JP6418934B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP6418934B2
JP6418934B2 JP2014256664A JP2014256664A JP6418934B2 JP 6418934 B2 JP6418934 B2 JP 6418934B2 JP 2014256664 A JP2014256664 A JP 2014256664A JP 2014256664 A JP2014256664 A JP 2014256664A JP 6418934 B2 JP6418934 B2 JP 6418934B2
Authority
JP
Japan
Prior art keywords
solar cell
sealing material
light
peroxide
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014256664A
Other languages
Japanese (ja)
Other versions
JP2016119339A (en
Inventor
公子 井村
公子 井村
孝明 川井
孝明 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solar Frontier KK
Original Assignee
Solar Frontier KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Frontier KK filed Critical Solar Frontier KK
Priority to JP2014256664A priority Critical patent/JP6418934B2/en
Publication of JP2016119339A publication Critical patent/JP2016119339A/en
Application granted granted Critical
Publication of JP6418934B2 publication Critical patent/JP6418934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池モジュールに関し、特に、太陽電池素子が封止材によって封止され裏面保護材を有する太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more particularly to a solar cell module in which a solar cell element is sealed with a sealing material and has a back surface protective material.

地球環境問題、エネルギー問題などが深刻さを増す中、クリーンかつ枯渇のおそれが無い電気エネルギーの生成手段として、太陽光を電気エネルギーに直接変換できる太陽電池が注目されている。一般的に、太陽電池は、建物の屋根部分などの屋外で使用する用途などにおいて、太陽電池モジュールの形で使用される。   As global environmental problems and energy problems become more serious, solar cells capable of directly converting sunlight into electrical energy have attracted attention as means for generating clean and free of electric energy. Generally, a solar cell is used in the form of a solar cell module in an application used outdoors such as a roof portion of a building.

太陽電池モジュールは、一般的に、シリコンや化合物半導体などの太陽電池素子を封止材により封止し、さらに封止材の受光面側と裏面側とをそれぞれ透明な受光面保護材と裏面保護材とで保護してパッケージ化した構造を有すものである。   In solar cell modules, solar cell elements such as silicon and compound semiconductors are generally sealed with a sealing material, and the light receiving surface side and the back surface side of the sealing material are respectively transparent light receiving surface protective material and back surface protection. It has a structure that is protected and packaged with materials.

構成部分として有機材料を含むことから、太陽電池用封止材料としては、長期間にわたる透明性や、封止材の受光面保護材および裏面保護材との接着性が良好であることなどが要求されているが、高い発電効率を得るための長期間にわたる透明性は充分とはいえなかった。   Since organic materials are included as constituent parts, solar cell sealing materials require long-term transparency and good adhesion to the light-receiving surface protective material and back surface protective material of the sealing material. However, transparency over a long period of time to obtain high power generation efficiency was not sufficient.

特許文献1は、太陽電池素子の受光面側が有機高分子樹脂とその外側の透光性部材とで封止されている太陽電池モジュールにおいて、有機高分子樹脂にヒンダードアミン系光安定化剤と有機過酸化物からなる架橋剤とを含有し、有機高分子樹脂に0.01重量%以下の有機化合物からなる紫外線吸収剤を含むこと、さらに受光面側よりも裏面保護部材側の有機高分子中での紫外線吸収剤の濃度を高くすること(引用文献1、請求項1、4など)などを記載する。   Patent Document 1 discloses a solar cell module in which a light-receiving surface side of a solar cell element is sealed with an organic polymer resin and a translucent member on the outside thereof, and a hindered amine light stabilizer and an organic peroxide are added to the organic polymer resin. A cross-linking agent made of an oxide, an organic polymer resin containing an ultraviolet absorber made of 0.01% by weight or less of an organic compound, and further in the organic polymer on the back surface protection member side rather than the light receiving surface side It is described that the concentration of the ultraviolet absorber is increased (cited document 1, claims 1, 4, etc.).

特開2006−066682号公報JP 2006-066682 A

しかし、従来の太陽電池モジュールでは、有機高分子である封止材中の紫外線吸収剤の濃度を抑制することによって紫外線吸収剤自体の黄変による光透過率の低下を抑制できても、紫外線吸収剤の濃度が一様に低いと、さらに同じく裏面側にあってより劣化しやすい特に耐水性上重要な裏面保護材の、太陽電池素子の周辺端部および太陽電池間の隙間を通して侵入する紫外光による経時劣化を一時的にしか防ぐことができなかった。   However, in the conventional solar cell module, even if the decrease in light transmittance due to yellowing of the ultraviolet absorbent itself can be suppressed by suppressing the concentration of the ultraviolet absorbent in the sealing material which is an organic polymer, the ultraviolet absorption If the concentration of the agent is uniformly low, UV light that penetrates through the gap between the peripheral edge of the solar cell element and the gap between the solar cells of the back surface protection material, which is also on the back side and is more likely to deteriorate, especially in terms of water resistance. It was possible to prevent temporal deterioration due to the water only temporarily.

また上記特許文献1が記載するように、裏面側封止材中の紫外線吸収剤の濃度を高めると、今度は時間が経つにつれて、紫外線吸収剤自体が黄変して紫外線吸収能が低下しまっていた。そしてそれによって紫外線吸収剤の濃度が低い場合と同様に紫外線を吸収できず、裏面保護材を劣化させてしまうという問題があった。   In addition, as described in Patent Document 1, when the concentration of the ultraviolet absorber in the back surface side sealing material is increased, the ultraviolet absorber itself is yellowed over time and the ultraviolet absorbing ability is reduced. It was. As a result, there is a problem in that the ultraviolet ray cannot be absorbed as in the case where the concentration of the ultraviolet absorber is low, and the back surface protective material is deteriorated.

本発明者らは、鋭意努力した結果、従来、封止材、紫外線吸収剤などの安定性を失わせると考えられてきた酸素を逆に敢えて用いて、太陽電池モジュールの封止材中に紫外線防止剤と所定の無機酸素発生剤とを共に含有させることによって、驚くべきことに、上記課題を解決することができることを見いだし、本発明に至ったものである。   As a result of diligent efforts, the inventors of the present invention dare to use oxygen, which has been considered to lose the stability of sealing materials, ultraviolet absorbers and the like, in the solar cell module sealing material. Surprisingly, the inventors have found that the above-mentioned problems can be solved by including both the inhibitor and the predetermined inorganic oxygen generator, and the present invention has been achieved.

