JP5927975B2 - Sealant for solar cell module - Google Patents

Sealant for solar cell module Download PDF

Info

Publication number
JP5927975B2
JP5927975B2 JP2012033910A JP2012033910A JP5927975B2 JP 5927975 B2 JP5927975 B2 JP 5927975B2 JP 2012033910 A JP2012033910 A JP 2012033910A JP 2012033910 A JP2012033910 A JP 2012033910A JP 5927975 B2 JP5927975 B2 JP 5927975B2
Authority
JP
Japan
Prior art keywords
solar cell
organic peroxide
eva
sealing material
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012033910A
Other languages
Japanese (ja)
Other versions
JP2013171915A (en
Inventor
慎吾 森保
慎吾 森保
政博 椙江
政博 椙江
西川 徹
徹 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2012033910A priority Critical patent/JP5927975B2/en
Publication of JP2013171915A publication Critical patent/JP2013171915A/en
Application granted granted Critical
Publication of JP5927975B2 publication Critical patent/JP5927975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池モジュール用封止材に関する。   The present invention relates to a solar cell module sealing material.

近年、地球温暖化対策や化石燃料に代わる代替エネルギーの利用など、各種分野において環境問題に対する意識が高まっている。例えば発電分野においては、原子力発電は放射能汚染の危険性が常につきまとい、石油を使用する火力発電ではCO排出に伴う地球温暖化の問題がある。そこで、このような問題のないクリーンエネルギーとして太陽光発電が注目されており、実用化も確実に進められている。太陽光発電に利用される太陽電池モジュールには種々の形態があり、代表的なものとしては、結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、銅インジウムセレナイド太陽電池、及び化合物半導体太陽電池等が挙げられる。中でも、結晶シリコン太陽電池、化合物半導体太陽電池、及びアモルファスシリコン太陽電池は、比較的低コストで大面積化が可能なため、最近ではこれらの太陽電池について活発に研究開発が進められている。 In recent years, awareness of environmental issues has increased in various fields, such as countermeasures against global warming and the use of alternative energy instead of fossil fuels. For example, in the power generation field, nuclear power generation always has a risk of radioactive contamination, and thermal power generation using oil has a problem of global warming due to CO 2 emission. Therefore, photovoltaic power generation is attracting attention as clean energy free of such problems, and its practical application is being promoted with certainty. There are various types of solar cell modules used for photovoltaic power generation. Typical examples include crystalline silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, copper indium selenide solar cells, and compounds. A semiconductor solar cell etc. are mentioned. Among these, crystalline silicon solar cells, compound semiconductor solar cells, and amorphous silicon solar cells can be increased in area at a relatively low cost, and recently research and development of these solar cells has been actively conducted.

これら各種太陽電池モジュールの基本的構成は、図1に示すように、複数の太陽電池用セル(太陽電池素子)101が、表面(光入射側)保護用のガラス板102と耐候性を有するバックシート103とによって挟持され、ガラス板102とバックシート103との間には、これらを接着し、太陽電池用セル101を封止するためのEVAやポリビニルブチラールなどの熱可塑性透明樹脂から成る封止材104が介装されている。   As shown in FIG. 1, the basic configuration of these various solar cell modules is that a plurality of solar cell cells (solar cell elements) 101 have a weather resistance and a glass plate 102 for protecting the surface (light incident side). Sealing made of thermoplastic transparent resin such as EVA or polyvinyl butyral, which is sandwiched between the sheet 103 and bonded between the glass plate 102 and the back sheet 103 to seal the solar cell 101 A material 104 is interposed.

ところで、太陽電池モジュールに用いられる封止材には、耐候性、接着性、耐熱性などの物性が要求される。そこで、これらの物性を担保するため、従来からEVAを有機過酸化物によって架橋している。   By the way, the sealing material used in the solar cell module is required to have physical properties such as weather resistance, adhesiveness, and heat resistance. Therefore, in order to ensure these physical properties, EVA is conventionally crosslinked with an organic peroxide.

EVAに加えられた有機過酸化物により分解してEVAを架橋させると、架橋度の指標となるゲル分率が向上する。EVAのゲル分率を向上することにより太陽電池用封止材の耐熱性及び強度を向上することができ、屋外等の環境下で使用される太陽電池にはゲル分率が80%以上であるEVAが必要である。したがって、屋外等で使用される太陽電池を提供するためには、有機過酸化物をEVA中に含有させてEVAを架橋することが必要となっている。   When EVA is crosslinked by being decomposed by the organic peroxide added to EVA, the gel fraction serving as an index of the degree of crosslinking is improved. By improving the gel fraction of EVA, the heat resistance and strength of the solar cell encapsulant can be improved, and the gel fraction is 80% or more for solar cells used outdoors. EVA is required. Therefore, in order to provide a solar cell used outdoors or the like, it is necessary to include EVA in the EVA to crosslink the EVA.

したがって、有機過酸化物による架橋においては、加熱により有機過酸化物を分解させる工程が必要となる。そのため、有機過酸化物の中でも1時間半減期温度が130〜160℃であるジアルキルパーオキサイド型のものを用いた場合、分解及び架橋反応をするための時間を要するために、封止工程における生産性が低いという問題があった。なお、半減期温度とは有機過酸化物の半分が分解する温度のことである。   Therefore, in the crosslinking with the organic peroxide, a step for decomposing the organic peroxide by heating is required. Therefore, in the case of using a dialkyl peroxide type organic peroxide having a one-hour half-life temperature of 130 to 160 ° C., it takes time to perform decomposition and crosslinking reaction. There was a problem of low nature. The half-life temperature is a temperature at which half of the organic peroxide is decomposed.

しかしながら、半減期温度が100〜130℃と低いパーオキシエステル型やパーオキシケタール型のような有機過酸化物を使用すると、短時間での架橋が可能になるものの、封止材に有機過酸化物の分解物に起因すると思われる発泡(膨れ)現象が起こる問題が生じる。発泡は、EVA封止材の密着性を低下させる要因となり、封止性能が低下、太陽電池の寿命と発電効率が低下するという問題が生じる。   However, when organic peroxides such as peroxyester type and peroxyketal type having a low half-life temperature of 100 to 130 ° C. are used, crosslinking in a short time is possible, but organic peroxide is used for the sealing material. There arises a problem that a foaming (swelling) phenomenon which is considered to be caused by a decomposition product of the product occurs. Foaming causes a decrease in the adhesion of the EVA sealing material, resulting in a problem that the sealing performance is lowered and the lifetime and power generation efficiency of the solar cell are lowered.

さらに、半減期温度が低い有機過酸化物を使用した場合、EVAに有機過酸化物を混練させた際にスコーチ(早期架橋)を起こし、作業性を著しく低下させるという問題も生じる。   Further, when an organic peroxide having a low half-life temperature is used, scorching (early crosslinking) occurs when the organic peroxide is kneaded with EVA, and the workability is significantly reduced.

そこで特許文献1には、ジアルキルパーオキサイド型の有機過酸化物とパーオキシモノカーボネート型もしくは、パーオキシケタール型の有機過酸化物を任意の割合で配合することにより、架橋時間の短縮と発泡の問題を解決する方法が示されている。しかしながら、太陽電池市場の拡大に伴い、更なる架橋時間の短縮が望まれるようになり、半減期温度の高いジアルキルパーオキサイド型を含まずに、さらに短時間で架橋することが求められている。   Therefore, in Patent Document 1, dialkyl peroxide type organic peroxides and peroxymonocarbonate type or peroxy ketal type organic peroxides are blended at an arbitrary ratio to shorten the crosslinking time and reduce foaming. It shows how to solve the problem. However, with the expansion of the solar cell market, further shortening of the crosslinking time has been desired, and it is required to perform crosslinking in a shorter time without including a dialkyl peroxide type having a high half-life temperature.

特開平11−26791号公報JP 11-26791 A

しかしながら、特許文献1のような有機過酸化物の配合では、確実に発泡(膨れ)を防止できないことが知見された。そこで、本発明者が鋭意検討の結果、ある特定の有機過酸化物のみを配合することによって、太陽電池モジュールにおける膨れを確実に防止できることを知見し、本発明を完成させるに至った。   However, it has been found that foaming (blowing) cannot be reliably prevented by blending an organic peroxide as in Patent Document 1. Therefore, as a result of intensive studies by the present inventors, it has been found that the swelling of the solar cell module can be reliably prevented by blending only a specific organic peroxide, and the present invention has been completed.

