JP6416781B2 - 内燃機関空気経路制御のためのレートベースモデル予測制御方法 - Google Patents

内燃機関空気経路制御のためのレートベースモデル予測制御方法 Download PDF

Info

Publication number
JP6416781B2
JP6416781B2 JP2015549673A JP2015549673A JP6416781B2 JP 6416781 B2 JP6416781 B2 JP 6416781B2 JP 2015549673 A JP2015549673 A JP 2015549673A JP 2015549673 A JP2015549673 A JP 2015549673A JP 6416781 B2 JP6416781 B2 JP 6416781B2
Authority
JP
Japan
Prior art keywords
engine
model
rate
controller
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015549673A
Other languages
English (en)
Other versions
JP2016507691A (ja
JP2016507691A5 (ja
Inventor
ホワーン マイク
ホワーン マイク
ブイ.コルマノフスキー イルヤ
ブイ.コルマノフスキー イルヤ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Publication of JP2016507691A publication Critical patent/JP2016507691A/ja
Publication of JP2016507691A5 publication Critical patent/JP2016507691A5/ja
Application granted granted Critical
Publication of JP6416781B2 publication Critical patent/JP6416781B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Description

本明細書は、概して、内燃機関のための方法及び制御に関し、特にディーゼル機関を制御する方法に関する。
近年のディーゼル機関は、機関シリンダに供給される空気量を増加させるために可変ジオメトリタービン(VGT:variable geometry turbine)を用いる。VGTは、機関シリンダに対して供給される空気量を変化させるためにタービンステータ吸込翼(turbine stator inlet vanes)の角度を変える。
最適な性能及び燃費を提供することに加えて、最新のディーゼル機関は、排気、とりわけ粒子状物質や窒素酸化物についての厳格な米国連邦規定も満たさなければならない。これらの要件をすべて満たすために、VGTを有するディーゼル機関は、より完全な燃焼や機関排気の削減のために、制御位置が可変な排気ガス再循環(EGR:exhaust gas recirculation)バルブを用い、可変量の機関排気ガスを機関シリンダへ再循環させる。
機関は、機関速度、燃料使用、機関負荷などを含む広いレンジの動作条件で動作するので、性能、排気などを最適化するために、1つの制御器、典型的には複数の制御器が、機関制御器(ECU:engine control unit )内に組み込まれ、機関性能を検出するセンサに応じて各種機関アクチュエータを制御する。
機関制御に対して、モデル予測制御(MPC:Model Predictive Control)の使用が広がっている。標準のMPCアプローチは、予測制御モデルに対して付加的な積分状態を加える、ゼロ状態から状態エラーまで(zero state-to-state error)を保証する積分型動作を組み込む。MPCモデルは、多数の異なる機関運転レンジ(燃料比及び機関速度)を使用し、機関アクチュエータを制御するためにレンジ毎に制御器を展開する。
ディーゼル機関の気流に対して適用されるモデル予測制御の具体例では、可変ジオメトリタービン(VGT)、EGRスロットル、及びEGRバルブアクチュエータを用いて機関内の流量が制御される。これらのシステムは、結合度が強く、非線形性が高い。
しかしながら、内燃機関に対する、特にディーゼル機関に対するモデル予測制御器の先行出願は、機関性能の複数の運転レンジを利用しており、複数の運転レンジの各々が個別の予測制御器を必要としている。さらに、各予測制御器は、制御機関変数(controlled engine variables)のオーバーシュート制限に関する課題が生じる積分型動作を用いている。
短縮された計算時間のための最小数の運転レンジ及びメモリ記憶要件を有する内燃機関で使用するモデル予測制御器を提供し、それと同時に機関制御性能変数のゼロ状態から状態トラッキングエラーまで(zero state-to-state tracking error)を提供することが望まれうる。