本発明の態様は、以下のようである。
(1)太陽電池素子と封止材と受光面保護材と裏面保護材とを含む太陽電池モジュールであって、
受光面保護材が、太陽電池素子の受光面に、太陽電池の受光面側の封止材によって接合されているか、または封止材を介さずに接合されており、
裏面保護材が、太陽電池素子の裏面に、太陽電池の裏面側の封止材によって接合されており、
裏面側の封止材が、紫外線吸収剤と無機酸素発生剤とを含み、
裏面保護材が、有機ポリマーシートであり、
無機酸素発生剤が、アルカリ金属の過酸化物、アルカリ土類金属の過酸化物、またはそれらの組み合わせから選択される、太陽電池モジュール、
(2)該受光面保護材が、太陽電池素子の受光面に、太陽電池の受光面側の封止材によって接合されており、
該受光面側の封止材が、0.02重量%以下の紫外線吸収剤を含む、(1)に記載の太陽電池モジュール。
(3)該太陽電池素子が、基板と基板の受光面側上に形成された薄膜太陽電池素子を有する、サブストレート型である、(1)または(2)に記載の太陽電池モジュール。
(4)該無機酸素発生剤が、過酸化カリウムである、(1)〜(3)のいずれか一項に記載の太陽電池モジュール。
Aspects of the present invention are as follows.
(1) A solar cell module including a solar cell element, a sealing material, a light-receiving surface protection material, and a back surface protection material,
The light-receiving surface protective material is bonded to the light-receiving surface of the solar cell element by the sealing material on the light-receiving surface side of the solar cell, or is bonded without using the sealing material,
The back surface protective material is joined to the back surface of the solar cell element by a sealing material on the back surface side of the solar cell,
The sealing material on the back side includes an ultraviolet absorber and an inorganic oxygen generator,
The back surface protective material is an organic polymer sheet,
A solar cell module, wherein the inorganic oxygen generator is selected from alkali metal peroxides, alkaline earth metal peroxides, or combinations thereof;
(2) The light-receiving surface protective material is joined to the light-receiving surface of the solar cell element by a sealing material on the light-receiving surface side of the solar cell,
The solar cell module according to (1), wherein the sealing material on the light receiving surface side contains 0.02% by weight or less of an ultraviolet absorber.
(3) The solar cell module according to (1) or (2), wherein the solar cell element is a substrate type having a substrate and a thin film solar cell element formed on a light receiving surface side of the substrate.
(4) The solar cell module according to any one of (1) to (3), wherein the inorganic oxygen generator is potassium peroxide.

本発明の態様に係る太陽電池モジュールは、封止材、紫外線吸収剤のみならず、裏面保護材の劣化を抑制できるだけでなく、さらに驚いたことに、所定の無機酸素発生剤が酸素を徐放することから、封止材、紫外線吸収剤、裏面保護材の劣化を長期間にわたって防止できるという非常に優れた効果を奏するものである。   The solar cell module according to the embodiment of the present invention can not only suppress the deterioration of the back surface protective material, but also the sealing material and the ultraviolet absorber, and more surprisingly, a predetermined inorganic oxygen generator gradually releases oxygen. As a result, the sealing material, the ultraviolet absorber, and the back surface protective material can be prevented from deteriorating over a long period of time.

図1は、本発明の態様に係る太陽電池モジュールの模式断面図を示す。FIG. 1 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention. 図2は、本発明の態様に係る太陽電池モジュールの模式断面図を示す。FIG. 2 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.

図1に示すように、本発明の態様に係る太陽電池モジュール1は、太陽電池素子8と、受光面保護材3と、裏面保護材7とを、封止材4によって接合した一般的な構造を有し、また必要に応じて、受光面保護材3と裏面保護材7と封止材4との端部に保護部材としてフレーム2を取り付けた、公知の太陽電池モジュールを、特に制限なく用いることができる。
また、本発明の態様に係る太陽電池モジュール1では、太陽電池素子8と、受光面保護材3との間に封止材4を介さず、太陽電池素子8と受光面保護材3とが直接接合されていてもよい。
ここで、接合とは、製膜、貼着、接着などを含む化学的結合および/または物理的結合によりつなぎ合わせることをいう。
As shown in FIG. 1, a solar cell module 1 according to an aspect of the present invention has a general structure in which a solar cell element 8, a light-receiving surface protection material 3, and a back surface protection material 7 are joined by a sealing material 4. And a known solar cell module having a frame 2 attached as a protective member to the end portions of the light-receiving surface protective material 3, the back surface protective material 7, and the sealing material 4 without particular limitation. be able to.
Moreover, in the solar cell module 1 which concerns on the aspect of this invention, the solar cell element 8 and the light-receiving surface protection material 3 are directly between the solar cell element 8 and the light-receiving surface protection material 3 without the sealing material 4 interposed. It may be joined.
Here, joining means joining by chemical bonding and / or physical bonding including film formation, sticking, adhesion, and the like.

この太陽電池モジュールには、特に制限なく、各構成部材に下記の知られた材料を用いることができる。   In this solar cell module, the following known materials can be used for each constituent member without any particular limitation.

すなわち、太陽電池素子としては、単結晶や多結晶の複数のシリコンウェハーを直並列した結晶系太陽電池、受光面保護材の封止材側上に太陽電池素子が製膜されたスーパーストレート型薄膜太陽電池、および図2に示されるような、ガラス・樹脂・金属などの基板6上に、薄膜太陽電池素子5が積層した薄膜太陽電池など一般に用いられているものを特に制限なく使用できる。   That is, as a solar cell element, a crystalline solar cell in which a plurality of single-crystal or polycrystalline silicon wafers are serially arranged in parallel, a super straight type thin film in which a solar cell element is formed on a sealing material side of a light-receiving surface protective material A solar cell and a generally used thin film solar cell in which a thin film solar cell element 5 is laminated on a substrate 6 made of glass, resin, metal, or the like as shown in FIG. 2 can be used without particular limitation.

なお本明細書中では、受光面保護材の封止材側上に太陽電池素子が製膜されたスーパーストレート型薄膜太陽電池を除く、結晶系太陽電池、薄膜太陽電池において、太陽電池素子より受光面側にある封止材を受光面側封止材といい、太陽電池素子より裏面側にある封止材を裏面側封止材という。   In this specification, crystal solar cells and thin film solar cells, except for super straight type thin film solar cells in which a solar cell element is formed on the sealing material side of the light receiving surface protective material, receive light from the solar cell element. The sealing material on the surface side is referred to as the light receiving surface side sealing material, and the sealing material on the back surface side from the solar cell element is referred to as the back surface side sealing material.

封止材としては、ポリビニルブチラール(PVB)、ポリエチレン(PE)、ポリプロピレン(PP)などのオレフィン系樹脂、エチレンビニルアセテート(EVA)など一般に用いられているものを特に制限なく使用できる。その中でも接合性などの点からEVA、PVBが好ましい。   As the sealing material, those generally used such as olefin resins such as polyvinyl butyral (PVB), polyethylene (PE), and polypropylene (PP), and ethylene vinyl acetate (EVA) can be used without particular limitation. Among these, EVA and PVB are preferable from the viewpoint of bondability.

受光面保護材としては、強化ガラス等のガラス板、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル、ポリカーボネート(PC)、アクリル(PMMA)、エチレンテトラフルオロエチレン(ETFE)等の透明樹脂板など一般に用いられているものを特に制限なく使用できる。   As the light receiving surface protective material, glass plates such as tempered glass, polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), polycarbonate (PC), acrylic (PMMA), ethylene tetrafluoroethylene (ETFE) and other transparent materials Commonly used materials such as a resin plate can be used without particular limitation.