すなわち、本発明は上記課題を解決するものであって、その目的とするところは、有機過酸化物に起因する膨れを確実に防止できる、太陽電池モジュール用封止材を提供することにある。   That is, this invention solves the said subject, and the place made into the objective is providing the sealing material for solar cell modules which can prevent the swelling resulting from an organic peroxide reliably.

そのための手段として、本発明は、EVAと、有機過酸化物とを含有する太陽電池モジュール用封止材であって、前記有機過酸化物として、下記一般式で示される有機過酸化物(1)と有機過酸化物(2)の重量比が(1)/(2)=100/10〜100/100であることを特徴とする。

Figure 0005927975

Figure 0005927975
As a means therefor, the present invention is a sealing material for a solar cell module containing EVA and an organic peroxide, wherein the organic peroxide represented by the following general formula (1) ) And the organic peroxide (2) in a weight ratio of (1) / (2) = 100/10 to 100/100.
Figure 0005927975

Figure 0005927975

このとき、前記有機過酸化物の含有量は、前記EVA100重量部に対して、0.1〜3.0重量部とする。また、EVA中の酢酸ビニルより形成される構造単位は、25〜35重量%であることが好ましい。   At this time, the content of the organic peroxide is 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the EVA. Moreover, it is preferable that the structural unit formed from the vinyl acetate in EVA is 25 to 35 weight%.

なお、本発明において数値範囲を示す「○○〜××」とは、その下限(○○)と上限(××)とを含む概念である。したがって、正確に表せば「○○以上××以下」となる。   In the present invention, “OO to XX” indicating a numerical range is a concept including a lower limit (OO) and an upper limit (XX). Therefore, if it is expressed accurately, it will be “XX or more and XX or less”.

本発明の封止材によれば、EVAに対して特定の有機過酸化物のみを配合していることによって、封止材の良好な耐候性、接着性、耐熱性などを担保しながら、EVAを短時間で架橋できると共に、さらに太陽電池モジュールの各界面における発泡(膨れ)を抑制できる。   According to the sealing material of the present invention, by blending only a specific organic peroxide with EVA, EVA ensures good weather resistance, adhesiveness, heat resistance and the like of the sealing material. Can be crosslinked in a short time, and foaming (swelling) at each interface of the solar cell module can be further suppressed.

一般的な太陽電池モジュールの基本的構造を示す断面図である。It is sectional drawing which shows the basic structure of a common solar cell module.

以下、本発明について詳細に説明する。本発明の封止材は、太陽電池モジュールにおいて、光入射側表面に配されるガラス板と基板側に配されるバックシートとを接着し、その間に配された太陽電池用セル(素子)を封止するためのものであって、EVAと、所定の有機過酸化物のみとを含有する。適用対象となる太陽電池モジュールは、上記基本的構成となるものであれば特に限定されず、例えば結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、銅インジウムセレナイド太陽電池、及び化合物半導体太陽電池等が挙げられる。   Hereinafter, the present invention will be described in detail. In the solar cell module, the sealing material of the present invention adheres a glass plate disposed on the light incident side surface and a back sheet disposed on the substrate side, and has a solar cell (element) disposed therebetween. It is for sealing and contains EVA and only a predetermined organic peroxide. The solar cell module to be applied is not particularly limited as long as it has the above basic configuration. For example, a crystalline silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, a copper indium selenide solar cell, and a compound A semiconductor solar cell etc. are mentioned.

(エチレン−酢酸ビニル共重合体)
エチレン−酢酸ビニル共重合体(EVA)は、封止材の主体を成す成分である。EVA中における酢酸ビニルの含有率、すなわち酢酸ビニルより形成される構造単位は、25〜35重量%が好ましい。酢酸ビニルの含有率が35重量%を超えると、粘着性が増大して取り扱いが困難になる。一方、酢酸ビニルの含有率が25重量%未満になると、封止材が硬くなるため加工性が低下し、また、封止材は硬化に伴い緩衝材としての機能が低下するため、封止材で保護されている太陽電池用セルが衝撃により割れやすくなるので好ましくない。
(Ethylene-vinyl acetate copolymer)
Ethylene-vinyl acetate copolymer (EVA) is a component that constitutes the main component of the sealing material. The content of vinyl acetate in EVA, that is, the structural unit formed from vinyl acetate is preferably 25 to 35% by weight. When the vinyl acetate content exceeds 35% by weight, the tackiness increases and handling becomes difficult. On the other hand, when the content of vinyl acetate is less than 25% by weight, the sealing material becomes hard, so that the workability is lowered. Also, the sealing material has a function as a cushioning material as it is cured. Since the solar cell protected by is easily broken by impact, it is not preferable.

(有機過酸化物)
本発明の封止材には、有機過酸化物として、下記一般式(1)で示されるt−ブチル−(2−エチルヘキシル)モノパーオキシカーボネートと下記一般式(2)で示される1,1−ジ(t−アミルパーオキシ)シクロヘキサンが、(1)/(2)の重量比が100/10〜100/100の割合で配合される。有機過酸化物(1)と有機過酸化物(2)を100/10〜100/100の割合で配合することで、封止材の良好な耐候性、接着性、耐熱性などを担保しながら、EVAを短時間で架橋できると共に、さらに太陽電池モジュールの各界面における発泡(膨れ)を抑制できる。
(Organic peroxide)
In the sealing material of the present invention, as an organic peroxide, t-butyl- (2-ethylhexyl) monoperoxycarbonate represented by the following general formula (1) and 1,1 represented by the following general formula (2) -Di (t-amylperoxy) cyclohexane is blended at a weight ratio of (1) / (2) of 100/10 to 100/100. By blending the organic peroxide (1) and the organic peroxide (2) in a ratio of 100/10 to 100/100, while ensuring good weather resistance, adhesion, heat resistance, etc. of the sealing material EVA can be crosslinked in a short time, and foaming (blowing) at each interface of the solar cell module can be further suppressed.

Figure 0005927975
Figure 0005927975

Figure 0005927975
Figure 0005927975

封止材中における有機過酸化物の含有量は、EVA100重量部に対して0.1〜3.0重量部とし、より好ましくは0.3〜2.5重量部とする。EVA100重量部に対して有機過酸化物の含有量が0.1重量部未満では、架橋反応後のEVAのゲル分率(架橋度)が低くかったり、架橋時間が長くなるため、実用に適さない。一方、EVA100重量部に対して有機過酸化物の含有量が5.0重量部を超えると、EVAの架橋が速く、太陽電池モジュール製造時の使い勝手が著しく悪くなり、さらには混合有機過酸化物の残存を引き起こす。この混合有機過酸化物の残存は封止材の着色等を引き起こし、封止材の光透過性を低下させるため、封止材の間に配置される太陽電池用セルの受光量が低減し、結果的に太陽電池モジュールにおける光電変換効率が低下する。   Content of the organic peroxide in a sealing material shall be 0.1-3.0 weight part with respect to 100 weight part of EVA, More preferably, you may be 0.3-2.5 weight part. If the content of the organic peroxide is less than 0.1 parts by weight with respect to 100 parts by weight of EVA, the gel fraction (crosslinking degree) of EVA after the crosslinking reaction is low or the crosslinking time is long. Absent. On the other hand, when the content of the organic peroxide exceeds 5.0 parts by weight with respect to 100 parts by weight of EVA, the crosslinking of EVA is fast, and the usability at the time of manufacturing the solar cell module is remarkably deteriorated. Cause the survival of. The remaining of the mixed organic peroxide causes coloring of the sealing material and the like, and decreases the light transmittance of the sealing material, so that the amount of received light of the solar battery cell disposed between the sealing materials is reduced, As a result, the photoelectric conversion efficiency in the solar cell module is lowered.

