JP6414811B6 - Metal porous body and method for producing the same - Google Patents

Metal porous body and method for producing the same Download PDF

Info

Publication number
JP6414811B6
JP6414811B6 JP2014110095A JP2014110095A JP6414811B6 JP 6414811 B6 JP6414811 B6 JP 6414811B6 JP 2014110095 A JP2014110095 A JP 2014110095A JP 2014110095 A JP2014110095 A JP 2014110095A JP 6414811 B6 JP6414811 B6 JP 6414811B6
Authority
JP
Japan
Prior art keywords
metal
porous body
water
polyurethane
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014110095A
Other languages
Japanese (ja)
Other versions
JP2015224369A (en
JP6414811B2 (en
Inventor
喜章 伊藤
喜章 伊藤
大鵬 胡本
大鵬 胡本
大志 伏見
大志 伏見
和代 橋塚
和代 橋塚
宏実 大西
宏実 大西
村上 薫
薫 村上
知昌 桑野
知昌 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamine Manufacturing Co Ltd
Original Assignee
Nagamine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamine Manufacturing Co Ltd filed Critical Nagamine Manufacturing Co Ltd
Priority to JP2014110095A priority Critical patent/JP6414811B6/en
Publication of JP2015224369A publication Critical patent/JP2015224369A/en
Application granted granted Critical
Publication of JP6414811B2 publication Critical patent/JP6414811B2/en
Publication of JP6414811B6 publication Critical patent/JP6414811B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、金属からなる微細孔の金属多孔質体、及びその製造方法に関する。   The present invention relates to a microporous metal porous body made of metal and a method for producing the same.

金属は、非金属類に比べて、高剛性、可撓性、耐熱性、耐磨耗性、導電性、伝熱性において優れている。そのため非金属と比べて過酷な条件下での使用が可能で、半永久的なリサイクル使用の可能性等の利点がある。そこで、金属からなる多孔質体(金属多孔質体)が、濾材、ガス拡散部材、放熱部材、吸水部材、電池用電極等として用いられている。さらに消音、防爆、ガス抜き、発泡(散気)などの様々な用途に使用される可能性があり、実際に各種装置に組み込まれている。   Metals are superior in high rigidity, flexibility, heat resistance, wear resistance, conductivity, and heat transfer compared to non-metals. Therefore, it can be used under severe conditions as compared with non-metals, and there are advantages such as the possibility of semi-permanent recycling. Therefore, porous bodies made of metal (metal porous bodies) are used as filter media, gas diffusion members, heat dissipation members, water absorption members, battery electrodes, and the like. Furthermore, there is a possibility of being used for various applications such as sound silencing, explosion proofing, degassing, foaming (aeration), etc., and they are actually incorporated in various devices.

又、その比表面積が大きいとの特徴により触媒や触媒の担体としても適用でき、例えばスポンジ型触媒としてニッケル、コバルト、銅の金属多孔質体が使用され、さらにモリブデンや鉄を添加した3元系も一般に使われている。特に、燃料電池用ガス拡散電極の用途では、微細な連続気孔の金属多孔質体が望ましいとされその開発が望まれている。   It can also be used as a catalyst or catalyst support due to its large specific surface area. For example, a ternary system in which a metal porous body of nickel, cobalt, or copper is used as a sponge type catalyst, and molybdenum or iron is added. Is also commonly used. In particular, in the use of a gas diffusion electrode for a fuel cell, a metal porous body having fine continuous pores is desirable, and its development is desired.

金属多孔質体の製造方法として、特許文献1及び3には、化学発泡法によるポリウレタンフォーム等の発泡樹脂の骨格表面を導電化処理して電気メッキを施した後、樹脂を熱分解により除去する方法が記述されている。しかし、この方法は、メッキをするための金属の種類が限定され、また、メッキ後の排水には多種の化学薬品が含まれるため、排水処理にも高額な費用が必要となる。さらに、気孔径が数百μmと大きいものしか得られない。なお、特許文献1に「孔径が数μm〜100μmで・・」との記述があるが、これは、例えば、市販のポリウレタンフォーム(平均孔径300μm)の骨格表面を導電化処理して、これに導電性微小中空体を結合させた状態でメッキし、その後ポリウレタンフォーム等を熱分解して得られた金属多孔体に関する記述である。この場合の孔径とは、独立に点在する微小中空体の孔径という意味である。   As a method for producing a metal porous body, Patent Documents 1 and 3 disclose that a skeleton surface of a foamed resin such as a polyurethane foam by a chemical foaming method is subjected to a conductive treatment and electroplated, and then the resin is removed by thermal decomposition. A method is described. However, in this method, the types of metal for plating are limited, and since wastewater after plating contains various chemicals, expensive treatment is also required for wastewater treatment. Furthermore, only those having a pore size as large as several hundred μm can be obtained. In addition, Patent Document 1 has a description that “the pore diameter is several μm to 100 μm...”. This is because, for example, a skeletal surface of a commercially available polyurethane foam (average pore diameter of 300 μm) is subjected to a conductive treatment. This is a description of a porous metal body obtained by plating in a state where conductive hollow bodies are bonded, and then thermally decomposing polyurethane foam or the like. The pore diameter in this case means the pore diameter of minute hollow bodies that are scattered independently.

特許文献2には、ポリウレタンフォーム等の連通孔を有する樹脂(多孔質材料)のブロックやシートに金属粉末を含む塗料を含浸した後、多孔質材料を燃焼消滅させるとともに金属粉末を焼結させて金属多孔質体を製造する方法(含浸法)が開示されている。しかし、この方法では、特許文献1及び3と同様、多孔質材料が消失した跡が骨格の内部に中空として残り、金属多孔質体の強度が弱くなる傾向がある。さらに、塗料を含浸する工程において、多孔質材料の気孔を覆う皮膜が残ったままになりやすく、連続気孔を塞ぐため、フィルターとして用いられる場合は、気体や液体を透過する際の圧力損失を招くとともに、連続運転時には、目詰まりの原因になりやすい。   In Patent Document 2, after impregnating a block or sheet of resin (porous material) having communication holes such as polyurethane foam with a paint containing metal powder, the porous material is burned out and the metal powder is sintered. A method (impregnation method) for producing a metal porous body is disclosed. However, in this method, as in Patent Documents 1 and 3, the trace of the disappearance of the porous material remains as a hollow inside the skeleton, and the strength of the metal porous body tends to be weakened. Furthermore, in the step of impregnating the paint, the film covering the pores of the porous material tends to remain, and when used as a filter to close the continuous pores, it causes a pressure loss when permeating gas or liquid. At the same time, it tends to cause clogging during continuous operation.

又、特許文献4には、金属粉末、発泡剤、水溶性樹脂結合剤及び界面活性剤を含む発泡性スラリーを成形後に焼成して金属多孔質体を製造する方法が開示されている。この方法は、気体混入法によるもので、ポリウレタンフォーム等の前駆体を使わずに、発泡剤の発泡、ガスの膨張により気孔を形成する方法である。   Patent Document 4 discloses a method for producing a metal porous body by firing a foamable slurry containing a metal powder, a foaming agent, a water-soluble resin binder, and a surfactant after molding. This method is based on a gas mixing method, in which pores are formed by foaming of a foaming agent and gas expansion without using a precursor such as polyurethane foam.

特許文献1〜3に記載の方法では、前駆体として、化学発泡法によるポリウレタンフォームが主として使用される。また。特許文献4に記載の方法は、発泡剤により発生した気体の膨張により発泡する方法である。いずれの方法も気孔は気体により形成されるが、150μm未満の微細な気孔径や気孔数のコントロールが難しく、更に独立気孔を形成しやすいとの問題がある。そこで、フィルター等の用途に適用する場合等では、気孔膜を除去して完全に近い連続気孔にする必要があり、例えば非特許文献1にあるアルカリ処理や熱処理法などの特殊な加工を必要とする。   In the methods described in Patent Documents 1 to 3, a polyurethane foam obtained by a chemical foaming method is mainly used as a precursor. Also. The method described in Patent Document 4 is a method of foaming by expansion of gas generated by a foaming agent. In either method, the pores are formed by gas, but there are problems that it is difficult to control the fine pore diameter and the number of pores of less than 150 μm, and that it is easy to form independent pores. Therefore, when applied to applications such as filters, it is necessary to remove the pore film to make it nearly continuous pores. For example, special processing such as alkali treatment or heat treatment method described in Non-Patent Document 1 is required. To do.

特開昭57−174484号公報JP-A-57-174484 特開平5−247502号公報JP-A-5-247502 特開2012−111988号公報JP2012-111988 特開平9−87704号公報JP-A-9-87704

岩田敬治編「ポリウレタン樹脂ハンドブック」170頁、日刊工業新聞社刊、昭和62年9月25日170 pages of "Polyurethane resin handbook" edited by Keiji Iwata, published by Nikkan Kogyo Shimbun, September 25, 1987

本発明は、気孔径が従来の金属多孔質体より小さくかつ連続気孔の金属多孔質体を提供することを課題とする。本発明は、さらに気孔径が小さくかつ連続気孔の金属多孔質体を製造できる方法であって、多種類の金属に適用でき、メッキを行わず、かつ気孔径や気孔数のコントロールが容易な方法を提供することを課題とする。   An object of the present invention is to provide a metal porous body having a pore size smaller than that of a conventional metal porous body and having continuous pores. The present invention is a method capable of producing a metal porous body having a smaller pore size and continuous pores, which can be applied to many kinds of metals, does not perform plating, and can easily control the pore size and the number of pores. It is an issue to provide.

本発明者は、鋭意検討の結果、金属微粉末、水凝固性ポリウレタン、溶剤及び水溶性の無機塩の粉粒体を含む配合物を混練し、得られた混練物を脱泡して成形し、得られた成形物を水中または水溶液中に投入して凝固させて得られた凝固物から前記無機塩を水に溶出させて除去し、その後乾燥して得られる金属含有ポリウレタン多孔体を脱煤、焼結する方法により、バブルポイントが180μm以下、平均流量径又は平均細孔径が60μm以下であり、金属からなる連続気孔の多孔質体が得られることを見出し、本発明を完成した。   As a result of intensive studies, the inventor kneaded a compound containing metal fine powder, water-coagulable polyurethane, a solvent and a water-soluble inorganic salt powder, and defoamed the resulting kneaded product. Then, the obtained molded product is poured into water or an aqueous solution and solidified to elute and remove the inorganic salt from the coagulated product, and then dried to remove the porous metal-containing polyurethane. The present inventors completed the present invention by finding that a porous body having a bubble point of 180 μm or less, an average flow diameter or an average pore diameter of 60 μm or less and made of metal can be obtained by the sintering method.

本発明は、その第1の態様として、金属からなる連続気孔の多孔質体であって、バブルポイント法でいうバブルポイントが180μm以下であり、平均流量径又は平均細孔径が60μm以下であることを特徴とする微細気孔の金属多孔質体(請求項1)を提供する。   The first aspect of the present invention is a porous body of continuous pores made of metal, the bubble point in the bubble point method is 180 μm or less, and the average flow diameter or average pore diameter is 60 μm or less. A metal porous body having fine pores (Claim 1) is provided.

本発明は、又、前記第1の態様のより具体的な1態様として、厚みが1.0mm以下であることを特徴とする請求項1に記載の金属多孔質体(請求項2)を提供する。厚みは、好ましくは0.5mm以下である。   The present invention also provides the porous metal body according to claim 1, wherein the thickness is 1.0 mm or less as one more specific aspect of the first aspect. To do. The thickness is preferably 0.5 mm or less.

本発明は、又、その第2の態様として、
金属微粉末、水凝固性ポリウレタン、溶剤及び水溶性の無機塩の粉粒体を含む配合物を混練する混練工程、
前記混練工程で得られた混練物を脱泡し、成形する脱泡成形工程、
前記脱泡成形工程で得られた成形物を、水中または水溶液中に投入して、凝固させるとともに形成された凝固物から前記無機塩を水に溶出させて除去して金属含有ポリウレタン多孔体を形成する凝固溶出工程、及び
前記金属含有ポリウレタン多孔体を脱媒、焼結する焼結工程を有し、
前記無機塩の粉粒体は、粒径250μm以下の粒子を80質量%以上含むことを特徴とする金属多孔質体の製造方法(請求項3)を提供する。
The present invention also provides a second aspect thereof.
A kneading step of kneading a compound containing fine particles of metal fine powder, water-solidifying polyurethane, solvent and water-soluble inorganic salt,
A defoaming molding step for defoaming and molding the kneaded product obtained in the kneading step,
The molded product obtained in the defoaming molding process is poured into water or an aqueous solution to coagulate, and the inorganic salt is eluted from the formed coagulated product and removed to form a metal-containing polyurethane porous body. Solidifying and elution step, and removing and sintering the metal-containing polyurethane porous body,
The inorganic salt powder includes a metal porous body production method (Claim 3) characterized in that it contains 80% by mass or more of particles having a particle size of 250 μm or less.

本発明は、前記第2の態様の好ましい態様として、前記無機塩の粉粒体が、粒径が250μm以下の粒子を90質量%以上含むことを特徴とする請求項3に記載の金属多孔質体の製造方法(請求項4)を提供する。   According to the present invention, as a preferable aspect of the second aspect, the inorganic salt powder includes 90% by mass or more of particles having a particle diameter of 250 μm or less. A method for manufacturing a body (claim 4) is provided.

本発明は、さらに、前記第1の態様の金属多孔質体が適用される用途として、請求項1又は請求項2に記載の金属多孔質体を用いることを特徴とするフィルター(請求項5)を提供する。   The present invention further uses the metal porous body according to claim 1 or 2 as an application to which the metal porous body according to the first aspect is applied (Claim 5). I will provide a.

第1の態様の発明により提供される金属多孔質体は、連続気孔であり、バブルポイントが180μm以下である。この金属多孔質体は、目詰まりも小さく、又気体や液体を透過させる際の圧力損失が小さいので、フィルターとしても好適に用いられる。この金属多孔質体の平均流量径又は平均細孔径は60μm以下であり、微細な孔径を有するものである。従って、微細な孔径のフィルターとして用いることができ、かつ比表面積が大きいので、触媒や触媒の担体として、燃料電池用ガス拡散電極として好適に用いることができる。   The metal porous body provided by the invention of the first aspect has continuous pores and a bubble point of 180 μm or less. Since this porous metal body is small in clogging and has a small pressure loss when gas or liquid is permeated, it is also suitably used as a filter. This metal porous body has an average flow diameter or average pore diameter of 60 μm or less, and has a fine pore diameter. Therefore, since it can be used as a filter having a fine pore diameter and has a large specific surface area, it can be suitably used as a gas diffusion electrode for a fuel cell as a catalyst or a catalyst carrier.

第2の態様の発明の金属多孔質体の製造方法によれば、第1の態様の金属多孔質体のような連続気孔であって従来よりも微細な孔径を有する金属多孔質体を製造することができる。又、製造する金属多孔質体の気孔径や気孔数のコントロールが容易である。さらに、メッキを行う方法ではないので金属の種類を広く選定することができ、排水処理の問題も小さい方法である。   According to the method for producing a metal porous body of the invention of the second aspect, a metal porous body that is continuous pores and has a finer pore diameter than the conventional one, such as the metal porous body of the first aspect, is produced. be able to. Moreover, it is easy to control the pore diameter and the number of pores of the metal porous body to be produced. Furthermore, since it is not a method of plating, it is possible to select a wide variety of metals and to reduce the problem of wastewater treatment.

実施例と比較例に用いた無水硫酸ナトリウムの粒度分布図である。It is a particle size distribution map of the anhydrous sodium sulfate used for the Example and the comparative example. 実施例1で得られた金属多孔質体の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the metal porous body obtained in Example 1. FIG. 実施例2で得られた金属多孔質体の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the metal porous body obtained in Example 2. FIG. 実施例3で得られた金属多孔質体の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the metal porous body obtained in Example 3. FIG. 実施例4で得られた金属多孔質体の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the metal porous body obtained in Example 4. 実施例5で得られた金属多孔質体の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the metal porous body obtained in Example 5. FIG. 比較例1で得られた金属多孔質体の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a porous metal body obtained in Comparative Example 1. 実施例6で得られた金属多孔質体の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the metal porous body obtained in Example 6. 実施例7で得られた金属多孔質体の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the metal porous body obtained in Example 7. FIG. 比較例2で得られた金属多孔質体の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of a porous metal body obtained in Comparative Example 2. 比較例2で用いたポリウレタンフォームMF−80Aの走査型電子顕微鏡写真である。4 is a scanning electron micrograph of polyurethane foam MF-80A used in Comparative Example 2.

次に本発明を実施するための形態を、より具体的に説明するが、本発明の範囲はこの形態により限定されるものではなく、発明の趣旨の範囲内で種々の変更を加えることが可能である。   Next, a mode for carrying out the present invention will be described more specifically. However, the scope of the present invention is not limited by this mode, and various modifications can be made within the scope of the gist of the invention. It is.

第1の態様の発明は、バブルポイントが180μm以下であり、平均流量径又は平均細孔径が60μm以下であることを特徴とする金属多孔質体である。なお、平均流量径又は平均細孔径が60μm以下とは、平均流量径及び平均細孔径のいずれか一方又は両方が60μm以下であるとの意味である。   The first aspect of the present invention is a porous metal body having a bubble point of 180 μm or less and an average flow diameter or average pore diameter of 60 μm or less. The average flow diameter or average pore diameter of 60 μm or less means that either one or both of the average flow diameter and average pore diameter is 60 μm or less.

この金属多孔質体は、金属からなる連続気孔の多孔質体(金属スポンジ)である。多孔質体を形成する金属としては、鉄、ニッケル、銅、アルミニウム、チタン、クロム、コバルト、亜鉛、金、銀等や、SUS等の合金を挙げることができる。   This metal porous body is a porous body (metal sponge) having continuous pores made of metal. Examples of the metal forming the porous body include iron, nickel, copper, aluminum, titanium, chromium, cobalt, zinc, gold, silver, and alloys such as SUS.

連続気孔の多孔質体とは、多孔質体を構成する気孔間が3次元方向に分布しかつ互いにつながっている(気孔間に開口部がある)ものを言う。   The porous body having continuous pores refers to those in which pores constituting the porous body are distributed in a three-dimensional direction and connected to each other (there is an opening between the pores).

バブルポイントとは、バブルポイント法に基づき測定され、多孔質体の最大孔径に対応する値とされている。バブルポイント、平均流量径、平均細孔径は、ASTM F316−03に記載された方法に準じて測定された値である。ASTM F316−03には、多孔質体の内部構造を表現する3つの主要パラメータとして「バブルポイント」、「細孔径分布」、「平均流量径」が記載されている。   The bubble point is measured based on the bubble point method and is a value corresponding to the maximum pore diameter of the porous body. The bubble point, average flow diameter, and average pore diameter are values measured according to the method described in ASTM F316-03. ASTM F316-03 describes “bubble point”, “pore diameter distribution”, and “average flow diameter” as three main parameters expressing the internal structure of the porous body.

具体的には、試験液で濡らした測定試料にガスを透過させ、気泡が観察された時の差圧Pから、次の式(1)により求める細孔直径Dを、バブルポイントの測定値とする。
D=Cγ/P (1)
ここで、D:細孔直径(μm)、γ:試験液の表面張力(mN/m)、
P:差圧(Pa)、C:定数(経験値4199)
Specifically, gas is permeated through the measurement sample wetted with the test solution, and the pore diameter D obtained by the following equation (1) from the differential pressure P when bubbles are observed is determined as the measured value of the bubble point. To do.
D = Cγ / P (1)
Here, D: pore diameter (μm), γ: surface tension of test solution (mN / m),
P: differential pressure (Pa), C: constant (experience value 4199)

平均流量径及び平均細孔径は、具体的には、次の方法により測定する。
・多孔質体に加えられる差圧と多孔質体を通過する空気流量との関係を、多孔質体が乾燥している場合及び多孔質体が液体で濡れている場合について測定する。測定は低ガス流量から始め、縦軸をガス流量(L/min)、横軸を圧力(mbar)としたグラフを作成する。
・多孔質体が乾燥している場合のグラフ(乾き曲線)の流量を1/2とした曲線と、多孔質体が液体で濡れている場合のグラフ(濡れ曲線)との交点における差圧Pを求め、上記式(1)により求める細孔直径Dを、平均流量径の測定値とする。又、濡れ曲線と乾き曲線のガス流量を比較することで、特定サイズの細孔を通過するガス流量分布、即ち、ある特定の範囲内の細孔を通過するガス流量の割合がわかり、これらの値を平均して平均細孔径を求める。
Specifically, the average flow diameter and the average pore diameter are measured by the following method.
The relationship between the differential pressure applied to the porous body and the flow rate of air passing through the porous body is measured when the porous body is dry and when the porous body is wet with a liquid. The measurement starts with a low gas flow rate, and a graph is created with the vertical axis representing the gas flow rate (L / min) and the horizontal axis representing the pressure (mbar).
・ Differential pressure P at the intersection of a graph in which the flow rate of the graph (drying curve) when the porous material is dry is halved and a graph when the porous material is wet with liquid (wetting curve) And the pore diameter D determined by the above equation (1) is taken as the measured value of the average flow diameter. Also, by comparing the gas flow rates of the wetting curve and the drying curve, the gas flow distribution passing through the pores of a specific size, that is, the ratio of the gas flow rate passing through the pores within a specific range, can be found. The average pore diameter is obtained by averaging the values.

第1の態様の金属多孔質体の、バブルポイントが180μm以下、平均流量径又は平均細孔径が60μm以下であるとの特徴は、従来の金属多孔質体にはない気孔径の細かさと均一さを有することを示している。化学発泡法によるポリウレタンフォームで入手可能なものとして、最も気孔の小さいものは、通常1インチの直線を横切る気孔数が約80個であるが、後述の比較例で述べるように、このポリウレタンフォームを前駆体として使用した金属多孔質体のバブルポイント、平均流量径、平均細孔径を測定するとそれぞれ199.3μm、65.8μmであり、いずれも第1の態様の金属多孔質体より大きい。   The feature of the metal porous body of the first aspect in that the bubble point is 180 μm or less and the average flow diameter or the average pore diameter is 60 μm or less is the fineness and uniformity of the pore diameter not found in the conventional metal porous body It has shown that it has. Among the foams that can be obtained by chemical foaming polyurethane foams, the ones with the smallest pores usually have about 80 pores crossing a 1 inch straight line. When the bubble point, average flow diameter, and average pore diameter of the metal porous body used as the precursor were measured, they were 199.3 μm and 65.8 μm, respectively, which are both larger than the metal porous body of the first aspect.

金属多孔質体のバブルポイントは、好ましくは140μm以下である。又、平均流量径又は平均細孔径は、好ましくは40μm以下である。バブルポイントが140μm以下であり、かつ平均流量径又は平均細孔径が40μm以下である金属多孔質体は、より微細な孔径を有するフィルターとして用いることができ、かつ比表面積がより大きいので、触媒や触媒の担体として、燃料電池用ガス拡散電極として用いたとき、反応速度をより向上させることができる。   The bubble point of the metal porous body is preferably 140 μm or less. The average flow diameter or the average pore diameter is preferably 40 μm or less. A metal porous body having a bubble point of 140 μm or less and an average flow diameter or average pore diameter of 40 μm or less can be used as a filter having a finer pore size and has a larger specific surface area. When used as a catalyst carrier as a gas diffusion electrode for a fuel cell, the reaction rate can be further improved.

第2の態様の発明は、
金属微粉末、水凝固性ポリウレタン、溶剤及び水溶性の無機塩の粉粒体を含む配合物を混練する混練工程、
前記混練工程で得られた混練物を脱泡し、成形する脱泡成形工程、
前記脱泡成形工程で得られた成形物を、水中または水溶液中に投入して、凝固させるとともに形成された凝固物から前記無機塩を水に溶出させて除去して金属含有ポリウレタン多孔体を形成する凝固溶出工程、及び
前記金属含有ポリウレタン多孔体を脱媒、焼結する焼結工程を有し、
前記無機塩の粉粒体は、粒径250μm以下の粒子を80質量%以上含むことを特徴とする金属多孔質体の製造方法である。
The invention of the second aspect is
A kneading step of kneading a compound containing fine particles of metal fine powder, water-solidifying polyurethane, solvent and water-soluble inorganic salt,
A defoaming molding step for defoaming and molding the kneaded product obtained in the kneading step,
The molded product obtained in the defoaming molding process is poured into water or an aqueous solution to coagulate, and the inorganic salt is eluted from the formed coagulated product and removed to form a metal-containing polyurethane porous body. Solidifying and elution step, and removing and sintering the metal-containing polyurethane porous body,
The inorganic salt powder is a method for producing a metal porous body, characterized by containing 80% by mass or more of particles having a particle size of 250 μm or less.

本発明の製造方法(第2の態様の発明)により、第1の態様の金属多孔質体のような、連続気孔であって従来よりも微細な孔径を有する金属多孔質体を製造することができる。又、微細な孔径の範囲については、金属多孔質体の気孔径や気孔数のコントロールが容易である。これに対し、特許文献1等に記載の化学発泡法によるポリウレタンフォームを用いる方法では、気孔の孔径が大きく、微細な孔径を有する金属多孔質体を製造することが困難である。又、ポリウレタンフォームは独立気孔となりやすいので、連通化のための工程が必要である。   By the production method of the present invention (the invention of the second aspect), it is possible to produce a metal porous body having continuous pores and a finer pore diameter than the conventional one, such as the metal porous body of the first aspect. it can. In addition, regarding the range of the fine pore diameter, it is easy to control the pore diameter and the number of pores of the metal porous body. On the other hand, in the method using the polyurethane foam by the chemical foaming method described in Patent Document 1 or the like, it is difficult to produce a metal porous body having a large pore diameter and a fine pore diameter. Further, since polyurethane foam tends to become independent pores, a process for communication is necessary.

化学発泡法で、圧縮法により気孔の孔径を小さくしようとする試みはあるが、均一なセル径での微細化は期待できず、しかも高密度化に進むので、空孔率が下がりやすい。すなわち、本発明により、化学発泡法によるポリウレタンフォームを用いる方法に比べて安定した製造方法が提供される。さらに、本発明の製造方法は、以下に示す利点を有する。   Although there is an attempt to reduce the pore size of the pores by the chemical foaming method by the compression method, miniaturization with a uniform cell diameter cannot be expected, and since the density increases, the porosity tends to decrease. That is, the present invention provides a stable production method as compared with a method using a polyurethane foam by a chemical foaming method. Furthermore, the manufacturing method of the present invention has the following advantages.

広い種類の金属に適用できる製造方法である。特許文献1及び3に記載の電気メッキを使用する方法は、メッキをするための金属の種類が限定されるが、本発明の製造方法は、広い種類の金属に適用できる。   This manufacturing method can be applied to a wide variety of metals. In the methods using electroplating described in Patent Documents 1 and 3, the types of metals for plating are limited, but the manufacturing method of the present invention can be applied to a wide variety of metals.

特許文献2に記載の方法等の含浸法(ポリウレタンフォーム等の連通孔を有する多孔質材料に金属粉末を含む塗料を含浸した後、多孔質材料を燃焼消滅させるとともに金属粉末を焼結させる方法)では、脱媒、焼成によって多孔質材料が消失した跡が空洞として残り、気孔を形成する骨格の内部に中空が残りやすく、金属多孔質体としての強度が弱くなる傾向がある。これに対し、本発明の製造方法では、混練工程で、ポリウレタン、溶剤、金属粉末、無機塩が均一に混練されるので、液状のポリウレタン溶液が金属粉末表面をコーティングした状態で多孔質体になる。これを焼結するので、気孔を形成する骨格の内部に中空が残りにくく、骨格の内部に中空がない金属多孔質体を提供することができる。又金属粉末が骨格内に均一に分布したものが得られ、強度に優れた金属多孔質体が得られる。   An impregnation method such as the method described in Patent Document 2 (a method in which a porous material having a communicating hole such as polyurethane foam is impregnated with a paint containing a metal powder, and then the porous material is burned off and the metal powder is sintered) Then, traces of disappearance of the porous material due to the removal of the solvent and baking remain as cavities, and the hollow tends to remain inside the skeleton forming the pores, and the strength as the metal porous body tends to be weakened. In contrast, in the production method of the present invention, since the polyurethane, solvent, metal powder, and inorganic salt are uniformly kneaded in the kneading step, the liquid polyurethane solution becomes a porous body with the metal powder surface coated. . Since this is sintered, it is possible to provide a metal porous body in which no hollow remains in the skeleton forming pores and no hollow is formed in the skeleton. Further, a metal powder in which the metal powder is uniformly distributed in the skeleton is obtained, and a porous metal body having excellent strength is obtained.

ポリウレタンフォーム等の前駆体にスラリーを含浸させる方法(特許文献2の方法等)では、気孔を形成する骨格間に不規則な膜が残ることがあり、連続運転に使用すると目詰まりの原因になることがある。しかし、本発明の製造方法によれば、骨格間に不規則な皮膜が発生しにくい。   In a method of impregnating a slurry such as polyurethane foam with a slurry (the method of Patent Document 2, etc.), an irregular film may remain between the skeletons forming pores, which causes clogging when used for continuous operation. Sometimes. However, according to the manufacturing method of the present invention, an irregular film is hardly generated between the skeletons.

特許文献1〜4に記載の方法によれば、気孔膜を除去するための特殊な加工を施さない限り独立気孔が生じ易かったが、本発明の製造方法によれば、ほぼ完全な連続気孔が得られる。従って、気孔膜の除去等の特殊な加工を必要とせずに、フィルター、触媒、触媒の担体、燃料電池用ガス拡散電極等として好適に用いられる金属多孔質体を得ることができる。又、気孔径を所望の大きさにコントロールして製造することが容易であり、数μm〜180μmの各種大きさの気孔径が得られる。   According to the methods described in Patent Documents 1 to 4, independent pores were easily generated unless special processing for removing the porous membrane was performed. However, according to the production method of the present invention, almost complete continuous pores were formed. can get. Accordingly, it is possible to obtain a metal porous body suitably used as a filter, a catalyst, a catalyst carrier, a gas diffusion electrode for a fuel cell, or the like without requiring special processing such as removal of a pore film. Moreover, it is easy to manufacture by controlling the pore diameter to a desired size, and various pore sizes of several μm to 180 μm can be obtained.

本発明の製造方法によれば、脱泡成形工程を、コーティング、押出、インジェクション等の種々の方法で行うことができ、1mm以下の薄いものから立体的な形状で数十mmまでの肉厚のもの等種々の形状の金属多孔質体を得ることができる。   According to the production method of the present invention, the defoaming molding step can be performed by various methods such as coating, extrusion, injection, and the like. Metal porous bodies of various shapes such as those can be obtained.

近年、薄い金属多孔質体の需要が見込まれている。例えば、厚み1mm以下、好ましくは0.5mm以下の金属多孔質体が、燃料電池の電極などの用途で必要とされている。又、SUS、Tiの金属多孔質体は、燃料電池のインターコネクターとして、銅(Cu)の金属多孔質体は、リチウム二次電池負極の集電体としての用途が期待されている。しかし、薄い金属多孔質体を、肉厚の金属多孔質体のスライス(薄肉化)により製造することは困難である。また、特許文献1〜3に記載されているようなポリウレタンフォームを使う既存技術では、ポリウレタンフォームのスライスに限界があり、0.5mm以下の基材を安定した状態で作製することが困難であり、出来たとしても基材の機械的強度が弱くスラリーを塗着する工程で亀裂、しわ等が発生しやすい。   In recent years, demand for thin metal porous bodies is expected. For example, a metal porous body having a thickness of 1 mm or less, preferably 0.5 mm or less, is required for applications such as fuel cell electrodes. Further, SUS and Ti metal porous bodies are expected to be used as interconnectors for fuel cells, and copper (Cu) metal porous bodies are expected to be used as current collectors for lithium secondary battery negative electrodes. However, it is difficult to produce a thin metal porous body by slicing (thinning) a thick metal porous body. Moreover, in the existing technology using the polyurethane foam as described in Patent Documents 1 to 3, there is a limit to the slice of the polyurethane foam, and it is difficult to stably produce a substrate of 0.5 mm or less. Even if it is possible, the mechanical strength of the substrate is weak, and cracks, wrinkles and the like are likely to occur in the process of applying the slurry.

これに対し、本発明の製造方法によれば、スライス等の工程を必要とせずに厚み1mm以下、さらには厚み0.5mm以下の金属多孔質体を作製できるので、燃料電池用ガス拡散電極の製造等に好ましく適用される。本発明は、第1の態様の好ましい態様として、厚み1.0mm以下であることを特徴とする第1の態様の金属多孔質体を提供する。以下、本発明の製造方法を工程毎に説明する。   On the other hand, according to the manufacturing method of the present invention, a metal porous body having a thickness of 1 mm or less, and further a thickness of 0.5 mm or less can be produced without requiring a step such as slicing. It is preferably applied to manufacturing and the like. The present invention provides, as a preferred embodiment of the first embodiment, the metal porous body according to the first embodiment, which has a thickness of 1.0 mm or less. Hereafter, the manufacturing method of this invention is demonstrated for every process.

(1)混練工程
本発明の製造方法では、先ず、金属微粉末、水凝固性ポリウレタン、溶剤及び水溶性の無機塩の粉粒体を含む配合物の混練が行われる。
(1) Kneading step In the production method of the present invention, first, a compound containing metal fine powder, water-solidifying polyurethane, a solvent and water-soluble inorganic salt powder is kneaded.

(金属微粉末)
金属微粉末としては、鉄、ニッケル、銅、アルミニウム、チタン、クロム、コバルト、亜鉛、金、銀等の金属の微粉末、及びこれらを主成分とした合金の微粉末、又は前記例示の微粉末の2種以上を混合した混合粉末等を用いることができる。金属微粉末は高純度の金属からなるものでもよいが、通常の不純物が通常の量含有された市販のものも使用することができる。
(Metal fine powder)
As the metal fine powder, fine powder of metal such as iron, nickel, copper, aluminum, titanium, chromium, cobalt, zinc, gold, silver, etc., and fine powder of alloy mainly composed of these, or the fine powder exemplified above The mixed powder etc. which mixed 2 or more types of these can be used. The metal fine powder may be made of a high-purity metal, but a commercially available product containing a normal amount of normal impurities can also be used.

金属微粉末の粒径は、平均粒径が100μm以下が好ましく、特に50μm以下が好ましい。平均粒径が大きすぎる場合は、焼結による金属粉末間の結合が弱くなり、できあがった金属多孔質体の強度が弱くなる場合がある。混練される配合物中における金属粉末の配合量は、ポリウレタン100質量部(固形分に換算した値)に対して、400〜1600質量部の範囲が好ましい。金属粉末の配合物中における配合量が少なすぎる場合は金属微粒子どうしの焼結ができないため、金属多孔質体が得られない場合が生じ易くなり、多すぎる場合は、配合物の粘度が高すぎて成形が困難になる場合がある。   As for the particle size of the metal fine powder, the average particle size is preferably 100 μm or less, particularly preferably 50 μm or less. When the average particle size is too large, the bonding between the metal powders due to sintering becomes weak, and the strength of the resulting metal porous body may be weakened. The compounding amount of the metal powder in the compound to be kneaded is preferably in the range of 400 to 1600 parts by mass with respect to 100 parts by mass of polyurethane (value converted to solid content). If the amount of the metal powder in the compound is too small, the metal fine particles cannot be sintered, so that it may be difficult to obtain a metal porous body. If too much, the viscosity of the compound is too high. Molding may be difficult.

(ポリウレタン)
ポリウレタンは、高分子量ポリオールと鎖伸長剤からなるポリオール成分とポリイソシアネート化合物を反応させて得られるものである。高分子量ポリオールとしては、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリマーポリオール等のポリエーテル系ポリオール、アジペート系ポリオール、ポリカプロラクトンポリオール等のポリエステル系ポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等があり、望ましい分子量は500〜10000である。また、鎖伸長剤としては、エチレングリコール、1,4ブタンジオール、1,6ヘキサンジオール、1,5ペンタンジオール、3−メチル−1,5ペンタンジオール、1,3プロパンジオール等がある。ポリイソシアネート化合物としては、メチレンジフェニルジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ナフチレン1,5−ジイソシアネート、テトラメチレンキシリレンジイソシアネート等の芳香族系イシシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の脂環系イソシアネートおよびヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネン・ジイソシアネート等の脂肪族系イソシアネート等がある。
(Polyurethane)
Polyurethane is obtained by reacting a polyol component composed of a high molecular weight polyol and a chain extender and a polyisocyanate compound. Examples of the high molecular weight polyol include polyether polyols such as polypropylene glycol, polytetramethylene glycol, and polymer polyol, polyester polyols such as adipate polyol and polycaprolactone polyol, polycarbonate polyol, and polyolefin polyol. 10,000. Examples of the chain extender include ethylene glycol, 1,4 butanediol, 1,6 hexanediol, 1,5 pentanediol, 3-methyl-1,5 pentanediol, 1,3 propanediol and the like. Examples of polyisocyanate compounds include aromatic isocyanates such as methylene diphenyl diisocyanate, tolylene diisocyanate, xylylene diisocyanate, naphthylene 1,5-diisocyanate, tetramethylene xylylene diisocyanate, and cycloaliphatic isocyanates such as isophorone diisocyanate and dicyclohexylmethane diisocyanate. And aliphatic isocyanates such as hexamethylene diisocyanate, dimer acid diisocyanate and norbornene diisocyanate.

ポリウレタンは、無溶剤ポリウレタン、溶剤系ポリウレタン、水系ポリウレタンに分類されるが、金属微粒子間のバインダーとして作用し、かつ成形可能であれば、いずれでも使用できる。   Polyurethanes are classified into solventless polyurethanes, solvent-based polyurethanes, and water-based polyurethanes, and any polyurethane can be used as long as it acts as a binder between metal fine particles and can be molded.

無溶剤ポリウレタンを使用する場合も、本発明の製造方法を応用することができ、この場合は次のように行われる。すなわち、溶剤をほとんど含まない熱可塑性ポリウレタンを加熱により可塑性を付与し、これに金属微粉末、水溶性の無機塩の粉粒体を混練させる。得られた混練物を脱泡、成形して冷却固化し、水などで無機塩を溶出させた後、乾燥する。これを脱煤、焼結して金属多孔質体が得られる。この方法は、金属微粒子との混練により、極めて高粘度になるため、成形がしづらいなどの欠点がある。   Even when solventless polyurethane is used, the production method of the present invention can be applied. In this case, the production is carried out as follows. That is, a thermoplastic polyurethane containing almost no solvent is imparted with plasticity by heating, and a metal fine powder and a water-soluble inorganic salt powder are kneaded therein. The obtained kneaded product is defoamed, molded, cooled and solidified, and the inorganic salt is eluted with water and then dried. This is degassed and sintered to obtain a porous metal body. This method has disadvantages such as difficulty in molding because the viscosity becomes extremely high by kneading with metal fine particles.

水系ポリウレタンは主にポリウレタンエマルジョンである。水系ポリウレタンを使用する場合は、水溶性の無機塩の粉粒体(気孔生成剤)の溶解防止のために、低温での加工が必要となるなどの制限がある。   The water-based polyurethane is mainly a polyurethane emulsion. When water-based polyurethane is used, there is a restriction that processing at a low temperature is required to prevent dissolution of water-soluble inorganic salt particles (pore formation agent).

溶剤系ポリウレタンを使用する場合は、成形が容易であり、かつ金属錆を発生しにくいとの利点がある。従って、無溶剤ポリウレタン、溶剤系ポリウレタン、水系ポリウレタンの中では、溶剤系ポリウレタンが、本発明の製造方法に好ましく、特に水溶性の溶剤からなる水凝固性ポリウレタンがより好ましい。   When solvent-based polyurethane is used, there is an advantage that molding is easy and metal rust is hardly generated. Therefore, among solventless polyurethanes, solvent-based polyurethanes, and water-based polyurethanes, solvent-based polyurethanes are preferable for the production method of the present invention, and water-solidifying polyurethanes composed of water-soluble solvents are more preferable.

水や水を含む溶液中に溶液タイプのポリウレタンを浸漬すると、溶剤が水に置換されることがある。一般的に水はポリウレタンの貧溶剤であるので、溶剤が水に置換されるとポリウレタンは析出して固体になる。これを水凝固と言い、水凝固性ポリウレタンとは水凝固させることができるポリウレタンを言う。水凝固は、必ずしも水中で行なう必要はなく、水溶液中で行なうこともできる。例えば、無機塩や溶剤等が溶けた水溶液中で凝固させることにより、ポリウレタンが凝固する速度を緩やかにし、巨大ボイド(気孔生成剤の粒径をはるかに超えた空孔)の発生を防ぐこともある。   When a solution type polyurethane is immersed in water or a solution containing water, the solvent may be replaced with water. Since water is generally a poor solvent for polyurethane, when the solvent is replaced with water, the polyurethane precipitates and becomes solid. This is called water coagulation, and the water coagulable polyurethane is a polyurethane that can be water coagulated. Water coagulation is not necessarily performed in water, and can also be performed in an aqueous solution. For example, by coagulating in an aqueous solution in which an inorganic salt or solvent is dissolved, the rate at which the polyurethane coagulates is moderated, preventing the generation of giant voids (voids far exceeding the pore generator particle size). is there.

水凝固性ポリウレタンとしては、前記ポリオール成分とポリイソシアネート化合物を溶媒中で重合反応させて得られるものを挙げることができるが、他にも無溶媒で重合されたポリウレタンを溶剤に溶解したものも挙げることができる。本発明の製造方法で使用される水凝固性ポリウレタンとしては、通常、固形分が30±5質量%であって、粘度が30〜500Pa・s(25℃、BH型粘度計の6号ロータで測定した値)の溶液が好ましく使用される。粘度30Pa・s未満の水凝固性ポリウレタンを使用すると、金属含有ポリウレタン多孔体の強度が不足する場合がある。また、粘度が500Pa・sを越える場合には、混練物が流動しづらく成形に長時間かかる場合がある。   Examples of the water coagulable polyurethane include those obtained by polymerizing the polyol component and the polyisocyanate compound in a solvent, and other examples include those obtained by dissolving polyurethane polymerized without solvent in a solvent. be able to. The water-coagulable polyurethane used in the production method of the present invention usually has a solid content of 30 ± 5% by mass and a viscosity of 30 to 500 Pa · s (25 ° C., No. 6 rotor of a BH viscometer). The solution of the measured value) is preferably used. If a water-solidifying polyurethane having a viscosity of less than 30 Pa · s is used, the strength of the metal-containing polyurethane porous body may be insufficient. Further, when the viscosity exceeds 500 Pa · s, the kneaded material is difficult to flow and may take a long time for molding.

本発明の製造方法では、単一種類の水凝固性ポリウレタンを使用することができるし、2種類以上のポリウレタンを混合して使用することもできる。また、水凝固性ポリウレタンが70質量%以上、好ましくは90質量%以上含まれていれば、ポリウレタン以外のポリマーであって、溶剤の存在下で、ポリウレタンと均一に混ざり合い、水凝固後に形状を保つことが出来るポリマーと混合して使用することも可能である。ポリウレタン以外のポリマーとしては、フェノール樹脂、アクリル樹脂、ブチラール樹脂等を挙げることができる。   In the production method of the present invention, a single type of water-coagulating polyurethane can be used, or two or more types of polyurethane can be mixed and used. Further, if the water-coagulable polyurethane is contained in an amount of 70% by mass or more, preferably 90% by mass or more, it is a polymer other than polyurethane, and is uniformly mixed with the polyurethane in the presence of a solvent. It can also be used in admixture with polymers that can be kept. Examples of the polymer other than polyurethane include phenol resin, acrylic resin, butyral resin, and the like.

(溶剤)
本発明の製造方法に用いられる溶剤とは、水凝固性ポリウレタンの良溶媒を意味する。この溶剤としては、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、テトラヒドロフラン、メチルピロリドン、N−メチルピロリドン等の有機溶剤やこれらの配合物が挙げられる。中でも、後工程において容易に水により溶出できることと、作業環境としての溶剤臭、引火性等を考慮するとジメチルホルムアミドが好ましい。
(solvent)
The solvent used in the production method of the present invention means a good solvent for water-coagulable polyurethane. Examples of the solvent include organic solvents such as dimethylformamide, dimethyl sulfoxide, dioxane, tetrahydrofuran, methyl pyrrolidone, N-methyl pyrrolidone, and blends thereof. Among these, dimethylformamide is preferable in view of easiness of elution with water in the post-process and solvent odor and flammability as a working environment.

溶剤の量は、例えば、固形分30質量%の水凝固性ポリウレタン溶液の場合、その100質量部に対して2〜200質量部の範囲で添加することが好ましい。添加量が2質量部未満の場合、混練物が流動しづらくて成形に長時間がかかる場合があり、添加量が200質量部を越えると、得られる金属多孔質体の強度が不足する場合がある。   For example, in the case of a water-solidifying polyurethane solution having a solid content of 30% by mass, the amount of the solvent is preferably added in the range of 2 to 200 parts by mass with respect to 100 parts by mass. If the addition amount is less than 2 parts by mass, the kneaded product may not flow easily, and it may take a long time to form. If the addition amount exceeds 200 parts by mass, the strength of the resulting metal porous body may be insufficient. is there.

(水溶性の無機塩の粉粒体)
水溶性の無機塩の粉粒体とは、ナトリウム、カリウム等の塩化物、硫酸塩等の水溶性の無機塩の粉粒体である。この粉粒体の粒度分布を所定の範囲に選択することで、金属多孔質体の気孔径を調整することができる。従って、無機塩の粉粒体は、目的とする金属多孔質体の気孔径を考慮して、最適な粒径、粒度分布を有するものを使用する。このような無機塩の粉粒体は、市販の無機塩の粉粒体の中から、最適な粒径、粒度分布を有するものを選択することにより、又は、市販の無機塩の粉粒体に、粉砕、分級、混合等を施すことにより得ることができる。
(Water-soluble inorganic salt powder)
The water-soluble inorganic salt powder is a water-soluble inorganic salt powder such as sodium chloride, potassium chloride or sulfate. By selecting the particle size distribution of the powder particles within a predetermined range, the pore diameter of the metal porous material can be adjusted. Accordingly, the inorganic salt powder having an optimum particle size and particle size distribution is used in consideration of the pore size of the target metal porous material. Such inorganic salt granules can be selected from commercially available inorganic salt granules having the optimum particle size and particle size distribution, or commercially available inorganic salt granules. , Pulverization, classification, mixing, and the like.

本発明の製造方法は、従来よりも細かい気孔径の金属多孔質体を得ることを目的とするので、粒径の小さい無機塩の粉粒体を使用する。具体的には、粒径250μm以下の粒子を80質量%以上含む無機塩の粉粒体が用いられる。好ましくは、粒径250μm以下の粒子を90質量%以上含む無機塩の粉粒体が用いられ(請求項4)、より好ましくは粒径150μm以下の粒子を90質量%以上含む無機塩の粉粒体を使用する。   Since the production method of the present invention aims to obtain a metal porous body having a pore size smaller than that of the conventional one, an inorganic salt granular material having a small particle diameter is used. Specifically, an inorganic salt powder containing 80% by mass or more of particles having a particle size of 250 μm or less is used. Preferably, inorganic salt particles containing 90% by mass or more of particles having a particle size of 250 μm or less are used (Claim 4), more preferably inorganic salt particles containing 90% by mass or more of particles having a particle size of 150 μm or less. Use the body.

第1の態様の金属多孔質体、すなわち(バブルポイント法でいう)最大気孔径(バブルポイント)が180μm以下、平均細孔径又は平均流量径のいずれかが60μm以下である金属多孔質体は、粒径が250μmを超える粒子を20質量%未満(粒径が250μm以下の粒子が80質量%以上)含む無機塩の粉粒体を用いることにより得ることができる。無機塩の粉粒体として、粒径が250μm以下の粒子が90質量%以上含むものがより好ましく、粒径が150μm以下の粒子が90質量%以上のものはさらに好ましく、最大気孔径(バブルポイント)、平均細孔径又は平均流量径がさらに小さい金属多孔質体を得ることができる。   The metal porous body of the first aspect, that is, the metal porous body having a maximum pore diameter (bubble point) of 180 μm or less and an average pore diameter or average flow diameter of 60 μm or less (referred to as bubble point method) It can be obtained by using an inorganic salt granular material containing less than 20% by mass of particles having a particle size exceeding 250 μm (particles having a particle size of 250 μm or less are 80% by mass or more). More preferably, the inorganic salt powder includes 90% by mass or more of particles having a particle size of 250 μm or less, more preferably 90% by mass or more of particles having a particle size of 150 μm or less, and a maximum pore size (bubble point). ), A metal porous body having a smaller average pore diameter or average flow diameter can be obtained.

水溶性の無機塩の粒子は、ポリウレタン100質量部(固形分に換算した値)に対して、100〜2000質量部、好ましくは、500〜1500質量部の範囲で添加する。100質量部以下では配合物中で無機塩が繋がり無く分散するために、連続気孔の金属製多孔質体は得られ難くなる。また、2000質量部を超えると、得られた金属製多孔質体の機械的強度が極端に低下し使用に耐えられないものになりやすい。   The water-soluble inorganic salt particles are added in an amount of 100 to 2000 parts by mass, preferably 500 to 1500 parts by mass with respect to 100 parts by mass of polyurethane (value converted to solid content). When the amount is 100 parts by mass or less, the inorganic salt is dispersed without being connected in the composition, and thus it is difficult to obtain a metal porous body having continuous pores. On the other hand, when the amount exceeds 2000 parts by mass, the mechanical strength of the obtained metal porous body is extremely lowered and it tends to be unusable.

混練工程で混練される配合物には、前記の必須成分に加えて、本発明の趣旨を損ねない範囲で、必要に応じて他の成分を添加してもよい。例えば、混練物をより流動化するために水溶性高分子を添加することができる。この水溶性高分子としては、溶剤にも溶けるものが好ましく、例えば、溶剤可溶性のポリビニルアルコール等の合成品、メチルセルロース、カルボキシメチルセルロース等の半合成品、及び高分子多糖類等の天然品等が挙げられる。又、消泡剤としての界面活性剤、濡れ性を改良するための界面活性剤などの添加物も必要に応じて添加することができる。   In addition to the essential components described above, other components may be added to the compound kneaded in the kneading step as necessary within a range not impairing the gist of the present invention. For example, a water-soluble polymer can be added to make the kneaded material more fluid. As the water-soluble polymer, those that are soluble in a solvent are preferable, and examples include synthetic products such as solvent-soluble polyvinyl alcohol, semi-synthetic products such as methyl cellulose and carboxymethyl cellulose, and natural products such as polymer polysaccharides. It is done. Further, additives such as a surfactant as an antifoaming agent and a surfactant for improving wettability can be added as necessary.

(混練)
金属微粉末、水凝固性ポリウレタン、溶剤及び水溶性の無機塩の粉粒体を必須成分として含み、必要に応じて他の成分を含むこともある配合物の混練は、プロペラミキサー、リボンミキサー、ニーダー、オーガ混練機、バンバリーミキサー、スクリュー押出機等を使用して行うことができる。
(Kneading)
Kneading of a compound containing fine particles of metal fine powder, water-coagulable polyurethane, solvent and water-soluble inorganic salt as essential components, and may contain other components as necessary is a propeller mixer, a ribbon mixer, A kneader, an auger kneader, a Banbury mixer, a screw extruder or the like can be used.

(2)脱泡成形工程
このようにして混練物を得た後、出来た混練物を脱泡、成形する。脱泡の目的は組成物中の空気の泡を除去することである。脱泡、成形の方法は特に制限されない。例えば、ベント式押出機を使用して減圧脱泡を行ない、上記押出機に成形口金(Tダイ)を接続して所望の形状に賦型する方法を挙げることができる。
(2) Defoaming and forming step After obtaining the kneaded product in this manner, the resulting kneaded product is defoamed and molded. The purpose of defoaming is to remove air bubbles in the composition. The method of defoaming and molding is not particularly limited. For example, there can be mentioned a method of performing degassing under reduced pressure using a vent type extruder, connecting a molding die (T die) to the extruder and shaping into a desired shape.

(3)凝固溶出工程
脱泡成形工程で得られた成形物を、水中または水溶液中に投入して、溶剤を水に置換してポリウレタンを析出させ、水凝固を行う。成形体の投入方法は特に限定されないが、例えば、脱泡成形工程において、シート状の基材に混練物を塗布する、ステンレス304等からなるパンチングメタルを用いて上面が開いた箱状にしたものに混練物を押し出して充填する等の方法により成形を行い、成形体を、水又は水溶液に投入することにより行うことができる。
(3) Solidification elution step The molded product obtained in the defoaming molding step is put into water or an aqueous solution, the solvent is replaced with water, and polyurethane is precipitated to perform water coagulation. The method of charging the molded body is not particularly limited. For example, in the defoaming molding process, a kneaded material is applied to a sheet-like substrate, and a punched metal made of stainless steel 304 or the like is used to form a box with an upper surface opened. The kneaded product can be molded by a method such as extrusion and filling, and the molded product can be poured into water or an aqueous solution.

形成された凝固物から前記水に可溶な無機塩を水に溶出(水抽出)させて除去して金属含有ポリウレタン多孔体を形成する。具体的な方法としては、例えば、容器に入った混練物の成形体を温水中に放置して水に可溶な無機塩の大半を溶出した後、一般的な洗濯機等にこれを投入し、20〜80℃の水で15分〜90分程洗浄し、その洗浄中に、数回の水交換を行う方法を挙げることができる。   The metal-soluble polyurethane porous body is formed by elution (water extraction) of the water-soluble inorganic salt from the formed coagulum and removing it. As a specific method, for example, the molded product of the kneaded material contained in the container is left in warm water to elute most of the water-soluble inorganic salts, and then put into a general washing machine or the like. A method of washing with water at 20 to 80 ° C. for about 15 to 90 minutes and performing water exchange several times during the washing can be mentioned.

水凝固は、必ずしも水中で行う必要はなく、水溶液中で行うこともできる。例えば、無機塩や溶剤等が溶けた水溶液中で凝固させることにより、ポリウレタンが凝固する速度を緩やかにし、巨大ボイド(気孔生成剤の粒径をはるかに超えた空孔)の発生を防ぐこともある。   Water coagulation is not necessarily performed in water, and can also be performed in an aqueous solution. For example, by coagulating in an aqueous solution in which an inorganic salt or solvent is dissolved, the rate at which the polyurethane coagulates is moderated, preventing the generation of giant voids (voids far exceeding the pore generator particle size). is there.

好ましくは、このようにして得られた成形体を乾燥する。乾燥温度は110℃以下が好ましい。乾燥は、箱型乾燥機、タンブラー型乾燥機等を使用して行うことができる。このようにして、金属多孔質体の前躯体である金属含有ポリウレタン多孔体が得られる。その後、この金属含有ポリウレタン多孔体を脱煤(脱脂)、焼結することにより金属多孔質体が製造される。   Preferably, the molded body thus obtained is dried. The drying temperature is preferably 110 ° C. or lower. Drying can be performed using a box-type dryer, a tumbler-type dryer or the like. In this manner, a metal-containing polyurethane porous body that is a precursor of the metal porous body is obtained. Thereafter, the metal-containing polyurethane porous body is degreased (degreased) and sintered to produce a metal porous body.

(4)焼結工程
このようにして得られた金属含有ポリウレタン多孔体を焼結することにより、金属多孔質体が得られる。通常、焼結の前に、金属含有ポリウレタン多孔体からポリウレタン等を除去するために脱煤(脱脂)が行われるが、脱煤と焼結を続けて行う場合もあり得る。脱煤(脱脂)は、通常、金属含有ポリウレタン多孔体を300〜700℃の温度に1〜6時間程度保つことにより行われる。脱煤は、真空中又は不活性ガス(例えば、窒素、アルゴン)雰囲気中で行うことが好ましい。
(4) Sintering process A metal porous body is obtained by sintering the metal containing polyurethane porous body obtained in this way. Usually, degreasing (degreasing) is performed to remove polyurethane and the like from the metal-containing polyurethane porous body before sintering, but degassing and sintering may be performed continuously. Degreasing (degreasing) is usually performed by keeping the metal-containing polyurethane porous body at a temperature of 300 to 700 ° C. for about 1 to 6 hours. Degassing is preferably performed in a vacuum or in an inert gas (for example, nitrogen, argon) atmosphere.

脱媒の後焼結が行われるが、脱媒と焼結を一連で行なうことも可能である。焼結は、通常、真空中又は不活性ガス雰囲気中で、脱媒後の金属含有多孔質体を焼結温度に所定時間保つことにより行われる。焼結温度等の条件は、金属の種類により異なるが、通常、タンマン温度以上で、タンマン温度と融点の中間の温度以下の範囲が好ましい。SUSの場合は、900〜1200℃の温度に0.5時間以上保つことが好ましい。   After the removal of the solvent, sintering is performed, but it is also possible to perform the removal and sintering in a series. Sintering is usually performed by keeping the metal-containing porous body after removal of the solvent at a sintering temperature for a predetermined time in a vacuum or in an inert gas atmosphere. Conditions such as the sintering temperature vary depending on the type of metal, but usually a range of not less than the Tamman temperature and not more than a temperature between the Tamman temperature and the melting point is preferred. In the case of SUS, it is preferable to keep the temperature at 900 to 1200 ° C. for 0.5 hours or more.

第1の態様の金属多孔質体や第2の態様の製造方法により製造された金属多孔質体は、前記のように、連続気孔であり、細かい気孔を有する等の特徴を有するので、フィルター、燃料電池のガス拡散電極等に好適に使用される。そこで、前記第1の態様の金属多孔質体が適用される用途として、請求項1又は請求項2に記載の金属多孔質体を用いることを特徴とするフィルター(請求項5)を提供する。   Since the porous metal body manufactured by the porous metal body of the first aspect and the manufacturing method of the second aspect has characteristics such as continuous pores and fine pores as described above, a filter, It is preferably used for a gas diffusion electrode of a fuel cell. Accordingly, a filter (Claim 5) using the metal porous body according to claim 1 or 2 as an application to which the metal porous body according to the first aspect is applied is provided.

先ず、実施例、比較例で使用した評価方法を説明する。
(1)バブルポイント(μm)、平均流量径(μm)、平均細孔径(μm)の測定
前記の方法(ASTM F316−03に記載の方法)に基づき、下記の条件で測定した。
使用評価装置:ポアサイズメータ PSM−165(Topas GmbH社製)
試験液:エタノール
使用ガス:乾燥エアー
ガス流量範囲:0.06〜70mL/min
First, evaluation methods used in Examples and Comparative Examples will be described.
(1) Measurement of bubble point (μm), average flow diameter (μm), and average pore diameter (μm) Based on the above method (method described in ASTM F316-03), measurement was performed under the following conditions.
Use evaluation device: Pore size meter PSM-165 (manufactured by Topas GmbH)
Test liquid: Ethanol used gas: Dry air gas Flow rate range: 0.06-70 mL / min

(2)見掛密度
JIS K 7222に従い測定した。
(2) Apparent density It measured according to JISK7222.

(3)濾過試験
1)フィルターホルダーの作製
東洋濾紙社製の濾過器(Type KST−142 DIA 142MM、有効濾過直径=120mm)を使用し、濾過器の有効濾過面積が、16cmになるよう治具(フィルターホルダー)を作製した。
2)濾過試験液の作製
JIS試験用粉体7種(関東ローム焼成品)を精製水に分散させて5質量%スラリーを作製して濾過試験液とした。
3)試験方法
フィルターホルダーに試料(金属多孔質体のフィルター)をセットし、上記の濾過試験液を圧縮空気で加圧して、表4に示す条件にて、濾過試験を行った。
(3) Filtration test 1) Preparation of filter holder Using a filter (Type KST-142 DIA 142MM, effective filtration diameter = 120 mm) manufactured by Toyo Roshi Kaisha, so that the effective filtration area of the filter is 16 cm 2. A tool (filter holder) was prepared.
2) Preparation of filtration test solution Seven types of JIS test powder (Kanto loam baked product) were dispersed in purified water to prepare a 5 mass% slurry, which was used as a filtration test solution.
3) Test method A sample (a metal porous body filter) was set in a filter holder, the above-mentioned filtration test solution was pressurized with compressed air, and a filtration test was performed under the conditions shown in Table 4.

(4)電子顕微鏡写真(SEM)
日本電子社製のJSM5500LVを用い、試料(金属多孔質体)のSEM写真を撮った。
(4) Electron micrograph (SEM)
An SEM photograph of the sample (porous metal body) was taken using JSM 5500LV manufactured by JEOL.

実施例1
(使用原料)
・ポリウレタン:レザミンCU−8445(大日精化工業社製、エーテル型樹脂、固形分30±1.5%) 20質量部
・無水硫酸ナトリウム(粒径7μm) 80質量部
・SUS316L粉末 50質量部
・ジメチルホルムアミド(DMF) 20質量部
Example 1
(Raw materials used)
・ Polyurethane: Rezamin CU-8445 (manufactured by Dainichi Seika Kogyo Co., Ltd., ether type resin, solid content 30 ± 1.5%) 20 parts by mass ・ Anhydrous sodium sulfate (particle size: 7 μm) 80 parts by mass ・ SUS316L powder 50 parts by mass 20 parts by mass of dimethylformamide (DMF)

上記の原料を、上記の組成で、総量で510gになるように秤量した。粒径7μmの無水硫酸ナトリウムは、市販品として通常入手できないので、表1のRN−1の無水硫酸ナトリウムを、粉砕分級機(ホソカワミクロン社製、ACMパルペライザH型、型式:ACM−30H)を使用して粉砕して作製した。粉砕後、粒度分布測定機(Honewell社製 Microtrac HRA 型式9320−x100)を使用して測定したところ、粉砕後の平均粒径(積算値50%の粒度)は7.04μmであった。また、SUS316L粉末はエプソンアトミックス社製で、平均粒径が9μmのものを用いた。   The above raw materials were weighed so as to have a total amount of 510 g with the above composition. Since anhydrous sodium sulfate with a particle size of 7 μm is not usually available as a commercial product, the anhydrous sodium sulfate of RN-1 in Table 1 is used with a pulverizer (Hosokawa Micron Corporation, ACM pulser type H, model: ACM-30H). And then pulverized. After pulverization, the particle size was measured using a particle size distribution analyzer (Microtrac HRA Model 9320-x100 manufactured by Honeywell). The average particle size after pulverization (particle size of 50% integrated value) was 7.04 μm. The SUS316L powder was manufactured by Epson Atmix Co., and the average particle size was 9 μm.

(混練、脱泡成形、凝固溶出工程)
秤量した各原料を500mlポリカップに入れ、室温で、アズワン社製の強力プロペラ攪拌機TORNADO SN−20にて10分間攪拌、混練し、均一にした後に真空ポンプを用いて脱泡した。脱泡後、100μm厚みのテイジンテトロンフィルムを基材にして、ナイフコーターにて0.7mm厚みに塗布した。塗布後、30℃の水中に浸漬してジメチルホルムアミドを水で置換し、水凝固を行った。その後、水にて無機塩(硫酸ナトリウム)を溶出させた後、箱形乾燥機を用いて60℃で4時間乾燥し、基材付きのスポンジを得た。
(Kneading, defoaming molding, coagulation elution process)
Each weighed raw material was placed in a 500 ml polycup, stirred and kneaded for 10 minutes with a powerful propeller stirrer TORNADO SN-20 manufactured by AS ONE at room temperature, defoamed using a vacuum pump. After defoaming, a Teijin Tetron film having a thickness of 100 μm was used as a base material and applied to a thickness of 0.7 mm with a knife coater. After coating, the film was immersed in water at 30 ° C. to replace dimethylformamide with water, and water coagulation was performed. Then, after eluting inorganic salt (sodium sulfate) with water, it dried at 60 degreeC for 4 hours using the box-type dryer, and obtained sponge with a base material.

(焼結工程:脱媒)
得られた基材付きスポンジから基材を剥離し、金属粉末(SUS316L)とポリウレタン樹脂から構成された金属含有ポリウレタン多孔体のシート(厚さ0.5mm)を得た。この多孔体のシートをジルコニアセッタにのせて電気炉(不活性ガスフロー脱脂炉、ネムス社製)にセットした。次に不活性ガス(Ar)を電気炉に流入し、炉内を不活性ガス雰囲気にした。不活性ガスを10L/分で流しながら、80℃/時間の昇温速度で570℃まで上げ、4時間保持するプログラムで脱媒(脱脂)を行なった。
(Sintering process: removal of solvent)
The base material was peeled from the obtained sponge with base material to obtain a metal-containing porous polyurethane sheet (thickness 0.5 mm) composed of metal powder (SUS316L) and polyurethane resin. This porous sheet was placed on a zirconia setter and set in an electric furnace (inert gas flow degreasing furnace, manufactured by Nemus). Next, inert gas (Ar) was flowed into the electric furnace, and the inside of the furnace was made into an inert gas atmosphere. While flowing an inert gas at a rate of 10 L / min, the temperature was increased to 570 ° C. at a temperature increase rate of 80 ° C./hour, and the solvent was removed (degreasing) using a program for 4 hours.

(焼結工程:焼結)
上記脱媒工程で得られた中間製品をセッタとともに真空炉(ネムス社製)に移す。次に、真空ポンプを作動し真空度を10のマイナス2〜3乗パスカルに保ち、昇温速度100℃/時間で400℃まで上げ、次に昇温速度40℃/時間で1000℃まで上げ、1時間キープのプログラムで焼結を行ない、SUS316Lの金属多孔質体を得た。
(Sintering process: Sintering)
The intermediate product obtained in the above removal process is transferred to a vacuum furnace (manufactured by Nemus) together with a setter. Next, the vacuum pump is operated and the degree of vacuum is maintained at minus 2 to the third power Pascal, and the temperature is increased to 400 ° C. at a temperature increase rate of 100 ° C./hour, and then increased to 1000 ° C. at a temperature increase rate of 40 ° C./hour. Sintering was performed with a program for 1 hour to obtain a porous metal body of SUS316L.

実施例1及び以下の実施例や比較例で使用した無水硫酸ナトリウムの粒度分布グラフを図1に示した。また、同じデータから計算した一定粒度範囲毎の質量%を表1に示した。実施例や比較例で使用した無水硫酸ナトリウムは、いずれも伏見製薬所社の販売である。   The particle size distribution graph of anhydrous sodium sulfate used in Example 1 and the following Examples and Comparative Examples is shown in FIG. In addition, Table 1 shows mass% for each fixed particle size range calculated from the same data. The anhydrous sodium sulfate used in the examples and comparative examples are all sold by Fushimi Pharmaceutical.

実施例2
実施例1で用いた7μm粒径の無水硫酸ナトリウムの替わりに、表1、図1に示した粒度分布の無水硫酸ナトリウムRN−1を用いた以外は、同様の原料と工程によりSUS316Lの金属多孔質体を得た。
Example 2
Instead of the anhydrous sodium sulfate having a particle size of 7 μm used in Example 1, an anhydrous sodium sulfate RN-1 having a particle size distribution shown in Table 1 and FIG. A mass was obtained.

実施例3
実施例1で用いた7μm粒径の無水硫酸ナトリウムの替わりに、表1、図1に示した粒度分布の無水硫酸ナトリウムRN−2を用いた以外は、同様の原料と工程によりSUS316Lの金属多孔質体を得た。
Example 3
Instead of the anhydrous sodium sulfate having a particle size of 7 μm used in Example 1, anhydrous sodium sulfate RN-2 having the particle size distribution shown in Table 1 and FIG. 1 was used. A mass was obtained.

実施例4
実施例1で用いた7μm粒径の無水硫酸ナトリウムの替わりに、表1、図1に示した粒度分布の無水硫酸ナトリウムRN−2を用いた以外は、実施例1と同様にして、攪拌、混練、脱泡を行った。脱泡した組成物を、SUS304パンチングメタル製の内径80mm、高さ10mmの上面が開口している円板状容器に充填し、これを30℃の水中に浸漬してジメチルホルムアミドを水で置換し、水凝固を行った。その後、水にて無機塩(無水硫酸ナトリウム)を溶出させた後、箱形乾燥機を用いて60℃で24時間乾燥した。これから、物性測定用にスライサーで1mm厚みにスライスしたものと、スライス残り(厚み9mm)のそれぞれについて、実施例1と同様に脱媒、焼結工程を行ない、SUS316Lの金属多孔質体を得た。
Example 4
In place of the anhydrous sodium sulfate having a particle size of 7 μm used in Example 1, anhydrous sodium sulfate RN-2 having a particle size distribution shown in Table 1 and FIG. 1 was used. Kneading and defoaming were performed. The defoamed composition is filled into a disk-shaped container made of SUS304 punching metal with an inner diameter of 80 mm and a height of 10 mm and the upper surface is opened, and this is immersed in water at 30 ° C. to replace dimethylformamide with water. Water coagulation was performed. Thereafter, the inorganic salt (anhydrous sodium sulfate) was eluted with water and then dried at 60 ° C. for 24 hours using a box dryer. From this, the SUS316L porous metal body was obtained by carrying out the removal and sintering processes in the same manner as in Example 1 for each of the sliced 1 mm thickness with a slicer for measuring physical properties and the remaining slice (thickness 9 mm). .

実施例5
実施例1で用いた7μm粒径の無水硫酸ナトリウムの替わりに、表1、図1に示した粒度分布の無水硫酸ナトリウムRN−3を用いた以外は、同様の原料と工程によりSUS316Lの金属多孔質体を得た。
Example 5
Instead of the anhydrous sodium sulfate having a particle size of 7 μm used in Example 1, an anhydrous sodium sulfate RN-3 having a particle size distribution shown in Table 1 and FIG. A mass was obtained.

比較例1
実施例1で用いた7μm粒径の無水硫酸ナトリウムの替わりに、表1、図1に示した粒度分布の無水硫酸ナトリウムRN−4を用いた以外は、同様の原料と工程によりSUS316Lの金属多孔質体を得た。
Comparative Example 1
Instead of the anhydrous sodium sulfate having a particle size of 7 μm used in Example 1, anhydrous sodium sulfate RN-4 having the particle size distribution shown in Table 1 and FIG. 1 was used. A mass was obtained.

実施例6
SUS316Lの替わりにCu(福田金属箔粉工業社製 Cu−At−350、平均粒径27μm)を用い、脱媒と焼結を以下の条件で行った以外は、実施例2と同様の原料と工程によりCuの金属多孔質体を得た。この実施例では、脱媒と焼結を同一炉(不活性ガスフロー炉、日本ネイカ社製、雰囲気炉)で実施した。脱媒はNガスを10L/分で流しながら77℃/時間の昇温速度で570℃まで上げて行い、次に56℃/時間の昇温速度で980℃まで上げ、5時間キープし焼結を行った。焼結でのガス流量は、脱脂のときと同じである。
Example 6
In place of SUS316L, Cu (Cu-At-350, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., average particle size 27 μm) was used, and the same raw materials as in Example 2 were used except that the removal and sintering were performed under the following conditions. A metallic porous body of Cu was obtained by the process. In this example, the removal of the solvent and the sintering were performed in the same furnace (inert gas flow furnace, manufactured by Japan Naika Co., Ltd., atmosphere furnace). The removal of the solvent was carried out by flowing N 2 gas at a rate of 10 L / min and increasing to 570 ° C. at a heating rate of 77 ° C./hour, then increasing to 980 ° C. at a heating rate of 56 ° C./hour and keeping for 5 hours. Yui was done. The gas flow rate during sintering is the same as that during degreasing.

実施例7
SUS316Lの替わりにTi(大阪チタニウムテクノロジーズ社製 TILOP‐45)を用い、焼結工程を、昇温速度60℃/時間で1300℃まで上げ、2時間キープして行った以外は、実施例2と同様の原料と工程によりTiの金属多孔質体を得た。
Example 7
Example 2 was used except that Ti (TILOP-45, manufactured by Osaka Titanium Technologies Co., Ltd.) was used instead of SUS316L, and the sintering process was increased to 1300 ° C. at a temperature increase rate of 60 ° C./hour and kept for 2 hours. A Ti porous metal body was obtained by the same raw materials and processes.

比較例2
化学発泡法で作られた完全オープンセル構造のポリウレタンフォームで最もセル径が小さいと言われるMF−80A(イノアックコーポレーション社製)を前駆体として用いた。スラリー配合およびグリーン体の製法は、次のとおりである。
Comparative Example 2
MF-80A (manufactured by Inoac Corporation), which is said to have the smallest cell diameter in a fully open cell polyurethane foam made by a chemical foaming method, was used as a precursor. The slurry blending and the green body manufacturing method are as follows.

SUS316L粉末(平均粒径9μm)2900gとブチラール樹脂25gを混合し、これにイソプロピルアルコール290gを添加して3〜4時間プロペラ攪拌した(これをスラリーと言う)。これに110×110×1.0mmのMF−80Aを含浸し、2本のウレタンローラー間を通して余剰のスラリーを除去した。その後、イソプロピルアルコールを蒸発させてグリーン体(発泡ウレタンに金属微粒子をコートした状態)を完成した。その後の脱媒、焼結工程は、実施例1と同様にして行ないSUS316Lの金属多孔質体を得た。   2900 g of SUS316L powder (average particle size 9 μm) and 25 g of butyral resin were mixed, 290 g of isopropyl alcohol was added thereto, and the mixture was stirred with a propeller for 3 to 4 hours (this is called slurry). This was impregnated with 110 × 110 × 1.0 mm of MF-80A, and excess slurry was removed by passing between two urethane rollers. Thereafter, isopropyl alcohol was evaporated to complete a green body (a state in which metal fine particles were coated on urethane foam). The subsequent removal and sintering steps were performed in the same manner as in Example 1 to obtain a SUS316L porous metal body.

実施例1〜7及び比較例1、2で得られた金属多孔質体(実施例4についてはスライスしたもののみ)について、厚み(成形厚み)を測定し、又前記の評価方法により、見掛密度とバブルポイント、平均流量径及び平均細孔径を測定し、これらの測定結果を表2、3に示した。走査型電子顕微鏡写真(SEM)を撮り、表2、3に示す番号の図にSEM写真を示した。又、実施例1〜3及び比較例2で得られた金属多孔質体については前記の方法で濾過試験を行ないその結果を表4に記した。なお、比較例2で使用した前駆体のポリウレタンフォームについてもSEM写真を撮り図11に示した。   For the metal porous bodies obtained in Examples 1 to 7 and Comparative Examples 1 and 2 (only those sliced for Example 4), the thickness (molded thickness) was measured, and the apparent evaluation was performed by the above evaluation method. The density, bubble point, average flow diameter and average pore diameter were measured, and the measurement results are shown in Tables 2 and 3. Scanning electron micrographs (SEM) were taken, and the SEM photographs were shown in the figures with the numbers shown in Tables 2 and 3. Moreover, about the metal porous body obtained in Examples 1-3 and the comparative example 2, the filtration test was done by the above-mentioned method, and the result was described in Table 4. The precursor polyurethane foam used in Comparative Example 2 was also taken as an SEM photograph and shown in FIG.

表2、3から下記のことが判る。
本発明(第2の態様)の金属多孔質体の製造方法(実施例1〜7)により、微細な孔径を有する金属多孔質体(平均流量径、平均細孔径が60μm以下)が得られる。又、図2〜9より、得られた金属多孔質体は、連続気孔を有するものであることが分る。SUS、Cu、Tiのいずれの金属を用いた場合も同様であるので、本発明の方法では、金属の種類を広く選定することができることが示されている。
The following can be seen from Tables 2 and 3.
By the method for producing a metal porous body of the present invention (second aspect) (Examples 1 to 7), a metal porous body having a fine pore diameter (average flow diameter and average pore diameter of 60 μm or less) is obtained. Moreover, it turns out that the obtained metal porous body has a continuous pore from FIGS. Since the same applies when any of SUS, Cu, and Ti is used, it is shown that the method of the present invention can select a wide variety of metals.

本発明の方法の中でも、粒径が250μm以下の粒子を90質量%以上含む無機塩の粉粒体である粉砕分級品(粉砕品7μm)、RN−1、RN−2、RN−3を用いた場合(実施例1〜5、実施例6、7)では、バブルポイントが180μm以下で平均流量径、平均細孔径は60μm以下の金属多孔質体、すなわち本発明の第1の態様の金属多孔質体が得られている。特に、粒径が150μm以下の粒子を90質量%以上含む無機塩の粉粒体である粉砕分級品(粉砕品7μm)、RN−1、RN−2を用いた場合(実施例1〜4、実施例6、7)では、バブルポイントが100μm以下の金属多孔質体が得られており、より好ましい態様である。中でも粒径が75μm以下の粒子を90質量%以上含む無機塩の粉粒体である粉砕分級品(粉砕品7μm)、RN−1を用いた場合(実施例1、2、6、7)では、バブルポイント、平均流量径、平均細孔径がより小さいものが得られており、さらに好ましい態様である。   Among the methods of the present invention, pulverized and classified products (7 μm pulverized product), RN-1, RN-2, and RN-3, which are inorganic salt powders containing 90% by mass or more of particles having a particle size of 250 μm or less, are used. (Examples 1 to 5, Examples 6 and 7), a metal porous body having a bubble point of 180 μm or less, an average flow diameter and an average pore diameter of 60 μm or less, that is, the metal porous body of the first aspect of the present invention A mass is obtained. In particular, when pulverized and classified products (7 μm of pulverized product), RN-1 and RN-2, which are inorganic salt particles containing 90% by mass or more of particles having a particle size of 150 μm or less (Examples 1 to 4, In Examples 6 and 7), a porous metal body having a bubble point of 100 μm or less is obtained, which is a more preferable embodiment. Among them, in the case of using a pulverized and classified product (7 μm of pulverized product), which is an inorganic salt granular material containing particles having a particle size of 75 μm or less of 90% by mass or more, RN-1 (Examples 1, 2, 6, and 7) A bubble point, an average flow diameter, and an average pore diameter smaller are obtained, which is a more preferable embodiment.

一方、前駆体として、本発明の方法により得られるポリウレタン多孔質体に変えて、化学発泡法で作られたポリウレタンフォームのMF−80Aを用いた比較例では、(MF−80Aは、化学発泡法で作られた完全オープンセル構造のポリウレタンフォームで最もセル径が小さいと言われているにも係わらず)平均流量径、微細な孔径を有する金属多孔質体(平均流量径、平均細孔径が60μm以下の金属多孔質体)は得られてない。又、MF−80Aは、図11で示されるように完全なオープンセル構造であるにも係わらず、図10(比較例2)のSEM写真から明らかなように、得られた金属多孔質体は骨格を覆う不規則な膜を有するものである。MF−80Aを、SUS316L粉末を含むスラリーに含浸することにより、骨格を覆う不規則な膜が生じていることが分る。この現象は、ポリウレタンフォームのセル径が粗い場合は発生頻度が少ないが、緻密になるほど増加する傾向が見られた。   On the other hand, in the comparative example using the polyurethane foam MF-80A made by the chemical foaming method instead of the polyurethane porous body obtained by the method of the present invention as the precursor, (MF-80A is a chemical foaming method). A metal porous body having an average flow diameter and fine pore diameter (although the average flow diameter and average pore diameter are 60 μm) despite the fact that the cell diameter is said to be the smallest in a fully open cell polyurethane foam made of The following metal porous body) has not been obtained. In addition, although the MF-80A has a complete open cell structure as shown in FIG. 11, as is apparent from the SEM photograph of FIG. 10 (Comparative Example 2), the obtained metal porous body is It has an irregular film covering the skeleton. It can be seen that an irregular film covering the skeleton is formed by impregnating MF-80A with a slurry containing SUS316L powder. This phenomenon occurred less frequently when the cell diameter of the polyurethane foam was coarse, but it tended to increase as it became denser.

表4中の濾過圧力とは、濾過試験液を圧縮空気で加圧したときの圧力であって、大気圧との差異(差圧、圧力損失)を表わす値である。濾過時間は、50gの濾過試験液が表4に示した厚みの多孔質体フィルターを通過し始めてから終了までの時間をストップウォッチで測定した値である。又、濾過最大粒径は、多孔質体フィルター通過後の濾液に含まれる粒子中の最大粒子径である。   The filtration pressure in Table 4 is a pressure when the filtration test solution is pressurized with compressed air, and is a value representing a difference (differential pressure, pressure loss) from atmospheric pressure. The filtration time is a value obtained by measuring the time from the start of passing 50 g of the filtration test solution through the porous filter having the thickness shown in Table 4 to the end using a stopwatch. The maximum filtration particle size is the maximum particle size in the particles contained in the filtrate after passing through the porous body filter.

表4の結果より、本発明の第1の態様である実施例1〜3の金属多孔質体を濾過に用いた場合は、低い濾過圧力で100μmレベルの微粒子を濾別可能であることが分った。特に、粒径が75μm以下の粒子を90質量%以上含む無機塩の粉粒体である粉砕分級品(粉砕品7μm)、RN−1を用いて製造された金属多孔質体(実施例1、2)を濾過に用いた場合は、数μm〜20μmレベルの微粒子を濾別可能であることが示されている。すなわち、本発明の第1の態様の金属多孔質体は、数μm〜100μmレベルの微粒子を濾別可能な液体フィルターとして有用であることが、上記の濾過試験の結果よりわかった。   From the results of Table 4, it can be seen that when the metal porous bodies of Examples 1 to 3, which are the first aspect of the present invention, are used for filtration, fine particles of 100 μm level can be filtered out at a low filtration pressure. It was. In particular, a pulverized and classified product (7 μm of pulverized product), which is an inorganic salt powder containing 90% by mass or more of particles having a particle size of 75 μm or less, a metal porous material manufactured using RN-1 (Example 1, When 2) is used for filtration, it is shown that fine particles of several μm to 20 μm level can be filtered. That is, it was found from the results of the filtration test that the metal porous body according to the first aspect of the present invention is useful as a liquid filter capable of filtering fine particles having a level of several μm to 100 μm.

Claims (3)

バブルポイント法でいうバブルポイントが5.6μm以上で180μm以下であり、平均流量径又は平均細孔径が60μm以下である連続気孔の金属多孔質体の製造方法であって、
金属微粉末、水凝固性ポリウレタン、溶剤及び水溶性の無機塩の粉粒体を含む配合物を混練する混練工程、
前記混練工程で得られた混練物を脱泡し、成形する脱泡成形工程、
前記脱泡成形工程で得られた成形物を、水中または水溶液中に投入して、凝固させるとともに形成された凝固物から前記無機塩を水に溶出させて除去して金属含有ポリウレタン多孔体を形成する凝固溶出工程、及び
前記金属含有ポリウレタン多孔体を脱媒、焼結する焼結工程を有し、
前記無機塩の粉粒体は、粒径250μm以下の粒子を80質量%以上含むことを特徴とする金属多孔質体の製造方法。
The bubble point in the bubble point method is 5.6 μm or more and 180 μm or less, and the method for producing a continuous porous metal porous body having an average flow diameter or an average pore diameter of 60 μm or less,
A kneading step of kneading a compound containing fine particles of metal fine powder, water-solidifying polyurethane, solvent and water-soluble inorganic salt,
A defoaming molding step for defoaming and molding the kneaded product obtained in the kneading step,
The molded product obtained in the defoaming molding process is poured into water or an aqueous solution to coagulate, and the inorganic salt is eluted from the formed coagulated product and removed to form a metal-containing polyurethane porous body. A solidification elution step, and a sintering step for removing and sintering the metal-containing polyurethane porous body,
The method for producing a metal porous body, wherein the inorganic salt powder includes 80% by mass or more of particles having a particle size of 250 μm or less.
前記無機塩の粉粒体が、粒径が250μm以下の粒子を90質量%以上含むことを特徴とする請求項1に記載の金属多孔質体の製造方法。 2. The method for producing a metal porous body according to claim 1 , wherein the inorganic salt powder includes 90% by mass or more of particles having a particle diameter of 250 μm or less. 前記金属多孔質体の厚みが、1.0mm以下であることを特徴とする請求項1又は請求項2に記載の金属多孔質体の製造方法 The thickness of the said metal porous body is 1.0 mm or less, The manufacturing method of the metal porous body of Claim 1 or Claim 2 characterized by the above-mentioned .
JP2014110095A 2014-05-28 2014-05-28 Metal porous body and method for producing the same Active JP6414811B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110095A JP6414811B6 (en) 2014-05-28 2014-05-28 Metal porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110095A JP6414811B6 (en) 2014-05-28 2014-05-28 Metal porous body and method for producing the same

Publications (3)

Publication Number Publication Date
JP2015224369A JP2015224369A (en) 2015-12-14
JP6414811B2 JP6414811B2 (en) 2018-10-31
JP6414811B6 true JP6414811B6 (en) 2019-02-13

Family

ID=54841376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110095A Active JP6414811B6 (en) 2014-05-28 2014-05-28 Metal porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP6414811B6 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169777A (en) * 2019-04-05 2020-10-15 三菱マテリアル株式会社 Chemical heat storage material composite and manufacturing method therefore
JP2020169776A (en) * 2019-04-05 2020-10-15 三菱マテリアル株式会社 Chemical heat storage material composite and manufacturing method therefore

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2949130B2 (en) * 1989-10-24 1999-09-13 日本ミリポア株式会社 Method for producing porous metal filter
JPH08319678A (en) * 1995-05-25 1996-12-03 Kubota Corp Moisture conditioning building material
JP4187314B2 (en) * 1998-06-29 2008-11-26 株式会社イノアックコーポレーション Method for producing porous metal body
JP5148140B2 (en) * 2007-03-13 2013-02-20 株式会社伏見製薬所 Sponge for makeup, method for producing polyurethane elastic body, and cosmetic applicator

Also Published As

Publication number Publication date
JP2015224369A (en) 2015-12-14
JP6414811B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
CN106000123B (en) The preparation method of porous membrane
EP2883632B1 (en) Metallic foam body with controlled grain size on its surface, process for its production and use thereof
TW453922B (en) Processes for forming microporous metal parts, microporous metal structure, microporous ceramic parts and microporous ceramic structure
US4517069A (en) Titanium and titanium hydride reticulates and method for making
CN105854633B (en) Porous membrane and preparation method thereof
US20080106853A1 (en) Process for Producing Porous Sintered Metal
EP2050527A1 (en) Method of producing open-cell inorganic foam
WO2020158719A1 (en) Alkali water electrolysis diaphragm with electrode, method for producing same, and water electrolysis device
JP2013133504A (en) Method for producing metal porous body, and metal porous body
CN102458725A (en) Process for production of aluminum complex comprising sintered porous aluminum body
WO2016132811A1 (en) Method for producing nickel alloy porous body
EP3549698B1 (en) Method for producing metal foam
JP6414811B2 (en) Metal porous body and method for producing the same
JP4513520B2 (en) Titanium alloy sponge sintered body with excellent compressive strength
CN108365163B (en) Continuous three-dimensional porous copper current collector and preparation method thereof
KR20140087714A (en) Manufacturing method of metal foam and metal foam manufactured thereby
CN114773854B (en) Porous silicon rubber with uniform pore diameter and preparation method thereof
CN109530674A (en) A kind of micron order open-porous metal silver foam and preparation method thereof
EP2100980B1 (en) Mixed material with high expansion rate for producing porous metallic sintered body
JPH05339605A (en) Production of porous metal
Li et al. Incorporating metal precursors towards a library of high-resolution metal parts by stereolithography
JP2016176135A (en) Metallic porous body
JP4187314B2 (en) Method for producing porous metal body
JP2006516678A (en) Method for producing porous sintered compact
Kim et al. Interconnected channels through polypropylene and cellulose acetate by utilizing lactic acid for stable separators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

R150 Certificate of patent or registration of utility model

Ref document number: 6414811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250