裏面保護材としては、PET,PBT、PC、PMMA等の有機ポリマーシートもしくは樹脂板または有機ポリマーシートの1種としてアルミ箔をPET樹脂で挟んだバックシートなど一般に用いられているものを特に制限なく使用できる。   As the back surface protective material, there are no particular limitations on organic polymer sheets or resin plates such as PET, PBT, PC, PMMA, etc., and commonly used materials such as a back sheet in which an aluminum foil is sandwiched between PET resins as one kind of organic polymer sheet. Can be used.

太陽電池モジュールの周囲と端部保護部材とを接着する接着剤としては、ブチル系接着剤、シリコーン系接着剤など一般に用いられているものを特に制限なく使用でき、端部保護部材としては、金属、樹脂などのフレーム、アルミテープなど一般に用いられているものを特に制限なく使用できる。   As the adhesive for adhering the periphery of the solar cell module and the end protection member, commonly used ones such as a butyl adhesive and a silicone adhesive can be used without particular limitation. As the end protection member, a metal A generally used material such as a resin frame or an aluminum tape can be used without particular limitation.

本発明の態様に係る太陽電池モジュールは、紫外線吸収剤を少なくとも裏面側封止材中に含むものである。   The solar cell module which concerns on the aspect of this invention contains a ultraviolet absorber at least in a back surface side sealing material.

紫外線吸収剤としては、紫外線吸収剤自体の着色、分解、変性および封止材、紫外線吸収剤、無機酸素発生剤、その他の添加成分の分解、着色、阻害、変性などの問題を生じなければ、特に制限なく、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系など一般に用いられているものを特に制限なく使用できる。   As the ultraviolet absorber, if the ultraviolet absorber itself does not cause problems such as coloring, decomposition, modification and sealing material, ultraviolet absorber, inorganic oxygen generator, decomposition of other additive components, coloring, inhibition, modification, There are no particular restrictions, and those commonly used such as salicylic acid, benzophenone, benzotriazole, cyanoacrylate, and triazine can be used without particular limitation.

本発明の態様に係る封止材は、下記の無機酸素発生剤を含まない場合、封止材を基準として、紫外線吸収剤を、約0.00001質量%以上、約0.0001質量%以上、約0.0003質量%以上、約0.0005質量%以上、約0.0007質量%以上、約0.001質量%以上、かつ約1.0質量%以下、約0.50質量%以下、約0.10質量%以下、約0.08質量%以下、約0.05質量%以下、約0.03質量%以下、約0.02質量%以下、約0.01質量%以下、約0.008質量%以下、約0.005質量%以下、約0.003質量%以下含むことができる。
この中でも約0.0001質量%以上、約0.02質量%以下であると長期間にわたり封止材の黄変などを抑制でき好ましい。
When the sealing material according to an aspect of the present invention does not contain the following inorganic oxygen generator, the ultraviolet absorber is based on the sealing material, about 0.00001 mass% or more, about 0.0001 mass% or more, About 0.0003 mass% or more, about 0.0005 mass% or more, about 0.0007 mass% or more, about 0.001 mass% or more, and about 1.0 mass% or less, about 0.50 mass% or less, about 0.10% by mass or less, about 0.08% by mass or less, about 0.05% by mass or less, about 0.03% by mass or less, about 0.02% by mass or less, about 0.01% by mass or less, about 0.0. 008% by mass or less, about 0.005% by mass or less, and about 0.003% by mass or less.
Among these, it is preferable that the content is about 0.0001 mass% or more and about 0.02 mass% or less because yellowing of the sealing material can be suppressed over a long period of time.

本発明の態様に係る封止材は、下記の無機酸素発生剤を含む場合、封止材を基準として、紫外線吸収剤を、約0.00001質量%以上、約0.0001質量%以上、約0.0003質量%以上、約0.0005質量%以上、約0.0007質量%以上、約0.001質量%以上、約0.003質量%以上、約0.005質量%以上、かつ約3.0質量%以下、約2.0質量%以下、約1.5質量%以下、約1.0質量%以下、約0.90質量%以下、約0.80質量%以下、約0.50質量%以下、約0.40質量%以下、約0.30質量%以下、約0.20質量%以下、約0.18質量%以下、約0.15質量%以下、約0.10質量%以下含むことができる。
この中でも約0.001質量%以上、約1.0質量%以下であると長期間にわたり封止材の黄変などを抑制でき好ましい。
When the sealing material according to an embodiment of the present invention includes the following inorganic oxygen generator, the ultraviolet absorber is about 0.00001 mass% or more, about 0.0001 mass% or more, about 0.0003 wt% or more, about 0.0005 wt% or more, about 0.0007 wt% or more, about 0.001 wt% or more, about 0.003 wt% or more, about 0.005 wt% or more, and about 3 0.0 mass% or less, about 2.0 mass% or less, about 1.5 mass% or less, about 1.0 mass% or less, about 0.90 mass% or less, about 0.80 mass% or less, about 0.50 Mass% or less, about 0.40 mass% or less, about 0.30 mass% or less, about 0.20 mass% or less, about 0.18 mass% or less, about 0.15 mass% or less, about 0.10 mass% The following can be included.
Among these, the amount of about 0.001% by mass or more and about 1.0% by mass or less is preferable because yellowing of the sealing material can be suppressed over a long period of time.

本発明の態様では、封止材が紫外線吸収剤を含む場合、無機酸素発生剤自体の着色、分解、変性および封止材、紫外線吸収剤、その他の添加成分の分解、着色、阻害、変性などの問題を生じなければ、特に制限なく、封止材中に無機酸素発生剤をさらに含むことができるものである。   In the aspect of the present invention, when the sealing material contains an ultraviolet absorber, the inorganic oxygen generator itself is colored, decomposed, modified, and the sealing material, ultraviolet absorber, and other additive components are decomposed, colored, inhibited, modified, etc. As long as this problem does not occur, the sealing material may further contain an inorganic oxygen generator without any particular limitation.

無機酸素発生剤としては、アルカリ金属またはアルカリ土類金属の過酸化物、具体的には、過酸化リチウム(Li)、過酸化ナトリウム(Na)、過酸化カリウム(K)、過酸化ルビジウム(Rb)、過酸化セシウム(Cs)、過酸化フランシウム(Fr)などのアルカリ金属過酸化物、および過酸化ベリリウム(BeO)、過酸化マグネシウム(MgO)、過酸化カルシウム(CaO)、過酸化ストロンチウム(SrO)、過酸化バリウム(BaO)、過酸化ラジウム(RaO)などのアルカリ土類金属過酸化物が挙げられる。これらは単独でまたは2種以上の混合物として使用できる。
これらの中でも入手のしやすさの点からは、過酸化ナトリウム、過酸化カリウム、過酸化カルシウムなどが好ましい。
Examples of the inorganic oxygen generator include alkali metal or alkaline earth metal peroxides, specifically lithium peroxide (Li 2 O 2 ), sodium peroxide (Na 2 O 2 ), potassium peroxide (K 2). O 2 ), alkali metal peroxides such as rubidium peroxide (Rb 2 O 2 ), cesium peroxide (Cs 2 O 2 ), francium peroxide (Fr 2 O 2 ), and beryllium peroxide (BeO 2 ), Examples include alkaline earth metal peroxides such as magnesium peroxide (MgO 2 ), calcium peroxide (CaO 2 ), strontium peroxide (SrO 2 ), barium peroxide (BaO 2 ), and radium peroxide (RaO 2 ). It is done. These can be used alone or as a mixture of two or more.
Among these, sodium peroxide, potassium peroxide, calcium peroxide and the like are preferable from the viewpoint of easy availability.

これらの無機過酸化物は、加熱することにより、または(空気中、樹脂中などの)水と反応して酸素を放出することが知られている。メカニズムは不明であるが、この放出された酸素がなんらかの形で紫外線吸収剤に作用し、その結果驚いたことに、下記で説明するように、紫外線吸収剤の黄変を抑制するものと推察される。   These inorganic peroxides are known to release oxygen by heating or reacting with water (such as in air or resin). The mechanism is unknown, but this released oxygen acts on the UV absorber in some form, and as a result, it was surmised that it is assumed that it suppresses yellowing of the UV absorber as explained below. The

これらの無機酸化物では、アルカリ金属またはアルカリ土類金属と酸素とが結合した単純な構造であり、アルカリ金属およびアルカリ土類金属は類似の性質を有することから、金属原子を相互に置き換えても、無機過酸化物自体は類似の性質を有する。   These inorganic oxides have a simple structure in which an alkali metal or alkaline earth metal and oxygen are combined. Since alkali metals and alkaline earth metals have similar properties, metal atoms can be replaced with each other. The inorganic peroxide itself has similar properties.

また、アルカリ金属およびアルカリ土類金属のイオン半径(pm)は、Li:59、Na:99、K:138、Rb:149、Cs:170、Mg2+:72、Ca2+:100、Sr2+:116、Ba2+:136などと周期表の下に行く程大きくなる。その結果イオン半径の大きな金属イオンは、結晶格子中で過酸化物イオンO 2−を安定化させて、周期表の下に行く程過酸化物が安定となると考えられる。 The ionic radii (pm) of alkali metals and alkaline earth metals are Li + : 59, Na + : 99, K + : 138, Rb + : 149, Cs + : 170, Mg 2+ : 72, Ca 2+ : 100, Sr 2+ : 116, Ba 2+ : 136, etc., become larger as going below the periodic table. As a result, it is considered that the metal ions having a large ionic radius stabilize the peroxide ion O 2 2− in the crystal lattice, and the peroxide becomes stable as it goes below the periodic table.

そうしたことから、イオン半径の違う過酸化物を組み合わせて、目的とする使用環境(温度、湿度など)における酸素発生の速度を調整してもよい。   Therefore, the rate of oxygen generation in the intended use environment (temperature, humidity, etc.) may be adjusted by combining peroxides having different ionic radii.

無機酸素発生剤は、封止材中に、封止材を基準として、約0.0001質量%以上、約0.001質量%以上、約0.01質量%以上、約0.10質量%以上、約0.30質量%以上、約0.50質量%以上、約0.70質量%以上、約0.90質量%以上、かつ約7.0質量%以下、約5.0質量%以下、約4.0質量%以下、約3.0質量%以下、約2.0質量%以下、約1.5質量%以下、約1.0質量%以下含まれることができる。
この中でも約0.10質量%以上、約2.0質量%以下であると長期間にわたり紫外線吸収剤の黄変などを抑制でき好ましい。
The inorganic oxygen generator is contained in the encapsulant in an amount of about 0.0001% by mass or more, about 0.001% by mass or more, about 0.01% by mass or more, or about 0.10% by mass or more based on the encapsulant. About 0.30 mass% or more, about 0.50 mass% or more, about 0.70 mass% or more, about 0.90 mass% or more, and about 7.0 mass% or less, about 5.0 mass% or less, About 4.0 mass% or less, about 3.0 mass% or less, about 2.0 mass% or less, about 1.5 mass% or less, about 1.0 mass% or less can be contained.
Among these, it is preferable that it is about 0.10 mass% or more and about 2.0 mass% or less because yellowing of an ultraviolet absorber etc. can be suppressed over a long period of time.

本発明の態様に係る太陽電池において、下記の構成を取ることもできる。すなわち、受光面保護材側には、所定の濃度の紫外線吸収剤を含み無機酸素発生剤を含まない、所望の封止材の全厚の約1/2,約1/3〜約2/3、約1/4〜約3/4、約1/5〜約4/5などの厚さを有する第1の封止材を積層し、さらにその第1の封止材の裏面側上に所望の封止材の全厚となるように所定の濃度の紫外線吸収剤および所定の濃度の無機酸素発生剤を含有させた第2の封止材を積層して、その上に裏面保護材を積層する構成としてもよい。ここで第2の封止材の上に同様なさらなる封止材を積層して所望の封止材の全厚となるようにしてもよく、そして太陽電池素子を第1の封止材と第2の封止材との間など任意の封止材間に配置してもよい。さらに紫外線吸収剤および/または無機酸素発生剤は、それぞれ独立に、それぞれの封止材中において同じ濃度であってもよく、またはそれぞれの封止材中において濃度のグラデーションを有していてもよい。   In the solar cell according to the aspect of the present invention, the following configuration may be adopted. That is, on the light-receiving surface protective material side, about 1/2, about 1/3 to about 2/3 of the total thickness of a desired sealing material that contains an ultraviolet absorber at a predetermined concentration and does not contain an inorganic oxygen generator. A first sealing material having a thickness of about 1/4 to about 3/4, about 1/5 to about 4/5, and the like, and further desired on the back side of the first sealing material A second sealing material containing a predetermined concentration of an ultraviolet absorber and a predetermined concentration of an inorganic oxygen generator is laminated so that the total thickness of the sealing material is the same, and a back surface protective material is laminated thereon. It is good also as composition to do. Here, a similar additional sealing material may be laminated on the second sealing material so that the total thickness of the desired sealing material is obtained, and the solar cell element is combined with the first sealing material and the first sealing material. You may arrange | position between arbitrary sealing materials, such as between 2 sealing materials. Further, the ultraviolet absorber and / or the inorganic oxygen generator may independently have the same concentration in each sealing material, or may have a gradation of concentration in each sealing material. .

上記の態様では、受光面保護材の封止材側上に太陽電池素子が製膜されたスーパーストレート型薄膜太陽電池において、例えば、第1、第2の封止材が紫外線吸収剤を含み、第2の封止材が受光面側から裏面側に向かって濃度が上昇するように無機酸素発生剤を含有させて、酸素が太陽電池素子に拡散しにくくすることも可能である。   In the above aspect, in the super straight type thin film solar cell in which the solar cell element is formed on the sealing material side of the light-receiving surface protection material, for example, the first and second sealing materials include an ultraviolet absorber, It is also possible to contain an inorganic oxygen generator so that the concentration of the second sealing material increases from the light receiving surface side toward the back surface side, thereby making it difficult for oxygen to diffuse into the solar cell element.