(その他の添加剤)
本発明の封止材には、必要に応じてその他種々の添加剤を配合することができる。例えば、接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては、例えば有機珪素化合物や有機チタン化合物を挙げることができる。有機珪素化合物としては、ビニル基、メタクリロキシアルキル基、アクリロキシアルキル基、エポキシ基のような反応性有機基と、ハロゲン、アルコキシ基、アセトキシ基のような加水分解性基とを有する化合物を例示できる。具体的には、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルメトキシシラン、ビニルトリアセトキシシランのような不飽和基を有する化合物の1種または2種以上を使用できる。カップリング剤は、EVA100重量部に対して、0.1〜10重量部程度、好ましくは0.5〜5重量部程度配合すればよい。
(Other additives)
Various other additives can be blended in the sealing material of the present invention as necessary. For example, a coupling agent can be blended in order to improve adhesiveness. Examples of the coupling agent include organic silicon compounds and organic titanium compounds. Examples of organosilicon compounds include compounds having reactive organic groups such as vinyl groups, methacryloxyalkyl groups, acryloxyalkyl groups, and epoxy groups, and hydrolyzable groups such as halogens, alkoxy groups, and acetoxy groups. it can. Specifically, one or more of compounds having an unsaturated group such as vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropylmethoxysilane, and vinyltriacetoxysilane can be used. . The coupling agent may be blended in an amount of about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight with respect to 100 parts by weight of EVA.

また、架橋速度や架橋効率を高めるために、架橋助剤を配合することができる。架橋助剤としては、例えばポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物等を挙げることができる。具体的には、トリアリルイソシアヌレート、トリアリルシアレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレートのようなポリ(メタ)アクリロキシ化合物の1種または2種以上を使用できる。   Moreover, in order to improve a crosslinking speed and crosslinking efficiency, a crosslinking adjuvant can be mix | blended. Examples of the crosslinking aid include polyunsaturated compounds such as polyallyl compounds and poly (meth) acryloxy compounds. Specifically, polyallyl compounds such as triallyl isocyanurate, triallyl cyanate, diallyl phthalate, diallyl fumarate, diallyl maleate, poly (meth) acryloxy compounds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate 1 type (s) or 2 or more types can be used.

さらに、本発明の効果を阻害しない範囲で、酸化防止剤、光安定剤、紫外線吸収剤、着色剤などを配合することもできる。酸化防止剤としては、例えばフェノール系安定剤、硫黄系安定剤、燐酸系安定剤などが挙げられる。光安定剤としては、例えばヒンダードアミン系光安定剤等が挙げられる。紫外線吸収剤としては、例えばベンゾフェノン系、ベンゾトリアゾール系等が挙げられる。着色剤としては、例えば酸化チタン等が挙げられる。添加剤として高分子化合物を添加する場合は、比較的分子量の大きい低揮発性のものが好ましい。   Furthermore, antioxidants, light stabilizers, ultraviolet absorbers, colorants, and the like can be blended within a range that does not impair the effects of the present invention. Examples of the antioxidant include a phenol stabilizer, a sulfur stabilizer, and a phosphoric acid stabilizer. Examples of the light stabilizer include hindered amine light stabilizers. Examples of the ultraviolet absorber include benzophenone and benzotriazole. Examples of the colorant include titanium oxide. When a polymer compound is added as an additive, a low volatility compound having a relatively large molecular weight is preferable.

(製造方法)
封止材は、EVA、所定の有機過酸化物、及び必要に応じて適宜配合されるその他の添加剤を含む組成物を、単軸押出機、2軸押出機、バンバリーミキサー、ニーダー、オープンロールなどの汎用の混練装置を使用して、実質的に有機過酸化物が分解しない温度、具体的には50〜110℃程度で混練し、一般的には押出成形やカレンダー成形等によりシート状にされる。シート状とする場合は、その厚みは0.1〜1.0mm程度とすればよい。なお、封止材の形状は、太陽電池モジュールの形状などに合わせて適宜変更可能であり、シート状に限定されるものではない。
(Production method)
The sealing material is a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, an open roll containing a composition containing EVA, a predetermined organic peroxide, and other additives appropriately blended as necessary. Is kneaded at a temperature at which the organic peroxide is not substantially decomposed, specifically about 50 to 110 ° C., and is generally formed into a sheet by extrusion molding, calendar molding, or the like. Is done. In the case of a sheet shape, the thickness may be about 0.1 to 1.0 mm. In addition, the shape of a sealing material can be suitably changed according to the shape of a solar cell module, etc., and is not limited to a sheet form.

