JP6417833B2 - レーザ測距装置、プログラム及びレーザ測距装置の補正方法 - Google Patents

レーザ測距装置、プログラム及びレーザ測距装置の補正方法 Download PDF

Info

Publication number
JP6417833B2
JP6417833B2 JP2014203177A JP2014203177A JP6417833B2 JP 6417833 B2 JP6417833 B2 JP 6417833B2 JP 2014203177 A JP2014203177 A JP 2014203177A JP 2014203177 A JP2014203177 A JP 2014203177A JP 6417833 B2 JP6417833 B2 JP 6417833B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
scanning mirror
cpu
gain value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014203177A
Other languages
English (en)
Other versions
JP2016070874A (ja
Inventor
手塚 耕一
耕一 手塚
飯田 弘一
弘一 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014203177A priority Critical patent/JP6417833B2/ja
Publication of JP2016070874A publication Critical patent/JP2016070874A/ja
Application granted granted Critical
Publication of JP6417833B2 publication Critical patent/JP6417833B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、レーザ測距装置、プログラム及びレーザ測距装置の補正方法に関する。
従来、監視視野の拡大を図る走査型レーザレーダが知られている(例えば、特許文献1参照)。
特開2004−157044号公報
しかしながら、受光レンズを広角とし測定範囲を拡大した場合、ノイズも増加するが、従来技術では十分にノイズの影響を低減することはできなかった。
一つの側面では、測定範囲を増加させてもノイズの影響を低減することが可能なレーザ測距装置等を提供することを目的とする。
本願に開示するレーザ測距装置は、所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子それぞれのゲイン値を記憶したテーブルと、前記テーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出す読み出し部と、読み出した受光素子に対応するゲイン値に基づき前記受光素子から出力された信号を補正する補正部とを備える。
一つの側面では、測定範囲を増加させてもノイズの影響を低減することが可能となる。
レーザ測距装置のハードウェア群を示す説明図である。 検出回路の要部を示す回路図である。 テーブルのレコードレイアウトを示す説明図である。 テーブルの生成処理の手順を示すフローチャートである。 計測処理の手順を示すフローチャートである。 実施の形態2に係るレーザ測距装置のハードウェア群を示すブロック図である。 テーブルの生成処理手順を示すフローチャートである。 テーブルの生成処理手順を示すフローチャートである。 計測システムの概要を示す説明図である。 実施の形態3に係るレーザ測距装置のハードウェア群を示すブロック図である。 選択テーブルのレコードレイアウトを示す説明図である。 テーブルの選択処理手順を示すフローチャートである。 上述した形態のレーザ測距装置の動作を示す機能ブロック図である。 実施の形態4に係るレーザ測距装置のハードウェア群を示すブロック図である。
実施の形態1
以下実施の形態を、図面を参照して説明する。図1はレーザ測距装置1のハードウェア群を示す説明図である。レーザ測距装置1は、レーザ光を発光するレーザ光源13と、レーザ光源13を駆動するレーザ駆動回路12と、レーザ光を走査する走査ミラー15と、走査ミラー15を駆動制御する走査ミラーコントローラ14とを含む。またレーザ測距装置1は、光学フィルタ16及び結像レンズ17を介して走査ミラー15によるレーザ光の走査領域内の光学画像が結像される受光素子アレイ18を有している。受光素子アレイ18には、多数の受光素子がマトリクス状に配列されている。その他レーザ測距装置1は、検出回路19、測定回路101、テーブル102及びCPU(Central Processing Unit)11を含む。