特に受光面保護材の封止材側上に太陽電池素子が製膜されたスーパーストレート型薄膜太陽電池においては、無機酸素発生剤を受光面保護材から離して配置することにより、太陽電池素子への無機酸素発生剤の影響を抑えることが可能となる。   In particular, in a super straight type thin film solar cell in which a solar cell element is formed on the sealing material side of the light-receiving surface protective material, by disposing the inorganic oxygen generator away from the light-receiving surface protective material, to the solar cell element It becomes possible to suppress the influence of the inorganic oxygen generator.

また、その他の成分自体の着色、分解、変性、および封止材、紫外線吸収剤、無機酸素発生剤の分解、着色、阻害、変性などの問題を生じなければ、特に制限なく、任意選択的に、有機過酸化物などの重合開始剤、架橋剤、光安定化剤などのその他の成分を封止材中にさらに含むことができる。   In addition, any other components may be optionally selected without particular limitation as long as they do not cause problems such as coloring, decomposition, modification of the components themselves, and decomposition, coloring, inhibition, modification of the sealing material, ultraviolet absorber, inorganic oxygen generator. Other components such as a polymerization initiator such as an organic peroxide, a crosslinking agent, and a light stabilizer can be further included in the encapsulant.

その他の成分の中でも、封止材の光劣化または熱劣化を抑制するために、ヒンダードアミン系などの知られた光安定化剤を、封止材を基準として、約0.10質量%〜約0.30質量%など、または紫外線吸収剤の添加量が少なく、光劣化の耐久性を高める必要がある場合には、約0.50質量%〜約1.0質量%などの量で、必要に応じて封止材中に含有させてもよい。   Among other components, in order to suppress photodegradation or thermal degradation of the encapsulant, a known light stabilizer such as a hindered amine is used, based on the encapsulant, from about 0.10% by mass to about 0%. .30% by mass or when the amount of added UV absorber is small and it is necessary to increase the durability of photodegradation, the amount of about 0.50% by mass to about 1.0% by mass is necessary. Accordingly, it may be contained in the sealing material.

本発明の態様に係る太陽電池モジュールは、特に制限なく、公知の製造方法により製造できる。
具体的には、受光面保護材の受光面を下に向けて、受光面保護材の上に、受光面側封止材、基板、裏面側封止材(スーパーストレート型太陽電池の場合は、受光面の反対側上に太陽電池素子が接合された受光面保護材を下に向けて、受光面保護材の上に裏面側封止材の代わりとなる封止材)、裏面保護材を順に積層して配置させる。
次に、この積層体に熱および圧力を掛けてラミネートすることにより、受光面側封止材および裏面側封止材が、それぞれ受光面保護材と基板とを、および基板と裏面保護材とを(スーパーストレート型太陽電池の場合は、封止材が受光面保護材と裏面保護材とを)接合し、太陽電池モジュールが形成される。
さらに必要に応じて、フレームを取り付けても良い。
またこの方法に限らず、特に問題を生じなければ、その他の公知の製造方法を使用しても良い。
The solar cell module according to the embodiment of the present invention can be manufactured by a known manufacturing method without any particular limitation.
Specifically, with the light-receiving surface protective material facing down, on the light-receiving surface protective material, the light-receiving surface side sealing material, the substrate, the back surface side sealing material (in the case of a super straight type solar cell, The light-receiving surface protective material with the solar cell element bonded on the opposite side of the light-receiving surface is turned downward, and the sealing material used in place of the back-surface side sealing material on the light-receiving surface protective material) Laminated and placed.
Next, by laminating the laminate with heat and pressure, the light-receiving surface side sealing material and the back surface-side sealing material are respectively combined with the light-receiving surface protection material and the substrate, and the substrate and the back surface protection material. (In the case of a super straight type solar cell, a sealing material joins a light-receiving surface protective material and a back surface protective material), and a solar cell module is formed.
Furthermore, you may attach a flame | frame as needed.
In addition to this method, other known manufacturing methods may be used as long as no particular problem occurs.

下記表1に示すように、裏面側封止材中に紫外線吸収剤が存在しないと、または紫外線吸収剤が存在しても無機酸素発生剤が共存しないと、裏面保護材は、(UV加速試験)後に、ひび割れを起こしてしまい、紫外線に対して非常に耐久性が低いことが確認された(比較例1、2)。   As shown in Table 1 below, when the ultraviolet absorber is not present in the back surface side sealing material, or when the inorganic oxygen generator is not present even if the ultraviolet absorber is present, the back surface protective material is (UV accelerated test). ) Later, it was cracked, and it was confirmed that the durability against ultraviolet rays was very low (Comparative Examples 1 and 2).

一方、本発明の態様に係る太陽電池モジュールでは、注目すべきことに、受光面側封止材中の紫外線吸収剤の有無にかかわらず、裏面側封止材中に紫外線吸収剤と無機酸素発生剤とを共存させることによって、驚くべきことに、裏面側封止材の黄変などの異常が観察されなかったばかりか、裏面保護材にもひび割れ等の異常が全く観察されなかった(実施例1〜3、参考例1〜2)。   On the other hand, in the solar cell module according to the embodiment of the present invention, it should be noted that the ultraviolet absorber and inorganic oxygen generation in the back side sealing material regardless of the presence or absence of the ultraviolet absorber in the light receiving surface side sealing material. By coexisting with the agent, surprisingly, not only abnormalities such as yellowing of the back surface side sealing material were observed, but also abnormalities such as cracks were not observed at all on the back surface protective material (Example 1). -3, Reference Examples 1-2).

これは、なんらかの理論に拘束されることを望まないが、封止材中において無機酸素発生剤が(その形態は不明であるが)酸素を除放することによって、紫外線吸収剤の黄変を抑制したと推測される。そして、さらに紫外線吸収剤が黄変しなかったことにより、裏面保護材の異常を引き起こす紫外光が裏面保護材まで到達できなかったことによると考えられる。   This does not want to be bound by any theory, but the inorganic oxygen generator suppresses yellowing of the UV absorber by releasing oxygen (although its form is unknown) in the sealing material. I guess it was. And it is thought that the ultraviolet light which causes the abnormality of the back surface protective material could not reach the back surface protective material because the ultraviolet absorber did not turn yellow.