その後は、従来から公知の方法にて太陽電池モジュールを製造すればよい。すなわち、太陽電池用セルを少なくとも2枚の封止材で挟み、その両外側にガラス板及びバックシートを重ね合わせた状態で、有機過酸化物の分解温度以上、具体的には115℃以上、好ましくは120℃以上の温度で加熱・加圧することにより接着・封止することで、太陽電池モジュールを製造できる。なお、より接着性を高めるため、ガラス板やバックシートは予めプライマー処理しておくと好ましい。また、封止材は太陽電池用セルにラミネートしておくこともできる。   Thereafter, the solar cell module may be manufactured by a conventionally known method. That is, sandwiching the solar cell between at least two encapsulants, with the glass plate and the back sheet superimposed on both outer sides, the organic peroxide decomposition temperature or higher, specifically 115 ° C. or higher, Preferably, a solar cell module can be manufactured by bonding and sealing by heating and pressurizing at a temperature of 120 ° C. or higher. In addition, in order to improve adhesiveness, it is preferable that the glass plate or the back sheet is previously primed. Moreover, the sealing material can also be laminated on the solar cell.

加熱は、有機過酸化物がほぼ完全に分解するまで行うことが好ましい。この加熱処理により、EVAが架橋され、封止材とその他の構成要素とが強固に接着される。加熱処理は、二段階で行うこともできる。例えば、真空条件下において1〜5分程度加熱して仮接着を行い、次いで常圧下にてさらに5〜30分程度加熱して完全に接着することもできる。このようにして製造される太陽電池モジュールの封止材においては、EVAの架橋密度の指標となるゲル分率が80%以上、好ましくは90%以上となっていることが好ましい。   Heating is preferably performed until the organic peroxide is almost completely decomposed. By this heat treatment, EVA is crosslinked, and the sealing material and other components are firmly bonded. The heat treatment can also be performed in two stages. For example, it can be temporarily bonded by heating for about 1 to 5 minutes under vacuum conditions, and then further bonded for about 5 to 30 minutes under normal pressure for complete bonding. In the sealing material of the solar cell module manufactured as described above, it is preferable that the gel fraction serving as an index of the crosslinking density of EVA is 80% or more, preferably 90% or more.

EVA(酢酸ビニル含有量28重量%)100重量部に対して、表1,2に示す有機過酸化物を表1,2に示す割合で配合した各種封止材組成物を、80℃で押出成形により加熱圧延することにより0.5mm厚のシート状封止材を形成した。   Various sealing material compositions containing organic peroxides shown in Tables 1 and 2 in proportions shown in Tables 1 and 2 are extruded at 80 ° C. with respect to 100 parts by weight of EVA (vinyl acetate content 28% by weight). A sheet-like sealing material having a thickness of 0.5 mm was formed by heating and rolling by molding.

なお、比較例として使用した有機過酸化物は、下記一般式(3)・(4)で表される。
1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン:

Figure 0005927975

n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート:
Figure 0005927975
The organic peroxide used as a comparative example is represented by the following general formulas (3) and (4).
1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane:
Figure 0005927975

n-Butyl-4,4-di (t-butylperoxy) valerate:
Figure 0005927975

得られた各実施例及び比較例の封止材に対して、発泡試験(膨れ性の判定)と、架橋度の指標となるゲル分率の測定を行った。その結果も表1,2に示す。発泡試験及びゲル分率の測定は、以下のようにして行った。   A foaming test (determination of swellability) and measurement of a gel fraction serving as an index of the degree of crosslinking were performed on the obtained sealing materials of Examples and Comparative Examples. The results are also shown in Tables 1 and 2. The foaming test and the measurement of the gel fraction were performed as follows.

<発泡試験>
各実施例および比較例の封止材を、縦3cm×横6cmに切り出し、MSパウチフィルム(株式会社明光商会製)に挟み、加熱してラミネート加工したものを135℃で4分間加熱し、その際に発生するガスによるフィルムの膨れを目視で観察し、評価した。
比較例2と同レベル以下の発泡の場合○、比較例2よりも発泡が顕著な場合を×として評価した。
<Foaming test>
The sealing materials of each Example and Comparative Example were cut into 3 cm length × 6 cm width, sandwiched between MS pouch films (manufactured by Meiko Shokai Co., Ltd.), heated and laminated, and heated at 135 ° C. for 4 minutes. The swelling of the film due to the gas generated at the time was visually observed and evaluated.
The case of foaming below the same level as in Comparative Example 2 was evaluated as x, and the case of foaming more remarkable than Comparative Example 2 was evaluated as x.

<ゲル分率の測定>
各実施例および比較例の封止材を用いて、JSRトレーディング(株)製キュラストメーターV型により、135℃で4分架橋を行った。架橋後のEVA封止材を秤量し(Xg)、これを110℃のキシレン中に12時間浸漬して、110℃のキシレン中で洗浄・乾燥させた200メッシュの金網で不溶解分をろ過し、金網上の残渣を真空乾燥して乾燥残渣の重量を測定し(Yg)、ゲル分率を算出した(ゲル分率(重量%)=(Y/X)×100)。
<Measurement of gel fraction>
Crosslinking was performed at 135 ° C. for 4 minutes using a curast meter V type manufactured by JSR Trading Co., Ltd. using the sealing materials of each Example and Comparative Example. The EVA sealing material after cross-linking is weighed (Xg), immersed in xylene at 110 ° C. for 12 hours, and the insoluble matter is filtered through a 200 mesh wire net washed and dried in xylene at 110 ° C. The residue on the wire net was vacuum dried, the weight of the dried residue was measured (Yg), and the gel fraction was calculated (gel fraction (% by weight) = (Y / X) × 100).

<スコーチ時間>
JIS K 6300−2:2001に準じて、各実施例および比較例の封止材を用いて、JSRトレーディング(株)製キュラストメーターV型により、上型及び下型の温度を設定し、±1°の振幅角度でトルク測定を行った。100℃で架橋した場合の最小トルク値から0.1N・mに達するまでの時間をスコーチ時間として求めた。スコーチ時間が45分以上の場合を○、45分未満の場合を×として評価した。
<Scorch time>
In accordance with JIS K 6300-2: 2001, the temperature of the upper mold and the lower mold was set with a curast meter V type manufactured by JSR Trading Co., Ltd. using the sealing materials of the examples and comparative examples, and ± Torque was measured at an amplitude angle of 1 °. The time required to reach 0.1 N · m from the minimum torque value when crosslinked at 100 ° C. was determined as the scorch time. The case where the scorch time was 45 minutes or more was evaluated as ◯, and the case where it was less than 45 minutes was evaluated as ×.

Figure 0005927975
Figure 0005927975

Figure 0005927975
Figure 0005927975

表1の結果から明らかなように、EVAに対して一般式(1)および(2)で示される所定の有機過酸化物を(1)/(2)の重量比が100/10〜100/100で配合した封止材であれば、スコーチや発泡を抑制することができ、ゲル分率が80%以上となる太陽電池用封止材が得られた。一方、比較例1においては、有機過酸化物が5.0重量部含まれているため、熱分解によるガスの発生量が多く発泡が生じた。比較例2および3においては、有機過酸化物(2)単体もしくは重量比が高いためスコーチが生じた。比較例4および5においては、有機過酸化物の熱分解によりガスが発生し発泡が生じ、有機過酸化物(2)が含まれていないため、架橋時間の短縮が困難であった。比較例6および7においては、有機過酸化物の熱分解によりガスが生じ発泡が生じた。   As is clear from the results in Table 1, the predetermined organic peroxide represented by the general formulas (1) and (2) with respect to EVA has a weight ratio of (1) / (2) of 100/10 to 100 / If it was the sealing material mix | blended with 100, scorch and foaming could be suppressed and the sealing material for solar cells from which a gel fraction will be 80% or more was obtained. On the other hand, in Comparative Example 1, since 5.0 parts by weight of the organic peroxide was contained, the amount of gas generated by thermal decomposition was large and foaming occurred. In Comparative Examples 2 and 3, scorch occurred because the organic peroxide (2) alone or the weight ratio was high. In Comparative Examples 4 and 5, gas was generated due to thermal decomposition of the organic peroxide, foaming occurred, and the organic peroxide (2) was not included, so it was difficult to shorten the crosslinking time. In Comparative Examples 6 and 7, gas was generated due to thermal decomposition of the organic peroxide and foaming occurred.