機関運転の間に可変ジオメトリタービン(VGT)及びEGRバルブを制御する制御器を有する内燃機関を制御する方法は、要求されたEGR流量及び機関タービンリフト(engine turbine lift)を生成するために、機関吸気口の吸気マニホールド圧及びEGRバルブ流量に応答する制御器内でレートベースの予測モデルを用いることを含む。
本方法は、機関速度レンジ及び燃料比レンジのための中央線形化ポイントのあたりの少なくとも1つの機関運転ゾーンを規定することをさらに含む。
本方法は、機関運転パラメータの非線形モデルを展開することをさらに含む。
本方法は、各ゾーン内において線形二次モデル予測制御器を展開することをさらに含む。
本方法は、各運転ゾーンの範囲内の中央運転ポイントにて非線形モデルを線形化することをさらに含む。
本方法は、非線形モデルに基づく二次低減線形モデルを展開することをさらに含む。
本方法は、線形モデルの導関数としてレートベースの予測モデルを生成することをさらに含む。
本方法は、次式(11)の区分的アフィン制御則の式で、線形二次モデルとして線形モデルを生成することをさらに含む。
iaug≦Kkのとき、
k+1=uk+Ts(Fiaug+Gi) (11)
本方法は、VGTデューティサイクル信号をVGTリフト制御信号に変換するためにEGR流量制御信号を変換するために、レートベースの予測モデル制御器出力に対して部分的インバージョンを適用することをさらに含む。
本方法は、次式(13)に従ってEGRスロットル制御器を展開することをさらに含む。
Figure 0006416781
本方法は、少なくとも1つの制御器出力のオーバーシュート制限を実施するために単一の時刻を用いることによって、少なくとも1つのゾーンの各々における領域の数を減少させることをさらに含む。
本方法は、機関状態を推測し、推測された機関状態上の区分的アフィン制御則の領域を決定し、制御レートを決定するために区分的アフィン制御則の選択された領域に関連するフィードバックゲインを適用し、1つの機関入力に対して適用される制御値を決定するために制御レートを積分することを含む。
他の態様において、本方法は、プロセッサによって実行された場合に、タービンリフト及び要求されたEGR流量を制御する吸気マニホールド圧及びEGRバルブ流量に対して応答するレートベースの予測モデル制御器を用いるように機能することが可能な命令を含むコンピュータ利用可能な媒体上に具体化されたコンピュータプログラムを明確に実行する制御器を有する。
本機関制御方法の様々な特徴、効果、及び他の用途は、以下の詳細な説明及び以下の図面を参照することによってさらに明らかになる。
レートベースの予測モデル制御器を用いるディーゼル機関の図的表現である。 レートベースの予測モデル制御器に対する入力及び出力を示すブロック図である。 図2のレートベースの予測モデル制御器を用いる機関の概略ブロック図である。 シーケンスステップを表し、レートベースの予測モデル制御方法を操作するフローチャートである。 EGRバルブ位置に対するサンプル数を表すグラフである。 VGTデューティサイクルを表すグラフである。 オーバーシュート制限の実行を表すグラフである。 吸気圧の予測された軌跡を経時的に表すグラフである。 経時的にサンプリングされた領域の数を表すグラフである。 吸気圧及びEGRレートの時刻歴を表すグラフである。 EGRスロットル位置の時刻歴を表すグラフである。 EGRバルブ流量及び指定されたEGRバルブ流量の時刻歴を表すグラフである。 定されたVGTリフトの時刻歴を表すグラフである。
ここで図1を参照すると、ディーゼル機関を例として以下説明する内燃機関20は、複数のシリンダ24を収容するエンジンブロック22を含む。燃料供給源(図示せず)に接続された燃料レール26は、シリンダ24毎に1つの燃料噴射器を備えた複数の燃料噴射器28にディーゼル燃料を供給する。
吸気マニホールド30は、各シリンダに吸気を供給するためのシリンダ24に連結される。吸気マニホールド圧力センサ32は、吸気マニホールド気圧を測定するために吸気マニホールド30に連結される。
排気マニホールド34は、エンジンブロック22から離れるようにシリンダ24から燃焼ガスを運ぶ。
EGRバルブ40は、吸気マニホールド30と排気マニホールド34との間のバイパス経路内に連結され、シリンダ24への供給のために、排気マニホールド34からの排気ガスの一部を吸気マニホールド32に戻して再循環させる。EGRクーラー42は、EGRバルブ40とともにバイパス経路内に連結されてもよい。
EGRスロットル44は、ガス循環を制御するために可変ジオメトリタービン(VGT)48のコンプレッサ46からの気流経路内に取り付けられる。
インタークーラー50は、EGRスロットル44の前方の吸気経路内に取り付けられてもよい。
可変ジオメトリタービン48は、タービン入力翼の角度を制御することで、コンプレッサ46を介して吸気マニホールド圧を制御する。