特に注目すべきは、紫外線吸収剤の量が少ない場合(受光面側封止材:0.02質量%)には封止材、紫外線吸収剤のいずれもが黄変しないものの(実施例2、比較例2)、紫外線吸収剤の量が多い(受光面側封止材:1.00質量%)と紫外線吸収剤自体が黄変してしまうところ(参考例1)、同様に紫外線吸収剤の量が多くても(裏面側封止材:1.00質量%)、無機酸素発生剤を共存していれば、無機酸素発生剤の量が紫外線吸収剤より少ない(裏面側封止材:0.23質量%、実施例1、2、参考例1、2)かまたは多い(裏面側封止材:2.00質量%、実施例3)かに関わらず、封止材、紫外線吸収剤のいずれもが黄変せず、それによって、裏面保護材にも異常が生じなかった点である(実施例1〜3、参考例1〜2)。   Of particular note is that when the amount of the ultraviolet absorber is small (light-receiving surface side sealing material: 0.02 mass%), neither the sealing material nor the ultraviolet absorber is yellowed (Example 2, Comparative Example 2), where the amount of the UV absorber is large (light-receiving surface side sealing material: 1.00% by mass) and the UV absorber itself turns yellow (Reference Example 1). Even if the amount is large (back surface side sealing material: 1.00% by mass), if the inorganic oxygen generator coexists, the amount of the inorganic oxygen generator is smaller than that of the ultraviolet absorber (back surface side sealing material: 0). .23% by mass, Examples 1, 2, Reference Examples 1, 2) or more (back side sealing material: 2.00% by mass, Example 3) None of them was yellowed, and thus no abnormality was caused in the back surface protective material (Examples 1 to 3, Reference Examples 1 and 2).

このように、本発明の態様に係る太陽電池モジュールでは、紫外線吸収剤と無機酸素発生剤との共存により、封止材、紫外線吸収剤、さらには裏面保護材への経年劣化を起こさせないことが判明した。   As described above, in the solar cell module according to the aspect of the present invention, the coexistence of the ultraviolet absorber and the inorganic oxygen generator may not cause aging deterioration of the sealing material, the ultraviolet absorber, and further the back surface protective material. found.

そして特に驚くべきことは、従来、熱・紫外線によるラジカルの発生により封止材および紫外線吸収剤が劣化して着色すると考えられており、酸素は悪影響を及ぼすと考えられていたところ、本発明の態様では、敢えて酸素を封止材中に放出させるという、従来の技術常識とは全く逆のことを行うことにより、予想外にも、封止材、紫外線吸収剤のみならず、裏面保護材までもの経年劣化を防止できたことである。   And particularly surprisingly, it has been conventionally considered that the encapsulant and the ultraviolet absorber are deteriorated and colored due to generation of radicals by heat and ultraviolet rays, and oxygen has been considered to have an adverse effect. In the aspect, by intentionally releasing oxygen into the sealing material, by performing the opposite of the conventional technical common sense, unexpectedly, not only the sealing material and the ultraviolet absorber, but also the back surface protective material. It was possible to prevent deterioration over time.

また受光面側封止材について見てみると、受光面側封止材中に、無機酸素発生剤を共存させずに高濃度(1.00wt%)で紫外線吸収剤を加えると紫外線吸収剤の黄変によると考えられる発電出力の低下が見られた(参考例1)。   Further, when looking at the light-receiving surface side sealing material, when the ultraviolet absorber is added to the light-receiving surface side sealing material at a high concentration (1.00 wt%) without coexisting an inorganic oxygen generator, A decrease in power generation output that was considered to be due to yellowing was observed (Reference Example 1).

しかし、興味深いことに、受光面側封止材中に無機酸素発生剤を共存させると、封止材、無機酸素発生剤のいずれもが黄変などの外観異常を呈していなかったにも関わらず、発電出力の低下が観察された(参考例2)。   Interestingly, however, when an inorganic oxygen generator coexists in the light-receiving surface side sealing material, both the sealing material and the inorganic oxygen generator did not exhibit an abnormal appearance such as yellowing. A decrease in power generation output was observed (Reference Example 2).

下記表1の各例では、太陽電池素子として、基板上に薄膜太陽電池素子を設けた太陽電池素子を有する、サブストレート型の太陽電池素子を使用していた。そして上記の結果およびこのことから考察すると、なんらかの理論に拘束されることを望まないが、受光面側封止材中に紫外線吸収剤と無機酸素発生剤とを共存させると、無機酸素発生剤から放出される酸素により紫外線吸収剤の黄変が防止できるものの、一方では無機酸素発生剤から放出された酸素により薄膜太陽電池が酸化などによる劣化を受けてしまい発電出力が低下したものと考えられる(参考例2)。   In each example of Table 1 below, a substrate type solar cell element having a solar cell element in which a thin film solar cell element is provided on a substrate is used as the solar cell element. And considering the above results and this, it is not desired to be bound by any theory, but if the ultraviolet absorber and the inorganic oxygen generator coexist in the light-receiving surface side sealing material, the inorganic oxygen generator Although it is possible to prevent yellowing of the UV absorber due to the released oxygen, it is considered that, on the other hand, the thin film solar cell is deteriorated due to oxidation or the like due to the oxygen released from the inorganic oxygen generator, and the power generation output is reduced ( Reference example 2).

さらになんらかの理論に拘束されることを望まないが、表1のサブストレート型の太陽電池素子では、裏面側封止材中の無機酸素発生剤により酸素が放出されても、酸素は基板を透過できず、また基板の反対側まで容易に拡散できないために、薄膜太陽電池自体に酸化などによる異常が生じず、その結果発電出力の低下が生じなかったものと考えられる(実施例1〜3)。   Although not wishing to be bound by any theory, in the substrate type solar cell element shown in Table 1, oxygen can permeate the substrate even if oxygen is released by the inorganic oxygen generator in the back side sealing material. In addition, since it cannot be easily diffused to the opposite side of the substrate, it is considered that the thin film solar cell itself is not abnormal due to oxidation or the like, and as a result, the power generation output is not reduced (Examples 1 to 3).

このように本発明の態様に係る太陽電池モジュールでは、特に封止材間に太陽電池素子が封止されている場合に、受光面側封止材中では0〜低濃度の紫外線吸収剤のみを含有させることができ、そして/または裏面側封止材中では高濃度の紫外線吸収剤と無機酸素発生剤とを共存させることを可能にしているものである。そしてそれによって、受光面側において、封止材、紫外線吸収剤の黄変などの経年劣化を抑制して高い発電効率を維持できるだけでなく、かつ裏面側において、封止材、紫外線吸収剤の黄変などの経年劣化を抑制し、さらに裏面保護材の経年劣化を抑制できるだけでなく、またさらに太陽電池素子への酸素などの悪影響を排除できるという顕著な効果を奏することができたものである(実施例1〜3)。   As described above, in the solar cell module according to the aspect of the present invention, in particular, when the solar cell element is sealed between the sealing materials, only the 0 to low-concentration ultraviolet absorber is contained in the light receiving surface side sealing material. It can be contained, and / or enables the high concentration ultraviolet absorber and the inorganic oxygen generator to coexist in the back side sealing material. As a result, on the light-receiving surface side, not only can the sealing material and the UV absorber absorb yellowing and maintain high power generation efficiency, but also on the back surface side, the sealing material and the UV absorber yellow In addition to suppressing aging deterioration such as deterioration, and further suppressing aging deterioration of the back surface protective material, it was also possible to achieve a remarkable effect of eliminating negative effects such as oxygen on the solar cell element ( Examples 1 to 3).

以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(製造法1)
室温下で、受光面保護材として白板強化ガラス板(縦:32cm、横:32cm、厚さ:3.2mm)の受光面を下に向けて、受光面保護材の上に、受光面保護材と同じ縦横寸法の封止材としてエチレンビニールアセテート(厚さ:0.6mm)、その上に薄膜太陽電池素子が製膜されたガラス基板(縦:30cm、横:30cm、厚さ:1.8mm)、受光面側と同じ封止材(厚さ:0.6mm)、受光面保護材と同じ縦横寸法の裏面保護材としてPETからなる有機ポリマー保護シート(厚さ:2.0mm)を順に積層して配置させた。
(Production method 1)
At room temperature, the light-receiving surface protective material is placed on the light-receiving surface protective material with the light-receiving surface of the white reinforced glass plate (length: 32 cm, width: 32 cm, thickness: 3.2 mm) facing down. As a sealing material having the same vertical and horizontal dimensions, ethylene vinyl acetate (thickness: 0.6 mm), a glass substrate on which a thin-film solar cell element is formed (vertical: 30 cm, horizontal: 30 cm, thickness: 1.8 mm) ), The same sealing material as the light receiving surface side (thickness: 0.6 mm), and an organic polymer protective sheet (thickness: 2.0 mm) made of PET as the back surface protective material having the same vertical and horizontal dimensions as the light receiving surface protective material. Arranged.

次に、この積層体にラミネーターを用いて、150℃および100kPaの圧力を6分間掛けてラミネートして、その後、外周部にアルミフレームを取り付けて、試料となる太陽電池モジュールを得た。   Next, this laminate was laminated by applying a pressure of 150 ° C. and 100 kPa for 6 minutes using a laminator, and then an aluminum frame was attached to the outer peripheral portion to obtain a solar cell module as a sample.

(UV加速試験)
試験対象となる太陽電池モジュールの受光面保護材の上方にメタハライドランプを、受光面保護材上面における照射エネルギーが(150mW/cm)となるように配置して、75℃、湿度20%において、700時間照射後、試料のUV加速試験前後での発電出力の低下の有無(試験前後で発電出力の低下が5%未満の場合に出力低下なし、5%以上の場合に出力低下ありとした)、並びに目視による、裏面保護材の異常の有無、および太陽電池モジュールの外観の異常の有無を調べて評価した。
なお、この試験は、日本における太陽光に20年間試料を曝すことに相当する。
(UV accelerated test)
A metahalide lamp is arranged above the light-receiving surface protective material of the solar cell module to be tested so that the irradiation energy on the upper surface of the light-receiving surface protective material is (150 mW / cm 2 ), at 75 ° C. and humidity of 20%. , After 700 hours of irradiation, whether or not the power generation output decreased before and after the UV acceleration test of the sample (the power output decreased before and after the test was less than 5%, the output was not decreased, and the power decreased when 5% or more ), And the presence or absence of abnormality of the back surface protective material and the presence or absence of abnormality of the appearance of the solar cell module were evaluated by visual inspection.
This test corresponds to exposing a sample to sunlight in Japan for 20 years.

実施例1〜3、参考例1〜2、比較例1〜2
紫外線吸収剤としてベンゾフェノン骨格を有する紫外線吸収剤の有無、無機酸素発生剤として過酸化カリウムの有無のみ条件を、封止材中の受光面側および裏面側において変化させた点を除き、後は(製造法1)の手順に従って、実施例1〜比較例3の試料を作製し、(UV加速試験)を行った後で、試料を評価した。
表1中に、条件の違いおよび試験の結果を示す。
Examples 1-3, Reference Examples 1-2, Comparative Examples 1-2
Except for the fact that only the presence or absence of an ultraviolet absorber having a benzophenone skeleton as an ultraviolet absorber and the presence or absence of potassium peroxide as an inorganic oxygen generator were changed on the light receiving surface side and the back surface side in the encapsulant, Samples of Example 1 to Comparative Example 3 were prepared according to the procedure of production method 1) and subjected to (UV accelerated test), and then the samples were evaluated.
Table 1 shows the difference in conditions and the test results.

Figure 0006418934
表1中の紫外線吸収剤および無機酸素発生剤の量は、封止材を基準とした質量%である。
Figure 0006418934
The amounts of the ultraviolet absorber and the inorganic oxygen generator in Table 1 are mass% based on the sealing material.

表1に示すように、発電出力については、0から0.2質量%の紫外線吸収剤の場合(実施例1〜3、比較例1、2)には、出力低下が認められず、紫外線吸収剤を多く用いた場合(参考例1,2)には、紫外線吸収剤の黄変による透光性の低下によると思われる出力低下(参考例1)、および黄変はしないものの出力の低下(参考例2)が観察された。   As shown in Table 1, regarding the power generation output, in the case of 0 to 0.2% by mass of the ultraviolet absorber (Examples 1 to 3, Comparative Examples 1 and 2), no decrease in output was observed, and the ultraviolet absorption When a large amount of the agent is used (Reference Examples 1 and 2), the output is reduced due to the decrease in translucency due to the yellowing of the UV absorber (Reference Example 1), and the output is decreased but not yellowed (Reference Example 1). Reference Example 2) was observed.

裏面保護材の異常の有無については、無機酸素発生剤を含まない場合には、いずれも裏面保護材のひび割れが観察された(比較例1、2)。   Regarding the presence / absence of abnormality of the back surface protective material, when the inorganic oxygen generator was not included, any cracks of the back surface protective material were observed (Comparative Examples 1 and 2).

太陽電池モジュールの外観の異常の有無については、受光面側封止材および裏面側封止材のいずれにおいても、それぞれの中に無機酸素発生剤を含まない場合に黄変が観察された(参考例1、比較例2)。   Regarding the presence or absence of abnormalities in the appearance of the solar cell module, yellowing was observed in each of the light-receiving surface side sealing material and the back surface side sealing material when each contained no inorganic oxygen generator (reference) Example 1 and Comparative Example 2).

上記のように、本発明の態様に係る太陽電池モジュールと、比較例などの太陽電池モジュールとの性能差には、受光面側と裏面側での紫外線吸収剤の有無、および無機酸素発生剤を共存させるか否かが、大きく影響することが明らかになった。そして特に裏面側封止材中において紫外線吸収剤と無機酸素発生剤とを共存させると優れた効果を奏することが認められた。   As described above, the difference in performance between the solar cell module according to the embodiment of the present invention and the solar cell module such as the comparative example includes the presence or absence of the ultraviolet absorber on the light receiving surface side and the back surface side, and the inorganic oxygen generator. It has become clear that whether or not they coexist greatly affects. In particular, it was confirmed that when the ultraviolet absorber and the inorganic oxygen generator were allowed to coexist in the back side sealing material, an excellent effect was achieved.