101 太陽電池用セル
102 ガラス板
103 バックシート
104 封止材

101 Solar Cell 102 Glass Plate 103 Back Sheet 104 Sealing Material

Claims (1)

エチレン−酢酸ビニル共重合体(EVA)と、有機過酸化物とを含有する太陽電池モジュール用封止材であって、
前記有機過酸化物として、下記一般式で示される有機過酸化物(1)と有機過酸化物(2)の重量比が、(1)/(2)=100/10〜100/100であり、
前記有機過酸化物の含有量が、前記EVA100重量部に対して0.3〜3.0重量部であることを特徴とする、太陽電池モジュール用封止材。
Figure 0005927975

Figure 0005927975

A sealing material for a solar cell module containing an ethylene-vinyl acetate copolymer (EVA) and an organic peroxide,
As the organic peroxide, the weight ratio of the organic peroxide (1) and the organic peroxide (2) represented by the following general formula is (1) / (2) = 100/10 to 100/100. ,
Content of the said organic peroxide is 0.3-3.0 weight part with respect to 100 weight part of said EVA , The sealing material for solar cell modules characterized by the above-mentioned .
Figure 0005927975

Figure 0005927975

JP2012033910A 2012-02-20 2012-02-20 Sealant for solar cell module Active JP5927975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033910A JP5927975B2 (en) 2012-02-20 2012-02-20 Sealant for solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033910A JP5927975B2 (en) 2012-02-20 2012-02-20 Sealant for solar cell module

Publications (2)

Publication Number Publication Date
JP2013171915A JP2013171915A (en) 2013-09-02
JP5927975B2 true JP5927975B2 (en) 2016-06-01

Family

ID=49265699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033910A Active JP5927975B2 (en) 2012-02-20 2012-02-20 Sealant for solar cell module

Country Status (1)

Country Link
JP (1) JP5927975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126605A (en) * 2013-12-26 2015-07-06 京セラ株式会社 Piezoelectric actuator, piezoelectric vibration device having the same, portable terminal, acoustic generator, and electronic apparatus
CN111718665B (en) * 2017-08-11 2022-11-22 杭州福斯特应用材料股份有限公司 Adhesive film for packaging photovoltaic module with multilayer structure and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034382B2 (en) * 1997-07-08 2008-01-16 三井・デュポンポリケミカル株式会社 Protection sheet for solar cell module
WO2007116928A1 (en) * 2006-04-05 2007-10-18 Bridgestone Corporation Sealing film for solar cell and solar cell using such sealing film
JP4560001B2 (en) * 2006-04-05 2010-10-13 株式会社ブリヂストン Solar cell sealing film and solar cell using the sealing film

Also Published As

Publication number Publication date
JP2013171915A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JPWO2007116928A1 (en) Solar cell sealing film and solar cell using the sealing film
JP5587659B2 (en) Solar cell sealing film and solar cell using the same
WO2013111853A1 (en) Sealing film for solar cells, and solar cell using same
JP2014212318A (en) Encapsulant composition for solar cell module, encapsulant sheet for solar cell module, and solar cell module
EP2685508B1 (en) Sealing film for solar cells and solar cell using same
EP2770541B1 (en) Solar cell sealing film and solar cell using same
JP5927975B2 (en) Sealant for solar cell module
JP5482276B2 (en) Solar cell encapsulant and solar cell module
JP2011216829A (en) Composition, sheet, and solar cell module
JP2010225926A (en) Sealing sheet for solar cell
JP5891836B2 (en) Sealant for solar cell module
JP5942565B2 (en) Solar cell encapsulant composition
KR20160129363A (en) Encapsulant sheet composition for solar cell, encapsulant sheet and photovoltaic module using the same
JP6036093B2 (en) Sealant for solar cell module
JP2010219174A (en) Sealing sheet for solar cell
JP2016092353A (en) Seal film for solar battery and solar battery module
JP2013077622A (en) Sealant for solar battery, and solar battery module
JP5891833B2 (en) Solar cell encapsulant
KR20120024515A (en) Adhesive sheet composition for thin film solar battery, adhesive sheet and thin film solar battery using the same
JP2014135383A (en) Solar battery sealing material and solar battery module
JP5888075B2 (en) Solar cell encapsulant composition
JP2017103410A (en) Method for manufacturing sealant for solar battery, and composition for manufacturing sealant for solar battery
JP5369298B2 (en) Solar cell encapsulating sheet and solar cell module.
KR20240045612A (en) A composition for an encapsulant film and an encapsulant film comprising the same
JP2014062174A (en) Adhesive sheet and solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5927975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250