本方法によれば、機関20に対するレートベースの予測モデル制御(RB−MPC)は、図2に示すように、吸気マニホールド圧62及びEGRバルブ流量64などの複数の制御入力を用いる。部分的な非線形インバージョンは、以下に記載するように、VGTリフトデューティサイクル及びEGRバルブ位置に対して、2つの入力62、64をそれぞれ戻すために用いられる。部分的インバージョンは、モデルの非線形性度合いを低減するとともに、機関運転レンジをカバーするゾーンの数を減らし、従って計算の複雑さを小さくすることに向けた第1のステップである。
部分的インバージョンは、DCゲイン反転に対処する必要もない。制御器60の設計は、動作の各ゾーン内の低次元化線形化機関モデル(reduced order linearized engine models)に対する、機関速度と燃料比からなる機関運転レンジの分割を用いる。制御及び状態の制約下で良好なトラッキング性能に対しては、単一のゾーンのみを用いてもよい。それにより、制御器の較正時間と同様に、ECU内のROM利用を低減することができる。個別の制御器は、EGRスロットルの使用のために用いられることができる。
オンボード二次計画法に基づくものの代わりに、明示的なMPCの解が計算でき、図3のECU70内で使用される。この実装は、有限の計算能力及びコードの単純さから動機づけられる。
レートベースの予測モデルは、以下の要素を含む。
・吸気圧及びEGR率についての設定値を指示する設定値マップ。
・ディーゼル機関モデルの低次元線形化に基づく予測モデル。
・吸気圧及び最大EGR流量の時間変化制約を行いながら、要求されたVGTリフト及び要求されたEGR流量を生成する明示的なモデル予測制御器。
・VGTデューティサイクル(閉度(percent closed))及びEGRバルブ位置(開度(percent open))を算出する部分的インバージョンブロック。
・吸気圧、ECU推定EGR率、及び質量空気流(MAF)の測定に基づくカルマンフィルタ推定。
・要求EGR流量と最大EGR流量との間のマージンに基づいてスロットルを閉じるEGRスロットル(閉度)制御器。
・検索されたマルコフ連鎖ベースのMPC領域選択工程は、明示的なモデル予測制御器の適切な領域のための尤度オーダーである。
機関20についての非線形モデルは図4のステップ100に表すことができ、平均値と、物理学を利用したグレーボックスモデル化法と、データ適合度を用いる。モデル内の主な動的な状態は、吸気マニホールド圧、排気マニホールド圧、プレスロットル圧、ターボチャージャタービン速度、EGRクーラー出口温度、吸気マニホールド密度、排気マニホールド密度、吸気マニホールド燃焼ガス留分、排気マニホールド既燃ガス留分、及び機関温度である。モデルに対する入力は、機関速度、燃料比、VGTデューティサイクル、及びEGRスロットル位置である。
モデルをより線形にするために、制御入力は、VGTデューティサイクル及びEGRバルブ位置の代わりに、吸気マニホールド圧62及びEGRバルブ流量64となるように選択される。制御指針は、指示された制御入力62、64からVGTデューティサイクル及びEGRバルブ位置を取り出すために部分的な非線形インバージョンを利用する。残りの入力、すなわち、機関速度、燃料比、EGRスロットル位置は、不変のままである。出力は、VGTリフト及びEGRバルブ流量、及び図示しないMAFとして選択される。MAFは、カルマンフィルタへの入力としてのみ用いられる。
機関運転レンジ(燃料比及び機関速度レンジ)は、選択された運転ポイントを中心とするゾーンに分割される。各運転ポイントにおいて、非線形モデルは線形化され、10次線形モデルになる。平衡型のトランケーションが、モデル次数を削減するために適用される。ハンケルの特異値及び初期設計の分析に基づいて、線形モデルの次数を二次までに削減できることが判明した。低次元化モデルの状態が物理的状態を変えるので、測定された出力からそれらを推定するために状態オブザーバ用いられる。制御器ROMサイズが小さくなり、且つ状態オブザーバが低次元であるので、線形の設計及びモデルの次数を小さくすることは有用である。
ステップ102において、レートベースの予測モデルを定式化するために、二次元連続時間線形モデルが用いられる。その後、ステップ104において、レートベースモデルは、以下のように、線形モデルの導関数として生成される。
Figure 0006416781
ここで、ξは、2つの低次元化状態、
Figure 0006416781
及び出力y、吸気圧及びEGR率の状態微分から構成される拡張状態である。uは、出力(VGTリフト、EGRバルブ流量)のベクトルであり、dは、測定された外乱(EGRスロットル位置、機関速度、及び燃料比)のベクトルである。その後、A、B1、B2、Cに対応する連続時間システム実現は、TS=32ミリ秒のサンプリング周期で離散時間に変換されてAd、B1d、B2d、Cdをそれぞれ生成する。レートベースの予測モデル(RB−MPC)は、以下の式を有する。
Figure 0006416781
本モデルは、制御レート
Figure 0006416781