制御部としてのCPU11は、バスを介してハードウェア各部と接続されている。CPU11はRAM(Random Access Memory)103に記憶された制御プログラム15Pに従いハードウェア各部を制御する。RAM103は例えばSRAM(Static RAM)、DRAM(Dynamic RAM)、フラッシュメモリ等である。RAM103は、CPU11による各種プログラムの実行時に発生する種々のデータを一時的に記憶する。
レーザ駆動回路12は、CPU11が出力する動作開始指令で駆動され、レーザ光源13に周期的に送光パルスを出力する。レーザ光源13は送光パルスの入力毎にレーザ光を走査ミラー15に対して発射する。走査ミラー15は、例えば半導体マイクロマシン技術を応用して製造されるMEMS(Micro Electro Mechanical System)ミラーを用いる。なお、走査ミラー15としては、半導体ミラーに限らず、ポリゴンミラーまたはガルバノミラー等を用いてもよい。
走査ミラーコントローラ14は、CPU11から出力される動作開始指令で駆動し、走査ミラー15を揺動駆動する。また走査ミラーコントローラ14は、走査ミラー15に供給する駆動電流値に基づいて走査ミラー15の走査位置情報をCPU11に送る。
検出回路19は受光素子アレイ18から出力される信号をテーブル102に記憶されたゲインに基づき、補正のため増幅する。検出回路19は増幅した信号を測定回路101へ出力する。測定回路101は、レーザ駆動回路12から送光パルス発生情報が出力されてから、受光素子アレイ18にて図示しない物体から反射した光を受光するまでの時間に基づいて物体までの距離を算出する。
図2は検出回路19の要部を示す回路図である。受光素子アレイ18の各受光素子をD1、D2、・・・DN(場合により、受光素子Dで代表する)で示す。受光素子Dには抵抗R及びアンプ回路Kが直列に接続されている。各受光素子Dに接続される抵抗をR1、R2、・・・RN(場合により、抵抗Rで代表する)で示す。また各受光素子Dに接続されるアンプ回路Kのゲイン値をK1、K2、・・・KNで表す。
ここで、各受光素子Dの信号成分をa1、a2、・・・aN、ノイズ成分をb1、b2、・・・bNとした場合、信号対雑音比(SNR)は以下の式1で表すことができる。なお、ノイズ成分は、レーザ測距装置1の回路内に存在する抵抗の熱雑音、暗電流に起因するショット雑音、及び光電流に起因するショット雑音の二乗平均により算出することができる。
Figure 0006417833
図3はテーブル102のレコードレイアウトを示す説明図である。テーブル102には走査ミラー15の回転角度である水平角度及び垂直角度に対応付けて各受光素子D1、D2、・・・DNに対応する各ゲイン値K1、K2、・・・KNが記憶されている。水平角度及び垂直角度に対応する各ゲイン値は、信号対雑音比が最大値となる値が記憶されている。CPU11は、特定の物体に照射を行い各角度の組み合わせにおいて、信号対雑音比が最大値となるよう、式1を参照してゲイン値を算出する。
図4はテーブル102の生成処理の手順を示すフローチャートである。CPU11は、走査ミラー15の水平角度及び垂直角度の初期設定を行う(ステップS41)。CPU11は、ゲイン値の組み合わせをRAM103から読み出す(ステップS42)。CPU11は、レーザ光を照射し、各受光素子Dの信号成分及びノイズ成分を取得する(ステップS43)。CPU11は、各受光素子Dの信号成分、ノイズ成分及びゲイン値に基づき、信号対雑音比を算出する(ステップS44)。CPU11は、全てのゲイン値の組み合わせに対応する処理を終了したか否かを判断する(ステップS45)。
CPU11は、全てのゲイン値の組み合わせに対する処理を終了していないと判断した場合(ステップS45でNO)、処理をステップS42へ戻す。CPU11は、他のゲイン値の組み合わせを読み出し、以上の処理を繰り返す。これにより、様々なゲイン値の組み合わせに対する信号対雑音比が算出される。
CPU11は、全てのゲイン値の組み合わせに対する処理を終了したと判断した場合(ステップS45でYES)、処理をステップS46へ移行させる。CPU11は、ステップS44で算出した信号対雑音比の中から、信号対雑音比が最大となる各受光素子Dに対するゲイン値の組み合わせを抽出する(ステップS46)。CPU11は、水平角度及び垂直角度に対応付けてゲイン値の組み合わせをテーブル102に記憶する(ステップS47)。
CPU11は、全ての水平角度及び垂直角度の組み合わせに対する処理を終了したか否かを判断する(ステップS48)。CPU11は、処理を終了していないと判断した場合(ステップS48でNO)、処理をステップS49へ移行させる。CPU11は、まだ処理を終えていない新たな水平角度及び垂直角度を設定する(ステップS49)。CPU11は、処理をステップS42へ戻す。以上の処理を繰り返すことにより、様々な水平角度及び垂直角度の組み合わせに対する、最大値を有する信号対雑音比が算出される。CPU11は、全ての組み合わせに対する処理を終了したと判断した場合(ステップS48でYES)、一連の処理を終了する。
図5は計測処理の手順を示すフローチャートである。CPU11は、走査ミラー15の水平角度及び垂直角度を設定する(ステップS51)。CPU11は、図4の処理により算出したテーブル102から水平角度及び垂直角度に対応するゲイン値を読み出し、検出回路19のゲイン回路にゲイン値を設定する(ステップS52)。CPU11は、レーザ光を発射する命令をレーザ駆動回路12に出力する(ステップS53)。
CPU11は、受光素子アレイ18から反射光を検知する(ステップS54)。検出回路19は、各受光素子Dの信号成分に設定したゲイン値を乗じて検出信号を補正する(ステップS55)。検出回路19は補正した検出信号を測定回路101へ出力する。測定回路101はレーザ光の発射時刻及び反射光の検知時刻に基づき距離を算出する(ステップS56)。測定回路101は算出した距離をCPU11へ出力する。
CPU11は、全ての水平角度及び垂直角度について、上述した処理を終了したか否かを判断する(ステップS57)。CPU11は、上述した処理を終了していないと判断した場合(ステップS57でNO)、処理をステップS51へ戻す。CPU11は、新たな水平角度及び垂直角度について同様の処理を行う。これにより、各水平角度及び垂直角度での距離が算出される。CPU11は、全ての水平角度及び垂直角度についての処理を終了したと判断した場合(ステップS57でYES)、一連の処理を終了する。これにより、取り込み角度を増加させた場合でも、ノイズの影響を低減することが可能となる。また信号対雑音比が最大となるテーブルを生成することとしたので、より精度の高い距離測定が可能となる。
実施の形態2
図6は実施の形態2に係るレーザ測距装置1のハードウェア群を示すブロック図である。図6に示すようにケント紙等の対象物2をレーザ測距装置1の全面に設置し、外乱光等のノイズが極力少ない状態で、レーザの照射を行い、ゲイン値を算出するようにしても良い。また実施の形態1では信号対雑音比が最大となるゲインの組み合わせを算出したが、以下に述べるように予めRAM103に記憶した閾値以上のゲインの組み合わせを採用しても良い。
図7及び図8はテーブル102の生成処理手順を示すフローチャートである。CPU11は、RAM103から閾値を読み出す(ステップS70)。CPU11は、走査ミラー15の水平角度及び垂直角度の初期設定を行う(ステップS71)。CPU11は、ゲイン値の組み合わせをRAM103から読み出す(ステップS72)。CPU11は、レーザ光を照射し、各受光素子Dの信号成分及びノイズ成分を取得する(ステップS73)。CPU11は、各受光素子Dの信号成分、ノイズ成分及びゲイン値に基づき、信号対雑音比を算出する(ステップS74)。
CPU11は、算出した信号対雑音比が閾値以上か否かを判断する(ステップS75)。CPU11は、閾値以上と判断した場合(ステップS75でYES)、処理をステップS77へ移行させる。CPU11は、閾値以上となるゲイン値の組み合わせを抽出する(ステップS77)。CPU11は、その後処理をステップS79へ移行させる。CPU11は、信号対雑音比が閾値以上でないと判断した場合(ステップS75でNO)、処理をステップS76へ移行させる。CPU11は、全てのゲイン値の組み合わせに対応する処理を終了したか否かを判断する(ステップS76)。
CPU11は、全てのゲイン値の組み合わせに対する処理を終了していないと判断した場合(ステップS76でNO)、処理をステップS72へ戻す。CPU11は、他のゲイン値の組み合わせを読み出し、以上の処理を繰り返す。これにより、様々なゲイン値の組み合わせに対する信号対雑音比が算出される。
CPU11は、全てのゲイン値の組み合わせに対する処理を終了したと判断した場合(ステップS76でYES)、処理をステップS78へ移行させる。CPU11は、ステップS74で算出した信号対雑音比の中から、信号対雑音比が最大となる各受光素子Dに対するゲイン値の組み合わせを抽出する(ステップS78)。CPU11は、ステップS78及びS77の処理後、ステップS79へ処理を移行する。CPU11は、水平角度及び垂直角度に対応付けてゲイン値の組み合わせをテーブル102に記憶する(ステップS79)。
CPU11は、全ての水平角度及び垂直角度の組み合わせに対する処理を終了したか否かを判断する(ステップS80)。CPU11は、処理を終了していないと判断した場合(ステップS80でNO)、処理をステップS81へ移行させる。CPU11は、まだ処理を終えていない新たな水平角度及び垂直角度を設定する(ステップS81)。CPU11は、処理をステップS72へ戻す。
以上の処理を繰り返すことにより、様々な水平角度及び垂直角度の組み合わせに対する、閾値以上または最大値を有する信号対雑音比が算出される。CPU11は、全ての組み合わせに対する処理を終了したと判断した場合(ステップS80でYES)、一連の処理を終了する。これにより、出荷時に適切なテーブルを生成することができる。また、予め定めた閾値を超えるゲイン値の組み合わせを採用することで処理の高速化を図ることが可能となる。