以上のように、本発明の態様に係る太陽電池モジュールは、長期間にわたり、封止材、紫外線吸収剤のみならず、裏面保護材の劣化をも防止できる良好な性能を有するものである。こうしたことから、本発明の態様に係る太陽電池モジュールは、産業用、家庭用を問わず、広い分野において様々な用途に利用することができる。   As described above, the solar cell module according to the aspect of the present invention has good performance that can prevent deterioration of not only the sealing material and the ultraviolet absorber but also the back surface protective material over a long period of time. For these reasons, the solar cell module according to an aspect of the present invention can be used for various applications in a wide field regardless of industrial use or home use.

1 太陽電池モジュール
2 フレーム
3 受光面保護材
4 封止材
5 薄膜太陽電池素子
6 基板
7 裏面保護材
8 太陽電池素子
DESCRIPTION OF SYMBOLS 1 Solar cell module 2 Frame 3 Light-receiving surface protective material 4 Sealing material 5 Thin film solar cell element 6 Substrate 7 Back surface protective material 8 Solar cell element

Claims (4)

太陽電池素子と封止材と受光面保護材と裏面保護材とを含む太陽電池モジュールであって、
該受光面保護材が、該太陽電池素子の受光面に、該太陽電池の受光面側の封止材によって接合されているか、または封止材を介さずに接合されており、
該裏面保護材が、該太陽電池素子の裏面に、該太陽電池の裏面側の封止材によって接合されており、
該裏面側の封止材が、紫外線吸収剤と無機酸素発生剤とを含み、
該裏面保護材が、有機ポリマーシートであり、
該無機酸素発生剤が、過酸化リチウム(Li )、過酸化ナトリウム(Na )、過酸化カリウム(K )、過酸化ルビジウム(Rb )、過酸化セシウム(Cs )、過酸化フランシウム(Fr )、過酸化ベリリウム(BeO )、過酸化マグネシウム(MgO )、過酸化カルシウム(CaO )、過酸化ストロンチウム(SrO )、過酸化バリウム(BaO )、もしくは過酸化ラジウム(RaO 、またはそれらの組み合わせから選択される、太陽電池モジュール。
A solar cell module including a solar cell element, a sealing material, a light-receiving surface protection material, and a back surface protection material,
The light-receiving surface protective material is bonded to the light-receiving surface of the solar cell element by a sealing material on the light-receiving surface side of the solar cell, or is bonded without using a sealing material,
The back surface protective material is joined to the back surface of the solar cell element by a sealing material on the back surface side of the solar cell,
The sealing material on the back side includes an ultraviolet absorber and an inorganic oxygen generator,
The back surface protective material is an organic polymer sheet,
The inorganic oxygen generator is lithium peroxide (Li 2 O 2 ), sodium peroxide (Na 2 O 2 ), potassium peroxide (K 2 O 2 ), rubidium peroxide (Rb 2 O 2 ), cesium peroxide. (Cs 2 O 2 ), Francium peroxide (Fr 2 O 2 ), Beryllium peroxide (BeO 2 ), Magnesium peroxide (MgO 2 ), Calcium peroxide (CaO 2 ), Strontium peroxide (SrO 2 ), Peroxide A solar cell module selected from barium oxide (BaO 2 ), radium peroxide (RaO 2 ) , or a combination thereof.
該受光面保護材が、該太陽電池素子の受光面に、該太陽電池の受光面側の封止材によって接合されており、
該受光面側の封止材が、0.02重量%以下の紫外線吸収剤を含む、請求項1に記載の太陽電池モジュール。
The light-receiving surface protective material is joined to the light-receiving surface of the solar cell element by a sealing material on the light-receiving surface side of the solar cell,
The solar cell module according to claim 1, wherein the sealing material on the light receiving surface side contains 0.02% by weight or less of an ultraviolet absorber.
該太陽電池素子が、基板と基板の受光面側上に形成された薄膜太陽電池素子を有する、サブストレート型である、請求項1または2に記載の太陽電池モジュール。   The solar cell module according to claim 1 or 2, wherein the solar cell element is a substrate type having a substrate and a thin-film solar cell element formed on the light-receiving surface side of the substrate. 該無機酸素発生剤が、過酸化カリウムである、請求項1〜3のいずれか一項に記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 3, wherein the inorganic oxygen generator is potassium peroxide.
JP2014256664A 2014-12-18 2014-12-18 Solar cell module Active JP6418934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256664A JP6418934B2 (en) 2014-12-18 2014-12-18 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256664A JP6418934B2 (en) 2014-12-18 2014-12-18 Solar cell module

Publications (2)

Publication Number Publication Date
JP2016119339A JP2016119339A (en) 2016-06-30
JP6418934B2 true JP6418934B2 (en) 2018-11-07

Family

ID=56243076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256664A Active JP6418934B2 (en) 2014-12-18 2014-12-18 Solar cell module

Country Status (1)

Country Link
JP (1) JP6418934B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890752B2 (en) * 2004-08-27 2012-03-07 キヤノン株式会社 Solar cell module
JP2009088175A (en) * 2007-09-28 2009-04-23 Sharp Corp Thin film solar battery module and its manufacturing method
JP2011210891A (en) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd Wavelength-converting solar cell sealing sheet, and solar cell module
KR20130069639A (en) * 2010-04-22 2013-06-26 가부시끼가이샤 다이셀 Optical semiconductor protective material, precursor for same, and method for manufacturing optical semiconductor protective material
WO2013077866A1 (en) * 2011-11-22 2013-05-30 3M Innovative Properties Company Integrated films for use in solar modules
JP2014239138A (en) * 2013-06-07 2014-12-18 三菱電機株式会社 Method of manufacturing solar battery module, and solar battery module

Also Published As

Publication number Publication date
JP2016119339A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP2010073720A (en) Solar cell module
WO2013145116A1 (en) Solar cell module sealing film, and solar cell module using same
EP3394902A1 (en) Heat reflective solar module
JP6658871B2 (en) Ion scavenger for solar cell, sealant composition for solar cell containing the same, and solar cell module
JP5820109B2 (en) Sealing film for solar cell module and solar cell module using the same
JP2014221000A (en) Solar cell module and edge tape used for the same
JP4890752B2 (en) Solar cell module
JP6418934B2 (en) Solar cell module
US20160027942A1 (en) Encapsulants for solar battery, and solar battery module
EP2824718B1 (en) Photovoltaic module and fabricating method thereof
JP6613451B2 (en) Solar cell module
KR101792323B1 (en) Optical sheet
JP6258659B2 (en) Solar cell module
JP2015138891A (en) Wavelength-conversion film for solar light panels, and solar light panel
JP6378945B2 (en) Solar cell sealing tape and solar cell module
JP2013191673A (en) Flexible solar battery module
JP6089214B2 (en) Solar cell module
JP2005101404A (en) Solar cell module
JP2014107288A (en) Seal-material sheet for solar battery module use, and solar battery module
JP2015213132A (en) Solar battery module
JP2013171915A (en) Sealing material for solar cell module
KR101514028B1 (en) Solar battery module
JP2013077622A (en) Sealant for solar battery, and solar battery module
KR101220113B1 (en) Solar cell module and method for manufacturing the same
JP2011252127A (en) Sheet-shaped resin composition for solar cell sealing film, and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6418934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250