を最適化することになる。状態
Figure 0006416781
は、制御の現在値である。dk、測定された外乱の微分は拡張され代わりに0≦λ≦1は、外乱微分の予測減衰率であり、シミュレーションok及びrkに基づいて選択される。
増分コストは、トラッキングエラー、制御努力、及びスラック変数を重み付けする。k=1が現在時刻であるとした場合、結果として生じる最適化問題は、以下の式を有する。
Figure 0006416781
制御制約の影響下にあり、
Figure 0006416781
1:sの制御範囲を用い、
Figure 0006416781
n∈I⊂{1,2,‥‥,Nc}にて断続的に実行されるソフトな吸気圧オーバーシュート制約の影響下にあり、
Figure 0006416781
ここでξd=[0rNTは、所望の定常値である。端末のコスト(ξN−ξdT P(ξN−ξd)は、関連する無制約のLQ問題の代数的リカッチ方程式の解に対応するP行列を用いる。
明示的な制御器内のレンジ数を削減するために、制御区間は単一のステップが選択された。予測範囲を選択するためのMPCガイドラインを用いて、且つシミュレーションで制御器を調整した後に、出力制約区間は、NC=30ステップとして設定され、予測範囲は、N=50ステップとして設定された。
明示的なMPCレートベース制御器60は、ステップ106においてMatlab用のMPTツールボックスを用いて、区分的アフィン制御則の式で生成される。制御器60は、次式(11)の区分的アフィン制御則の式を有する。
もしHiaug≦Kkであれば、
k+1=uk+Ts(Fiaug+Gi) (11)
ここで、i∈{1,‥‥,nr}は、i番目の多面体領域を示し、
Figure 0006416781
は、要求制御レート、
Figure 0006416781
及び、
Figure 0006416781
を与え、ここで、
Figure 0006416781
は、推定されたプラントモデル状態である。式(12)において全拡張状態 augは、16次である。
EGRバルブ位置制御信号をEGR流量制御信号に置換し、且つVGTデューティサイクル信号をVGTリフト制御信号に置換するために、部分的インバージョンがレートベースの予測モデル制御器60に適用される。EGRバルブ流量は、吸気圧、排気圧、出口温度、EGRバルブ位置、及び機関速度の関数である。EGRバルブ位置に対するEGR流量のインバージョンは、ホアンら[2013年]に記載されている。EGRバルブ流量はECU推定として利用可能であるため、PID制御器も、また、EGR流量推定と要求EGR流量との差分に対して適用できる。図5は、PID制御器がなくても、インバージョンが充分に正確であることを示唆する。較差は、PIDフィードバックによって、及びアウターループMPCフィードバックによって補償される。
部分的インバージョン(但し、VGTリフトは測定されないので動的補償はない)は、MPC制御器によって要求されたVGTライフを、指定されたVGTデューティサイクルに変換するためにも用いられる。空気圧式のVGTアクチュエータダイナミクスは複雑であり、ヒステリシスを含む。それでも、モデルは、VGTリフト、機関速度、排気圧、及び出口温度(これらはECUが推定するときに利用可能である)をVGTデューティサイクルに変換する(図6を参照)。
スロットル制御器は、RB−MPC制御器60から分離されており、以下の式を有する。
Figure 0006416781
スロットル制御器は、マージンMegr 要求されたEGR流量
Figure 0006416781
と最大EGR流量との間に維持されることを条件として、スロットル位置フィードフォワードマップによって予め定められた、機関速度及び燃料に依存の設定値θ req に、スロットル位置を設定する。このマージンが損なわれると、PID制御器、CPID (s)が適用されて、EGRスロットルを閉じることでマージンを修復する。
いくつかの指針が、計算の複雑さを低減するために用いられることができる。生成された領域の数を低減するために断続的な制約の実施が用いられる。その後、あまり用いてない領域が取り除かれる。マルコフ連鎖領域選択工程も、動作領域を識別するのに必要な平均時間を削減するために用いられる。表1は、最悪ケースの計算の複雑さRB−MPCと、6ずつ又は1ずつ増加する吸気圧オーバーシュート制約の実施とを比較しており、nrは1つのゾーン当たりの領域の数である。
Figure 0006416781
典型的な駆動サイクルにわたる広範囲なシミュレーションにより、あまり用いてない領域は、計算の複雑さを低減するために取り除かれ得る。さらに、小さい領域(すなわち、小さいチェビシェフ半径がある領域)は、取り除かれ得る。領域の除去により、選択された領域が次式によって与えられる。
i∈arg mini{maxj{Hijaug‐Kij}}) (14)
ここで、jは、xaugが厳密に属するi番目の領域の定義において見出されるj番目の不等式に対応する。断続的な制約の実施を用いる指針のために、領域の約半分が、さらに取り除かれている。