本実施の形態2は以上の如きであり、その他は実施の形態1と同様であるので、対応する部分には同一の参照番号を付してその詳細な説明を省略する。
実施の形態3
実施の形態3は複数種のテーブルを利用する形態に関する。図9は計測システムの概要を示す説明図である。レーザ測距装置1には、レーザ測距装置1周辺の環境情報を取得する機器が有線または無線により接続されている。当該機器は車速センサ3、明るさセンサ4、図示しない温度センサまたは加速度センサ等のセンサの他、GPS(Global Positioning System)等である。本実施形態では機器を車速センサ3及び明るさセンサ4であるものとして説明する。またレーザ測距装置1、車速センサ3及び明るさセンサ4が自動車に設置されているものとして説明する。なお、自動車以外の移動体(例えばロボット、電車、船舶、スマートフォン等)に取り付けるほか、監視カメラ等の固定される物に設置しても良い。
車速センサ3は自動車の車速をレーザ測距装置1へ出力する。明るさセンサ4は明るさとして明度の情報をレーザ測距装置1へ出力する。図10は実施の形態3に係るレーザ測距装置1のハードウェア群を示すブロック図である。選択テーブル104がさらに設けられている。
図11は選択テーブル104のレコードレイアウトを示す説明図である。選択テーブル104は車速及び明度に対応付けて、複数種のテーブル102から使用すべき第1テーブル〜第4テーブルが記憶されている。例えば、車速が高(例えば時速50km以上)、明度が低(例えば8ビットで明度が120以下。なお、数値が大きいほど明るいものとする)の場合、夜間に高速走行している際に最適な第2テーブルが選択される。なお実施形態では4つの分類とする例を示すが、さらに細分化し、より多くのテーブル102を用意しても良い。
CPU11は、車速センサ3から出力される車速が「低」、かつ、明るさセンサ4から出力される明度が「低」の状態で、図4または図7及び図8に記載した処理方法により、第1テーブルを生成する。CPU11は、車速センサ3から出力される車速が「高」、かつ、明るさセンサ4から出力される明度が「低」の状態で、図4または図7及び図8に記載した処理方法により、第2テーブルを生成する。
CPU11は、車速センサ3から出力される車速が「低」、かつ、明るさセンサ4から出力される明度が「高」の状態で、図4または図7及び図8に記載した処理方法により、第3テーブルを生成する。CPU11は、車速センサ3から出力される車速が「高」、かつ、明るさセンサ4から出力される明度が「高」の状態で、図4または図7及び図8に記載した処理方法により、第4テーブルを生成する。CPU11は、生成した第1テーブル〜第4テーブルをテーブル102に記憶する。
図12はテーブルの選択処理手順を示すフローチャートである。CPU11は、測距指示を受け付けたか否かを判断する(ステップS121)。具体的にはCPU11は、図示しないECU(Engine Control Unit)から測距指示の入力を受け付けたか否かを判断する。CPU11は、測距指示を受け付けていない場合(ステップS121でNO)、指示を受け付けるまで待機する。CPU11は、測距指示を受け付けた場合(ステップS121でYES)、処理をステップS122へ移行させる。CPU11は、速度センサ3から速度を取得する(ステップS122)。CPU11は、明るさセンサ4から明度を取得する(ステップS123)。CPU11は、選択テーブル104を参照し、取得した明度及び速度に基づき、対応するテーブル102を呼び出す(ステップS124)。
CPU11は、走査ミラー15の水平角度及び垂直角度を設定する(ステップS125)。CPU11は、ステップS124により読み出したテーブル102から水平角度及び垂直角度に対応するゲイン値を読み出し、検出回路19のゲイン回路にゲイン値を設定する(ステップS126)。CPU11は、レーザ光を発射する命令をレーザ駆動回路12に出力する(ステップS127)。
CPU11は、受光素子アレイ18から反射光を検知する(ステップS128)。検出回路19は、各受光素子Dの信号成分に設定したゲイン値を乗じて検出信号を補正する(ステップS129)。検出回路19は補正した検出信号を測定回路101へ出力する。測定回路101はレーザ光の発射時刻及び反射光の検知時刻に基づき距離を算出する(ステップS1210)。測定回路101は算出した距離をCPU11へ出力する。
CPU11は、全ての水平角度及び垂直角度について、上述した処理を終了したか否かを判断する(ステップS1211)。CPU11は、上述した処理を終了していないと判断した場合(ステップS1211でNO)、処理をステップS125へ戻す。CPU11は、新たな水平角度及び垂直角度について同様の処理を行う。これにより、各水平角度及び垂直角度での距離が算出される。CPU11は、全ての水平角度及び垂直角度についての処理を終了したと判断した場合(ステップS1211でYES)、一連の処理を終了する。これにより、レーザ測距装置1の使用環境に応じて、適切なテーブルを活用し、制度を向上させることが可能となる。
本実施の形態3は以上の如きであり、その他は実施の形態1及び2と同様であるので、対応する部分には同一の参照番号を付してその詳細な説明を省略する。
実施の形態4
図13は上述した形態のレーザ測距装置1の動作を示す機能ブロック図である。CPU11が制御プログラム15Pを実行することにより、コンピュータ1は以下のように動作する。読み出し部131は、テーブル102を参照し、走査ミラー15の回転角度に応じた各受光素子Dのゲイン値を読み出す。補正部132は読み出したゲイン値に基づき受光素子Dから出力された信号を補正する。取得部133は環境情報を取得する。呼び出し部134は、取得した環境情報に応じたテーブル102を呼び出す。
図14は、実施の形態4に係るレーザ測距装置1のハードウェア群を示すブロック図である。レーザ測距装置1を動作させるためのプログラムは、ディスクドライブ、カードドライブ等の読み取り部10AにCD−ROM、DVD(Digital Versatile Disc)ディスク、メモリーカード、またはUSB(Universal Serial Bus)メモリ等の可搬型記録媒体1Aを読み取らせてRAM103に記憶しても良い。また当該プログラムを記憶したフラッシュメモリ等の半導体メモリ1Bをレーザ測距装置1内に実装しても良い。さらに、当該プログラムは、インターネット等の通信網を介して接続される他のサーバコンピュータ(図示せず)からダウンロードすることも可能である。以下に、その内容を説明する。
図14に示すレーザ測距装置1は、上述した各種ソフトウェア処理を実行するプログラムを、可搬型記録媒体1Aまたは半導体メモリ1Bから読み取り、或いは、通信網を介して他のコンピュータ(図示せず)からダウンロードする。当該プログラムは、制御プログラム15Pとしてインストールされ、RAM103にロードして実行される。これにより、上述したレーザ測距装置1として機能する。
本実施の形態4は以上の如きであり、その他は実施の形態1から3と同様であるので、対応する部分には同一の参照番号を付してその詳細な説明を省略する。
以上の実施の形態1乃至3を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)
所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子に対するゲイン値を記憶したテーブルと、
前記テーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出す読み出し部と、
読み出したゲイン値に基づき受光素子から出力された信号を補正する補正部と
を備えるレーザ測距装置。
(付記2)
前記テーブルは、所定角度にて走査ミラーにより反射されたレーザ光を受光する各受光素子の信号に基づき算出される信号対雑音比が最大値となるゲイン値を受光素子毎に記憶している
付記1に記載のレーザ測距装置。
(付記3)
前記テーブルは、所定角度にて走査ミラーにより反射されたレーザ光を受光する各受光素子の信号に基づき算出される信号対雑音比が、閾値以上となるゲイン値を受光素子毎に記憶している
付記1に記載のレーザ測距装置。
(付記4)
前記テーブルは、環境情報に対応付けて複数設けられ、
環境情報を取得する取得部と、
該取得部により取得した環境情報に応じたテーブルを呼び出す呼び出し部と
を備える付記1から3のいずれか一つに記載のレーザ測距装置。
(付記5)
前記テーブルは、明度に対応付けて複数設けられ、
明度を取得するセンサにより取得した明度に応じたテーブルを呼び出す呼び出し部と
を備える付記1から3のいずれか一つに記載のレーザ測距装置。
(付記6)
レーザ測距装置に、
所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子に対するゲイン値を記憶したテーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出し、
読み出したゲイン値に基づき受光素子から出力された信号を補正する
処理を実行させるプログラム。
(付記7)
所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子に対するゲイン値を記憶したテーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出し、
読み出したゲイン値に基づき受光素子から出力された信号を補正する
レーザ測距装置の補正方法。
1 レーザ測距装置
1A 可搬型記録媒体
1B 半導体メモリ
10A 読み取り部
2 対象物
3 車速センサ
4 明るさセンサ
11 CPU
12 レーザ駆動回路
13 レーザ光源
14 走査ミラーコントローラ
15 走査ミラー
15P 制御プログラム
16 光学フィルタ
17 結像レンズ
18 受光素子アレイ
19 検出回路
131 読み出し部
132 補正部
133 取得部
134 呼び出し部
D 受光素子

Claims (4)

  1. 所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子それぞれのゲイン値を記憶したテーブルと、
    前記テーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出す読み出し部と、
    読み出した受光素子に対応するゲイン値に基づき前記受光素子から出力された信号を補正する補正部と
    を備えるレーザ測距装置。
  2. 前記テーブルは、所定角度にて走査ミラーにより反射されたレーザ光を受光する各受光素子の信号、ノイズ成分及びゲイン値の組み合わせに基づき算出される複数の信号対雑音比の内、信号対雑音比が最大値となるゲイン値を受光素子毎に記憶している
    請求項1に記載のレーザ測距装置。
  3. レーザ測距装置に、
    所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子それぞれのゲイン値を記憶したテーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出し、
    読み出した受光素子に対応するゲイン値に基づき前記受光素子から出力された信号を補正する
    処理を実行させるプログラム。
  4. 所定条件を満たすように走査ミラーの回転角度毎に、複数の受光素子それぞれのゲイン値を記憶したテーブルを参照し、前記走査ミラーの回転角度に応じた各受光素子のゲイン値を読み出し、
    読み出した受光素子に対応するゲイン値に基づき前記受光素子から出力された信号を補正する
    レーザ測距装置の補正方法。
JP2014203177A 2014-10-01 2014-10-01 レーザ測距装置、プログラム及びレーザ測距装置の補正方法 Expired - Fee Related JP6417833B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203177A JP6417833B2 (ja) 2014-10-01 2014-10-01 レーザ測距装置、プログラム及びレーザ測距装置の補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014203177A JP6417833B2 (ja) 2014-10-01 2014-10-01 レーザ測距装置、プログラム及びレーザ測距装置の補正方法

Publications (2)

Publication Number Publication Date
JP2016070874A JP2016070874A (ja) 2016-05-09
JP6417833B2 true JP6417833B2 (ja) 2018-11-07

Family

ID=55866643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203177A Expired - Fee Related JP6417833B2 (ja) 2014-10-01 2014-10-01 レーザ測距装置、プログラム及びレーザ測距装置の補正方法

Country Status (1)

Country Link
JP (1) JP6417833B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019004144A1 (ja) * 2017-06-27 2020-04-30 パイオニア株式会社 受信装置、制御方法、プログラム及び記憶媒体
EP3767367A4 (en) * 2018-03-13 2021-05-12 Mitsubishi Electric Corporation DEVICE FOR OPTICAL SCANNING AND METHOD OF CONTROLLING IT
JP7143815B2 (ja) * 2019-05-20 2022-09-29 株式会社デンソー 測距装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297887A (ja) * 1991-03-14 1992-10-21 Mitsubishi Electric Corp レーザ測距装置
JPH07191148A (ja) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp 広角レーザレーダ装置
JPH07270535A (ja) * 1994-03-31 1995-10-20 Omron Corp 光電センサ,レーザ測距装置およびレーザ測距装置を搭載した車両
JP3456337B2 (ja) * 1996-03-21 2003-10-14 日産自動車株式会社 受光装置
JP2004157044A (ja) * 2002-11-07 2004-06-03 Nippon Signal Co Ltd:The 走査型レーザレーダ
US8958057B2 (en) * 2006-06-27 2015-02-17 Arete Associates Camera-style lidar setup
JP2013113684A (ja) * 2011-11-28 2013-06-10 Fujitsu Ltd 距離測定装置

Also Published As

Publication number Publication date
JP2016070874A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
US10699400B2 (en) Image processing apparatus, image processing method, and storage medium
US9470778B2 (en) Learning from high quality depth measurements
JP6417833B2 (ja) レーザ測距装置、プログラム及びレーザ測距装置の補正方法
US11202041B2 (en) Event camera
JP5141245B2 (ja) 画像処理装置、補正情報生成方法、および撮像装置
JP2011071766A5 (ja)
JP2017118197A5 (ja)
JP2016045240A5 (ja)
JP2019082468A5 (ja)
US20180033121A1 (en) Image processing apparatus, image processing method, and storage medium
US10001368B2 (en) Image measurement apparatus, image measurement method, information processing apparatus, information processing method, and program
JP5487946B2 (ja) カメラ画像の補正方法およびカメラ装置および座標変換パラメータ決定装置
JP6260418B2 (ja) 距離測定装置、距離測定方法および距離測定プログラム
US20060109552A1 (en) Image blur compensation device
US10984539B2 (en) Image device for generating velocity maps
US11580713B2 (en) Motion compensation for a SPAD array camera
US11842466B2 (en) Information processing device and information processing method
WO2021145280A1 (ja) ロボットシステム
AU2020317303B2 (en) Information processing device, data generation method, and program
US10650905B2 (en) Inspection apparatus, image sensing apparatus, electronic equipment, and transportation equipment
JP6701025B2 (ja) データ処理装置、データ処理方法、プログラム
JP5786381B2 (ja) 路面から入射する光の偏光の像を取得する装置、路面から入射する光の偏光の像を取得する方法、プログラム、及びコンピューター読み取り可能な記録媒体
WO2020044866A1 (ja) 変位計測装置及び変位計測方法
JP7140091B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム、及び画像処理システム
JP2007028441A (ja) 画像取得装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees