量化したフェノールノボラック樹脂を用いることが、効果があると考えられる。また、同様の理由より、分子量分布の狭い狭分子量化したフェノールノボラック型エポキシ樹脂を使用することで、封止用途や注型用途で耐熱性、高強度、低吸湿性等を向上させる効果があると考えられるため、その原料用途でも分子量分布の狭い狭分子量化したフェノールノボラック樹脂は有益である。   Phenol novolac resin has excellent properties as an organic or inorganic base material binder, and is a curing agent of an epoxy resin composition for sealing a semiconductor device such as an IC or LSI, heat resistance, electric It is used as a resin for molding materials with excellent insulating properties. In recent years, the market trend of electronic devices has been reduced in size, weight and performance, and in order to respond to this trend, the integration of semiconductor elements has been increasing year by year. Further, surface mounting of semiconductor devices has been promoted, and semiconductor devices have become larger in size with higher integration of semiconductor elements, and semiconductor devices on which semiconductor devices are mounted are TSOP (Thin Small Outline Package), TQFP (Thin Quad Flat Flat). Package), BGA (Ball Grid Array), etc., and are becoming surface-mount semiconductor devices. For this reason, the required performance for the phenol novolac resin as a curing agent is required to have higher level performance such as higher fluidity, higher heat resistance, higher strength, and lower hygroscopicity. In order to improve these performances, it is considered effective to use a phenol novolac resin having a narrow molecular weight distribution and a narrow molecular weight. For the same reason, the use of a phenol novolac epoxy resin having a narrow molecular weight distribution and a narrow molecular weight distribution has the effect of improving heat resistance, high strength, low hygroscopicity, etc. in sealing applications and casting applications. Therefore, a phenol novolak resin having a narrow molecular weight distribution and a narrow molecular weight distribution is also useful for its raw material application.

通常、フェノールノボラック樹脂は、フェノールとホルムアルデヒドを酸性触媒存在下で反応させて得られるが、一般的なフェノールノボラック樹脂は、最初の仕込みモル比(フェノール(P)とホルムアルデヒド(F)との割合、(以下モル比(P/F)と略す)=1〜2の範囲でフェノールとホルムアルデヒドとを反応させて製造され、ゲルパーミエーションクロマトグラフィー(GPC)測定による平均核体数が4〜5であり、2核体含有量が10〜30面積%である。また、フェノールノボラック樹脂の核体分布はモル比(P/F)で決まることや、2核体含有量もモル比(P/F)である程度決まり、反応をどんなに進行させても、一定以下には減少しない事が分かっている。例えば、モル比(P/F)=2で反応を行うと、2核体含有量が25面積%程度、3核体含有量が20面積%程度、4核体含有量が15面積%程度、5核体以上の高分子成分量が40面積%程度の組成をもつフェノールノボラック樹脂が得られる。モル比(P/F)を高くすれば、高分子領域は減少して、軟化点は低くなり、コンパウンドの流動性は良くなるが、2核体量が多く、例えば成型品の耐熱性は低下する等の欠点がある。一方モル比(P/F)を低くすれば、2核体量は減少するが、逆に高分子領域が増大してしまい、軟化点が高くなって、例えばコンパウンドの流動性が悪くなる等の欠点がある。 Usually, a phenol novolac resin is obtained by reacting phenol and formaldehyde in the presence of an acidic catalyst, but a general phenol novolac resin has an initial charge molar ratio (ratio of phenol (P) to formaldehyde (F), (Hereinafter abbreviated as molar ratio (P / F)) = 1 to 2, produced by reacting phenol and formaldehyde, the average number of nuclei by gel permeation chromatography (GPC) measurement is 4-5 The binuclear content is 10 to 30% by area, and the nuclear distribution of the phenol novolac resin is determined by the molar ratio (P / F), and the binuclear content is also the molar ratio (P / F). It is known that no matter how much the reaction proceeds, it does not decrease below a certain level, for example, when the reaction is carried out at a molar ratio (P / F) = 2, A phenol novolac having a composition of about 25 area%, about 3 area content is about 20 area%, about 4 area content is about 15 area%, and about 5 area content of high molecular components is about 40 area%. If the molar ratio (P / F) is increased, the polymer region is decreased, the softening point is lowered, and the fluidity of the compound is improved, but the amount of the binuclear body is large. However, if the molar ratio (P / F) is lowered, the amount of dinuclear body decreases, but conversely, the polymer region increases and the softening point increases. For example, there are drawbacks such as poor fluidity of the compound.

フェノールノボラック樹脂をエポキシ樹脂の原料または硬化剤として使用する場合、フェノールノボラック樹脂中の2核体含有量が多くなると、成形品のバリ発生、架橋密度の低下による強度の低下等の不都合が生じるため、2核体含有量の少ないフェノールノボラック樹脂が望まれている。また、エポキシ樹脂の硬化剤、あるいはエポキシ樹脂のベースレジンとして用いる際にも、硬化物の強度を向上させるために架橋反応に寄与しない未反応の原料や2核体以下の成分の含量の低減が求められている。一方、フェノール樹脂に要求される性能の一つとして低粘度がある。フェノール樹脂の耐熱性や強度といった特性を保ちつつ粘度を下げることができれば作業性、反応性、流動性、含浸性が向上する。また用途に応じて無機フィラー等の充填材を増量できるといった利点がある。鋳型製造のバインダーとして用いる場合には低粘度の他に、発生する煤煙を減少させるために樹脂中の2核体以下の成分、即ち2核体と未反応の原料の低減が求められている。また、近年需要の増加している、電気・電子用途用のエポキシ樹脂用フェノール系硬化剤にも、同様に低粘度と低2核体含有量が求められている。 When phenol novolac resin is used as a raw material or curing agent for epoxy resin, if the binuclear content in phenol novolac resin is increased, inconveniences such as generation of burrs in the molded product and decrease in strength due to a decrease in crosslink density occur. A phenol novolac resin having a low binuclear content is desired. In addition, when used as a curing agent for epoxy resins or a base resin for epoxy resins, the content of unreacted raw materials that do not contribute to the cross-linking reaction and components less than two nuclei can be reduced in order to improve the strength of the cured product. It has been demanded. On the other hand, low viscosity is one of the performances required for phenolic resins. If the viscosity can be lowered while maintaining the properties such as heat resistance and strength of the phenolic resin, workability, reactivity, fluidity and impregnation will be improved. Moreover, there exists an advantage that the fillers, such as an inorganic filler, can be increased according to a use. In the case of using as a binder for mold production, in addition to low viscosity, in order to reduce the generated smoke, it is required to reduce the components of the binuclear or less in the resin, that is, the dinuclear and unreacted raw materials. In addition, low viscosity and low binuclear content are also demanded for phenolic curing agents for epoxy resins for electrical and electronic applications, for which demand is increasing in recent years.

一般に低粘度の樹脂を製造する際にはモル比(P/F)=2〜3のような範囲で反応させて低分子量の樹脂を製造する。しかし低分子量のものを硬化剤として用いた場合には架橋反応に寄与しない2核体以下の成分を多く含んでいるため、硬化物の強度が不足してしまうという欠点がある。例えば、粘度を下げるためにモル比(P/F)=5/2で反応を行うと、反応生成物として低分子量のものが得られ、低溶融粘度を有する。しかし、架橋反応に寄与しない未反応の原料や2核体を多く含有しているため、硬化反応の際には強度の不足の問題が起きる。そのため、さらに2核体を除去すると、2核体を除いた部分の3核体含有量が35面積%程度、4核体含有量が23面積%程度の組成のものが得られ、硬化物の強度も十分なものが得られる。しかし、2核体を除去してしまうため十分に低い粘度を達成することはできない。そこで、樹脂中の2核体含有量が少なくなるように、例えば、モル比(P/F)=5/4で反応を行うと2核体含有量が9面積%程度、3核体含有量が8面積%程度、4核体含有量が6面積%程度の組成をもつフェノールノボラック樹脂が得られる。この場合該樹脂の2核体含有量は少なくなるが、高分子量の反応生成物が多くできて粘度が高くなってしまうため、作業性、反応性、流動性、含浸性の低下等の問題がおきてしまう。このようにフェノールノボラック樹脂中の2核体含有量を少なくするためには、従来の方法では必然的にモル比(P/F)を小さくしなければならず、その結果、得られるフェノールノボラック樹脂の軟化点が高くなり、粘度が高くなるため、成形時の流動性が悪くなる。 In general, when a low-viscosity resin is produced, a low-molecular weight resin is produced by reacting in a molar ratio (P / F) = 2 to 3. However, when a low molecular weight material is used as the curing agent, it contains a large amount of dinuclear or lower components that do not contribute to the crosslinking reaction, so that the strength of the cured product is insufficient. For example, when the reaction is carried out at a molar ratio (P / F) = 5/2 in order to lower the viscosity, a low molecular weight product is obtained as a reaction product and has a low melt viscosity. However, since it contains a large amount of unreacted raw materials and binuclear substances that do not contribute to the crosslinking reaction, a problem of insufficient strength occurs during the curing reaction. Therefore, when the dinuclear is further removed, a composition having a trinuclear content of about 35 area% and a tetranuclear content of about 23 area% of the portion excluding the binuclear is obtained. A sufficient strength can be obtained. However, a sufficiently low viscosity cannot be achieved because the two nuclei are removed. Therefore, for example, when the reaction is carried out at a molar ratio (P / F) = 5/4 so that the dinuclear content in the resin is reduced, the dinuclear content is about 9 area% and the trinuclear content. A phenol novolac resin having a composition of about 8 area% and a tetranuclear content of about 6 area% is obtained. In this case, although the binuclear content of the resin is reduced, a high-molecular-weight reaction product can be increased and the viscosity is increased, so that problems such as workability, reactivity, fluidity, and impregnation are deteriorated. It will happen. Thus, in order to reduce the binuclear content in the phenol novolac resin, the conventional method must inevitably reduce the molar ratio (P / F). As a result, the resulting phenol novolac resin Since the softening point becomes higher and the viscosity becomes higher, the fluidity during molding becomes worse.

そのため、2核体含有量の少ない狭分散フェノールノボラック樹脂の製造方法として、反応後、熱水を用いて2核体を抽出する方法(特許文献1)や水に多少溶解性がある溶剤を加えた後、水溶性アルコール及び水を加えて低核体を除去する方法(特許文献2)等が提案されているが、これらの方法はいずれも除去した2核体の有効利用については示していないため、結局、フェノールノボラック樹脂に対して20質量%程度の2核体成分が廃棄されている。また、フェノール類とアルデヒド類をまず塩基性触媒を用いてレゾール化反応し、次いで、フェノール類と酸性触媒を加えてノボラック化してフェノールノボラック樹脂を合成する方法が開示されているが、工程が煩雑化した割には、2核体の低減が十分ではなかった(特許文献3)。また、1分子中にカルボキシル基とアルコール性水酸基を持つオキシカルボン酸を触媒として用い、フェノール類とアルデヒド類とを縮合反応させてフェノールノボラック樹脂を合成する方法も開示されているが、2核体の低減が十分ではなかったし、触媒が残存する問題が起こった(特許文献4)。さらに、フェノールノボラック樹脂にモノマーと触媒を加え、加熱処理することで、フェノールノボラック樹脂の高分子量体が分解し、低分子量化と狭分散化が起こり、狭分散フェノールノボラック樹脂を得る製法も開示されたが、収率が約10%と悪く実用性がなかった(特許文献5)。また、ビスフェノールFを蒸留して高純度ビスフェノールFを得る工程で、その蒸留残分をそのままフェノールノボラック樹脂としたり、さらに重合し高分子フェノールノボラック樹脂を製造したり、回収前粗ビスフェノールFと高純度ビスフェノールFを混合して汎用ビスフェノールFを得る製造方法も提案されているが、それぞれ単独の製法に比べると、工程が増え生産性が大幅に悪化し、品質的にも、汎用ビスフェノールFは高分子量体が多く含まれ物性に悪影響が出たり、一般的なフェノールノボラック樹脂と同等の分子量分布を持つフェノールノボラック樹脂は得られず、また、2核体の少ないフェノールノボラック樹脂の生産は高純度ビスフェノールFの生産で決まる等、実生産的に多くの問題があった(特許文献6)。 Therefore, as a method for producing a narrow-dispersed phenol novolak resin having a low dinuclear content, a method of extracting dinuclear using hot water after the reaction (Patent Document 1) or a solvent slightly soluble in water is added. After that, a method of removing low nuclei by adding water-soluble alcohol and water has been proposed (Patent Document 2), but none of these methods show the effective utilization of the removed dinuclears. Therefore, about 20% by mass of the binuclear component is discarded with respect to the phenol novolac resin. In addition, a method is disclosed in which phenols and aldehydes are first resolubilized using a basic catalyst and then phenols and an acidic catalyst are added to form a novolac to synthesize a phenol novolac resin, but the process is complicated. However, the dinuclear reduction was not sufficient for the conversion (Patent Document 3). Also disclosed is a method of synthesizing a phenol novolac resin by using a oxycarboxylic acid having a carboxyl group and an alcoholic hydroxyl group in one molecule as a catalyst and subjecting a phenol and an aldehyde to a condensation reaction. There was a problem that the catalyst was not sufficiently reduced and the catalyst remained (Patent Document 4). Furthermore, a method for obtaining a narrowly dispersed phenol novolac resin by adding a monomer and a catalyst to a phenol novolac resin and subjecting it to heat treatment causes decomposition of the high molecular weight of the phenol novolac resin, resulting in a reduction in molecular weight and narrow dispersion. However, the yield was as low as about 10% and there was no practicality (Patent Document 5). In the process of distilling bisphenol F to obtain high-purity bisphenol F, the distillation residue is used as it is as a phenol novolak resin, or polymerized to produce a polymer phenol novolak resin. A production method for obtaining general-purpose bisphenol F by mixing bisphenol F has also been proposed. However, compared to the individual production methods, the number of processes is increased and the productivity is greatly deteriorated. Phenol novolac resin having a large amount of body and having adverse effects on physical properties, having a molecular weight distribution equivalent to that of general phenol novolac resin is not obtained, and the production of phenol novolac resin with less binuclear body is high purity bisphenol F There were many problems in terms of actual production (Patent Document 6).

特公平4−71947号公報Japanese Examined Patent Publication No. 4-71947 特許2536600号公報Japanese Patent No. 2536600 特公平7−119268号公報Japanese Patent Publication No.7-119268 特開平8−3257号公報JP-A-8-3257 特開2008−81707号公報JP 2008-81707 A 特開平6−128183号公報JP-A-6-128183

本発明は、上記事情に鑑み開発されたものであり、目的とするところは、フェノール類とアルデヒド類とを原料とする分子量分布の狭い狭分散フェノールノボラック樹脂を高収率で得ることができる製造方法を提供することにある。   The present invention was developed in view of the above circumstances, and the object is to produce a narrow-dispersion phenol novolac resin having a narrow molecular weight distribution using phenols and aldehydes as raw materials in a high yield. It is to provide a method.

本発明者らは、粗フェノールノボラック樹脂から2核体成分を強制的に除去し、狭分散フェノールノボラック樹脂を高収率で得るとともに、粗フェノールノボラック樹脂の製造に、除去した2核体成分が使用可能であることを見出し、総合的に、環境負荷が少なく、コスト的にも有利な狭分散フェノールノボラック樹脂の製造方法を見出し、本発明に完成した。   The present inventors forcibly removed the dinuclear component from the crude phenol novolak resin to obtain a narrowly dispersed phenol novolac resin in high yield, and the removed dinuclear component was used in the production of the crude phenol novolac resin. It was found that it can be used, and a method for producing a narrow-dispersed phenol novolac resin having a low environmental burden and advantageous in terms of cost was found comprehensively, and the present invention was completed.

即ち、本発明は、
(a)GPC測定による2核体含有量が85面積%以上であるビスフェノールFに、フェノールとホルムアルデヒドを加え、酸触媒の存在下で反応させ、得られた反応生成物から酸触媒、水及び未反応のフェノールを除去して、粗フェノールノボラック樹脂を得る調整工程と、
(b)粗フェノールノボラック樹脂から、蒸留操作により2核体を主成分とする蒸発成分を取り除き、GPC測定による2核体含有量が20面積%以下であり、6核体以上の高分子量体の含有量が12面積%以下である狭分散フェノールノボラック樹脂を得る蒸留工程と
を含むことを特徴とする狭分散フェノールノボラック樹脂の製造方法である。
なお、本明細書中において、フェノールノボラック樹脂及び蒸留成分中の各核体の含有量についての面積%は、それらをGPC(カラム:東ソー社製:商品名:G4000HXL+G2500HXL+G2000HXL×2本、溶離液:テトラヒドロフラン)により測定した面積%である。
That is, the present invention
(A) Phenol and formaldehyde are added to bisphenol F having a binuclear content of 85 area% or more by GPC measurement, and reacted in the presence of an acid catalyst. From the obtained reaction product, an acid catalyst, water, An adjustment step of removing the phenol of the reaction to obtain a crude phenol novolac resin;
(B) From the crude phenol novolac resin, an evaporation component mainly composed of a dinuclear body is removed by a distillation operation, and the content of the binuclear body by GPC measurement is 20 area% or less, And a distillation step for obtaining a narrowly dispersed phenol novolac resin having a content of 12 area% or less.
In this specification, the area% of the content of each nuclei of phenol novolak resin and a distillation component makes them GPC (column: Tosoh Corporation: trade name: G4000 HXL + G2500 HXL + G2000 HXL × 2 present , Eluent: tetrahydrofuran).

また、上記ビスフェノールFは上記(b)蒸留工程から得られた2核体を主成分とする蒸発成分が好ましい。   The bisphenol F is preferably an evaporation component mainly composed of a binuclear body obtained from the distillation step (b).

また、上記粗フェノールノボラック樹脂が、GPC測定による2核体含有量が30〜70面積%であり、6核体以上の高分子量体の含有量が20面積%以下であり、質量平均分子量が250〜800であり、分散度[質量平均分子量(Mw)/数平均分子量(Mn)]が1.01〜1.4であることが好ましい。 The crude phenol novolac resin has a dinuclear content of 30 to 70 area% by GPC measurement, a high molecular weight content of 6 or more nuclear bodies is 20 area% or less, and a mass average molecular weight of 250. It is preferable that dispersion degree [mass average molecular weight (Mw) / number average molecular weight (Mn)] is 1.01-1.4.

また、上記(b)調整工程において、上記蒸発成分100質量部に対し、フェノールを100〜3000質量部の範囲で加え、フェノールとホルムアルデヒドとのモル比(P/F)を3.0〜6.0の範囲でホルムアルデヒドと反応させることが好ましい。   In the adjustment step (b), phenol is added in the range of 100 to 3000 parts by mass with respect to 100 parts by mass of the evaporation component, and the molar ratio (P / F) of phenol to formaldehyde is 3.0 to 6. It is preferable to react with formaldehyde in the range of 0.

また、上記(a)蒸留工程において、圧力1〜10mmHg、熱媒温度250〜320℃に保たれた蒸発器に、上記粗フェノールノボラック樹脂を蒸発器の伝熱面積1mあたり30〜200kg/hrの供給量となるように連続的に供給し、蒸発成分と缶出物を蒸発器から連続的に取り出すことが好ましい。 In the distillation step (a), the crude phenol novolac resin is added to the evaporator maintained at a pressure of 1 to 10 mmHg and a heat medium temperature of 250 to 320 ° C., to 30 to 200 kg / hr per 1 m 2 of the heat transfer area of the evaporator. It is preferable to supply continuously so that it may become the supply amount, and to take out an evaporating component and a bottom thing from an evaporator continuously.

また、上記蒸発成分は、GPC測定による2核体含有量が85面積%以上であることが好ましい。 Moreover, it is preferable that the dinuclear content by GPC measurement of the said evaporation component is 85 area% or more.

また、上記蒸発器が外部コンデンサを有する縦型回転式薄膜蒸発器であることが好ましい。 The evaporator is preferably a vertical rotary thin film evaporator having an external capacitor.

また、本発明は、上記製造方法によって得られる狭分散フェノールノボラック樹脂である。 Moreover, this invention is a narrow dispersion phenol novolak resin obtained by the said manufacturing method.

本発明の製造方法は、狭分散フェノールノボラック樹脂を高収率で得るとともに、総合的に、環境負荷が少なく、コスト的にも有利な狭分散フェノールノボラック樹脂の製造方法である。 The production method of the present invention is a method for producing a narrow-dispersed phenol novolac resin, which obtains a narrow-dispersed phenol novolac resin in a high yield and has a low environmental impact and is advantageous in terms of cost.

実施例1の狭分散フェノールノボラック樹脂のGPCチャートGPC chart of narrowly dispersed phenol novolac resin of Example 1 比較例1のフェノールノボラック樹脂のGPCチャートGPC chart of phenol novolac resin of Comparative Example 1

ピークa:2核体成分、ピークb:3核体成分、ピークc:4核体成分、ピークd:5核体成分、ピークe:6核体成分以上 Peak a: dinuclear component, peak b: trinuclear component, peak c: tetranuclear component, peak d: pentanuclear component, peak e: hexanuclear component or more

以下、本発明の実施形態について詳細に説明する。
本発明で得られる狭分散フェノールノボラック樹脂は、GPC測定による2核体含有量が20面積%以下であり、6核体以上の高分子量体の含有量が12面積%以下である分子量分布を有するフェノールノボラック樹脂である。2核体含有量は、12面積%以下がより好ましく、10面積%以下がさらに好ましく、5面積%以下が最も好ましい。また、6核体以上の高分子量体の含有量は、10面積%以下が好ましく、7核体以上の高分子量体を全く含まないことがより好ましい。3核体含有量は、30〜60面積%が好ましく、4核体含有量は、20〜35面積%が好ましく、5核体含有量は、10〜20面積%が好ましい。また、Mwは300〜550が好ましく、350〜500がより好ましく、400〜450がさらに好ましく、分散度(Mw/Mn)は1.05〜1.3が好ましく、1.08〜1.2がより好ましく、1.10〜1.15がさらに好ましい。未反応のフェノールと2核体が多いと、硬化剤として用いた場合、架橋反応に寄与しないので耐熱性を低下させる恐れがある。また、エポキシ樹脂の原料として用いた場合、得られる成形物にバリが発生したり、成形物の強度が低下する恐れがある。また、3核体と4核体の含有量の和は55〜80面積%であれば、低溶融粘度を有するフェノールノボラック樹脂が実現できるので好ましく、60〜76面積%がより好ましい。3核体と4核体の含有量の和が多いと平均核体数が低くなり、硬化物の耐熱性が低下する恐れがあり、好ましくない。また、5核体含有量は10〜20面積%であれば、低溶融粘度を有しながら耐熱性のあるフェノールノボラック樹脂が得られるので好ましい。また、6核体含有量が少ないか、または全く含まないと耐熱性の低下が著しく好ましくない。
Hereinafter, embodiments of the present invention will be described in detail.
The narrowly dispersed phenol novolac resin obtained by the present invention has a molecular weight distribution in which the content of dinuclear body by GPC measurement is 20 area% or less, and the content of high molecular weight body of 6 or more nucleus bodies is 12 area% or less. Phenol novolac resin. The binuclear content is more preferably 12 area% or less, further preferably 10 area% or less, and most preferably 5 area% or less. Further, the content of the high molecular weight body having 6 or more nuclei is preferably 10% by area or less, and more preferably not containing any high molecular weight body having 7 or more nuclei. The trinuclear content is preferably 30 to 60 area%, the tetranuclear content is preferably 20 to 35 area%, and the pentanuclear content is preferably 10 to 20 area%. The Mw is preferably 300 to 550, more preferably 350 to 500, still more preferably 400 to 450, and the dispersity (Mw / Mn) is preferably 1.05 to 1.3, and 1.08 to 1.2. More preferred is 1.10 to 1.15. When there are many unreacted phenols and dinuclear bodies, when it is used as a curing agent, it does not contribute to the crosslinking reaction, so there is a risk of reducing the heat resistance. Further, when used as a raw material for an epoxy resin, there is a possibility that burrs may occur in the obtained molded product or the strength of the molded product may be reduced. Moreover, if the sum of the content of the trinuclear body and the tetranuclear body is 55 to 80 area%, a phenol novolac resin having a low melt viscosity can be realized, and 60 to 76 area% is more preferable. When the sum of the contents of the trinuclear body and the tetranuclear body is large, the average number of nuclei body is lowered, and the heat resistance of the cured product may be lowered, which is not preferable. A pentanuclear content of 10 to 20 area% is preferable because a phenol novolac resin having a low melt viscosity and heat resistance can be obtained. Further, if the hexanuclear content is small or not contained at all, the heat resistance is remarkably not lowered.

また、狭分散フェノールノボラック樹脂は、粗フェノールノボラック樹脂から2核体を主成分とする蒸留成分を蒸留によって除去することにより得られ、蒸留によって除去した蒸留成分は、廃棄することなく、再度、フェノールとホルマリンとともに粗フェノールノボラック樹脂とし製造され、狭分散フェノールノボラック樹脂用の蒸留原体となる。 The narrow-dispersed phenol novolak resin is obtained by removing a distillation component mainly composed of a binuclear body from a crude phenol novolak resin by distillation. The distilled component removed by distillation is again discarded without being discarded. And a formal phenol novolac resin together with formalin, and it becomes a distilling base for a narrow dispersion phenol novolac resin.

狭分散フェノールノボラック樹脂を得るための粗フェノールノボラック樹脂は、6核体以上の高分子量体があまり含まれないことが好ましいため、2核体がある程度必要であるので、GPC測定による2核体含有量が30〜70面積%が好ましく、35〜65面積%がより好ましく、45〜60面積%がさらに好ましく、50〜57面積%が最も好ましい。そのため、Mwは250〜800であり、280〜600が好ましく、310〜450がより好ましく、分散度(Mw/Mn)は、1.01〜1.4であり、1.05〜1.3が好ましく、1.1〜1.2がより好ましい。   Since the crude phenol novolac resin for obtaining the narrowly dispersed phenol novolak resin preferably does not contain a high molecular weight polymer having 6 or more nuclei, it requires a certain amount of 2 nuclei, and therefore contains 2 nuclei by GPC measurement. The amount is preferably 30 to 70 area%, more preferably 35 to 65 area%, still more preferably 45 to 60 area%, and most preferably 50 to 57 area%. Therefore, Mw is 250 to 800, preferably 280 to 600, more preferably 310 to 450, the dispersity (Mw / Mn) is 1.01 to 1.4, and 1.05 to 1.3 is Preferably, 1.1 to 1.2 is more preferable.

上記の粗フェノールノボラック樹脂は、従来の製法、即ち、撹拌機、温度調節装置、還流冷却器、全縮器、減圧装置等を備えた反応機に、フェノール、ホルムアルデヒド及び酸触媒を投入し、撹拌下、所定温度において、所定時間反応させた後、反応生成物から酸触媒、生成水及び未反応フェノールを除去して、粗フェノールノボラック樹脂を得ることもできるし、本発明の(a)調整工程のように、撹拌機、温度調節装置、還流冷却器、全縮器、減圧装置等を備えた反応機に、(b)蒸留工程で除去された蒸留成分100質量部とフェノール100〜4000質量部と、ホルムアルデヒドと酸触媒を投入し、撹拌下、所定温度において、所定時間反応させた後、反応生成物から酸触媒、生成水及び未反応フェノールを除去して、粗フェノールノボラック樹脂を得ることもできる。 The above crude phenol novolac resin is prepared by adding phenol, formaldehyde, and an acid catalyst to a reactor equipped with a conventional manufacturing method, that is, a stirrer, a temperature control device, a reflux condenser, a total condenser, a decompression device, and the like. Then, after reacting at a predetermined temperature for a predetermined time, the acid catalyst, generated water and unreacted phenol can be removed from the reaction product to obtain a crude phenol novolak resin. (A) Adjustment step of the present invention In the reactor equipped with a stirrer, a temperature control device, a reflux condenser, a total condenser, a decompression device, etc., (b) 100 parts by mass of distilled components and 100 to 4000 parts by mass of phenol removed in the distillation step Then, formaldehyde and an acid catalyst are added, and the mixture is reacted at a predetermined temperature with stirring for a predetermined time. Then, the acid catalyst, generated water and unreacted phenol are removed from the reaction product, and crude phenol is removed. It is also possible to obtain a novolak resin.

(a)調整工程において、(b)蒸留工程で除去された蒸留成分100質量部に対し、フェノールは100〜3000質量部であれば、目的とする分子量分布を持った粗フェノールノボラック樹脂が得られる。蒸留成分100質量部に対し、フェノールは200〜2500質量部が好ましく、300〜2000がより好ましく、500〜1000がさらに好ましい。(b)蒸留工程で除去された蒸留成分に対し、フェノールが少ないと、2核体、4核体、6核体等を偶数核体の成分が多くなり、分子量分布の異なった粗フェノールノボラック樹脂ができる恐れがある。 (A) In the adjustment step, if the phenol is 100 to 3000 parts by mass with respect to 100 parts by mass of the distillation component removed in the (b) distillation step, a crude phenol novolac resin having a target molecular weight distribution is obtained. . The phenol is preferably 200 to 2500 parts by mass, more preferably 300 to 2000, and even more preferably 500 to 1000 with respect to 100 parts by mass of the distillation component. (B) Crude phenol novolac resins having different molecular weight distributions due to the increase in the number of dinuclear, tetranuclear, hexanuclear, etc. There is a risk of being able to.

なお、本発明は、(b)蒸留工程で得られた蒸留成分を使用して、(a)調整工程において粗フェノールノボラック樹脂を製造するプロセスを連続的に繰り返すことによって、大きな効果が得られる。特に、(b)蒸留工程で得られた蒸留成分をプロセス系外に取り出さず、そのまま次ロットの工程で使用することで、酸化による悪影響を大幅に低減できるため好ましい。   In the present invention, a great effect can be obtained by continuously repeating the process of producing a crude phenol novolac resin in the adjustment step (a) using the distillation component obtained in the distillation step (b). In particular, it is preferable to use the distillation component obtained in the (b) distillation step without taking it out of the process system as it is in the next lot step, since the adverse effects due to oxidation can be greatly reduced.

フェノールの他に例えば、クレゾール、エチルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノール等のアルキルフェノール類や、その(オルソ、メタ、パラ)位置置換体、(n−、sec−、tert−等の)置換基構造異性体を使用することもできる。中でも、ホリマリンとの反応性、蒸留回収の容易さから、フェノールが好ましい。フェノールは単独で使用しても2種以上を併用しても良い。 In addition to phenol, for example, alkylphenols such as cresol, ethylphenol, butylphenol, octylphenol, nonylphenol, dodecylphenol, and their (ortho, meta, para) positional substitutions, substitutions (such as n-, sec-, tert-) Group structural isomers can also be used. Of these, phenol is preferred because of its reactivity with holymarin and ease of distillation recovery. Phenol may be used alone or in combination of two or more.

ホルムアルデヒドとしては、例えば、ホルマリン、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン及び環状ホルマール等が挙げられる。中でもホルマリンが好ましく、42質量%までのホルマリン水溶液を使用することができ、37〜42質量%のホルマリン水溶液がより好ましい。ホルムアルデヒドは単独で使用しても2種以上を併用しても良い。 Examples of formaldehyde include formalin, paraformaldehyde, hexamethylenetetramine, trioxane, and cyclic formal. Among them, formalin is preferable, and a formalin aqueous solution up to 42% by mass can be used, and a 37-42% by mass formalin aqueous solution is more preferable. Formaldehyde may be used alone or in combination of two or more.

また、モル比(P/F)は、3.0〜6.0が好ましく、3.5〜5.5がより好ましく、4.0〜5.0がさらに好ましく、4.3〜4.7が最も好ましい。モル比(P/F)が大きいと2核体含有量が増えるため、狭分散フェノールノボラック樹脂の特量が少なくなり、生産性が低下する恐れがある。また、小さいと6核体以上の高分子成分が増えるため、分子量分布が広がり、狭分散フェノールノボラック樹脂が得られない恐れがある。モル比(P/F)がこの範囲であれば、特に蒸留成分の2核体含有量や使用量を考慮する必要はなく、目的とする分子量分布を持った粗フェノールノボラック樹脂が得られる。 The molar ratio (P / F) is preferably 3.0 to 6.0, more preferably 3.5 to 5.5, still more preferably 4.0 to 5.0, and 4.3 to 4.7. Is most preferred. When the molar ratio (P / F) is large, the dinuclear content increases, so that the special amount of the narrow-dispersed phenol novolac resin decreases, and the productivity may decrease. On the other hand, if the molecular weight is small, the polymer component having six or more nuclei increases, so that the molecular weight distribution is widened, and a narrowly dispersed phenol novolac resin may not be obtained. If the molar ratio (P / F) is within this range, it is not necessary to take into account the dinuclear content and the amount used of the distillation component, and a crude phenol novolak resin having the desired molecular weight distribution can be obtained.

また、(a)調整工程において使用する酸触媒は、陽イオン交換樹脂のような固体酸触媒の固定床であっても良いし、塩酸、硫酸、サリチル酸、パラトルエンスルホン酸、シュウ酸等の有機酸及び無機酸であっても良い。反応温度、反応時間は用いる触媒の種類、量またはモル比(P/F)等により異なるが、通常50〜110℃において0.5〜10時間である。陽イオン交換樹脂のような固定床触媒を用いた場合は、反応後、触媒の除去は行わなくてよく、未反応のホルムアルデヒド及び生成水等が減圧蒸留等の方法によって除去される。塩酸、シュウ酸等の無機酸を用いた場合は、反応後、未反応のホルムアルデヒド、投入水、生成水と共に酸触媒も同時に減圧蒸留等の方法によって除去される。   In addition, the acid catalyst used in the adjustment step (a) may be a fixed bed of a solid acid catalyst such as a cation exchange resin, or an organic solvent such as hydrochloric acid, sulfuric acid, salicylic acid, paratoluenesulfonic acid, or oxalic acid. Acids and inorganic acids may be used. The reaction temperature and reaction time vary depending on the type, amount, or molar ratio (P / F) of the catalyst used, but are usually 0.5 to 10 hours at 50 to 110 ° C. When a fixed bed catalyst such as a cation exchange resin is used, it is not necessary to remove the catalyst after the reaction, and unreacted formaldehyde, generated water and the like are removed by a method such as vacuum distillation. When an inorganic acid such as hydrochloric acid or oxalic acid is used, after the reaction, the acid catalyst is simultaneously removed together with unreacted formaldehyde, input water, and produced water by a method such as vacuum distillation.

次いで、未反応のフェノールは減圧蒸留等によって除去される。これらの分離、除去は別個に行っても良いし、分縮器を設けることによってフェノールを分縮させ、さらに全縮器によって水等を凝縮させても良い。回収されたフェノールは、再び原料として使用できるのは勿論のことである。このようにして得られた粗フェノールノボラック樹脂中の2核体含有量は、例えば、触媒としてシュウ酸を使用して、モル比(P/F)=3で実施した場合は40質量%程度となり、モル比(P/F)=4.5で実施した場合は54質量%程度となり、モル比(P/F)=6で実施した場合は63質量%程度となる。 Next, unreacted phenol is removed by distillation under reduced pressure or the like. Separation and removal of these may be performed separately, or phenol may be condensed by providing a partial condenser, and water or the like may be condensed by a full condenser. Of course, the recovered phenol can be used again as a raw material. The binuclear content in the crude phenol novolac resin thus obtained is about 40% by mass when, for example, oxalic acid is used as a catalyst and the molar ratio (P / F) = 3. When it is carried out at a molar ratio (P / F) = 4.5, it is about 54% by mass, and when it is carried out at a molar ratio (P / F) = 6, it is about 63% by mass.

さらに、(b)の蒸留工程で、減圧蒸留によって2核体を主成分とする蒸留成分が除去される。蒸留成分中のGPC測定による2核体含有量は、(b)の蒸留工程の蒸留条件で変わるが、85面積%以上が好ましく、90面積%以上がより好ましく、95面積%以上がさらに好ましい。蒸留成分中の2核体含有量が少ないと、目的とする狭分散フェノールノボラック樹脂中の2核体含有量が多くなる恐れがある。そのため、蒸留工程では、粗フェノールノボラック樹脂中の2核体含有量にもよるが、供給される粗フェノールノボラック樹脂の30〜60質量%が蒸留成分として除去される。   Further, in the distillation step (b), the distillation component mainly composed of the binuclear body is removed by vacuum distillation. The dinuclear content by GPC measurement in the distillation component varies depending on the distillation conditions in the distillation step of (b), but is preferably 85 area% or more, more preferably 90 area% or more, and further preferably 95 area% or more. When the dinuclear content in the distillation component is small, the dinuclear content in the target narrowly dispersed phenol novolac resin may increase. Therefore, in the distillation step, depending on the binuclear content in the crude phenol novolac resin, 30 to 60% by mass of the supplied crude phenol novolac resin is removed as a distillation component.

(b)蒸留工程において用いる蒸発器は、好ましくは蒸発器からの蒸発成分の一部を凝縮させた凝縮液を蒸発器に戻すことができる分縮器を備えたものであり、蒸発器の形式としては、流下薄膜式または遠心薄膜式等のものが好ましい。また、複数基の蒸発器を用いる場合には各蒸発器は、分縮器を備えたものであっても良いし、分縮器を備えないものであっても良いが、少なくとも最終段に用いる蒸発器は分縮器を備えたものであることが好ましい。この場合も好ましく用いられる蒸発器の形式は上記と同様である。 (B) The evaporator used in the distillation step preferably includes a condenser that can return a condensed liquid obtained by condensing a part of the evaporated component from the evaporator to the evaporator. For example, a falling film type or a centrifugal film type is preferable. Further, when using a plurality of evaporators, each evaporator may be provided with a partial condenser or may not be provided with a partial condenser, but is used at least in the final stage. The evaporator is preferably provided with a partial condenser. Also in this case, the type of evaporator preferably used is the same as described above.

蒸留工程において、圧力1〜10mmHg、薄膜伝面熱媒温度250〜320℃に保たれた蒸発器に、粗フェノールノボラック樹脂を蒸発器の伝熱面積1mあたり30〜200kg/hrの供給量となるように連続的に供給し、蒸発成分と缶出物を蒸発器から連続的に取り出しながら狭分散フェノールノボラック樹脂を得ることができる。熱媒温度が高いとフェノールノボラック樹脂の分解、着色が起こる恐れがあり、温度が低いと高真空、例えば1mmHg未満の圧力が必要となり不経済である。また、供給量が多いと2核体の除去が十分に行われない恐れがある。 In the distillation step, the crude phenol novolac resin was supplied to the evaporator maintained at a pressure of 1 to 10 mmHg and a thin film surface heat transfer medium temperature of 250 to 320 ° C. with a supply amount of 30 to 200 kg / hr per 1 m 2 of the heat transfer area of the evaporator. Thus, a narrowly dispersed phenol novolac resin can be obtained while continuously supplying the product and continuously taking out the evaporated components and the bottoms from the evaporator. If the heating medium temperature is high, the phenol novolac resin may be decomposed and colored, and if the temperature is low, a high vacuum, for example, a pressure of less than 1 mmHg is required, which is uneconomical. In addition, when the supply amount is large, there is a possibility that the dinuclear body is not sufficiently removed.

蒸留工程において、好ましく用いられる全縮器として、多管式円筒形熱交換器、コイル式熱交換器等が挙げられる。好ましく用いられる分縮器としては、多管式円筒形熱交換器、コイル式熱交換器等が挙げられる。また、蒸発器から全縮器に至る蒸発ラインを外部から冷却するようなタイプのものでもよい。 In the distillation step, examples of the total condenser preferably used include a multi-tubular cylindrical heat exchanger and a coil heat exchanger. Examples of the pressure reducer that is preferably used include a multi-tubular cylindrical heat exchanger, a coil heat exchanger, and the like. Moreover, the type which cools the evaporation line from an evaporator to a full-condenser from the outside may be used.

また、蒸留工程の缶出物として得られる狭分散フェノールノボラック樹脂の2核体含有量を3質量%未満になるような蒸留条件では、蒸留温度が高くなるので缶出物の分解、着色といった問題が起こる恐れがある。上記範囲の圧力条件及び温度条件を適宜選択することにより、缶出物として得られる狭分散フェノールノボラック樹脂の分子量分布を制御することができる。 Also, the distillation temperature becomes high under the distillation conditions in which the dinuclear content of the narrow-dispersed phenol novolak resin obtained as the bottom product of the distillation step is less than 3% by mass, so that the bottom product is decomposed and colored. May happen. By appropriately selecting the pressure conditions and temperature conditions within the above ranges, the molecular weight distribution of the narrowly dispersed phenol novolac resin obtained as a bottom can be controlled.

蒸留工程の缶出物を抜き出し、大気中で放冷するか、または強制的に冷却する等して、40℃以下程度まで冷却し、好ましくは粉砕して、狭分散フェノールノボラック樹脂とする。粉砕する方法には特に制限がなく、ボールミル、ジェットミル等の粉砕機が好ましく用いられる。また、エポキシ樹脂の原料とする場合は、保温することにより液体のままエポキシ化工程に送ってもよいし、別途設置された造粒工程に送り造粒し、粒状の製品としてもよい。 The bottoms of the distillation step are extracted and allowed to cool in the atmosphere or forcedly cooled to cool to about 40 ° C. or less, preferably pulverized to obtain a narrowly dispersed phenol novolac resin. There is no restriction | limiting in particular in the method to grind | pulverize, and grinders, such as a ball mill and a jet mill, are used preferably. Moreover, when using it as the raw material of an epoxy resin, you may send to an epoxidation process with a liquid by heat-retaining, and it may send and granulate to the granulation process installed separately, and it is good also as a granular product.

以下、本発明を実施例及び比較例に基づいてさらに具体的に説明するが、本発明はこれに限定されるものではない。実施例において、特に断りがない限り、部は「質量部」を表し、%は「質量%」を表す。なお、実施例及び比較例における各種特性値の評価または測定は、下記(1)〜(6)の方法により実施した。 EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to this. In Examples, unless otherwise specified, parts represent “parts by mass” and% represents “mass%”. In addition, evaluation or measurement of various characteristic values in Examples and Comparative Examples was performed by the following methods (1) to (6).

(1)狭フェノールノボラック樹脂、粗フェノールノボラック樹脂、及び蒸留成分中の各核体含有量、分子量(Mw)、分散度(Mw/Mn)の測定:各核体含有量は、GPC測定した面積%である。分子量(Mw)、分散度(Mw/Mn)は、同様に測定したそれぞれのピークにフェノール核の数に応じた分子量を対応させて算出した、即ち、2核体の分子量を200、3核体の分子量を306、4核体の分子量を412、5核体の分子量を518、6核体の分子量を624、7核体の分子量を730、8核体の分子量を836、9核体の分子量を942、10核体の分子量を1048として算出した。GPCの測定条件は下記の通りである。
カラム:G4000HXL+G2500HXL+G2000HXL×2本(東ソー株式会社製)
カラム温度:40℃
溶離液:テトラヒドロフラン
流速:1mL/min
試料濃度:0.1g/10mLテトラヒドロフラン
検出器:RI検出
(1) Narrow phenol novolak resin, crude phenol novolak resin, and measurement of each nucleus content, molecular weight (Mw), and dispersity (Mw / Mn) in the distillation component: each nucleus content is an area measured by GPC %. The molecular weight (Mw) and the degree of dispersion (Mw / Mn) were calculated by associating each peak measured in the same manner with the molecular weight corresponding to the number of phenol nuclei. The molecular weight of 306, the molecular weight of 4 nuclei is 412, the molecular weight of nuclei is 518, the molecular weight of 6 nuclei is 624, the molecular weight of 7 nuclei is 730, the molecular weight of 8 nuclei is 836, the molecular weight of 9 nuclei 942, and the molecular weight of 10 nuclei was calculated as 1048. The measurement conditions of GPC are as follows.
Column: G4000 HXL + G2500 HXL + G2000 HXL x 2 (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran flow rate: 1 mL / min
Sample concentration: 0.1 g / 10 mL tetrahydrofuran detector: RI detection

(2)溶融粘度:ICIコーン&プレート型粘度計(リサーチ・エクイップメント株式会社製)を用い、120℃にて測定した。 (2) Melt viscosity: measured at 120 ° C. using an ICI cone & plate viscometer (manufactured by Research Equipment Co., Ltd.).

(3)ゲルタイム:予め175℃に加熱しておいたゲル化試験機(日新科学株式会社製)の凹部にエポキシ樹脂組成物を流し込み、フッ素樹脂製の棒を用いて一秒間に2回転の速度で撹拌し、エポキシ樹脂組成物が硬化するまでに要したゲル化時間を調べた。 (3) Gel time: The epoxy resin composition is poured into a concave portion of a gelation tester (Nisshin Kagaku Co., Ltd.) that has been heated to 175 ° C. in advance, and is rotated twice per second using a fluororesin rod. The gelation time required for stirring the epoxy resin composition until the epoxy resin composition was cured was examined.

(4)スパイラルフロー:EMMI−1−66に準拠したスパイラルフロー測定用金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で測定した。 (4) Spiral flow: Using a spiral flow measurement mold conforming to EMMI-1-66, measurement was performed under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds.

(5)ガラス転移温度(Tg):TMA(熱機械測定)法により、10℃/分の昇温速度で測定した。 (5) Glass transition temperature (Tg): Measured at a rate of temperature increase of 10 ° C./min by the TMA (thermomechanical measurement) method.

(6)曲げ強度、及び曲げ弾性率:JIS K−6911に準拠して測定した。 (6) Flexural strength and flexural modulus: measured according to JIS K-6911.

実施例1
(調整工程)撹拌機、温度調節装置、還流冷却器、全縮器、減圧装置等を備えた撹拌槽型反応機に、ビスフェノールFとして2核体量が90面積%のビスフェノールFを100部とフェノールを600部を加えて80℃まで昇温した後、1.55部のシュウ酸2水和物を添加し、10分間撹拌溶解した後、115部の37.5%ホルマリンを30分間かけて滴下した。その後、反応温度を92℃に維持して3時間反応を続けた。反応終了後、110℃まで温度を上げ、脱水を行った後、残存するフェノールを150℃、60mmHgの回収条件で約90%回収した後、160℃、5mmHgの回収条件で回収した後、さらに160℃、80mmHgの条件下で水10部を90分間かけて滴下して残存するフェノールを除去して、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が55.1面積%、3核体量が24.9面積%、4核体量が11.1面積%、5核体量が5.0面積%、6核体以上の含有量が3.9面積%であり、Mwは339であり、分散度(Mw/Mn)は1.190だった。
(蒸留工程)得られた粗フェノールノボラック樹脂を、ロータ回転数を250rpmとし、真空度が3〜5mmHgで運転される遠心薄膜蒸発器に21kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。遠心薄膜蒸発器はジャケット付で、加熱伝面が0.21mでジャケットには260℃の熱媒を流した。また、遠心薄膜蒸発器は外部コンデンサーを有し、冷却伝面が1.3mで120℃の加温水を流し、蒸発成分の全量を凝縮させて抜出した。
得られたフェノールノボラック樹脂の組成は、2核体量が9.1面積%、3核体量が48.9面積%、4核体量が22.9面積%、5核体量が10.4面積%、6核体以上の含有量が8.7面積%であり、Mwは423であり、分散度(Mw/Mn)は1.122だった。蒸発成分の2核体量は97.9面積%、3核体量は2.1面積%であり、Mwは203であり、分散度(Mw/Mn)は1.006だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Example 1
(Adjustment step) 100 parts of bisphenol F having a binuclear amount of 90 area% as bisphenol F is added to a stirring tank reactor equipped with a stirrer, a temperature control device, a reflux condenser, a total condenser, a decompression device, and the like. After adding 600 parts of phenol and raising the temperature to 80 ° C., 1.55 parts of oxalic acid dihydrate was added and dissolved by stirring for 10 minutes, and then 115 parts of 37.5% formalin was added over 30 minutes. It was dripped. Thereafter, the reaction was continued for 3 hours while maintaining the reaction temperature at 92 ° C. After completion of the reaction, the temperature was raised to 110 ° C. and dehydration was performed. After that, about 90% of the remaining phenol was recovered under the recovery conditions of 150 ° C. and 60 mmHg, and then recovered under the recovery conditions of 160 ° C. and 5 mmHg. 10 parts of water was added dropwise over 90 minutes under the conditions of 80 ° C. and 80 mmHg to remove the remaining phenol to obtain a crude phenol novolac resin. The composition of the obtained crude phenol novolak resin was such that the amount of dinuclear was 55.1 area%, the amount of trinuclear was 24.9 area%, the amount of tetranuclear was 11.1 area%, the amount of nucleated body was 5 0.0 area%, the content of 6 or more nuclei was 3.9 area%, Mw was 339, and dispersity (Mw / Mn) was 1.190.
(Distillation step) The obtained crude phenol novolac resin was continuously supplied at 21 kg / hr for 1 hour to a centrifugal thin film evaporator operated at a rotor speed of 250 rpm and a vacuum degree of 3 to 5 mmHg. Phenol novolac resin was continuously extracted. The centrifugal thin film evaporator was equipped with a jacket, the heating surface was 0.21 m 2 , and a heating medium of 260 ° C. was passed through the jacket. Further, the centrifugal thin film evaporator had an external condenser, and the cooling transmission surface was 1.3 m 2 and heated water of 120 ° C. was flown to condense and extract all the evaporation components.
The composition of the obtained phenol novolac resin was such that the dinuclear amount was 9.1 area%, the trinuclear amount was 48.9 area%, the tetranuclear amount was 22.9 area%, and the 5-nuclear amount was 10. The content of 4 area% and 6 or more nuclei was 8.7 area%, Mw was 423, and dispersity (Mw / Mn) was 1.122. The dinuclear amount of the evaporation component was 97.9 area%, the trinuclear amount was 2.1 area%, Mw was 203, and the degree of dispersion (Mw / Mn) was 1.006. The obtained phenol novolac resin was not colored.

実施例2
(調整工程)ビスフェノールFとして実施例1で得られた蒸発成分を210部、フェノールを680部、シュウ酸2水和物を1.78部、37.5%ホルマリンを115部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が52.8面積%、3核体量が25.0面積%、4核体量が12.7面積%、5核体量が5.2面積%、6核体以上の含有量が4.3面積%であり、Mwは347であり、分散度(Mw/Mn)は1.192だった。
(蒸留工程)得られた粗フェノールノボラック樹脂を、実施例1で使用した遠心薄膜蒸発器に10kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が250rpmで、真空度が6〜8mmHgで、熱媒温度が290℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が6.3面積%、3核体量が49.6面積%、4核体量が25.2面積%、5核体量が10.2面積%、6核体以上の含有量が8.7面積%であり、Mwは425であり、分散度(Mw/Mn)は1.113だった。蒸発成分の2核体量は98.2面積%、3核体量は1.8面積%であり、Mwは203であり、分散度(Mw/Mn)は1.005だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Example 2
(Adjustment step) Except for changing the evaporation component obtained in Example 1 as bisphenol F to 210 parts, phenol 680 parts, oxalic acid dihydrate 1.78 parts, 37.5% formalin 115 parts. The same operation as in Example 1 was performed to obtain a crude phenol novolac resin. The composition of the obtained crude phenol novolak resin was such that the amount of dinuclear was 52.8 area%, the amount of trinuclear was 25.0 area%, the amount of tetranuclear was 12.7 area%, the amount of nucleated body was 5 .2 area%, the content of 6 or more nuclei was 4.3 area%, Mw was 347, and dispersity (Mw / Mn) was 1.192.
(Distillation step) The obtained crude phenol novolak resin was continuously supplied to the centrifugal thin film evaporator used in Example 1 at 10 kg / hr for 1 hour, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor speed of 250 rpm, a degree of vacuum of 6-8 mmHg, and a heating medium temperature of 290 ° C.
The composition of the obtained phenol novolac resin is such that the amount of dinuclear body is 6.3 area%, the amount of trinuclear body is 49.6 area%, the amount of tetranuclear body is 25.2 area%, and the amount of 5-nuclear body is 10. The content of 2 area%, 6 nuclei or more was 8.7 area%, Mw was 425, and dispersity (Mw / Mn) was 1.113. The dinuclear content of the evaporation component was 98.2 area%, the trinuclear content was 1.8 area%, Mw was 203, and the dispersity (Mw / Mn) was 1.005. The obtained phenol novolac resin was not colored.

実施例3
(調整工程)ビスフェノールFとして実施例2で得られた蒸発成分を25部、フェノールを600部、シュウ酸2水和物を1.25部、37.5%ホルマリンを170部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が38.0面積%、3核体量が24.5面積%、4核体量が20.4面積%、5核体量が9.3面積%、6核体以上の含有量が7.8面積%であり、Mwは403であり、分散度(Mw/Mn)は1.195だった。
(蒸留工程)得られた粗フェノールノボラック樹脂を、実施例1で使用した遠心薄膜蒸発器に31kg/hrで連続的に供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が250rpmで、真空度が4〜5mmHgで、熱媒温度が270℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が10.1面積%、3核体量が35.6面積%、4核体量が29.6面積%、5核体量が13.4面積%、6核体以上の含有量が11.3面積%であり、Mwは448であり、分散度(Mw/Mn)は1.124だった。蒸発成分の2核体量は97.9面積%、3核体量は2.1面積%であり、Mwは203であり、分散度(Mw/Mn)は1.006だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Example 3
(Adjustment step) Except for changing the evaporation component obtained in Example 2 as bisphenol F by 25 parts, phenol by 600 parts, oxalic acid dihydrate by 1.25 parts, and 37.5% formalin by 170 parts. The same operation as in Example 1 was performed to obtain a crude phenol novolac resin. The composition of the obtained crude phenol novolak resin was such that the dinuclear amount was 38.0 area%, the trinuclear amount was 24.5 area%, the tetranuclear amount was 20.4 area%, and the 5-nuclear amount was 9 .3 area%, the content of 6 or more nuclei was 7.8 area%, Mw was 403, and dispersity (Mw / Mn) was 1.195.
(Distillation step) The obtained crude phenol novolak resin was continuously supplied to the centrifugal thin film evaporator used in Example 1 at 31 kg / hr, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor speed of 250 rpm, a degree of vacuum of 4 to 5 mmHg, and a heat medium temperature of 270 ° C.
The composition of the obtained phenol novolak resin was 10.1 area% for the dinuclear amount, 35.6 area% for the trinuclear amount, 29.6 area% for the tetranuclear amount, 13. The content of 4 area% and 6 or more nuclei was 11.3 area%, Mw was 448, and the dispersity (Mw / Mn) was 1.124. The dinuclear amount of the evaporation component was 97.9 area%, the trinuclear amount was 2.1 area%, Mw was 203, and the degree of dispersion (Mw / Mn) was 1.006. The obtained phenol novolac resin was not colored.

実施例4
(調整工程)ビスフェノールFとして実施例3で得られた蒸発成分を120部、フェノールを550部、シュウ酸2水和物を1.52部、37.5%ホルマリンを86部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が61.0面積%、3核体量が24.0面積%、4核体量が13.0面積%、5核体量が1.1面積%、6核体以上の含有量が0.9面積%であり、Mwは293であり、分散度(Mw/Mn)は1.121だった。
(蒸留工程)得られた粗フェノールノボラック樹脂を、実施例1で使用した遠心薄膜蒸発器に21kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が200rpmで、真空度が5〜6mmHgで、熱媒温度が280℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が11.5面積%、3核体量が54.4面積%、4核体量が29.6面積%、5核体量が2.5面積%、6核体以上の含有量が2.0面積%であり、Mwは361であり、分散度(Mw/Mn)は1.069だった。蒸発成分の2核体量は98.9面積%、3核体量は1.1面積%であり、Mwは202であり、分散度(Mw/Mn)は1.003だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Example 4
(Adjustment step) Except for changing the evaporation component obtained in Example 3 as bisphenol F to 120 parts, phenol to 550 parts, oxalic acid dihydrate to 1.52 parts, and 37.5% formalin to 86 parts. The same operation as in Example 1 was performed to obtain a crude phenol novolac resin. The composition of the obtained crude phenol novolak resin was such that the amount of dinuclear was 61.0 area%, the amount of trinuclear was 24.0 area%, the amount of tetranuclear was 13.0 area%, the amount of nucleated body was 1 0.1 area%, the content of 6 or more nuclei was 0.9 area%, Mw was 293, and dispersity (Mw / Mn) was 1.121.
(Distillation step) The obtained crude phenol novolak resin was continuously supplied to the centrifugal thin film evaporator used in Example 1 at 21 kg / hr for 1 hour, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor rotation speed of 200 rpm, a degree of vacuum of 5 to 6 mmHg, and a heat medium temperature of 280 ° C.
The composition of the obtained phenol novolac resin was 11.5 area% for the dinuclear amount, 54.4 area% for the trinuclear amount, 29.6 area% for the tetranuclear amount, 2. The content of 5 area% and 6 or more nuclei was 2.0 area%, Mw was 361, and the dispersity (Mw / Mn) was 1.069. The dinuclear content of the evaporation component was 98.9 area%, the trinuclear content was 1.1 area%, Mw was 202, and the dispersity (Mw / Mn) was 1.003. The obtained phenol novolac resin was not colored.

実施例5
(調整工程)ビスフェノールFとして実施例4で得られた蒸発成分を350部、フェノールを365部、シュウ酸2水和物を1.50部、37.5%ホルマリンを65部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が51.4面積%、3核体量が26.7面積%、4核体量が13.1面積%、5核体量が4.8面積%、6核体以上の含有量が4.0面積%であり、Mwは345であり、分散度(Mw/Mn)は1.184だった。
(蒸留工程)得られた粗フェノールノボラック樹脂を、実施例1で使用した遠心薄膜蒸発器に21kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が300rpmで、真空度が5〜6mmHgで、熱媒温度が280℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が11.8面積%、3核体量が46.4面積%、4核体量が22.8面積%、5核体量が10.3面積%、6核体以上の含有量が8.7面積%であり、Mwは421であり、分散度(Mw/Mn)は1.129だった。蒸発成分の2核体量は95.6面積%、3核体量は4.4面積%であり、Mwは207であり、分散度(Mw/Mn)は1.011だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Example 5
(Adjustment step) Except for changing the evaporation component obtained in Example 4 as bisphenol F to 350 parts, phenol to 365 parts, oxalic acid dihydrate to 1.50 parts, and 37.5% formalin to 65 parts. The same operation as in Example 1 was performed to obtain a crude phenol novolac resin. The composition of the obtained crude phenol novolak resin was such that the amount of dinuclear was 51.4 area%, the amount of trinuclear was 26.7 area%, the amount of tetranuclear was 13.1 area%, the amount of nucleated body was 4 0.8 area%, the content of 6 or more nuclei was 4.0 area%, Mw was 345, and dispersity (Mw / Mn) was 1.184.
(Distillation step) The obtained crude phenol novolak resin was continuously supplied to the centrifugal thin film evaporator used in Example 1 at 21 kg / hr for 1 hour, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor speed of 300 rpm, a degree of vacuum of 5-6 mmHg, and a heat medium temperature of 280 ° C.
The composition of the obtained phenol novolac resin was 11.8 area% in the dinuclear amount, 46.4 area% in the trinuclear amount, 22.8 area% in the 4-nuclear amount, and 10. The content of 3 area%, 6 or more nuclei was 8.7 area%, Mw was 421, and the dispersity (Mw / Mn) was 1.129. The dinuclear amount of the evaporated component was 95.6 area%, the trinuclear amount was 4.4 area%, Mw was 207, and the dispersity (Mw / Mn) was 1.011. The obtained phenol novolac resin was not colored.

実施例6
(調整工程)ビスフェノールFとして実施例5で得られた蒸発成分を60部、フェノールを600部、シュウ酸2水和物を1.65部、37.5%ホルマリンを115部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が51.4面積%、3核体量が24.7面積%、4核体量が13.1面積%、5核体量が5.8面積%、6核体以上の含有量が5.0面積%であり、Mwは359であり、分散度(Mw/Mn)は1.207だった。
(蒸留工程)実施例1で使用した遠心薄膜蒸発器を直列に2つを繋ぎ、1つ目の蒸発器の缶出物を2つ目の蒸発器の供給粗フェノールノボラック樹脂として連続運転を行った。その際、1つ目と2つ目の蒸発器から得られた蒸発成分を混合して蒸発成分とした。また、1つ目と2つ目とで同じ運転条件で行った。即ち、得られた粗フェノールノボラック樹脂を、21kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が200rpmで、真空度が5〜6mmHgで、熱媒温度が280℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が4.3面積%、3核体量が48.7面積%、4核体量が25.9面積%、5核体量が11.5面積%、6核体以上の含有量が9.6面積%であり、Mwは437であり、分散度(Mw/Mn)は1.115だった。蒸発成分の2核体量は96.9面積%、3核体量は3.1面積%であり、Mwは205であり、分散度(Mw/Mn)は1.008だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Example 6
(Adjustment process) Except having changed 60 parts of the evaporation component obtained in Example 5 as bisphenol F, 600 parts of phenol, 1.65 parts of oxalic acid dihydrate, and 37.5% formalin to 115 parts. The same operation as in Example 1 was performed to obtain a crude phenol novolac resin. The composition of the obtained crude phenol novolak resin was such that the amount of dinuclear was 51.4 area%, the amount of trinuclear was 24.7 area%, the amount of tetranuclear was 13.1 area%, the amount of nucleated body was 5 0.8 area%, the content of 6 or more nuclei was 5.0 area%, Mw was 359, and dispersity (Mw / Mn) was 1.207.
(Distillation process) Two centrifugal thin film evaporators used in Example 1 were connected in series, and the continuous product was used as the crude phenol novolac resin supplied to the second evaporator using the product from the first evaporator. It was. At that time, the evaporation components obtained from the first and second evaporators were mixed to obtain an evaporation component. Moreover, it carried out on the same operating conditions by the 1st and 2nd. That is, the obtained crude phenol novolak resin was continuously supplied at 21 kg / hr for 1 hour, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor rotation speed of 200 rpm, a degree of vacuum of 5 to 6 mmHg, and a heat medium temperature of 280 ° C.
The composition of the obtained phenol novolac resin was such that the dinuclear amount was 4.3 area%, the trinuclear amount was 48.7 area%, the tetranuclear amount was 25.9 area%, and the 5-nuclear amount was 11.1. The content of 5 area%, 6 or more nuclei was 9.6 area%, Mw was 437, and the dispersity (Mw / Mn) was 1.115. The dinuclear amount of the evaporation component was 96.9 area%, the trinuclear amount was 3.1 area%, Mw was 205, and the dispersity (Mw / Mn) was 1.008. The obtained phenol novolac resin was not colored.

比較例1
(調整工程)ビスフェノールFは使用せず、フェノールを772部、シュウ酸2水和物を2.20部、37.5%ホルマリンを246部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が36.4面積%、3核体量が22.7面積%、4核体量が14.9面積%、5核体量が11.4面積%、6核体以上の含有量が14.6面積%であり、Mwは461であり、分散度(Mw/Mn)は1.254だった。
(蒸留工程)この粗フェノールノボラック樹脂を、実施例1で使用した遠心薄膜蒸発器に21kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が250rpmで、真空度が3〜5mmHgで、熱媒温度が260℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が10.6面積%、3核体量が33.3面積%、4核体量が20.8面積%、5核体量が13.8面積%、6核体以上の量が21.5面積%であり、Mwは515であり、分散度(Mw/Mn)は1.179だった。蒸発成分の2核体量は97.4面積%、3核体量は2.6面積%であり、Mwは204であり、分散度(Mw/Mn)は1.007だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Comparative Example 1
(Adjustment step) Except for using bisphenol F, the same operation as in Example 1 was conducted except that phenol was changed to 772 parts, oxalic acid dihydrate was changed to 2.20 parts, and 37.5% formalin was changed to 246 parts. To obtain a crude phenol novolac resin. The composition of the resulting crude phenol novolac resin was such that the dinuclear amount was 36.4 area%, the trinuclear amount was 22.7 area%, the tetranuclear amount was 14.9 area%, and the nuclei amount was 11 .4 area%, the content of 6 or more nuclei was 14.6 area%, Mw was 461, and the dispersity (Mw / Mn) was 1.254.
(Distillation step) This crude phenol novolak resin was continuously supplied to the centrifugal thin film evaporator used in Example 1 at 21 kg / hr for 1 hour, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor rotational speed of 250 rpm, a degree of vacuum of 3 to 5 mmHg, and a heating medium temperature of 260 ° C.
The composition of the obtained phenol novolak resin was 10.6 area% dinuclear mass, 33.3 area% trinuclear amount, 20.8 area% tetranuclear amount and 13. The amount of 8 area%, 6 nuclei or more was 21.5 area%, Mw was 515, and the dispersity (Mw / Mn) was 1.179. The dinuclear amount of the evaporation component was 97.4 area%, the trinuclear amount was 2.6 area%, Mw was 204, and the dispersity (Mw / Mn) was 1.007. The obtained phenol novolac resin was not colored.

比較例2
(調整工程)ビスフェノールFは使用せず、フェノールを1150部、シュウ酸2水和物を3.50部、37.5%ホルマリンを122部に変えた以外は実施例1と全く同様の操作を行って、粗フェノールノボラック樹脂を得た。得られた粗フェノールノボラック樹脂の組成は、2核体量が71.3面積%、3核体量が20.5面積%、4核体量が6.4面積%、5核体量が1.0面積%、6核体以上の含有量が0.8面積%であり、Mwは269であり、分散度(Mw/Mn)は1.108だった。
(蒸留工程)この粗フェノールノボラック樹脂を、実施例1で使用した遠心薄膜蒸発器に21kg/hrで連続的に1時間供給し、蒸発成分及びフェノールノボラック樹脂を連続的に抜き出した。運転条件は、ロータ回転数が250rpmで、真空度が3〜5mmHgで、熱媒温度が260℃だった。
得られたフェノールノボラック樹脂の組成は、2核体量が14.2面積%、3核体量が42.1面積%、4核体量が26.3面積%、5核体量が9.5面積%、6核体以上の含有量が7.9面積%であり、Mwは415であり、分散度(Mw/Mn)は1.124だった。蒸発成分の2核体量は97.9面積%、3核体量は2.1面積%であり、Mwは203であり、分散度(Mw/Mn)は1.006だった。得られたフェノールノボラック樹脂には着色が認められなかった。
Comparative Example 2
(Adjustment step) Except for using bisphenol F, the same operation as in Example 1 was conducted except that phenol was changed to 1150 parts, oxalic acid dihydrate was changed to 3.50 parts, and 37.5% formalin was changed to 122 parts. To obtain a crude phenol novolac resin. The composition of the resulting crude phenol novolac resin was such that the dinuclear amount was 71.3 area%, the trinuclear amount was 20.5 area%, the tetranuclear amount was 6.4 area%, and the 5-nuclear amount was 1. 0.0 area%, the content of 6 or more nuclei was 0.8 area%, Mw was 269, and dispersity (Mw / Mn) was 1.108.
(Distillation step) This crude phenol novolak resin was continuously supplied to the centrifugal thin film evaporator used in Example 1 at 21 kg / hr for 1 hour, and the evaporation component and the phenol novolak resin were continuously extracted. The operating conditions were a rotor rotational speed of 250 rpm, a degree of vacuum of 3 to 5 mmHg, and a heating medium temperature of 260 ° C.
The composition of the obtained phenol novolac resin was such that the amount of dinuclear was 14.2 area%, the amount of trinuclear was 42.1 area%, the amount of tetranuclear was 26.3 area%, and the amount of 5-nuclear was 9. The content of 5 area% and 6 or more nuclei was 7.9 area%, Mw was 415, and dispersity (Mw / Mn) was 1.124. The dinuclear amount of the evaporation component was 97.9 area%, the trinuclear amount was 2.1 area%, Mw was 203, and the degree of dispersion (Mw / Mn) was 1.006. The obtained phenol novolac resin was not colored.

比較例3
比較例2で得られた粗フェノールノボラック樹脂を、ロータ回転数が250rpmで、真空度が8〜10mmHgで、熱媒温度が300℃の運転条件で安定している実施例1で使用した遠心薄膜蒸発器に、10kg/hrで連続的に供給したが、供給樹脂の分解によるフェノールの生成のため蒸発器内の圧力が維持できず、安定した運転ができなかった。その後、供給を中断し、再度運転条件をロータ回転数が250rpmで、真空度が8〜10mmHgで、熱媒温度が300℃で安定運転させてから、21kg/hrで連続的に供給したが、同様に遠心薄膜蒸発器内で供給樹脂の分解によるフェノールの生成のため蒸発器内の圧力が維持できず、安定した運転ができなかった。また、缶出物は黄色着色が認められた。
Comparative Example 3
Centrifugal thin film used in Example 1 in which the crude phenol novolak resin obtained in Comparative Example 2 was stable under the operating conditions of a rotor rotational speed of 250 rpm, a degree of vacuum of 8 to 10 mmHg, and a heating medium temperature of 300 ° C. Although 10 kg / hr was continuously supplied to the evaporator, the pressure in the evaporator could not be maintained due to the production of phenol by decomposition of the supplied resin, and stable operation could not be performed. Thereafter, the supply was interrupted, and the operating conditions were again continuously supplied at 21 kg / hr after stable operation at a rotor speed of 250 rpm, a degree of vacuum of 8 to 10 mmHg, and a heating medium temperature of 300 ° C. Similarly, the pressure in the evaporator could not be maintained due to the production of phenol by decomposition of the supplied resin in the centrifugal thin film evaporator, and stable operation could not be performed. Moreover, yellow coloration was recognized by the bottom product.

実施例1〜6、及び比較例1〜2で得られたフェノールノボラック樹脂の各核体量、分子量(Mw)、分散度(Mw/Mn)及び、溶融粘度を表1に示す。   Table 1 shows the amount of each core, the molecular weight (Mw), the degree of dispersion (Mw / Mn), and the melt viscosity of the phenol novolac resins obtained in Examples 1 to 6 and Comparative Examples 1 and 2.

Figure 0006422666
Figure 0006422666

蒸発成分を再利用する実施例と異なり、比較例では蒸発成分の再利用にはさらに別の工程が追加される。例えば、蒸留ビスフェノールFとして使用する場合、一般的な蒸留ビスフェノールFは2核体量が99面積%以上であり、比較例の蒸発成分の2核体量は97.4面積%、97.9面積%を低いため、そのままでは蒸留ビスフェノールFとして使用できない。そのため、蒸発成分を再度蒸留する必要があり、環境負荷が多く、コスト的にも不利になる。また、蒸留成分をそのまま廃棄する場合は、フェノールノボラック樹脂としての収率の悪化を招き、さらに環境負荷が甚大となり、コスト的にも不利になる。それと比べ、実施例では、蒸発成分を再利用するため、フェノールノボラック樹脂としての収率は高く、廃棄等の環境負荷が少ない。 Unlike the embodiment in which the evaporation component is reused, in the comparative example, another process is added to the reuse of the evaporation component. For example, when used as distilled bisphenol F, the dinuclear amount of general distilled bisphenol F is 99 area% or more, and the dinuclear amount of the evaporation component of the comparative example is 97.4 area%, 97.9 area. % Cannot be used as distilled bisphenol F as it is. Therefore, it is necessary to distill the evaporated component again, which has a large environmental load and is disadvantageous in terms of cost. Further, when the distilled components are discarded as they are, the yield as a phenol novolac resin is deteriorated, and the environmental load is increased, which is disadvantageous in terms of cost. In contrast, in the examples, since the evaporation component is reused, the yield as a phenol novolac resin is high and the environmental load such as disposal is small.

エポキシ樹脂成分として、オルソクレゾールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製、エポトートYDCN−700−7、エポキシ当量202g/eq、軟化点72℃)を用い、硬化剤として、実施例1〜6で合成した狭分散フェノールノボラック樹脂、及び比較例1〜2で合成したフェノールノボラック樹脂を用い、硬化促進剤として、トリフェニルホスフィンを用いた。更に、充填剤として球状シリカ(平均粒径:18μm)を用い、着色剤としてカーボンブラックを用い、離型剤としてカルナバワックスを用いた。エポキシ樹脂成分100部に対し、硬化剤52部、硬化促進剤1.2部、充填剤808部、着色剤5.1部、離型剤3部を混練して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物についてゲルタイム及びスパイラルフローを測定した。さらに、得られたエポキシ樹脂組成物を175℃にて圧縮成形した後、175℃にて12時間ポストキュアを行い、硬化物試験片を得た。得られた硬化物試験片を用いて、各種物性を測定した。それらの結果を表2に示す。 As an epoxy resin component, an ortho cresol novolak type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Epototo YDCN-700-7, epoxy equivalent 202 g / eq, softening point 72 ° C.) was used as a curing agent in Examples 1 to 6. Triphenylphosphine was used as a curing accelerator using the synthesized narrowly dispersed phenol novolac resin and the phenol novolak resin synthesized in Comparative Examples 1 and 2. Further, spherical silica (average particle size: 18 μm) was used as a filler, carbon black was used as a colorant, and carnauba wax was used as a release agent. An epoxy resin composition was obtained by kneading 52 parts of a curing agent, 1.2 parts of a curing accelerator, 808 parts of a filler, 5.1 parts of a colorant, and 3 parts of a release agent with respect to 100 parts of the epoxy resin component. . The gel time and spiral flow of the obtained epoxy resin composition were measured. Furthermore, after compression-molding the obtained epoxy resin composition at 175 degreeC, postcure was performed at 175 degreeC for 12 hours, and the hardened | cured material test piece was obtained. Various physical properties were measured using the obtained cured product test pieces. The results are shown in Table 2.

Figure 0006422666
Figure 0006422666

Claims (7)

(a)ゲルパーミエイションクロマトグラフィー測定による2核体含有量が85面積%以上であるビスフェノールFに、フェノールとホルムアルデヒドを加え、酸触媒の存在下で反応させ、得られた反応生成物から酸触媒、水及び未反応のフェノールを除去して、粗フェノールノボラック樹脂を得る調整工程と、
(b)粗フェノールノボラック樹脂から、蒸留操作により2核体を主成分とする蒸発成分を取り除き、ゲルパーミエイションクロマトグラフィー測定による2核体含有量が20面積%以下であり、6核体以上の高分子量体の含有量が12面積%以下である狭分散フェノールノボラック樹脂を得る蒸留工程と
を含むことを特徴とする狭分散フェノールノボラック樹脂の製造方法。
(A) Addition of phenol and formaldehyde to bisphenol F having a binuclear content of 85 area% or more as measured by gel permeation chromatography, and the reaction is carried out in the presence of an acid catalyst. An adjustment step of removing the catalyst, water and unreacted phenol to obtain a crude phenol novolac resin;
(B) From the crude phenol novolac resin, an evaporation component mainly composed of a binuclear body is removed by a distillation operation, and the content of the binuclear body by gel permeation chromatography measurement is 20 area% or less, and the hexanuclear body or more. And a distillation step for obtaining a narrow-dispersed phenol novolak resin having a high molecular weight content of 12% by area or less.
ビスフェノールFが、蒸留工程から得られた蒸発成分である請求項1に記載の狭分散フェノールノボラック樹脂の製造方法。   The method for producing a narrowly dispersed phenol novolak resin according to claim 1, wherein bisphenol F is an evaporation component obtained from the distillation step. 粗フェノールノボラック樹脂が、ゲルパーミエイションクロマトグラフィー測定による2核体含有量が30〜70面積%であり、6核体以上の高分子量体の含有量が20面積%以下であり、質量平均分子量が250〜800であり、分散度(質量平均分子量/数平均分子量)が1.01〜1.4である請求項1または請求項2に記載の狭分散フェノールノボラック樹脂の製造方法。 The crude phenol novolac resin has a binuclear content of 30 to 70 area% as measured by gel permeation chromatography, a high molecular weight content of 6 or more nucleates is 20 area% or less, and a mass average molecular weight. The manufacturing method of the narrow dispersion phenol novolak resin of Claim 1 or Claim 2 whose dispersion degree (mass average molecular weight / number average molecular weight) is 1.01-1.4. 調整工程において、蒸発成分100質量部に対し、フェノールを100〜3000質量部の範囲で加え、フェノールとホルムアルデヒドとのモル比(P/F)を3.0〜6.0の範囲でホルムアルデヒドと反応させる調整工程である請求項1〜請求項3のいずれかに記載の狭分散フェノールノボラック樹脂の製造方法。   In the adjustment step, phenol is added in the range of 100 to 3000 parts by mass with respect to 100 parts by mass of the evaporation component, and the molar ratio (P / F) of phenol to formaldehyde is reacted with formaldehyde in the range of 3.0 to 6.0. The method for producing a narrowly dispersed phenol novolac resin according to any one of claims 1 to 3, which is an adjusting step. 蒸留工程において、圧力1〜10mmHg、熱媒温度250〜320℃に保たれた蒸発器に、粗フェノールノボラック樹脂を蒸発器の伝熱面積1mあたり30〜200kg/hrの供給量となるように連続的に供給し、蒸発成分と缶出物を蒸発器から連続的に取り出しながら狭分散フェノールノボラック樹脂を得る蒸留工程である請求項1〜請求項4のいずれかに記載の狭分散フェノールノボラック樹脂の製造方法。 In the distillation step, the crude phenol novolac resin is supplied to an evaporator maintained at a pressure of 1 to 10 mmHg and a heating medium temperature of 250 to 320 ° C. so that the amount of heat supply is 30 to 200 kg / hr per 1 m 2 of the evaporator. The narrow-dispersed phenol novolak resin according to any one of claims 1 to 4, which is a distillation step of continuously feeding and obtaining a narrow-dispersed phenol novolak resin while continuously taking out the evaporated components and bottoms from the evaporator. Manufacturing method. 蒸発成分が、ゲルパーミエイションクロマトグラフィー測定による2核体含有量が85面積%以上である請求項1〜請求項5のいずれかに記載の狭分散フェノールノボラック樹脂の製造方法。 The method for producing a narrow-dispersed phenol novolak resin according to any one of claims 1 to 5, wherein the evaporation component has a binuclear content of 85 area% or more as measured by gel permeation chromatography. 蒸発器が外部コンデンサを有する縦型回転式薄膜蒸発器である請求項1〜請求項6のいずれかに記載の狭分散フェノールノボラック樹脂の製造方法。 The method for producing a narrow dispersion phenol novolac resin according to any one of claims 1 to 6, wherein the evaporator is a vertical rotary thin film evaporator having an external capacitor.
JP2014091645A 2014-04-25 2014-04-25 Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method Active JP6422666B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014091645A JP6422666B2 (en) 2014-04-25 2014-04-25 Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method
KR1020140186194A KR101644946B1 (en) 2014-04-25 2014-12-22 Narrowly dispersed phenolic novolak resin production method, and a narrow dispersion phenol novolak resin obtained by the method of manufacturing the same
CN201510192581.8A CN105001385B (en) 2014-04-25 2015-04-22 Narrowly-dispersed phenol-phenolic varnish resin preparation method and narrowly-dispersed phenol-phenolic varnish resin obtained by means of the preparation method
TW104113177A TWI537294B (en) 2014-04-25 2015-04-24 A narrowly dispersed phenol novolak resin and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091645A JP6422666B2 (en) 2014-04-25 2014-04-25 Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method

Publications (2)

Publication Number Publication Date
JP2015209489A JP2015209489A (en) 2015-11-24
JP6422666B2 true JP6422666B2 (en) 2018-11-14

Family

ID=54374271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091645A Active JP6422666B2 (en) 2014-04-25 2014-04-25 Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method

Country Status (4)

Country Link
JP (1) JP6422666B2 (en)
KR (1) KR101644946B1 (en)
CN (1) CN105001385B (en)
TW (1) TWI537294B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564289B1 (en) * 2016-12-27 2022-08-03 NIPPON STEEL Chemical & Material Co., Ltd. Curable epoxy resin composition, and fiber-reinforced composite material using same
CN107290446B (en) * 2017-05-27 2019-10-01 山东圣泉新材料股份有限公司 A kind of molecular weight or molecular weight distribution detection method of alkaline polymer
KR20210047861A (en) * 2018-08-27 2021-04-30 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Phosphorus-containing epoxy resin, epoxy resin composition, prepreg, laminate, circuit board material and cured product

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536600B2 (en) 1988-08-29 1996-09-18 日本合成ゴム株式会社 Method for removing low-nuclear body in novolak resin
JPH0471947A (en) 1990-07-11 1992-03-06 Tokai Rika Co Ltd Starting device
JPH06128183A (en) 1992-02-27 1994-05-10 Mitsui Toatsu Chem Inc Method for simultaneous production of bisphenol f and novolak type phenolic resin
CN1075723A (en) * 1992-02-27 1993-09-01 三井东压化学株式会社 The method for preparing Bisphenol F and novolak phenol resins simultaneously
JPH07119268A (en) 1993-10-28 1995-05-09 Natl House Ind Co Ltd Staircase
JPH083257A (en) * 1994-06-15 1996-01-09 Gun Ei Chem Ind Co Ltd Novolak phenolic resin and its preparation
CN100480293C (en) * 2002-08-30 2009-04-22 旭有机材工业株式会社 Process for producing phenolic novolak
WO2007032047A1 (en) * 2005-09-12 2007-03-22 Sumitomo Bakelite Co., Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
KR20080081707A (en) 2007-03-06 2008-09-10 한국델파이주식회사 Anchor of parking brake for vehicle
JP5326966B2 (en) * 2009-09-25 2013-10-30 Dic株式会社 Co-production method of bisphenol F and novolac type phenol resin
JP2011074220A (en) * 2009-09-30 2011-04-14 Dic Corp Epoxy resin composition, prepreg and cured product
KR20130047280A (en) * 2011-10-31 2013-05-08 국도화학 주식회사 Manufacturing method of new nvolac resin
KR101335717B1 (en) * 2011-11-29 2013-12-24 국도화학 주식회사 Novolac resin

Also Published As

Publication number Publication date
KR20150123688A (en) 2015-11-04
CN105001385A (en) 2015-10-28
TW201542614A (en) 2015-11-16
KR101644946B1 (en) 2016-08-02
CN105001385B (en) 2017-05-24
TWI537294B (en) 2016-06-11
JP2015209489A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP6422666B2 (en) Narrow-dispersion phenol novolac resin production method and narrow-dispersion phenol novolac resin obtained from the production method
JP5874692B2 (en) Collection method of inorganic filler
JP6825925B2 (en) Resin coated sand and its manufacturing method
JP5326966B2 (en) Co-production method of bisphenol F and novolac type phenol resin
JPH06128183A (en) Method for simultaneous production of bisphenol f and novolak type phenolic resin
JP5476762B2 (en) Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
JPH06100665A (en) Epoxy resin composition
JP2010180400A (en) Novolac resin and thermosetting resin composition
US5395915A (en) Method for simultaneous preparation of bisphenol F and novolak phenol resins
JPH0436175B2 (en)
JPH0618861B2 (en) Thermosetting resin composition
JPS6198717A (en) Production of high molecular weight novolak type substituted phenolic resin
JP3422808B2 (en) Epoxy resin curing agent and method for producing the same
CN111978497B (en) Preparation method, product and application of semi-solid thermosetting phenolic resin
JP2001089636A (en) Epoxy resin composition and semiconductor device
JP5822596B2 (en) Lignin resin molding material
JP2005075938A (en) Manufacturing process of high ortho novolac type phenolic resin
KR970007339B1 (en) Method for simultaneous preparation of bisphenol f and novolak phenol resins
CN111607050A (en) Phenolic resin for high-performance photoresist and preparation method and application thereof
JPS5924715A (en) Normally solid phenolic resin
JPH07216052A (en) Epoxy resin and epoxy resin composition
WO2015146670A1 (en) Epoxy resin composition, method for producing epoxy resin cured product and semiconductor device
JPH04189812A (en) Method for preparing novolak type aromatic hydrocarbon-formaldehyde resin, epoxy resin curing agent and epoxy resin composition
JP2000204131A (en) Phenol polymer composition
JPH07216041A (en) Naphtholaldehyde condensate and epoxy resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6422666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250