領域の数は、アクティブな制約の取り得る組み合わせ数に依存する。そのために、領域の数を低減するためには、予測範囲にわたるあらゆる瞬間で制約を実行するアプローチは、より少ない時間での強化された制約を実行することに改善される。RB−MPC60の最終的な設計は、吸気圧オーバーシュート制約を行うために、単一の時刻(20ステップ先)を用いるだけである。
図7は、RB−MPC制御器60によるこのアプローチを説明する。この例において、本アプローチは、吸気圧設定値における124kPa〜232kPaステップに対応する、5〜55mm3/ストロークの燃料比における大きなステップの間に、オーバーシュート制約を扱うことができる。過渡的な挙動は、レートベースアプローチを用いる有益性を強調するものである。
RB−MPCの性能の有益性は、区間N=50ステップを超えるRB−MPCに対して予測された軌跡を示す図9でさらに例示される。
図9において、線形化ポイント3250rpmと比べて、1750rpmの線形化ポイントがシミュレーションの動作条件3500rpmからさらに離れていても、RB−MPCのための予測された軌跡は、実際の軌跡に近い。
RB−MPC制御器60を用いる場合、計算コストは、領域ごとに不等式をチェックすることに左右される。マルコフ連鎖プロセスは、現在尤度オーダー内にある領域xaugを検索することによって平均ケース領域選択工程を高速化しようとするものである。駆動周期シミュレーション及び訪れた領域の軌跡から、領域遷移の関連マルコフ連鎖モデルのための遷移確率行列が生成される。各エントリは、列でインデックスを付けられた、前の領域からの遷移確率を表す。その後、確率遷移行列は、前領域ごとに、現領域をチェックするオーダーを生成するために分類される。図8は、このシミュレーションの間にチェックされた領域の数を示す。最悪のケースにおける計算時間は、表1に示されるものと同一である。これは、xaugが確かに10番目の領域内にあるか、又はxaugが取り除かれた領域の1つの中であるかがチェックされた10の領域に対応する。大多数のシミュレーションについて、単一の領域のみがチェックされる。このことは、概して、xaugが前回の時間ステップの間と同じ領域内にとどまるために予測できる。
シミュレーションは、図10〜図13に示すような機関20の非線形モデルのRB−MPC制御器60をもたらす。これらの図は、5〜55mm3のストロークの間に1000〜4000rpmまでの機関速度レンジ及び燃料比をカバーする燃料ステップ応答を示す。機関速度は、100秒毎に500rpm上昇する。単一のRB−MPC制御器60が用いられ、線形化ポイントは、1750rpm、45mm3/ストロークに位置する。制御器は、全運転レンジを通じて充分なトラッキング性能及びオーバーシュート制約操作を実証する。図11から明らかなように、EGRスロットルは、時々、例えば25秒で閉じ、これはEGR流量マージンを修復するためにEGRスロットル設定値によって指示されたものよりも大きい。
図4に戻って参照すると、一旦レートベースの予測モデル制御器60がステップ106において生成されれば、制御器60は、図3に示すように機関20のECU70内に実装される。
ECU70は、コンピュータ利用可能な媒体上に明確に具体化され、プロセッサ実装によって上記のレートベースの予測モデル制御器が実行された場合に、命令を含むコンピュータプログラムを実行するプロセッサを有する。
ECU70は、情報を操作又は処理することができる、あらゆるタイプの装置若しくは複数の装置であってもよく、中央処理装置を含んでもよい。中央処理装置は、単一のプロセッサ又は複数のプロセッサで実現される。
中央処理装置は、ランダムアクセスメモリ又は他の適切なタイプの格納装置になり得るメモリにアクセスする。メモリは、中央処理装置によってアクセスされるコード及びデータを含むことができる。メモリは、本明細書に記載された方法を実行するために用いられるレートベースの予測モデル制御器を含む、オペレーティングシステム及びアプリケーションプログラムをさらに含むことができる。
レートベースの予測モデル制御器60を用いるECU70は、アルゴリズム又は数式によって領域に分割される機関状態スペースを推定することになる。一旦状態が状態110に決定されれば、ECU70は、レートベースの予測モデル制御器60を介して、ステップ108で推定された状態を用いることによって、ステップ112で生成された区分的アフィン制御則の領域を決定する。
ステップ112において一旦領域が決定されると、ECU70は、ステップ114において、レートベースの予測モデル制御器60を介して、選択された領域に対応する、メモリ内に記憶されたフィードバックゲインを適用し、アクチュエータ60、62の制御レートを決定する。そして、ECU70は、ステップ116において、レートベースの予測モデル制御器60を介して、ステップ114から決定された制御レートを積分してアクチュエータ60又は62のための制御値を決定し、その後、ECU60によってアクチュエータの出力60又は62に適用される。

Claims (11)

  1. 機関運転の間に可変ジオメトリタービン及びEGRバルブを制御する制御器を有した内燃機関を制御するための方法であって、該方法は、
    機関運転パラメータを用いて非線形モデルを展開することと、
    前記非線形モデルに基づいて、それぞれの機関運転ゾーンのための線形二次モデル予測制御器を展開することと、
    前記線形二次モデルに基づいてレートベースの予測モデルを生成し、要求される機関タービンリフト及び要求されるEGR流量を生成するために、機関吸気マニホールド圧及びEGRバルブ流量に応じて前記制御器内の前記レートベースの予測モデルを用いることと、
    生成された前記機関タービンリフト及び生成された前記EGR流量に基づき前記内燃機関の運転を制御することと、を含む方法。
  2. 機関速度レンジ及び燃料比レンジのための中央線形化ポイント周りの少なくとも1つの機関運転ゾーンを規定することをさらに含む、請求項1に記載の方法。
  3. 機関運転ゾーン内の中央線形化ポイントで前記非線形モデルを線形化することをさらに含む、請求項2に記載の方法。
  4. 前記非線形モデルに基づいて二次低減線形モデルを展開することをさらに含む、請求項3に記載の方法。
  5. 線形モデルの導関数として前記レートベースの予測モデルを生成することをさらに含む、請求項4に記載の方法。
  6. 区分的アフィン制御則の式、すなわち、
    iaug≦Kkのとき、
    k+1=uk+Ts(Fiaug+Gi
    において、線形二次モデルとして線形モデルを生成することをさらに含む、請求項5に記載の方法。
  7. 機関運転の間に可変ジオメトリタービン及びEGRバルブを制御する制御器を有した内燃機関を制御するための方法であって、該方法は、
    要求される機関タービンリフト及び要求されるEGR流量を生成するために、機関吸気マニホールド圧及びEGRバルブ流量に応じて前記制御器内のレートベースの予測モデルを用いることと、
    前記レートベースの予測モデル制御器に部分的インバージョンを適用して、EGRバルブ流量信号をEGRバルブ位置デューティサイクル信号に変換し、且つ、タービンリフト信号をタービンリフトデューティサイクル信号に変換することと、
    変換された前記EGRバルブ位置デューティサイクル信号及び変換された前記タービンリフトデューティサイクル信号に基づき前記内燃機関の運転を制御することと、
    を含む、方法。
  8. 機関運転の間に可変ジオメトリタービン及びEGRバルブを制御する制御器を有した内燃機関を制御するための方法であって、該方法は、
    要求される機関タービンリフト及び要求されるEGR流量を生成するために、機関吸気マニホールド圧及びEGRバルブ流量に応じて前記制御器内のレートベースの予測モデルにおいて、
    Figure 0006416781
    によって、EGRスロットル制御器を展開することと、
    生成された前記機関タービンリフト及び生成された前記EGR流量に基づき前記内燃機関の運転を制御することと、を含む、方法。
  9. 機関状態を推定することと、
    推定された前記機関状態に基づいて前記区分的アフィン制御則の領域を決定することと、
    制御レートを決定するために前記区分的アフィン制御則の選択された前記領域と関連したフィードバックゲインを適用することと、
    1つの機関入力に適用される制御値を決定するために前記制御レートを積分することと、を含む、請求項6に記載の方法。
  10. 機関運転の間、生成された前記機関タービンリフト及び生成された前記EGR流量に基づき、前記制御器により前記可変ジオメトリタービン及び前記EGRバルブを制御することと、を含む、請求項1に記載の方法。
  11. 線形モデルの導関数として前記レートベースの予測モデルを生成することと、
    区分的アフィン制御則の式、すなわち、
    iaug≦Kkのとき、
    k+1=uk+Ts(Fiaug+Gi
    により、線形二次モデルとして線形モデルを生成することと、
    機関状態を推定することと、
    推定された前記機関状態に基づいて前記区分的アフィン制御則の領域を決定することと、
    制御レートを決定するために前記区分的アフィン制御則の選択された前記領域と関連したフィードバックゲインを適用することと、
    1つの機関入力に適用される制御値を決定するために前記制御レートを積分することと、をさらに含む、請求項1に記載の方法。
JP2015549673A 2012-12-21 2013-12-19 内燃機関空気経路制御のためのレートベースモデル予測制御方法 Expired - Fee Related JP6416781B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/724,957 US9581080B2 (en) 2012-12-21 2012-12-21 Rate-based model predictive control method for internal combustion engine air path control
US13/724,957 2012-12-21
PCT/US2013/076391 WO2014100334A1 (en) 2012-12-21 2013-12-19 Rate-based model predictive control method for internal combustion engine air path control

Publications (3)

Publication Number Publication Date
JP2016507691A JP2016507691A (ja) 2016-03-10
JP2016507691A5 JP2016507691A5 (ja) 2017-01-26
JP6416781B2 true JP6416781B2 (ja) 2018-10-31

Family

ID=49956411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015549673A Expired - Fee Related JP6416781B2 (ja) 2012-12-21 2013-12-19 内燃機関空気経路制御のためのレートベースモデル予測制御方法

Country Status (5)

Country Link
US (1) US9581080B2 (ja)
EP (1) EP2935846B1 (ja)
JP (1) JP6416781B2 (ja)
CN (1) CN105308296B (ja)
WO (1) WO2014100334A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222426B2 (en) * 2012-02-17 2015-12-29 Ford Global Technologies, Llc Transient air flow control
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9399959B2 (en) 2014-03-26 2016-07-26 GM Global Technology Operations LLC System and method for adjusting a torque capacity of an engine using model predictive control
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9347381B2 (en) 2014-03-26 2016-05-24 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9376965B2 (en) * 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9989001B2 (en) * 2012-12-21 2018-06-05 Toyota Motor Engineering & Manufacturing North America, Inc. Discrete time rate-based model predictive control method for internal combustion engine air path control
US9562484B2 (en) * 2012-12-21 2017-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. Rate-based contractive model predictive control method for internal combustion engine air path control
US10107204B2 (en) 2013-03-15 2018-10-23 United Technologies Corporation Compact aero-thermo model base point linear system based state estimator
JP6156429B2 (ja) * 2014-05-26 2017-07-05 トヨタ自動車株式会社 内燃機関の制御装置
US9951701B2 (en) 2014-09-22 2018-04-24 General Electric Company Method and systems for EGR control
EP3091212A1 (en) * 2015-05-06 2016-11-09 Honeywell International Inc. An identification approach for internal combustion engine mean value models
CN104915472B (zh) * 2015-05-13 2018-08-24 北京宝沃汽车有限公司 发动机冷却系统优化仿真计算方法
DE102016121338B4 (de) 2015-11-23 2020-06-18 The Regents Of The University Of Michigan System und Verfahren zum Steuern einer Brennkraftmaschine sowie nichtflüchtiges Speichermedium
CN105888861B (zh) * 2016-04-08 2018-10-16 潍柴动力股份有限公司 一种egr与vtg的控制方法及系统
DK201770423A1 (en) 2016-06-11 2018-01-15 Apple Inc Activity and workout updates
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US10190522B2 (en) * 2016-06-17 2019-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid partial and full step quadratic solver for model predictive control of diesel engine air path flow and methods of use
JP2018048721A (ja) * 2016-09-23 2018-03-29 株式会社デンソーテン 制御装置および制御方法
US10309059B2 (en) * 2016-09-23 2019-06-04 Honeywell International Inc. Method of designing model predictive control for cross directional flat sheet manufacturing processes to guarantee temporal robust stability and performance
JP6150934B1 (ja) 2016-10-17 2017-06-21 三菱重工業株式会社 情報処理方法、情報処理装置、プログラム、及び情報処理システム
US12056425B2 (en) 2017-06-02 2024-08-06 The Mathworks, Inc. Systems and methods for rescaling executable simulation models
US11454188B2 (en) 2017-06-02 2022-09-27 The Mathworks, Inc. Systems and methods for rescaling executable simulation models
US10316784B2 (en) * 2017-06-06 2019-06-11 Gm Global Technology Operations Llc. Air charging control of engine assembly with multiple turbines
US10156197B1 (en) * 2017-06-16 2018-12-18 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
DE102017009583B3 (de) * 2017-10-16 2018-11-22 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
US10844795B2 (en) * 2018-01-10 2020-11-24 Toyota Motor Engineering & Manufacturing North America, Inc. Feedforward and feedback architecture for air path model predictive control of an internal combustion engine
CN108365986B (zh) * 2018-02-07 2019-06-21 重庆大学 基于模型预测控制的混合动力车队协同能量管理方法
DE102018213177B4 (de) * 2018-08-07 2023-02-09 Volkswagen Aktiengesellschaft Verfahren zur Leistungsregelung des Verbrennungsmotors eines Kraftfahrzeugs
KR20200066751A (ko) 2018-11-30 2020-06-11 현대자동차주식회사 차량의 엔진 제어방법
DK201970532A1 (en) 2019-05-06 2021-05-03 Apple Inc Activity trends and workouts
CN110716431B (zh) * 2019-09-30 2022-03-29 哈尔滨工程大学 一种基于观测器的增压柴油机气路抗干扰容错控制方法
FR3112167B1 (fr) 2020-07-06 2022-07-15 Renault Sas Système de contrôle et de commande d'un moteur à combustion interne de type Diesel de véhicule automobile
CN112327669B (zh) * 2020-11-14 2022-02-18 大连理工大学 一种航空发动机显式预测控制器的设计方法
US11761392B2 (en) 2021-05-17 2023-09-19 Caterpillar Inc. Method and system for engine air system control

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527238A (en) 1995-04-10 1996-06-18 Ford Motor Company Automatic transmission bypass clutch slip control using nonlinear nverse dynamics
US5771482A (en) 1995-12-15 1998-06-23 The Ohio State University Estimation of instantaneous indicated torque in multicylinder engines
FR2764941B1 (fr) * 1997-06-19 1999-08-27 Renault Procede et dispositif de controle d'un moteur a combustion interne, a allumage commande
DE10034789B4 (de) * 2000-07-18 2014-06-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur Kompensation des nichtlinearen Verhaltens des Luftsystems einer Brennkraftmaschine
GB2388922B (en) * 2002-01-31 2005-06-08 Cambridge Consultants Control system
WO2004027235A1 (en) * 2002-09-19 2004-04-01 Detroit Diesel Corporation Method for controlling an engine with vgt and egr systems
US6990401B2 (en) 2002-10-04 2006-01-24 Daimlerchrysler Ag Predictive speed control for a motor vehicle
US7328577B2 (en) * 2004-12-29 2008-02-12 Honeywell International Inc. Multivariable control for an engine
US7275374B2 (en) * 2004-12-29 2007-10-02 Honeywell International Inc. Coordinated multivariable control of fuel and air in engines
DE112005003527B4 (de) 2005-04-01 2020-08-06 Hoerbiger Wien Gmbh Verfahren für die Schätzung von Verbrennungsparametern
JP2007113563A (ja) * 2005-09-26 2007-05-10 Honda Motor Co Ltd 内燃機関の制御装置
DE102005060350B4 (de) * 2005-12-16 2014-07-10 Continental Automotive Gmbh Verfahren zur Regelung eines Verbrennungsprozesses einer aufgeladenen Brennkraftmaschine mit Abgasrückführung
US7415389B2 (en) 2005-12-29 2008-08-19 Honeywell International Inc. Calibration of engine control systems
CA2665121C (en) 2006-09-16 2013-11-26 Terence Gilhuly Modeling and control for highly variable and nonlinear processes
US7908858B2 (en) * 2007-07-31 2011-03-22 Caterpillar Inc. System that limits turbo speed by controlling fueling
US8295951B2 (en) 2007-12-21 2012-10-23 The University Of Florida Research Foundation, Inc. Systems and methods for offset-free model predictive control
JP4928484B2 (ja) * 2008-02-29 2012-05-09 株式会社小野測器 エンジンの設計変数を計算する方法、コンピュータ、及びプログラム
US8090456B2 (en) 2008-11-03 2012-01-03 United Technologies Corporation System and method for design and control of engineering systems utilizing component-level dynamic mathematical model
JP5347676B2 (ja) * 2009-04-16 2013-11-20 いすゞ自動車株式会社 内燃機関の制御方法及び制御装置
US8397499B2 (en) * 2009-08-24 2013-03-19 Ford Global Technologies, Llc Methods and systems for turbocharger control
US20110264353A1 (en) * 2010-04-22 2011-10-27 Atkinson Christopher M Model-based optimized engine control
US8504175B2 (en) * 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
US8439021B2 (en) * 2010-06-15 2013-05-14 Deere & Company EGR system for an internal combustion engine
JP5569426B2 (ja) * 2011-02-16 2014-08-13 富士通株式会社 エンジン制御プログラム及び装置
US9765703B2 (en) * 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control

Also Published As

Publication number Publication date
EP2935846B1 (en) 2021-12-01
CN105308296A (zh) 2016-02-03
JP2016507691A (ja) 2016-03-10
US20140174413A1 (en) 2014-06-26
WO2014100334A1 (en) 2014-06-26
CN105308296B (zh) 2018-11-30
EP2935846A1 (en) 2015-10-28
US9581080B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
JP6416781B2 (ja) 内燃機関空気経路制御のためのレートベースモデル予測制御方法
US9562484B2 (en) Rate-based contractive model predictive control method for internal combustion engine air path control
US11506138B2 (en) Engine system with inferential sensor
JP6553580B2 (ja) 内燃機関の空気経路制御のための離散時間レートベースモデル予測制御方法
Emekli et al. Explicit MIMO model predictive boost pressure control of a two-stage turbocharged diesel engine
Albin et al. In-vehicle realization of nonlinear MPC for gasoline two-stage turbocharging airpath control
Stefanopoulou et al. Control of variable geometry turbocharged diesel engines for reduced emissions
US20160108732A1 (en) Switch gain scheduled explicit model predictive control of diesel engines
US9989001B2 (en) Discrete time rate-based model predictive control method for internal combustion engine air path control
US8108123B2 (en) Sliding mode control system for internal combustion engine
US11939931B2 (en) Engine control system
Liao-McPherson et al. A cascaded economic model predictive control strategy for a diesel engine using a non-uniform prediction horizon discretization
US10844795B2 (en) Feedforward and feedback architecture for air path model predictive control of an internal combustion engine
US11614041B2 (en) Engine intake air and exhaust control system
US11761392B2 (en) Method and system for engine air system control
JP2011043156A (ja) 制御装置
Shirakawa et al. Study of strategy for model-based cooperative control of EGR and VGT in a diesel engine
US20220235721A1 (en) Internal combustion engine controller
Park et al. Gain-scheduled EGR control algorithm for light-duty diesel engines with static-gain parameter modeling
Koli et al. Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines
Keller Two-stage model predictive control for the air path of a turbocharged gasoline engine with exhaust gas recirculation
Jimbo et al. Predictive control for high-EGR SI engines without misfire via flow-based design
JP2011001871A (ja) 制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6416781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees