JP6414739B2 - Conductor softening processing apparatus and conductor softening processing method - Google Patents

Conductor softening processing apparatus and conductor softening processing method Download PDF

Info

Publication number
JP6414739B2
JP6414739B2 JP2014210230A JP2014210230A JP6414739B2 JP 6414739 B2 JP6414739 B2 JP 6414739B2 JP 2014210230 A JP2014210230 A JP 2014210230A JP 2014210230 A JP2014210230 A JP 2014210230A JP 6414739 B2 JP6414739 B2 JP 6414739B2
Authority
JP
Japan
Prior art keywords
conductor
dissolved oxygen
cooling water
cooling
cooling tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014210230A
Other languages
Japanese (ja)
Other versions
JP2016079436A (en
Inventor
善洋 中澤
善洋 中澤
健治 岡本
健治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Wintec Inc
Priority to JP2014210230A priority Critical patent/JP6414739B2/en
Publication of JP2016079436A publication Critical patent/JP2016079436A/en
Application granted granted Critical
Publication of JP6414739B2 publication Critical patent/JP6414739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

本発明は、導体軟化処理装置及び導体軟化処理方法に関する。   The present invention relates to a conductor softening processing apparatus and a conductor softening processing method.

例えばエナメル電線やビニル絶縁電線等の芯線として線状の導体が用いられている。このような導体は、例えばコイルを作成するために巻回加工されたりするので可撓性を有することが必要である。このため、電線の製造においては、導体の可撓性を確保するために導体に熱処理を施して軟化させる工程を設けることが多い。しかしながら、熱処理での加熱により導体が酸化されて電気的及び機械的な性能が低下する場合がある。例えば、導体の表面が酸化されると、導体表面に形成される塗膜等との密着性が低下するという不都合が生じ得る。   For example, a linear conductor is used as a core wire of an enameled wire or a vinyl insulated wire. Such a conductor needs to have flexibility because it is wound to produce a coil, for example. For this reason, in the manufacture of electric wires, in order to ensure the flexibility of the conductor, there is often a step of softening the conductor by heat treatment. However, the conductor may be oxidized by heating in the heat treatment, and the electrical and mechanical performance may be lowered. For example, when the surface of the conductor is oxidized, there may be a disadvantage that the adhesion with a coating film or the like formed on the conductor surface is lowered.

そこで、加熱されてから冷却されるまでの導体の雰囲気を無酸素状態とすることによって、酸化を防止する方法が採用されている。例えば、ヒーターで加熱されてから水槽に貯留されている冷却水内を通過するよう導体を連続的に搬送する軟化処理装置において、加熱されてから冷却水の水面に至るまでの導体を取り囲むよう管状体を配置し、この管状体の内部が導体を冷却する際に発生する冷却水の水蒸気で満たされるようにする導体軟化処理装置が提案されている(特開2014−1420号公報参照)。   Therefore, a method is employed in which the atmosphere of the conductor from heating to cooling is made oxygen-free to prevent oxidation. For example, in a softening apparatus that continuously conveys a conductor so as to pass through cooling water stored in a water tank after being heated by a heater, it is tubular so as to surround the conductor from the heating to the water surface of the cooling water. A conductor softening apparatus has been proposed in which a body is disposed and the inside of the tubular body is filled with water vapor of cooling water generated when the conductor is cooled (see JP 2014-1420 A).

特開2014−1420号公報JP 2014-1420 A

上記公報に開示される導体軟化処理装置では、導体の表面に形成される酸化被膜の厚さを低減することができるが、導体の酸化の防止が十分とはいえず、さらに酸化を抑制できる技術が望まれている。   In the conductor softening apparatus disclosed in the above publication, the thickness of the oxide film formed on the surface of the conductor can be reduced, but it cannot be said that the oxidation of the conductor is sufficient, and the technology can further suppress the oxidation. Is desired.

本発明は、上述のような事情に基づいてなされたものであり、導体の酸化を抑制できる導体軟化処理装置及び導体軟化処理方法を提供することを課題とする。   This invention is made | formed based on the above situations, and makes it a subject to provide the conductor softening processing apparatus and the conductor softening processing method which can suppress the oxidation of a conductor.

上記課題を解決するためになされた本発明の一態様に係る導体軟化処理装置は、線状の導体を連続的に加熱及び冷却する導体軟化処理装置であって、上記導体をその軸方向に連続的に搬送する送り機構と、上記送り機構により搬送される導体を加熱するヒーターと、上記ヒーターにより加熱された導体を浸漬する冷却水を貯留する冷却槽と、上記冷却槽に貯留されている冷却水の溶存酸素量を予め定められる設定範囲内に維持する溶存酸素量調節機構とを備える。   A conductor softening treatment apparatus according to an aspect of the present invention made to solve the above-described problem is a conductor softening treatment apparatus that continuously heats and cools a linear conductor, and the conductor is continuous in the axial direction. Feeding mechanism, a heater for heating the conductor conveyed by the feeding mechanism, a cooling tank for storing cooling water for immersing the conductor heated by the heater, and cooling stored in the cooling tank A dissolved oxygen amount adjusting mechanism that maintains a dissolved oxygen amount of water within a predetermined setting range.

また、上記課題を解決するためになされた本発明の別の態様に係る導体軟化処理方法は、線状の導体を連続的に加熱及び冷却する導体軟化処理方法であって、上記導体をその軸方向に連続的に搬送する工程と、上記搬送される導体を加熱する工程と、上記加熱された導体を冷却水への浸漬により冷却する工程と、上記冷却水の溶存酸素量を予め定められる設定範囲内に維持する工程とを備える。   A conductor softening treatment method according to another aspect of the present invention made to solve the above-described problem is a conductor softening treatment method in which a linear conductor is continuously heated and cooled, and the conductor is pivoted on its axis. A step of continuously conveying in the direction, a step of heating the conductor to be conveyed, a step of cooling the heated conductor by immersion in cooling water, and a preset amount of dissolved oxygen in the cooling water Maintaining within the range.

本発明の一態様に係る導体軟化処理装置及び別の態様に係る導体軟化処理方法は、導体の酸化を抑制できる。   The conductor softening processing apparatus according to one embodiment of the present invention and the conductor softening processing method according to another embodiment can suppress the oxidation of the conductor.

図1は、本発明の一実施形態の導体軟化処理装置の装置構成を示す模式図である。FIG. 1 is a schematic diagram showing the apparatus configuration of a conductor softening apparatus according to an embodiment of the present invention. 図2は、本発明の評価試験に係る酸化被膜の厚さ測定の結果を示すグラフである。FIG. 2 is a graph showing the results of measuring the thickness of the oxide film according to the evaluation test of the present invention.

[本発明の実施形態の説明]
本発明の一態様に係る導体軟化処理装置は、線状の導体を連続的に加熱及び冷却する導体軟化処理装置であって、上記導体をその軸方向に連続的に搬送する送り機構と、上記送り機構により搬送される導体を加熱するヒーターと、上記ヒーターにより加熱された導体を浸漬する冷却水を貯留する冷却槽と、上記冷却槽に貯留されている冷却水の溶存酸素量を予め定められる設定範囲内に維持する溶存酸素量調節機構とを備える。
[Description of Embodiment of the Present Invention]
A conductor softening apparatus according to an aspect of the present invention is a conductor softening apparatus that continuously heats and cools a linear conductor, and includes a feeding mechanism that continuously conveys the conductor in the axial direction thereof, and A heater for heating the conductor conveyed by the feed mechanism, a cooling tank for storing cooling water for immersing the conductor heated by the heater, and a dissolved oxygen amount of the cooling water stored in the cooling tank are predetermined. And a dissolved oxygen amount adjusting mechanism for maintaining within a set range.

当該導体軟化処理装置は、冷却水の溶存酸素量が上記設定範囲内の冷却水に加熱後の導体を浸漬することによって、加熱状態から冷却される導体の周囲の酸素量を低減して、導体の酸化を抑制することができる。特に、加熱状態から冷却される導体の周囲の酸素量を精密に調節することにより、導体表面に比較的密着性の高い酸化被膜を形成させることができる。   The conductor softening treatment apparatus reduces the amount of oxygen around the conductor cooled from the heated state by immersing the conductor after heating in the cooling water in which the amount of dissolved oxygen in the cooling water is within the above setting range. Can be suppressed. In particular, an oxide film having relatively high adhesion can be formed on the conductor surface by precisely adjusting the amount of oxygen around the conductor cooled from the heated state.

上記溶存酸素量調節機構が、上記冷却槽に冷却水を供給する供給部と、上記冷却槽に貯留されている冷却水の溶存酸素量を測定する溶存酸素量検出部と、上記溶存酸素量検出部の検出値を上記設定範囲内に維持するよう上記供給部の冷却水供給量を制御する制御部とを有するとよい。このように、溶存酸素量調節機構が供給部、溶存酸素量検出部及び制御部を有することによって、冷却槽に貯留されている冷却水の溶存酸素量を確実に上記設定範囲内に維持することができる。   The dissolved oxygen amount adjusting mechanism includes a supply unit that supplies cooling water to the cooling tank, a dissolved oxygen amount detection unit that measures the dissolved oxygen amount stored in the cooling tank, and the dissolved oxygen amount detection. It is good to have a control part which controls the amount of cooling water supply of the above-mentioned supply part so that the detection value of a part may be maintained in the above-mentioned setting range. As described above, the dissolved oxygen amount adjusting mechanism includes the supply unit, the dissolved oxygen amount detection unit, and the control unit, thereby reliably maintaining the dissolved oxygen amount of the cooling water stored in the cooling tank within the set range. Can do.

上記溶存酸素量調節機構が、上記供給部が供給する冷却水の溶存酸素量を低減する脱酸素部をさらに有するとよい。このように、溶存酸素量調節機構が脱酸素部を有することによって、冷却槽に貯留されている冷却水の溶存酸素量を低減して、確実に上記設定範囲内に維持することができる。   The dissolved oxygen amount adjusting mechanism may further include a deoxygenation unit that reduces the dissolved oxygen amount of the cooling water supplied by the supply unit. Thus, since the dissolved oxygen amount adjusting mechanism has the deoxygenation unit, the dissolved oxygen amount of the cooling water stored in the cooling tank can be reduced and reliably maintained within the set range.

上記冷却槽が、冷却水の水位を予定範囲に保つオーバーフロー機構を有しているとよい。このように、冷却槽がオーバーフロー機構を有することにより、冷却槽に新しい冷却水を補給して冷却槽内に貯留する冷却水を入れ替えることができ、冷却水の溶存酸素量をより確実に低く保つことができる。   The cooling tank may have an overflow mechanism that keeps the water level of the cooling water within a predetermined range. As described above, the cooling tank has an overflow mechanism, so that the cooling water stored in the cooling tank can be replaced by replenishing the cooling tank with new cooling water, and the dissolved oxygen amount of the cooling water can be maintained more reliably. be able to.

少なくとも上記ヒーターから冷却槽の水面までの間の導体が挿通される管状部材をさらに備えるとよい。このように、管状部材を備えることによって、導体の周囲を水蒸気で満たし、導体への酸素の供給をより確実に遮断することができる。   It is preferable to further include a tubular member into which a conductor between at least the heater and the water surface of the cooling tank is inserted. Thus, by providing a tubular member, the circumference | surroundings of a conductor can be satisfy | filled with water vapor | steam, and the supply of oxygen to a conductor can be interrupted | blocked more reliably.

上記冷却槽の上部が蓋体で封止されているとよい。このように、冷却槽を蓋体で封止することにより、冷却槽に貯留する冷却水に空気中の酸素が溶け込むことを防止することができる。   The upper part of the cooling tank may be sealed with a lid. Thus, by sealing the cooling tank with the lid, it is possible to prevent oxygen in the air from being dissolved in the cooling water stored in the cooling tank.

上記設定範囲の上限としては、6mg/Lが好ましい。このように、上記設定範囲の上限を6mg/Lとすることによって、通常の水よりも溶存酸素量を低く維持し、導体の酸化を抑制する効果を顕著にすることができる。   The upper limit of the setting range is preferably 6 mg / L. Thus, by setting the upper limit of the setting range to 6 mg / L, the effect of suppressing the oxidation of the conductor can be made remarkable by maintaining the dissolved oxygen amount lower than that of normal water.

本発明の別の態様に係る導体軟化処理方法は、線状の導体を連続的に加熱及び冷却する導体軟化処理方法であって、上記導体をその軸方向に連続的に搬送する工程と、上記搬送される導体を加熱する工程と、上記加熱された導体を冷却水への浸漬により冷却する工程と、上記冷却水の溶存酸素量を予め定められる設定範囲内に維持する工程とを備える。   A conductor softening treatment method according to another aspect of the present invention is a conductor softening treatment method of continuously heating and cooling a linear conductor, the step of continuously conveying the conductor in its axial direction, A step of heating the conductor being conveyed, a step of cooling the heated conductor by immersion in cooling water, and a step of maintaining the dissolved oxygen content of the cooling water within a predetermined set range.

当該導体軟化処理方法は、溶存酸素量が上記設定範囲内の冷却水で加熱した導体を冷却するので、加熱状態から冷却される導体の周囲の酸素量を小さくして、導体の酸化を抑制することができる。   The conductor softening treatment method cools the conductor heated with the cooling water whose dissolved oxygen amount is within the above-described setting range, so the amount of oxygen around the conductor cooled from the heated state is reduced to suppress the oxidation of the conductor. be able to.

ここで、「溶存酸素量」とは、JIS−K−0101(1998)に準拠して測定される値である。   Here, the “dissolved oxygen amount” is a value measured in accordance with JIS-K-0101 (1998).

[本発明の実施形態の詳細]
以下、本発明に係る導体軟化処理装置の実施形態について図面を参照しつつ詳説する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of a conductor softening apparatus according to the present invention will be described in detail with reference to the drawings.

図1の導体軟化処理装置は、線状の導体Cを連続的に加熱及び冷却することにより、軟化させる熱処理装置である。この導体軟化処理装置は、導体Cをその軸方向に連続的に搬送する送り機構1と、この送り機構1により搬送される導体Cを加熱するヒーター2と、このヒーター2により加熱された導体Cを浸漬する冷却水Wを貯留する冷却槽3と、少なくともヒーター2から冷却槽3の水面までの間の導体Cが挿通される管状部材4と、冷却槽3に貯留されている冷却水Wの溶存酸素量を予め定められる設定範囲内に維持する溶存酸素量調節機構5と、導体Cにエアーを吹き付けて表面に付着している水分を除去するエアーブロー6とを備える。   The conductor softening apparatus of FIG. 1 is a heat treatment apparatus that softens the linear conductor C by continuously heating and cooling. The conductor softening apparatus includes a feeding mechanism 1 that continuously conveys the conductor C in the axial direction, a heater 2 that heats the conductor C that is conveyed by the feeding mechanism 1, and a conductor C that is heated by the heater 2. The cooling tank 3 for storing the cooling water W soaking in, the tubular member 4 through which the conductor C between at least the heater 2 and the water surface of the cooling tank 3 is inserted, and the cooling water W stored in the cooling tank 3 A dissolved oxygen amount adjusting mechanism 5 that maintains a dissolved oxygen amount within a predetermined set range and an air blow 6 that blows air onto the conductor C to remove moisture adhering to the surface are provided.

<導体>
当該導体軟化処理装置において軟化処理される導体Cとしては、特に限定されないが、例えば銅線、銅合金線、錫めっき線、アルミニウム線、アルミニウム合金線、鋼心アルミニウム線、カッパーフライ線、ニッケルめっき銅線、銀めっき銅線、銅覆アルミニウム線等が挙げられ、典型的には銅線とされる。導体Cの平均断面積としては、特に限定されないが、例えば0.01mm以上10mm以下とされる。また、導体Cの断面形状としては、典型的には円形状とされるが、特に限定されず、例えば長方形状であってもよい。
<Conductor>
The conductor C to be softened in the conductor softening apparatus is not particularly limited. For example, copper wire, copper alloy wire, tin-plated wire, aluminum wire, aluminum alloy wire, steel core aluminum wire, copper fly wire, nickel plating A copper wire, a silver plating copper wire, a copper covering aluminum wire, etc. are mentioned, It is set as a copper wire typically. The average cross-sectional area of the conductor C, and are not particularly limited to, for example, 0.01 mm 2 or more 10 mm 2 or less. The cross-sectional shape of the conductor C is typically a circular shape, but is not particularly limited, and may be, for example, a rectangular shape.

<送り機構>
送り機構1は、導体Cが架け渡される複数のガイドシーブ(プーリー)1a,1b,1cを含み、導体Cを矢印Dで示す一定の方向に搬送するよう構成される。この送り機構1は、上流側のガイドシーブ1a及び下流側のガイドシーブ1cが冷却槽3の上方に配設され、中間のガイドシーブ1bが冷却槽3の中に配設されることにより、冷却槽3に貯留されている冷却水の中を通過させるよう導体Cを搬送する。好ましくは、送り機構1は、冷却槽3に貯留されている冷却水に鉛直方向下向きに進入するよう導体Cを搬送する。
<Feeding mechanism>
The feed mechanism 1 includes a plurality of guide sheaves (pulleys) 1a, 1b, and 1c around which the conductor C is bridged, and is configured to convey the conductor C in a certain direction indicated by an arrow D. The feed mechanism 1 is provided with an upstream guide sheave 1 a and a downstream guide sheave 1 c disposed above the cooling tank 3, and an intermediate guide sheave 1 b disposed within the cooling tank 3. The conductor C is conveyed so as to pass through the cooling water stored in the tank 3. Preferably, the feed mechanism 1 conveys the conductor C so as to enter the cooling water stored in the cooling tank 3 downward in the vertical direction.

送り機構1による導体Cの搬送速度としては、特に限定されないが、例えば1m/min以上1000m/min以下、典型的には5m/min以上100m/min以下とされる。   The speed at which the conductor C is conveyed by the feed mechanism 1 is not particularly limited, but is, for example, 1 m / min to 1000 m / min, typically 5 m / min to 100 m / min.

<ヒーター>
ヒーター2は、後述する管状部材4の外側に配設される螺旋状の誘導加熱コイルである。この誘導加熱コイルは、不図示の高周波電源により高周波電流が印可されることにより高周波磁界を生成する。この高周波磁界は、導体C中にジュール損を生じる渦電流を誘起する。つまり、ヒーター2は、導体C中に渦電流を生じさせてジュール損によって導体C自体を発熱させる。
<Heater>
The heater 2 is a spiral induction heating coil disposed outside a tubular member 4 described later. The induction heating coil generates a high frequency magnetic field when a high frequency current is applied by a high frequency power source (not shown). This high frequency magnetic field induces an eddy current that causes Joule loss in the conductor C. That is, the heater 2 generates an eddy current in the conductor C and causes the conductor C itself to generate heat due to Joule loss.

このヒーター2は、後述する管状部材4の外側に配置することにより、管状部材4の内径、ひいては内容積を小さくすることができ、導体Cの周囲の酸素をより効果的に排除できる。また、誘導加熱コイルからなるヒーター2を管状部材4の外側に配置することにより、誘導加熱コイルを冷媒等により冷却することができ、出力を大きくすることが容易となる。   By disposing the heater 2 outside the tubular member 4 to be described later, the inner diameter and consequently the internal volume of the tubular member 4 can be reduced, and oxygen around the conductor C can be more effectively eliminated. In addition, by arranging the heater 2 made of an induction heating coil outside the tubular member 4, the induction heating coil can be cooled with a refrigerant or the like, and the output can be easily increased.

ヒーター2による加熱温度としては、導体Cの材質等に応じて選択されるが、例えば300℃以上500℃以下とされる。   The heating temperature by the heater 2 is selected according to the material of the conductor C and the like, for example, 300 ° C. or more and 500 ° C. or less.

ヒーター2の導体C軸方向の長さとしては、導体Cを十分に加熱できるものであればよく、そのコイル線径(印加可能な電流の上限)等にもよるが、例えば10cm以上200cm以下とされる。   The length of the heater 2 in the conductor C axial direction is not limited as long as it can sufficiently heat the conductor C, and depends on the coil wire diameter (upper limit of current that can be applied), etc. Is done.

<冷却槽>
冷却槽3は、冷却水Wを貯留する上部が開放した水槽である。この冷却槽3は、管状部材4に貫通され、さらに導体Cが抜け出る小孔が形成された蓋体7により上部が封止されている。また、冷却槽3は、冷却水Wの水位を予定範囲に保つオーバーフロー機構8を有する。
<Cooling tank>
The cooling tank 3 is a water tank that is open at the top for storing the cooling water W. The upper part of the cooling tank 3 is sealed with a lid body 7 that is penetrated by the tubular member 4 and further has a small hole through which the conductor C comes out. Moreover, the cooling tank 3 has the overflow mechanism 8 which maintains the water level of the cooling water W in a predetermined range.

この冷却槽3の容量としては、特に限定されず、ガイドシーブ1bの大きさ等に応じて選択される。冷却槽3を構成する材料としては、例えば金属、樹脂、ガラス等の一種又は複数種の組合せが用いられる。   The capacity of the cooling tank 3 is not particularly limited, and is selected according to the size of the guide sheave 1b. As a material which comprises the cooling tank 3, 1 type, or a combination of multiple types, such as a metal, resin, glass, etc. are used, for example.

(冷却水)
冷却水Wは、冷却槽3内に、管状部材4の下端を浸漬するよう貯留される。
(Cooling water)
The cooling water W is stored in the cooling tank 3 so as to immerse the lower end of the tubular member 4.

冷却槽3内の冷却水Wの溶存酸素量の上記設定範囲の下限値としては、0.1mg/Lが好ましく、0.3mg/Lがより好ましい。一方、上記設定範囲の上限値としては、6mg/Lが好ましく、3mg/Lがより好ましく、2mg/Lがさらに好ましく、1mg/Lが特に好ましい。冷却槽3内の冷却水Wの溶存酸素量を上記設定範囲の下限値に満たないようにするためには、大きな設備コスト及びランニングコストが必要となり、不経済となるおそれや、中途半端に酸化被膜が形成されることにより導体Cの表面の密着性が低くなるおそれがある。逆に、冷却槽3内の冷却水Wの溶存酸素量が上記上限を超える場合、導体Cの酸化を十分に抑制できないおそれがある。つまり、冷却槽3内の冷却水Wの溶存酸素量は、大気開放状態の水の溶存酸素量より低い値に維持されることが好ましいが、小さければ小さいほど軟化処理後の導体Cの表面の密着性を向上できるというわけではない。従って、冷却槽3内の冷却水Wの溶存酸素量を上記の好ましい範囲内に維持することで軟化処理後の導体Cの表面の密着性を最大化することができる。なお、オペレーション及び制御上の問題がなければ、上記設定範囲の下限値は0mg/Lであってもよい。この場合、冷却槽3内の冷却水Wの溶存酸素量は、予め設定される設定値(上記設定範囲の上限に相当)以下でありさえすればよい。また、上記設定範囲の下限値は上限値と同じであってもよい。つまり、冷却槽3内の冷却水Wの溶存酸素量は、後述する溶存酸素量調節機構5によって、設定値からの差が極力小さくなるよう調節されてもよい。   As a lower limit value of the set range of the dissolved oxygen amount of the cooling water W in the cooling tank 3, 0.1 mg / L is preferable, and 0.3 mg / L is more preferable. On the other hand, the upper limit of the setting range is preferably 6 mg / L, more preferably 3 mg / L, still more preferably 2 mg / L, and particularly preferably 1 mg / L. In order to prevent the dissolved oxygen content of the cooling water W in the cooling tank 3 from satisfying the lower limit value of the above setting range, a large equipment cost and running cost are required, which may be uneconomical and may be oxidized halfway. There is a possibility that the adhesion of the surface of the conductor C is lowered due to the formation of the film. On the contrary, when the amount of dissolved oxygen in the cooling water W in the cooling tank 3 exceeds the upper limit, the oxidation of the conductor C may not be sufficiently suppressed. That is, the dissolved oxygen amount of the cooling water W in the cooling bath 3 is preferably maintained at a value lower than the dissolved oxygen amount of the water in the open air state, but the smaller the smaller, the more the surface of the conductor C after the softening treatment. It does not mean that adhesion can be improved. Therefore, the adhesiveness of the surface of the conductor C after the softening treatment can be maximized by maintaining the dissolved oxygen amount of the cooling water W in the cooling bath 3 within the above preferable range. If there is no problem in operation and control, the lower limit value of the setting range may be 0 mg / L. In this case, the amount of dissolved oxygen in the cooling water W in the cooling tank 3 only needs to be equal to or less than a preset value (corresponding to the upper limit of the set range). Further, the lower limit value of the setting range may be the same as the upper limit value. That is, the dissolved oxygen amount of the cooling water W in the cooling tank 3 may be adjusted by the dissolved oxygen amount adjusting mechanism 5 described later so that the difference from the set value becomes as small as possible.

上記ヒーター2と冷却槽3における冷却水Wの液面との離間距離としては、特に限定されず、導体Cの搬送速度にもよるが、例えば50mm以上200mm以下とされる。   The distance between the heater 2 and the liquid level of the cooling water W in the cooling tank 3 is not particularly limited, and is, for example, 50 mm or more and 200 mm or less, depending on the transport speed of the conductor C.

上記冷却槽3における導体Cの浸漬深さ、つまり冷却水Wの液面から冷却槽3内のガイドシーブ1bの下端までの垂直距離としては、導体Cの断面積や搬送速度に応じて導体Cを十分に冷却できる深さとされる。   The immersion depth of the conductor C in the cooling tank 3, that is, the vertical distance from the liquid surface of the cooling water W to the lower end of the guide sheave 1b in the cooling tank 3, is determined according to the cross-sectional area of the conductor C and the conveying speed. The depth is such that it can be cooled sufficiently.

(蓋体)
蓋体7は、冷却槽3への空気の出入りを制限するが、冷却槽3内の圧力を大気圧と異ならせるほどの気密性は有しない。この蓋体7を構成する材料としては、例えば金属、樹脂、ガラス等の一種又は複数種の組合せが用いられる。
(Lid)
The lid body 7 restricts the flow of air into and out of the cooling tank 3, but does not have airtightness that makes the pressure in the cooling tank 3 different from the atmospheric pressure. As a material constituting the lid body 7, for example, one kind or a combination of a plurality of kinds such as metal, resin, glass and the like is used.

(オーバーフロー機構)
オーバーフロー機構8は、冷却槽3の水位が一定の高さ以上とならないよう、冷却水Wをオーバーフローさせる。このオーバーフロー機構8を有することにより、冷却槽3内の冷却水Wに雰囲気中の酸素が溶け込んで溶存酸素量が上昇しても、冷却槽3に後述する溶存酸素量調節機構5から溶存酸素量の小さい新しい冷却水Wを供給して、古い冷却水Wを優先的にオーバーフローさせることで、冷却槽3内の冷却水Wの溶存酸素量を上記設定範囲内に維持することができる。
(Overflow mechanism)
The overflow mechanism 8 causes the cooling water W to overflow so that the water level in the cooling tank 3 does not exceed a certain level. By having this overflow mechanism 8, even if oxygen in the atmosphere is dissolved in the cooling water W in the cooling tank 3 and the dissolved oxygen amount rises, the dissolved oxygen amount from the dissolved oxygen amount adjusting mechanism 5, which will be described later, to the cooling tank 3. By supplying new cooling water W having a small size and preferentially overflowing old cooling water W, the amount of dissolved oxygen in the cooling water W in the cooling tank 3 can be maintained within the set range.

このオーバーフロー機構8としては、冷却槽3の側壁に開口するパイプ等が用いられる。オーバーフロー機構8は、図1に示すように、冷却槽3の内部空間と雰囲気との間をオーバーフローした冷却水Wによって隔離するトラップ8aを有してもよい。   As the overflow mechanism 8, a pipe or the like that opens to the side wall of the cooling tank 3 is used. As shown in FIG. 1, the overflow mechanism 8 may include a trap 8 a that isolates the space between the internal space of the cooling tank 3 and the atmosphere by the overflowing cooling water W.

<管状部材>
管状部材4は、下端が冷却槽3に貯留されている冷却水Wに浸漬されている。この管状部材4の中で、導体Cはヒーター2によって加熱された後、冷却水Wによって冷却される。加熱状態の導体Cが冷却水Wに浸漬されると、冷却水Wが導体Cの熱を奪い取って水蒸気となる。このようにして管状部材4の中で発生した水蒸気は、管状部材4内を上昇し、管状部材4内に存在する酸素を含む空気を押し出す。これにより、加熱状態の導体Cへの酸素の供給が遮断され、導体Cの酸化が抑制される。
<Tubular member>
The tubular member 4 is immersed in the cooling water W stored at the lower end in the cooling bath 3. In the tubular member 4, the conductor C is heated by the heater 2 and then cooled by the cooling water W. When the heated conductor C is immersed in the cooling water W, the cooling water W takes heat of the conductor C and becomes water vapor. The water vapor generated in the tubular member 4 ascends in the tubular member 4 and pushes out air containing oxygen present in the tubular member 4. As a result, the supply of oxygen to the heated conductor C is interrupted, and the oxidation of the conductor C is suppressed.

管状部材4の平均内径の下限としては、導体Cの最大径の1.5倍が好ましく、導体Cの最大径の2倍がより好ましい。一方、管状部材4の平均内径の上限としては、50mmが好ましく、30mmがより好ましい。管状部材4の平均内径が上記下限に満たない場合、導体Cが管状部材4に接触することにより導体Cが損傷したり軟化処理が不均一となったりするおそれがある。逆に、管状部材4の平均内径が上記上限を超える場合、水蒸気による酸素の排除が不十分となるおそれがある。   The lower limit of the average inner diameter of the tubular member 4 is preferably 1.5 times the maximum diameter of the conductor C, and more preferably twice the maximum diameter of the conductor C. On the other hand, the upper limit of the average inner diameter of the tubular member 4 is preferably 50 mm, and more preferably 30 mm. When the average inner diameter of the tubular member 4 is less than the lower limit, the conductor C may be damaged by contact with the tubular member 4 or the softening treatment may be uneven. On the other hand, when the average inner diameter of the tubular member 4 exceeds the above upper limit, there is a possibility that the exclusion of oxygen by water vapor becomes insufficient.

管状部材4の平均厚さの下限としては、0.5mmが好ましく、1mmがより好ましい。一方、管状部材4の平均厚さの上限としては、10mmが好ましく、5mmがより好ましい。管状部材4の平均厚さが上記下限に満たない場合、管状部材4の強度が不足するおそれがある。逆に、管状部材4の平均厚さが上記上限を超える場合、ヒーター2と導体Cとの距離が大きくなるのでヒーター2が大型化するおそれがある。   As a minimum of average thickness of tubular member 4, 0.5 mm is preferred and 1 mm is more preferred. On the other hand, the upper limit of the average thickness of the tubular member 4 is preferably 10 mm, and more preferably 5 mm. When the average thickness of the tubular member 4 is less than the lower limit, the strength of the tubular member 4 may be insufficient. On the other hand, when the average thickness of the tubular member 4 exceeds the above upper limit, the distance between the heater 2 and the conductor C is increased, and thus the heater 2 may be increased in size.

管状部材4の長さとしては、少なくとも導体Cの酸化し易い部分、つまり加熱状態である部分を取り囲むことができればよい。つまり、管状部材4は、少なくとも下端が冷却水Wに浸漬され、上端がヒーター2以上の高さに配置される。さらに、管状部材4は、ヒーター2の上端からさらに上方に延出することが好ましい。この管状部材4のヒーター2の上端からの上方への延出長さの下限としては、10mmが好ましく、15mmがより好ましい。一方、管状部材4のヒーター2の上端からの上方への延出長さの上限としては、500mmが好ましく、300mmがより好ましい。管状部材4のヒーター2の上端からの上方への延出長さが上記下限に満たない場合、導体Cが加熱状態となる位置における導体Cの雰囲気の酸素量を十分に低減できないおそれがある。逆に、管状部材4のヒーター2の上端からの上方への延出長さが上記上限を超える場合、当該導体軟化処理装置が不必要に大型化するおそれがある。   The length of the tubular member 4 only needs to surround at least a portion where the conductor C is easily oxidized, that is, a portion in a heated state. That is, at least the lower end of the tubular member 4 is immersed in the cooling water W, and the upper end is disposed at a height higher than the heater 2. Furthermore, it is preferable that the tubular member 4 extends further upward from the upper end of the heater 2. The lower limit of the upward extension length of the tubular member 4 from the upper end of the heater 2 is preferably 10 mm, and more preferably 15 mm. On the other hand, the upper limit of the length of the tubular member 4 extending upward from the upper end of the heater 2 is preferably 500 mm, and more preferably 300 mm. If the upward extension length of the tubular member 4 from the upper end of the heater 2 is less than the lower limit, the amount of oxygen in the atmosphere of the conductor C at the position where the conductor C is in a heated state may not be sufficiently reduced. Conversely, when the length of the tubular member 4 extending upward from the upper end of the heater 2 exceeds the upper limit, the conductor softening device may be unnecessarily enlarged.

管状部材4を構成する材料としては、耐熱性を有し、ヒーター2による導体Cの加熱を阻害しないもの、つまり非磁性かつ非導電性のものであればよく、例えばガラス、耐熱性樹脂組成物等が挙げられ、内部を確認できる透明ガラスが特に好適に利用される。   The material constituting the tubular member 4 may be any material that has heat resistance and does not hinder the heating of the conductor C by the heater 2, that is, nonmagnetic and nonconductive, for example, glass, heat resistant resin composition A transparent glass whose inside can be confirmed is particularly preferably used.

<溶存酸素量調節機構>
溶存酸素量調節機構5は、冷却槽3に新しい冷却水Wを供給する供給部9と、冷却槽3に貯留されている冷却水Wの溶存酸素量を測定する溶存酸素量検出部10と、この溶存酸素量検出部10の検出値に基づいて供給部9の冷却水供給量を制御する制御部11と、供給部9が供給する冷却水Wの溶存酸素量を低減する脱酸素部12とを有する。
<Dissolved oxygen control mechanism>
The dissolved oxygen amount adjusting mechanism 5 includes a supply unit 9 that supplies new cooling water W to the cooling tank 3, a dissolved oxygen amount detection unit 10 that measures the dissolved oxygen amount of the cooling water W stored in the cooling tank 3, A control unit 11 that controls the cooling water supply amount of the supply unit 9 based on the detection value of the dissolved oxygen amount detection unit 10, and a deoxygenation unit 12 that reduces the dissolved oxygen amount of the cooling water W supplied by the supply unit 9; Have

この溶存酸素量調節機構5は、例えば溶存酸素量検出部10が検出する冷却槽3に貯留されている冷却水Wの溶存酸素量の検出値が予め設定される設定範囲の上限値を超えたとき、脱酸素部12により溶存酸素量が低減された新しい冷却水Wの供給部9から冷却槽3への供給を開始する。また、溶存酸素量調節機構5は、溶存酸素量検出部10が検出する冷却槽3に貯留されている冷却水Wの溶存酸素量の検出値が上記設定範囲の下限値未満となったとき、供給部9から冷却槽3への新しい冷却水Wの供給を停止する。これにより、冷却槽3に貯留されている冷却水Wの溶存酸素量は上記設定範囲内に維持される。また、溶存酸素量検出部10の検出値が上記設定範囲内の代表値となるよう、冷却水Wの供給量を調整してもよい。   The dissolved oxygen amount adjusting mechanism 5 has, for example, the detected value of the dissolved oxygen amount of the cooling water W stored in the cooling tank 3 detected by the dissolved oxygen amount detection unit 10 exceeding the upper limit value of the preset setting range. At this time, supply of the new cooling water W in which the amount of dissolved oxygen is reduced by the deoxygenation unit 12 from the supply unit 9 to the cooling tank 3 is started. In addition, the dissolved oxygen amount adjusting mechanism 5 is configured such that when the detected value of the dissolved oxygen amount of the cooling water W stored in the cooling tank 3 detected by the dissolved oxygen amount detection unit 10 is less than the lower limit value of the setting range, The supply of new cooling water W from the supply unit 9 to the cooling tank 3 is stopped. Thereby, the dissolved oxygen amount of the cooling water W stored in the cooling tank 3 is maintained within the set range. In addition, the supply amount of the cooling water W may be adjusted so that the detection value of the dissolved oxygen amount detection unit 10 becomes a representative value within the set range.

(供給部)
供給部9は、冷却槽3に新たな冷却水Wを供給する配管から形成され、冷却槽3に供給される冷却水Wの流量を調整する調整弁13を有する。
(Supply section)
The supply unit 9 is formed from a pipe that supplies new cooling water W to the cooling tank 3, and has an adjustment valve 13 that adjusts the flow rate of the cooling water W supplied to the cooling tank 3.

供給部9が冷却水Wを供給する位置は、冷却槽3のオーバーフロー機構8から離れた位置とすることが好ましい。この配置により、供給部9から溶存酸素量が小さい新しい冷却水Wを供給することで、溶存酸素量が増加した古い冷却水Wがオーバーフローし、冷却槽3内の冷却水W全体として、溶存酸素量を減少させられる。   The position where the supply unit 9 supplies the cooling water W is preferably a position away from the overflow mechanism 8 of the cooling tank 3. By supplying new cooling water W having a small dissolved oxygen amount from the supply unit 9 by this arrangement, the old cooling water W having an increased dissolved oxygen amount overflows, and as a whole the cooling water W in the cooling tank 3 is dissolved oxygen. The amount can be reduced.

さらに、供給部9は、冷却槽3に貯留する冷却水Wの中に開口する配管を介して新しい冷却水Wを供給することが好ましい。このように新しい冷却水Wを冷却槽3の内部に供給することにより、冷却水Wの液面の撹拌により液面上の空間に存在する酸素が冷却水Wに溶け込むことを防止できる。   Furthermore, it is preferable that the supply unit 9 supplies new cooling water W via a pipe that opens into the cooling water W stored in the cooling tank 3. By supplying new cooling water W into the cooling tank 3 in this way, it is possible to prevent oxygen present in the space above the liquid surface from being dissolved into the cooling water W by stirring the liquid surface of the cooling water W.

(溶存酸素量検出部)
溶存酸素量検出部10は、冷却槽3内に貯留されている冷却水Wの溶存酸素量を検出し、検出信号として制御部11に送信する。この溶存酸素量検出部10としては、例えばJIS−K−0803(1995)に準拠した溶存酸素自動計測器を用いることができる。
(Dissolved oxygen detection unit)
The dissolved oxygen amount detection unit 10 detects the dissolved oxygen amount of the cooling water W stored in the cooling bath 3 and transmits it to the control unit 11 as a detection signal. As this dissolved oxygen amount detection part 10, the dissolved oxygen automatic measuring device based on JIS-K-0803 (1995) can be used, for example.

溶存酸素量検出部10の配設位置としては、供給部9から新しい冷却水Wが供給されることにより他の部分より溶存酸素量が小さくなり得る位置を避けることが好ましく、導体Cの酸化抑制に寄与する冷却水Wの溶存酸素量を測定できる位置、つまり導体Cが冷却水Wに進入する位置の近傍がより好ましい。   It is preferable to avoid the position where the dissolved oxygen amount detection unit 10 is located at a position where the dissolved oxygen amount can be smaller than other parts by supplying new cooling water W from the supply unit 9, and suppressing the oxidation of the conductor C. A position where the amount of dissolved oxygen in the cooling water W contributing to the temperature can be measured, that is, the vicinity of the position where the conductor C enters the cooling water W is more preferable.

(制御部)
制御部11は、溶存酸素量検出部10の検出値を予め定められる設定範囲内に維持するよう供給部9の調整弁13の開度を調節することにより、供給部9の冷却槽3への新しい冷却水Wの供給量を制御する。
(Control part)
The control unit 11 adjusts the opening of the adjustment valve 13 of the supply unit 9 so as to maintain the detection value of the dissolved oxygen amount detection unit 10 within a predetermined setting range, thereby supplying the cooling tank 3 of the supply unit 9 to the cooling tank 3. The supply amount of new cooling water W is controlled.

制御部11は、例えば汎用コンピューター、PIDコントローラー、シーケンサー等で構成することができる。また、その制御方法としては、例えばPID制御、比例制御、オンオフ制御、ファジィ(メンバーシップ関数)制御等が適用できる。   The control unit 11 can be configured by, for example, a general-purpose computer, a PID controller, a sequencer, or the like. As the control method, for example, PID control, proportional control, on / off control, fuzzy (membership function) control, etc. can be applied.

(脱酸素部)
脱酸素部12は、例えば化学的脱酸素器、加熱脱酸素器、真空脱酸素器、逆浸透膜脱酸素器、窒素脱酸素器等によって構成される。
(Deoxygenation part)
The deoxygenation unit 12 includes, for example, a chemical deoxygenator, a heat deoxygenator, a vacuum deoxygenator, a reverse osmosis membrane deoxygenator, a nitrogen deoxygenator, and the like.

上記化学的脱酸素器は、補給水に脱酸素剤を添加することで、化学反応により酸素を除去する。上記脱酸素剤としては、例えばヒドラジン、亜硫酸ナトリウム、天然有機化合物等が挙げられる。   The chemical deoxygenator removes oxygen by a chemical reaction by adding an oxygen scavenger to make-up water. Examples of the oxygen scavenger include hydrazine, sodium sulfite, natural organic compounds and the like.

上記加熱脱酸素器は、補給水を加熱して沸騰させることによって溶存酸素を除去する。補給水を沸騰させる方法としては、補給水をヒーターで加熱する方法や補給水に蒸気を導入する方法等が挙げられる。   The heating deoxygenator removes dissolved oxygen by heating and boiling the makeup water. Examples of the method for boiling the makeup water include a method of heating the makeup water with a heater and a method of introducing steam into the makeup water.

上記真空脱酸素器は、補給水を減圧することによって溶存酸素を除去する。溶存酸素の脱気を促進するため、補給水を噴霧してもよい。   The vacuum deoxygenator removes dissolved oxygen by reducing the makeup water. In order to promote deaeration of dissolved oxygen, makeup water may be sprayed.

上記逆浸透膜脱酸素器は、酸素の透過を阻止する逆浸透膜を用いて、水を濾過することで溶存酸素量の小さい水を得る。   The reverse osmosis membrane deoxygenator obtains water having a small dissolved oxygen amount by filtering water using a reverse osmosis membrane that blocks permeation of oxygen.

上記窒素脱酸素器は、補給水に窒素ガスを気液接触させ、補給水中の溶存酸素を分圧の差により窒素ガス側に移動させる。   The nitrogen deoxygenator brings nitrogen gas into gas-liquid contact with make-up water and moves dissolved oxygen in the make-up water to the nitrogen gas side due to the difference in partial pressure.

以上のような脱酸素部12により補給水から酸素を除去して得られる新しい冷却水Wの溶存酸素量の下限としては、0.05mg/Lが好ましく、0.1mg/Lがより好ましい。一方、上記新しい冷却水Wの溶存酸素量の上限としては、2mg/Lが好ましく、1mg/Lがより好ましい。上記新しい冷却水Wの溶存酸素量を上記下限に満たないようにするためには、大きな設備コスト及びランニングコストが必要となり、不経済となるおそれがある。逆に、上記新しい冷却水Wの溶存酸素量が上記上限を超える場合、冷却槽3内の冷却水Wの溶存酸素量を十分低減することができないおそれがある。   The lower limit of the dissolved oxygen amount of new cooling water W obtained by removing oxygen from the makeup water by the deoxygenation unit 12 as described above is preferably 0.05 mg / L, more preferably 0.1 mg / L. On the other hand, the upper limit of the dissolved oxygen amount of the new cooling water W is preferably 2 mg / L, and more preferably 1 mg / L. In order to make the amount of dissolved oxygen in the new cooling water W less than the lower limit, a large equipment cost and running cost are required, which may be uneconomical. Conversely, when the dissolved oxygen amount of the new cooling water W exceeds the upper limit, the dissolved oxygen amount of the cooling water W in the cooling bath 3 may not be sufficiently reduced.

<エアーブロー>
エアーブロー6は、冷却槽3から出てきた導体Cの表面に空気を吹き付けることにより、導体Cの表面に付着した水滴を払い落とす非接触式のワイパーである。このエアーブロー6は、導体Cの表面に吹き付けた空気が蓋体7の小孔から冷却槽3の内部に入り込み易くならないよう、吹き付け方向や蓋体7からの離間距離を設定することが好ましい。
<Air blow>
The air blow 6 is a non-contact type wiper that blows off water droplets adhering to the surface of the conductor C by blowing air onto the surface of the conductor C coming out of the cooling tank 3. The air blow 6 preferably has a blowing direction and a distance from the lid 7 so that the air blown onto the surface of the conductor C does not easily enter the inside of the cooling tank 3 from the small hole of the lid 7.

[利点]
当該導体軟化処理装置は、上述の送り機構1とヒーター2と冷却槽3とを備え、冷却槽3に貯留する冷却水Wの溶存酸素量が上述の設定範囲内であるため、ヒーターにより加熱状態の導体Cへの酸素供給量を低減し、導体Cの酸化を抑制できる。
[advantage]
The conductor softening apparatus includes the above-described feeding mechanism 1, the heater 2, and the cooling tank 3, and the amount of dissolved oxygen in the cooling water W stored in the cooling tank 3 is within the above-described setting range, so that the heater is heated by the heater. The amount of oxygen supplied to the conductor C can be reduced, and oxidation of the conductor C can be suppressed.

また、当該導体軟化処理装置は、脱酸素部12を有する供給部9を備えるので、冷却槽3に溶存酸素量が十分に小さい冷却水Wを新たに供給し、冷却槽3に貯留する冷却水Wの溶存酸素量をより確実に上述の設定範囲内に保つことができる。   Moreover, since the said conductor softening processing apparatus is provided with the supply part 9 which has the deoxygenation part 12, the cooling water W which supplies the cooling water 3 with a small enough amount of dissolved oxygen to the cooling tank 3 newly, and stores in the cooling tank 3 The dissolved oxygen amount of W can be more reliably maintained within the above-described setting range.

また、当該導体軟化処理装置は、溶存酸素量検出部10と制御部11とを備えるので、新たな冷却水Wを過剰に消費することなく、冷却槽3内に貯留する冷却水Wの溶存酸素量を低く維持することができ、導体の酸化を確実に抑制できる。   Moreover, since the said conductor softening processing apparatus is provided with the dissolved oxygen amount detection part 10 and the control part 11, dissolved oxygen of the cooling water W stored in the cooling tank 3 is not consumed excessively. The amount can be kept low, and the oxidation of the conductor can be reliably suppressed.

また、当該導体軟化処理装置は、冷却槽3がオーバーフロー機構8を有しているので、冷却槽3内に貯留する冷却水を容易に新しいものと入れ替えることができ、冷却水Wの溶存酸素量を低く維持することができる。   Further, in the conductor softening apparatus, since the cooling tank 3 has the overflow mechanism 8, the cooling water stored in the cooling tank 3 can be easily replaced with a new one, and the dissolved oxygen amount of the cooling water W Can be kept low.

また、当該導体軟化処理装置は、管状部材4を備えるので、導体の周囲を水蒸気で満たして導体への酸素の供給をより確実に抑制できる。   Moreover, since the said conductor softening processing apparatus is equipped with the tubular member 4, the circumference | surroundings of a conductor are satisfy | filled with water vapor | steam, and it can suppress more reliably the supply of oxygen to a conductor.

また、当該導体軟化処理装置は、冷却槽3の上部を封止する蓋体7を有するので、冷却槽3に貯留する冷却水Wに空気中の酸素が溶け込むことを防止できる。   Moreover, since the said conductor softening processing apparatus has the cover body 7 which seals the upper part of the cooling tank 3, it can prevent that the oxygen in air melt | dissolves in the cooling water W stored in the cooling tank 3. FIG.

[導体軟化処理方法]
本発明の一態様に係る導体軟化処理方法は、線状の導体Cを連続的に加熱及び冷却する導体軟化処理方法であって、図1の当該導体軟化装置を用いて行うことができる。
[Conductor softening method]
The conductor softening treatment method according to one embodiment of the present invention is a conductor softening treatment method in which the linear conductor C is continuously heated and cooled, and can be performed using the conductor softening apparatus of FIG.

当該導体軟化処理方法は、導体Cをその軸方向に連続的に搬送する工程と、搬送される導体Cを加熱する工程と、加熱された導体Cを冷却水Wへの浸漬により冷却する工程と、冷却水Wの溶存酸素量を予め定められる設定範囲内に維持する工程とを備える。   The conductor softening method includes a step of continuously conveying the conductor C in the axial direction, a step of heating the conveyed conductor C, and a step of cooling the heated conductor C by immersion in the cooling water W. And a step of maintaining the dissolved oxygen amount of the cooling water W within a predetermined set range.

<搬送工程>
上記搬送工程は、図1の当該導体軟化装置の送り機構1を用いて行うことができる。従って、搬送速度等の搬送条件は、図1の当該導体軟化装置について説明したものと同様である。
<Conveying process>
The said conveyance process can be performed using the feed mechanism 1 of the said conductor softening apparatus of FIG. Accordingly, the transport conditions such as the transport speed are the same as those described for the conductor softening device in FIG.

<加熱工程>
上記加熱工程は、図1の当該導体軟化装置のヒーター2を用いて行うことができる。従って、加熱条件は、図1の当該導体軟化装置について説明したものと同様である。
<Heating process>
The said heating process can be performed using the heater 2 of the said conductor softening apparatus of FIG. Accordingly, the heating conditions are the same as those described for the conductor softening device of FIG.

<冷却工程>
上記搬送工程は、図1の当該導体軟化装置の冷却槽3に貯留した冷却水Wに導体Cを浸漬することにより行うことができる。
<Cooling process>
The said conveyance process can be performed by immersing the conductor C in the cooling water W stored in the cooling tank 3 of the said conductor softening apparatus of FIG.

<維持工程>
維持工程は、図1の当該導体軟化装置の溶存酸素量調節機構5を用いて行うことができる。従って、冷却水Wの条件等は、図1の当該導体軟化装置について説明したものと同様である。
<Maintenance process>
The maintaining step can be performed using the dissolved oxygen amount adjusting mechanism 5 of the conductor softening device of FIG. Accordingly, the conditions and the like of the cooling water W are the same as those described for the conductor softening device in FIG.

[利点]
当該導体軟化処理方法は、溶存酸素量が上記設定範囲内の冷却水で加熱した導体を冷却するので、加熱及び冷却時に導体の周囲の酸素量を低減して、導体の酸化を抑制することができる。
[advantage]
The conductor softening treatment method cools the conductor heated with the cooling water having the dissolved oxygen amount within the above-described setting range, so that the amount of oxygen around the conductor can be reduced during heating and cooling to suppress the oxidation of the conductor. it can.

[絶縁電線の製造方法]
続いて、当該導体軟方法を用いた絶縁電線の製造方法について説明する。絶縁電線は、当該導体軟化処理方法により導体を軟化処理する工程と、軟化した導体の表面に絶縁塗料(ワニス)を塗布する工程と、加熱により導体の表面に塗布した絶縁塗料を焼き付ける工程とを備える方法により製造される。
[Insulated wire manufacturing method]
Then, the manufacturing method of the insulated wire using the said conductor soft method is demonstrated. The insulated wire includes a step of softening the conductor by the conductor softening method, a step of applying an insulating paint (varnish) to the surface of the softened conductor, and a step of baking the insulating paint applied to the surface of the conductor by heating. It is manufactured by the method provided.

<軟化処理工程>
上記軟化処理工程は、上述の当該導体軟化処理方法に従って行われる。
<Softening treatment process>
The softening treatment step is performed according to the conductor softening treatment method described above.

<塗布工程>
上記塗布工程では、絶縁塗料を貯留する塗布槽に導体Cを貫通させ、導体Cの表面に付着する絶縁塗料をダイスにより一定の厚さに調整する。
<Application process>
In the coating step, the conductor C is passed through a coating tank that stores the insulating coating, and the insulating coating adhering to the surface of the conductor C is adjusted to a certain thickness with a die.

絶縁塗料の主成分としては、絶縁性及び耐熱性が高い樹脂であればよく、例えばポリアミド、ポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられる。また絶縁塗料は、例えばN−メチル−2−ピロリドン、クレゾール等の溶剤を含むことができる。   The main component of the insulating paint may be a resin having high insulation and heat resistance, and examples thereof include polyamide, polyimide, polyamideimide, and polyesterimide. The insulating paint can contain a solvent such as N-methyl-2-pyrrolidone or cresol.

上記ダイスとしては、内面が円錐面状に形成され、楔膜効果により導体Cを自動的に調心して、周方向に膜厚を一定にする効果を有する公知のダイスが使用される。   As the above-mentioned die, a known die having an effect that the inner surface is formed in a conical surface, the conductor C is automatically aligned by the wedge film effect, and the film thickness is made constant in the circumferential direction is used.

<焼付工程>
上記焼付工程では、表面に絶縁塗料が塗布された導体を加熱することにより、絶縁塗料を硬化させる。絶縁塗料が溶剤を含む場合には、先ず、樹脂成分の硬化温度未満の温度で溶剤を揮発させ、次に樹脂成分を硬化させる温度に昇温することで、気泡のない絶縁被覆を形成することができる。
<Baking process>
In the baking step, the insulating paint is cured by heating the conductor having the surface coated with the insulating paint. When the insulating coating contains a solvent, first, the solvent is volatilized at a temperature lower than the curing temperature of the resin component, and then the temperature is raised to a temperature at which the resin component is cured, thereby forming an insulating coating without bubbles. Can do.

加熱方法としては、例えば電磁誘導により導体を発熱させる誘導加熱、ヒーターの輻射熱で絶縁塗料を加熱する輻射加熱、熱風を循環させて絶縁塗料を加熱する熱風加熱等を採用することができる。   As the heating method, for example, induction heating that generates heat by electromagnetic induction, radiant heating that heats the insulating paint with the radiant heat of the heater, hot air heating that circulates hot air to heat the insulating paint, and the like can be employed.

[利点]
上記絶縁電線の製造方法は、当該導体軟化処理方法により導体Cを軟化させてから絶縁被覆を形成するので、導体Cが酸化せず、柔軟性及び導電率が高い絶縁電線を製造することができる。
[advantage]
Since the insulation coating is formed after the conductor C is softened by the conductor softening treatment method in the above-described method for producing an insulated wire, the conductor C is not oxidized, and an insulated wire having high flexibility and conductivity can be produced. .

[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The

当該導体軟化処理装置において、ヒーターは、導体を連続的に加熱できるものであればよく、火炎や熱輻射等により導体を外側から加熱するものであってもよいが、導体を直接発熱させる直接加熱方式ヒーターが加熱時間ひいてはこれにより定められるヒーター長さやエネルギー効率の観点からより好ましい。上記直接加熱方式ヒーターとしては、上記誘導加熱方式のもの以外に、ガイドシーブ間の導体に電流を流してジュール損により発熱させる通電加熱方式のもの、冷却槽の上方で導体をループさせ、この導体のループ部分に電磁誘導により通電する誘導通電方式のもの等が挙げられる。加熱のために導体に電流を流す方法としては、冷却槽の直前のガイドシーブと冷却槽内のガイドシーブとの間に電圧を印加する方法が挙げられる。   In the conductor softening apparatus, the heater is not limited as long as it can continuously heat the conductor, and may be one that heats the conductor from the outside by flame, heat radiation, or the like. The system heater is more preferable from the viewpoint of the heating time and the heater length and energy efficiency determined thereby. In addition to the induction heating method, the direct heating method heater is an electric heating method in which a current is passed through the conductor between the guide sheaves to generate heat due to Joule loss, and the conductor is looped above the cooling tank. Inductive energization type that energizes the loop portion by electromagnetic induction. As a method of passing an electric current through a conductor for heating, there is a method of applying a voltage between a guide sheave just before the cooling bath and a guide sheave in the cooling bath.

また、当該導体軟化処理装置において、ヒーターは、管状部材の中に配置してもよい。これにより、管状部材の材質選択可能性を拡げることができ、輻射加熱を行うヒーターを用いる場合には加熱効率を向上できる。   Moreover, in the said conductor softening processing apparatus, you may arrange | position a heater in a tubular member. Thereby, the material selection possibility of a tubular member can be expanded, and heating efficiency can be improved when using the heater which performs radiation heating.

当該導体軟化処理装置において、供給部を省略してもよい。冷却槽が十分大きければ、供給部から新しい冷却水を供給しなくても冷却槽中の冷却水の溶存酸素量を一定時間低く保つことができる。   In the conductor softening apparatus, the supply unit may be omitted. If the cooling tank is sufficiently large, the dissolved oxygen content of the cooling water in the cooling tank can be kept low for a certain time without supplying new cooling water from the supply unit.

当該導体軟化処理装置において、オーバーフロー機構を省略してもよい。新しい冷却水を過剰供給しない場合には、冷却槽から冷却水を排出する必要がなく、冷却槽から冷却水を排出する場合にも、冷却槽の下部に排出流路を形成したり、吸引ポンプで冷却水を引き抜いたりする等、他の手段を用いてもよい。   In the conductor softening apparatus, the overflow mechanism may be omitted. When new cooling water is not excessively supplied, it is not necessary to discharge cooling water from the cooling tank. Even when cooling water is discharged from the cooling tank, a discharge channel is formed in the lower part of the cooling tank, or a suction pump is used. Other means such as drawing out the cooling water may be used.

当該導体軟化処理装置において、供給部に替わる溶存酸素量調整機構として、冷却槽に脱酸素部を設けてもよい。例えば、冷却槽に脱酸素剤を供給する装置や窒素ガスを供給する装置を配設することで、冷却槽に貯留する冷却水の溶存酸素量を低く保つことができる。溶存酸素量調整機構は、制御部によって自動で制御されるものだけでなく、オペレーターが操作するものであってもよい。また、冷却槽に予め脱酸素剤を過剰投入しておくことでも、溶存酸素量を一定時間低く維持することができる。   In the conductor softening apparatus, a deoxidation unit may be provided in the cooling tank as a dissolved oxygen amount adjustment mechanism that replaces the supply unit. For example, by disposing a device for supplying an oxygen scavenger and a device for supplying nitrogen gas to the cooling bath, the dissolved oxygen content of the cooling water stored in the cooling bath can be kept low. The dissolved oxygen amount adjusting mechanism is not only automatically controlled by the control unit, but may be operated by an operator. Moreover, the amount of dissolved oxygen can be kept low for a certain period of time by preliminarily adding an oxygen scavenger to the cooling tank.

当該導体軟化処理装置において、液面から冷却水に溶け込む酸素量はそれほど大きくない場合、冷却槽の蓋を省略してもよい。   In the conductor softening apparatus, when the amount of oxygen dissolved from the liquid surface into the cooling water is not so large, the lid of the cooling tank may be omitted.

また、液面から冷却水に溶け込む酸素量を低減するために、冷却槽の形状を液面の面積が小さくなるように設計してもよい。   Further, in order to reduce the amount of oxygen dissolved from the liquid level into the cooling water, the shape of the cooling tank may be designed so that the area of the liquid level becomes small.

さらに、当該導体軟化処理装置において、エアーブローを省略してもよい。   Further, air blow may be omitted in the conductor softening apparatus.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example.

図1の導体軟化処理装置に準じる構成の装置を用いて、導体として硬銅線を軟化する試験を行った。条件としては、導体の搬送速度を15m/secとした場合(高線速)と、導体の搬送速度を4m/secとした場合(低線速)とについてそれぞれ冷却水の溶存酸素量の影響を、導体表面に形成される酸化被膜の平均厚さを測定することにより確認した。なお、酸化被膜の平均厚さはボルタンメトリー法を用いて測定した。   A test for softening a hard copper wire as a conductor was performed using an apparatus having a configuration similar to the conductor softening treatment apparatus of FIG. As conditions, the effect of the dissolved oxygen amount of the cooling water on the case where the conductor conveyance speed is 15 m / sec (high linear velocity) and the case where the conductor conveyance speed is 4 m / sec (low linear velocity), respectively. This was confirmed by measuring the average thickness of the oxide film formed on the conductor surface. The average thickness of the oxide film was measured using a voltammetry method.

冷却水としては、逆浸透膜(RO膜)により不純物を除去した水を補給水とし、これを脱酸素部をバイパスして直接冷却槽に供給したところ、冷却槽内の冷却水の溶存酸素量が約6mg/Lとなった。また、脱酸素部によって補給水の溶存酸素量を低減してから冷却槽に供給したところ、冷却槽内の冷却水の溶存酸素量は約0.6mg/Lとなった。なお、長時間の運転を行っていないので、継時的な溶存酸素量の上昇は無視できるものであった。   As cooling water, water from which impurities have been removed by a reverse osmosis membrane (RO membrane) is used as make-up water, which is directly supplied to the cooling tank bypassing the deoxidation section. The amount of dissolved oxygen in the cooling water in the cooling tank Was about 6 mg / L. Moreover, when the amount of dissolved oxygen in the makeup water was reduced by the deoxygenation section and then supplied to the cooling tank, the amount of dissolved oxygen in the cooling water in the cooling tank was about 0.6 mg / L. Since the operation was not performed for a long time, the increase in dissolved oxygen amount over time was negligible.

上記試験結果を図2に図示する。低線速の場合、冷却水の溶存酸素量を約6mg/Lとしたときに形成された酸化被膜の平均厚さは15.5nmであったのに対し、冷却水の溶存酸素量を約0.6mg/Lとしたときに形成された酸化被膜の平均厚さは1nmであった。また、高線速の場合、冷却水の溶存酸素量を約6mg/Lとしたときに形成された酸化被膜の平均厚さは7nmであったのに対し、冷却水の溶存酸素量を約0.6mg/Lとしたときに形成された酸化被膜の平均厚さは2nmであった。   The test results are shown in FIG. In the case of low linear velocity, the average thickness of the oxide film formed when the dissolved oxygen amount of cooling water was about 6 mg / L was 15.5 nm, whereas the dissolved oxygen amount of cooling water was about 0. The average thickness of the oxide film formed when .6 mg / L was 1 nm. In the case of high linear velocity, the average thickness of the oxide film formed when the dissolved oxygen amount of the cooling water was about 6 mg / L was 7 nm, whereas the dissolved oxygen amount of the cooling water was about 0. The average thickness of the oxide film formed when .6 mg / L was 2 nm.

このように、冷却水の溶存酸素量を低くすることにより、導体の搬送速度にかかわらず酸化被膜の形成を大幅に抑制できることが確認された。   Thus, it was confirmed that by reducing the dissolved oxygen content of the cooling water, the formation of the oxide film can be significantly suppressed regardless of the transport speed of the conductor.

本発明の一態様に係る導体軟化処理装置及び導体軟化方法は、絶縁電線の製造において絶縁塗料を塗布する前に導体を軟化させる工程に好適に利用することができる。   The conductor softening apparatus and the conductor softening method according to one embodiment of the present invention can be suitably used for a process of softening a conductor before applying an insulating paint in manufacturing an insulated wire.

1 送り機構
1a,1b,1c ガイドシーブ
2 ヒーター
3 冷却槽
4 管状部材
5 溶存酸素量調節機構
6 エアーブロー
7 蓋体
8 オーバーフロー機構
8a トラップ
9 供給部
10 溶存酸素量検出部
11 制御部
12 脱酸素部
13 調整弁
C 導体
W 冷却水
DESCRIPTION OF SYMBOLS 1 Feed mechanism 1a, 1b, 1c Guide sheave 2 Heater 3 Cooling tank 4 Tubular member 5 Dissolved oxygen amount adjustment mechanism 6 Air blow 7 Cover body 8 Overflow mechanism 8a Trap 9 Supply part 10 Dissolved oxygen amount detection part 11 Control part 12 Deoxygenation Part 13 Regulating valve C Conductor W Cooling water

Claims (5)

線状の導体を連続的に加熱及び冷却する導体軟化処理装置であって、
上記導体をその軸方向に連続的に搬送する送り機構と、
上記送り機構により搬送される導体を加熱するヒーターと、
上記ヒーターにより加熱された導体を浸漬する冷却水を貯留する冷却槽と、
上記冷却槽に貯留されている冷却水の溶存酸素量を予め定められる設定範囲内に維持する溶存酸素量調節機構とを備え
上記設定範囲が0.3mg/L以上2mg/L以下であり、
上記溶存酸素量調節機構が、上記冷却槽に冷却水を供給する供給部と、上記冷却槽に貯留されている冷却水の溶存酸素量を測定する溶存酸素量検出部とを有し、
上記供給部と共に上記冷却水の溶存酸素量を設定範囲に保ちかつ上記冷却水の水位を予定範囲に保つオーバーフロー機構を上記冷却槽が有し、
上記オーバーフロー機構がトラップを含み、
上記冷却槽の上部が蓋体で封止され、
上記供給部の冷却水供給口と上記オーバーフロー機構とが上記冷却槽で離間して配置され、
上記溶存酸素量検出部が、上記冷却水に上記導体が進入する位置近傍に配置される導体軟化処理装置。
A conductor softening apparatus that continuously heats and cools a linear conductor,
A feeding mechanism for continuously conveying the conductor in the axial direction;
A heater for heating a conductor conveyed by the feeding mechanism;
A cooling tank for storing cooling water for immersing the conductor heated by the heater;
A dissolved oxygen amount adjusting mechanism for maintaining the dissolved oxygen amount of the cooling water stored in the cooling tank within a predetermined setting range ;
The setting range is 0.3 mg / L or more and 2 mg / L or less,
The dissolved oxygen amount adjusting mechanism has a supply unit that supplies cooling water to the cooling tank, and a dissolved oxygen amount detection unit that measures the dissolved oxygen amount stored in the cooling tank,
The cooling tank has an overflow mechanism that keeps the amount of dissolved oxygen in the cooling water in a set range together with the supply unit and keeps the water level of the cooling water in a predetermined range,
The overflow mechanism includes a trap,
The upper part of the cooling tank is sealed with a lid,
The cooling water supply port of the supply unit and the overflow mechanism are arranged apart from each other in the cooling tank,
The detection of dissolved oxygen concentration portion, the conductor softening treatment apparatus the conductor to the cooling water Ru is disposed at a position near the entrance.
上記溶存酸素量調節機構が、上記溶存酸素量検出部の検出値を上記設定範囲内に維持するよう上記供給部の冷却水供給量を制御する制御部をさらに有する請求項1に記載の導体軟化処理装置。 The dissolved oxygen amount adjusting mechanism, the conductor of claim 1 having a control unit for controlling the cooling water supply amount of the supply unit so as to maintain the detected value of the upper Symbol dissolved oxygen detector within the set range further Softening device. 上記溶存酸素量調節機構が、上記供給部が供給する冷却水の溶存酸素量を低減する脱酸素部をさらに有する請求項2に記載の導体軟化処理装置。   The conductor softening apparatus according to claim 2, wherein the dissolved oxygen amount adjusting mechanism further includes a deoxygenation unit that reduces the dissolved oxygen amount of cooling water supplied by the supply unit. 少なくとも上記ヒーターから冷却槽の水面までの間の導体が挿通される管状部材をさらに備える請求項1、請求項2又は請求項3に記載の導体軟化処理装置。 The conductor softening apparatus according to claim 1 , further comprising a tubular member into which a conductor between at least the heater and the water surface of the cooling tank is inserted. 線状の導体を連続的に加熱及び冷却する導体軟化処理方法であって、
上記導体をその軸方向に連続的に搬送する工程と、
上記搬送される導体を加熱する工程と、
上記加熱された導体を冷却水への浸漬により冷却する工程と、
上記冷却水の溶存酸素量を予め定められる設定範囲内に維持する工程と
を備え
上記設定範囲が0.3mg/L以上2mg/L以下であり、
上記維持工程が、上記冷却水を冷却槽に供給する供給部及び上記冷却槽に貯留されている冷却水の溶存酸素量を測定する溶存酸素量検出部を有する溶存酸素量調節機構で行われ、
上記供給部と共に上記冷却水の溶存酸素量を設定範囲に保ちかつ上記冷却水の水位を予定範囲に保つオーバーフロー機構を上記冷却槽が有し、
上記オーバーフロー機構がトラップを含み、
上記冷却槽の上部が蓋体で封止され、
上記供給部の冷却水供給口と上記オーバーフロー機構とが上記冷却槽で離間して配置され、
上記溶存酸素量検出部が、上記冷却水に上記導体が進入する位置近傍に配置される導体軟化処理方法。
A conductor softening method for continuously heating and cooling a linear conductor,
A step of continuously conveying the conductor in the axial direction;
Heating the conveyed conductor;
Cooling the heated conductor by immersion in cooling water;
Maintaining the amount of dissolved oxygen in the cooling water within a predetermined setting range ,
The setting range is 0.3 mg / L or more and 2 mg / L or less,
The maintenance step is performed by a dissolved oxygen amount adjusting mechanism having a supply unit that supplies the cooling water to the cooling tank and a dissolved oxygen amount detection unit that measures the dissolved oxygen amount stored in the cooling tank,
The cooling tank has an overflow mechanism that keeps the amount of dissolved oxygen in the cooling water in a set range together with the supply unit and keeps the water level of the cooling water in a predetermined range,
The overflow mechanism includes a trap,
The upper part of the cooling tank is sealed with a lid,
The cooling water supply port of the supply unit and the overflow mechanism are arranged apart from each other in the cooling tank,
The detection of dissolved oxygen concentration portion, the conductor softening treatment method the conductor to the cooling water Ru is disposed at a position near the entrance.
JP2014210230A 2014-10-14 2014-10-14 Conductor softening processing apparatus and conductor softening processing method Active JP6414739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210230A JP6414739B2 (en) 2014-10-14 2014-10-14 Conductor softening processing apparatus and conductor softening processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210230A JP6414739B2 (en) 2014-10-14 2014-10-14 Conductor softening processing apparatus and conductor softening processing method

Publications (2)

Publication Number Publication Date
JP2016079436A JP2016079436A (en) 2016-05-16
JP6414739B2 true JP6414739B2 (en) 2018-10-31

Family

ID=55957631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210230A Active JP6414739B2 (en) 2014-10-14 2014-10-14 Conductor softening processing apparatus and conductor softening processing method

Country Status (1)

Country Link
JP (1) JP6414739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064279B1 (en) * 2017-03-22 2020-06-26 Fives Stein METHOD AND DEVICE FOR COOLING A STRIP OF STEEL THROUGHOUT A COOLING SECTION OF A CONTINUOUS LINE
JP7302142B2 (en) * 2019-01-17 2023-07-04 住友電工ウインテック株式会社 Conductor softening device and conductor softening method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116912U (en) * 1975-03-17 1976-09-22
JPS5424211A (en) * 1977-07-26 1979-02-23 Showa Electric Wire & Cable Co Ltd Cooling method for annealed wire rod
JPS637339A (en) * 1986-06-27 1988-01-13 Nippon Kokan Kk <Nkk> Method for cooling steel strip
JP2014001420A (en) * 2012-06-18 2014-01-09 Sumitomo Electric Wintec Inc Softening device and softening method of conductor, and manufacturing device and manufacturing method of insulated wire

Also Published As

Publication number Publication date
JP2016079436A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
TWI550648B (en) Insulated wires and manufacturing methods using such coils and insulated wires
JP5367752B2 (en) Solder plated wire manufacturing method and manufacturing apparatus
JP6414739B2 (en) Conductor softening processing apparatus and conductor softening processing method
US9133540B2 (en) Apparatus for removing pollutant source from snout of galvanizing line
JP6091280B2 (en) Al-plated steel wire manufacturing apparatus and manufacturing method
JP5495850B2 (en) Hot-dip Al plated steel wire manufacturing equipment
JP2014001420A (en) Softening device and softening method of conductor, and manufacturing device and manufacturing method of insulated wire
CN103928195A (en) Method For Manufacturing Insulated Wire And Manufacturing Apparatus Of The Same
JP5477849B2 (en) Conductive resin tube manufacturing method, conductive resin tube manufacturing apparatus, and roller manufacturing method
CN113272462B (en) Conductor softening device and conductor softening method
CN106661661A (en) Steel-strip production method, and steel strip
JP2016030852A (en) Apparatus and method for manufacturing plated wire
WO1993000453A1 (en) Flow coat galvanizing
RU2590787C2 (en) Method for improvement of metal coating on steel band
JP2018202797A (en) Peeling method of metal pipe inner surface resin coating layer
CN103890217B (en) The device of applying coating in elongated article
US20160203891A1 (en) Method of manufacturing cable and method of manufacturing composite electric wire
WO2011052138A1 (en) Molten metal supply device and method for cleaning duct thereof
US20100308103A1 (en) System and method for vapor phase reflow of a conductive coating
CN203304316U (en) Continuous softening machine mechanism
JP2004134324A (en) Manufacturing method of painted electric wire
JP2006212474A (en) Production method for polyethylene resin coating metal pipe and polyethylene resin coating metal pipe
US3540918A (en) Method of coating copper wire with solder
US20140246414A1 (en) Wire softening apparatus and wire softening method
JP2009221499A (en) Continuous surface treatment apparatus of steel wire and continuous surface treatment method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180920

R150 Certificate of patent or registration of utility model

Ref document number: 6414739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250