WO2011052138A1 - Molten metal supply device and method for cleaning duct thereof - Google Patents

Molten metal supply device and method for cleaning duct thereof Download PDF

Info

Publication number
WO2011052138A1
WO2011052138A1 PCT/JP2010/006000 JP2010006000W WO2011052138A1 WO 2011052138 A1 WO2011052138 A1 WO 2011052138A1 JP 2010006000 W JP2010006000 W JP 2010006000W WO 2011052138 A1 WO2011052138 A1 WO 2011052138A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
inductor
duct
hot water
water supply
Prior art date
Application number
PCT/JP2010/006000
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 三浦
信 浅葉
辰雄 町田
一雄 佐藤
眞 水庭
辰男 桜井
福治 永盛
孝一 百目鬼
理 小滝
Original Assignee
助川電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 助川電気工業株式会社 filed Critical 助川電気工業株式会社
Priority to KR1020117022195A priority Critical patent/KR101680919B1/en
Publication of WO2011052138A1 publication Critical patent/WO2011052138A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel

Definitions

  • the present invention relates to a molten metal supply apparatus using an induction electromagnetic pump for molten metal used for conveying molten metal such as molten aluminum and molten zinc, and in particular, provided with two stages of inductors, Molten metal supply device that uses the inductor to pump up the molten metal level to the height at which the thrust of the upper hot water inductor acts, and then to supply the molten metal as needed by controlling the energization of the hot water inductor. And a method for cleaning a duct for supplying molten metal.
  • an electromagnetic pump for molten metal is used to convey molten aluminum or the like by applying a thrust to the molten metal by electromagnetic induction.
  • Such an electromagnetic pump for molten metal is an induction type electromagnetic pump of a type in which a moving magnetic field is generated inside a cylindrical duct by an inductor in which a coil is wound around a magnetic yoke, and thrust is applied to the molten metal to supply it. Is the mainstream.
  • Such an induction type electromagnetic pump is described in, for example, Japanese Patent Application Laid-Open No. 2006-341281.
  • a tubular duct through which molten metal flows is surrounded by an inductor having a coil wound around a yoke, and a magnetic core serving as a magnetic path of a magnetic field generated by the inductor is disposed inside the tubular duct.
  • the core is covered with a cylindrical protective tube having heat resistance and corrosion resistance.
  • the flow path of the molten metal is a cross-sectional annular portion formed between the tubular duct and the protective tube therein, and has a structure that generates a moving magnetic field in this portion and gives thrust to the molten metal. Due to its flow path shape, this type of electromagnetic pump is also called an annular flow path type electromagnetic pump.
  • FIG. 8 shows a conventional example of a molten metal supply apparatus using the above-described electromagnetic pump for molten metal, and is a general one for conveying molten aluminum or molten zinc.
  • the lower end of the pump side duct 1 is inserted into the liquid surface of the molten metal 12.
  • a hot water supply side duct 1 ′ is connected to the pump side duct 1 via joints 5 and 5 ′ such as flange joints.
  • the hot water supply side duct 1 ' is pressed against the pump side duct 1 by a spring or the like (not shown), and the joints 5, 5' are inserted by heat resistant gaskets inserted between the joints 5, 5 '. Sealability is ensured.
  • These ducts 1, 1 ′ are made of a heat-resistant and corrosion-resistant material such as ceramic, and a heater 9 is wound on the outside for heat insulation so that the temperature is higher than the melting point of the molten metal 12. It has become.
  • an inductor 14 in which a coil 16 is wound around a magnetic yoke 15 is disposed.
  • a core 2 made of a cylindrical body made of a magnetic material is disposed so that the central axes thereof coincide with each other.
  • the core 2 is accommodated in a cylindrical protective tube 3 whose both ends are closed, and is not in direct contact with the molten metal 12 in the pump-side duct 1.
  • the protective tube 3 is made of a heat-resistant and corrosion-resistant material such as ceramic, and a ceramic fiber such as alumina or magnesia or a filler 8 such as ceramic powder is filled around the core 2 therein as a cushioning material. Has been.
  • a flange 6 extends around one end of the protective tube 3 near the hot water supply side duct 1 ', and a portion near the outer periphery of the flange 6 connects the pump side duct 1 and the hot water supply side duct 1'; Sandwiched between 5 '. Thereby, the core 2 is held so as to be positioned at the center of the pump-side duct 1.
  • the pump side duct 1 and the hot water supply side duct 1 ′ are heated by heaters 9, 9 ′ made of a heat retaining microheater and the like provided on the outer periphery thereof to prevent the molten metal 12 from solidifying.
  • the flange 6 is provided with a plurality of arc-shaped passage holes 7 serving as passages for the molten metal 12.
  • the liquid level of the molten metal 12 does not reach the inductor 14 before the operation of the inductor 14 is started. Therefore, when the molten metal 12 is supplied, the liquid level of the molten metal 12 in the duct 1 reaches the inductor 14, and the molten metal in the duct 1 can be given thrust to the molten metal 12 in the duct 1 by the inductor 14.
  • An auxiliary means of holding 12 levels is required.
  • a method of immersing an immersion body in a molten metal tank is used.
  • Patent Document 3 As another example, as described in Japanese Patent Application Laid-Open No. 2007-69255 cited as Patent Document 3 below and Japanese Utility Model Laid-Open No. 1-68156 cited as Patent Document 5 below, a method of reducing the pressure of a duct with a vacuum suction pump is used. There is also a molten metal supply apparatus. That is, the inside of the duct is depressurized by a vacuum suction pump, the molten metal in the duct is pulled up to the height of the inductor by atmospheric pressure, and then the molten metal is supplied by controlling energization to the inductor.
  • the oxide of the molten metal is generated and adhered in the duct.
  • This molten metal oxide becomes a lump and hinders the flow of the molten metal in the duct, or the oxide lump is conveyed to the intended supply destination, causing problems such as deterioration in casting quality. .
  • an oxide lump removal operation of this molten metal is required, but this operation is complicated and troublesome.
  • the present invention provides a simple operation to increase the height of an inductor when supplying molten metal with an inductor disposed on the liquid surface of the molten metal in a molten metal tank. It is possible to raise the liquid level of the molten metal in the duct and maintain the liquid level regardless of the presence or absence of electromagnetic force of the molten metal electromagnetic pump. It aims at providing the molten metal supply apparatus which can be supplied by a cycle. In addition, an object of the present invention is to easily remove the oxide in the duct by utilizing the structure of the molten metal supply device.
  • a hot water supply inductor 14 for supplying a molten metal 12 in the duct 1 with thrust, and a molten metal in the duct 1 up to the height of the hot water supply inductor 14 are provided. 12 was used, and a riser inductor 24 having heat resistance for maintaining the height was used. As a result, the molten metal 12 can be supplied to the target location through the ducts 1, 1 ′ at any time only by controlling the energization of the inductors 14, 24.
  • an inductor 14 is provided in the duct 1, and the molten metal 12 is supplied by supplying thrust to the molten metal 12 in the duct 1 by the inductor 14.
  • a hot water supply inductor 14 for supplying a thrust to the molten metal 12 in the duct 1 and supplying the molten metal 12 in the duct 1 to the height of the hot water supply inductor 14 and having a heat resistance for pumping up the molten metal in the duct 1
  • the riser inductor 24 is disposed at a position lower than the liquid level of the molten metal 12 housed in the molten metal tank.
  • an inorganic insulating cable having high heat resistance As the riser inductor 24 having heat resistance, one using an inorganic insulating cable having high heat resistance as a winding can be cited.
  • This inorganic insulated cable is a so-called sheathed cable in which a conductive wire is housed in a metal sheath such as a stainless tube, and an inorganic insulating powder such as magnesia powder is filled between the conductive wire and the sheath.
  • a winding is constituted by this inorganic insulated cable to form a coil 26, and a yoke 25 is attached to the outside thereof to constitute a rising inductor 24.
  • the rising inductor 24 made of an inorganic insulated cable has high heat resistance and can be used at high temperatures.
  • the metal when it is aluminum, it can be used at around 800 ° C., which is higher than its melting point. For this reason, the riser inductor 24 can be used by being disposed at a position lower than the liquid level of the molten metal 12 stored in the molten metal tank, without cooling without the cooling means.
  • the number of turns of the coil 26 of the riser inductor 24 wound thereby is set to be smaller than the number of turns of the coil 16 of the hot water supply inductor 14.
  • the current supplied to the coil 26 of the startup inductor 24 is made larger than that to the current supplied to the coil 16 of the hot water supply inductor 14. This ensures a sufficient magnetic flux density to pump the molten metal 12 into the duct 1.
  • the riser inductor 24 is subjected to energization control in conjunction with the sensor 19 for detecting the liquid level of the molten metal 12 in the duct 1 or the sensors 13, 23, 23 ', so that the molten metal in the duct 1 is controlled. It can be controlled so that the level of 12 is always maintained up to the height of the inductor 14 for hot water supply. Further, if the electromagnetic force of the hot water supply inductor 14 is increased while weakening the electromagnetic force of the riser inductor 24 so as to maintain the position of the sensor 19 that detects the liquid level, the electromagnetic force of the riser inductor 24 is increased. Even when the force is zero, the liquid level can be maintained only by the electromagnetic force of the hot water supply inductor 14.
  • the liquid level can be maintained without making the electromagnetic force of the rising inductor 24 zero.
  • the molten metal 12 flowing from the pump side duct 1 toward the hot water supply side duct 1 ′ is supplied by energizing the rising-up inductor 24 with a three-phase alternating current in reverse phase. It is also possible to stop the flow of the molten metal 12 by braking.
  • molten metal supply apparatus a structure having two-stage inductors of a hot water supply inductor 14 and a rising inductor 24 is used, and the inductors 14 and 24 are supplied with molten metal. Driven in the opposite direction, the inside of the duct 1 can be cleaned. Since the above-described molten metal supply apparatus has the riser inductor 24, the riser inductor 24 can pump up the molten metal 12 in the duct 1 from the molten metal tank.
  • the hot metal inductor 14 and the riser inductor 24 are driven in a direction opposite to the direction in which the molten metal 12 is supplied to the conveyance destination, whereby the oxide of the molten metal 12 adhered to the inner periphery of the duct 1. Forcibly peel off. Further, by discharging the molten metal 12 in the duct 1 to the molten metal tank, the oxide of the molten metal 12 adhering to the inner periphery of the duct 1 can be discharged together with the molten metal 12 to the molten metal tank.
  • the length of the core protective tube 3 is equal to the length of the duct 1 or the core protective tube 3 is longer than the duct 1. Otherwise, the reverse flow velocity generated in the return channel formed by the duct 1 and the core protective tube 3 will be slow in the duct 1. By doing so, the oxide of the molten metal 12 can be discharged more efficiently.
  • tip of the core protection tube 3 is R shape, it is preferable that the front-end
  • the molten metal 12 is pumped into the duct 1 by the rising inductor 24 immersed in the molten metal 12, and the level of the molten metal in the duct 1 is induced for hot water supply.
  • the molten metal 12 can be supplied by controlling the electric power to the hot water supply inductor 14. Since the level of the molten metal 12 in the duct 1 can be raised to the height of the hot water supply inductor 14 by the riser inductor 24, the supply of the molten metal 12 by the hot water supply inductor 14 is repeatedly performed in a short cycle. It becomes possible.
  • the oxide of the molten metal 12 can be easily peeled off from the inner surface of the duct 1, the flow path in the duct 1 is not narrowed or clogged with oxide. Moreover, it becomes possible to supply the molten metal 12 in which the oxide of the molten metal 12 is not mixed as a lump to the conveyance destination, and for example, the oxide of the molten metal 12 is present in the casting at the supply destination of the molten metal 12. It is possible to improve the quality of the product, such as not mixing.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • FIG. 1 shows one Example of a molten metal supply apparatus.
  • a hot water supply inductor 14 for supplying the molten metal 12 as needed and a rising inductor 24 for pumping the molten metal 12 in the duct 1 to the height of the hot water supply inductor 14.
  • the purpose is achieved by providing an inductor.
  • this two-stage inductor it is possible to reversely drive the hot water supply inductor 14 and the startup inductor 24 while the molten metal 12 in the duct 1 is pumped up. To achieve.
  • the best mode for carrying out the present invention will be described in detail with reference to examples.
  • FIG. 1 shows an embodiment of a molten metal supply apparatus according to the present invention.
  • This molten metal supply apparatus has two stages of inductors, an upper hot water supply inductor 14 and a lower riser inductor 24.
  • the configuration of the portion where the upper hot water supply inductor 14 is arranged is basically the same as that of the conventional electromagnetic pump described above with reference to FIG. 8, and the same portions are denoted by the same reference numerals.
  • the lower end of the pump side duct 1 is inserted into the liquid level of the molten metal 12 stored in a molten metal tank (not shown).
  • a hot water supply inductor 14 in which a coil 16 is wound around a magnetic yoke 15.
  • the yoke 15 is fitted on the outer peripheral side so as to surround a portion of the pump side duct 1 that is above the liquid level of the molten metal 12, and a coil 16 constituting a three-phase coil is wound around the yoke 15. Yes.
  • the core 2 made of a magnetic cylinder is disposed at a position corresponding to the hot water supply inductor 14 in the pump side duct 1 so that the central axis thereof coincides.
  • the core 2 is accommodated in a cylindrical protective tube 3 whose both ends are closed, and is not in direct contact with the molten metal 12 passing through the passage in the pump-side duct 1.
  • a gap is formed between the pump-side duct 1 and the protective tube 3, and this portion becomes a passage for the molten metal 12.
  • the protective tube 3 is made of a heat-resistant and corrosion-resistant material such as ceramic, and a ceramic fiber such as alumina or magnesia or ceramic powder is used as a cushioning material between the core 2 and the protective tube 3 therein.
  • Filler 8 is filled.
  • a rising inductor 24 is disposed around a portion below the inductor 14 of the pump side duct 1. As shown in FIG. 2, similarly to the hot water supply inductor 14, the rising inductor 24 is a magnetic body fitted on the outer periphery of a portion below the inductor 14 of the pump side duct 1. A coil 26 is wound around a yoke 25 made of metal. The coil 26 of the rising inductor 24 is wound around a heat-resistant inorganic insulating cable.
  • the inorganic insulated cable has a structure in which a conductive wire is housed in a sheath made of a stainless steel tube or the like, and the conductive wire and the sheath are insulated by an inorganic insulating powder such as magnesia powder filled therebetween. It is called a so-called sheath cable.
  • Such an inorganic insulated cable has high heat resistance and can withstand a temperature of 800 ° C.
  • the number of turns of the coil 26 of the startup inductor 24 is smaller than that of the coil 16 of the hot water supply inductor 14.
  • a core 22 made of a magnetic cylinder is disposed at a position corresponding to the rise-up inductor 24 in the pump-side duct 1 so that its central axis coincides.
  • the core 22 is housed in a position below the core 2 in the protective tube 3 in which the upper core 2 is housed, so as not to directly contact the molten metal 12 in the pump-side duct 1. It has become.
  • the portion of the protective tube 3 in which the lower core 22 is accommodated is also filled with a filler 8 such as ceramic fiber such as alumina or magnesia or ceramic powder as a cushioning material between the core 22 and the protective tube 3.
  • the lower end of the protective tube 3 is closed.
  • the rising inductor 24 is surrounded by a cylindrical protective case 17 made of heat-resistant ceramic or the like.
  • the upper end opening of the protective case 17 is fixed to the lower end surface of the upper hot water supply inductor 14.
  • the opening at the lower end of the protective case 17 is closely joined to the lower end of the pump-side duct 1, and the inside surrounded by the joint is the introduction of the molten metal 12 at the lower end of the pump-side duct 1. Mouth 18
  • a hot water supply side duct 1 ′ composed of an L-shaped elbow pipe is closely connected to the upper end of the pump side duct 1 via joints 5, 5 ′ such as flange joints.
  • a flange 6 extends around one end portion of the protective tube 3 near the hot water supply side duct 1 ′, and a portion close to the outer periphery of the flange 6 connects the pump side duct 1 and the hot water supply side duct 1 ′. It is sandwiched between the joints 5 and 5 ′. As a result, the cores 2 and 22 in the protective tube 3 are held so as to be positioned at the center of the pump-side duct 1.
  • the flange 6 is provided with a plurality of arc-shaped passage holes 7 serving as passages for the molten metal 12.
  • the hot water supply side duct 1 ′ is elastically pressed against the pump side duct 1 in front by a spring or the like (not shown). In this state, the sealability of the joints 5 and 5 'is ensured by the heat-resistant gasket inserted between the joints 5 and 5'.
  • the pump side duct 1 and the hot water supply side duct 1 ′ are made of a heat-resistant and corrosion-resistant material such as ceramic, and molten metal is formed by heaters 9, 9 ′ made of heat retaining microheaters provided on the outer periphery thereof. Heated to a temperature equal to or higher than the melting point of 12 to prevent the molten metal 12 from solidifying.
  • a sensor 19 such as a liquid level sensor is provided on the base end side of the hot water supply side duct 1 ′ connected to the pump side duct 1, whereby the liquid level in the pump side duct 1 is detected.
  • a sensor 13 such as a liquid level sensor is provided to detect the liquid level in the molten metal tank.
  • a gate valve 27 is provided at the front end side of the hot water supply side duct 1 ′, and a molten metal supply destination 20 such as a mold is disposed at the tip of the gate valve 27.
  • the molten metal supply destination 20 is provided with a sensor 23 that detects that molten metal has been supplied thereto.
  • the gate valve 27 may be opened and closed by moving a simple triangular or inverted trapezoidal lid up and down.
  • the gate valve 27 is attached to prevent oxidation of the liquid level in the hot water supply side duct 1 ′ and the duct 1, but may be omitted. This gate valve 27 is open during hot water supply.
  • a three-phase alternating current is energized in the startup inductor 24 to generate a moving magnetic field in the pump-side duct 1 inside, thereby pumping the molten metal 12 into the pump-side duct 1.
  • the liquid level of the molten metal 12 in the pump side duct 1 is raised to the height of the hot water supply inductor 14, that is, the height at which the thrust can be exerted on the molten metal 1212 by the hot water supply inductor 14.
  • the winding 26 of the startup inductor 24 is made of a heat-resistant sheath cable, it is suitable for supplying a large current. Further, if a three-phase alternating current having a phase opposite to the above is supplied to the startup inductor 24 before operation, the molten metal 12 can be prevented from entering the pump side duct 1 and a large current can be supplied.
  • the sheath of the coil 26 is heated by the principle of self-heating of the conductive wire of the coil 26 and electromagnetic induction heating, and the pump-side duct 1 can be preheated. This preheating is performed prior to the pumping of the molten metal 12. Of course, it is needless to say that the pump-side duct 1 can be preheated also by the heater 9.
  • the sensor 19 detects that the liquid level of the molten metal 12 in the pump-side duct 1 has reached the height of the hot water supply inductor 14 by energizing the startup inductor 24, and the molten metal 12
  • the sensor 23 detects that the molten metal 12 is not supplied to the supply destination 20
  • a three-phase alternating current is energized to the hot water supply inductor 14, and a moving magnetic field is generated in the pump side duct 1.
  • the gate valve 27 is opened. Thereby, the molten metal 12 in the pump side duct 1 is pumped up, and this molten metal is supplied to the supply destination 20 of the molten metal 12 through the supply side duct 1 ′.
  • the output of the riser inductor 24 is lowered so as to maintain the liquid level detected by the sensor 19.
  • the output of the hot water supply inductor 14 is increased, finally the output of the startup inductor 24 is made zero, the liquid level is maintained only by the output of the hot water supply inductor 14, and further, It is also possible to supply the molten metal 12 to the supply destination 20 simply by adjusting the output. Generally, controllability is better when the output is adjusted using only one output adjuster.
  • the gate valve 27 is closed and the supply of the molten metal 12 is stopped.
  • the output of the hot water supply inductor 14 is adjusted and the liquid level is returned to the liquid level detection position of the sensor 19, and the startup inductor 24 is energized with an antiphase three-phase alternating current. By doing so, the molten metal 12 flowing from the pump side duct 1 toward the hot water supply side duct 1 ′ can be braked, and the flow of the molten metal 12 can be stopped instantaneously.
  • the hot water inductor 14 is energized so that the liquid level of the molten metal 12 in the pump-side duct 1 is maintained at the height of the hot water inductor 14. In this state, since the liquid level of the molten metal 12 in the pump-side duct 1 is maintained only by energizing the hot water supply inductor 14, the energization of the start-up inductor 24 becomes unnecessary.
  • Fig. 3 shows a control system for controlling such operation.
  • the controller 11 receives the detection signals from the liquid level sensors 13, 19, 23 and controls the power supply 31, the power supply 32, and the power supply 33 to control the hot water supply inductor 14, the riser inductor 24, the hot water supply induction
  • the child 14 and the gate valve 27 are energized as described above. Thereby, the fixed amount of molten metal 12 is supplied to the supply destination 20 such as a mold that requires the supply of the molten metal 12 each time.
  • FIG. 4 shows an example of the relationship between the control outputs of the hot water supply inductor 14 and the startup inductor 24.
  • the relationship between the control outputs of the hot water supply inductor 14 and the startup inductor 24 shown in FIG. 4 is a simple linear one, but the startup inductor 24 gradually rises like a sine curve. Needless to say, it is not necessary for the hot water supply inductor 14 to be gradually lowered so that there is no fluctuation of the hot water surface.
  • the molten metal 12 in the pump duct 1 is first pumped up to the height of the hot water supply inductor 14 by the output of the startup inductor 24. Thereafter, the output of the hot water supply inductor 14 is gradually increased, and the output of the riser inductor 24 is decreased by that amount, and the liquid level of the molten metal in the pump side duct 1 is maintained while balancing the outputs of both. To maintain. As is clear from the principle of Trichery, if the output of the hot water supply inductor 14 can produce an output equivalent to the atmospheric pressure even if the output of the startup inductor 24 is zero, the specific gravity of the molten aluminum alloy is 2.
  • the molten metal 12 is sent to the hot water supply side duct 1 ′, and the molten metal 12 is supplied from the tip thereof.
  • the output of the riser inductor 24 is set to zero, and only the output of the hot water supply inductor 14 is liquid.
  • the molten metal 12 is supplied to the supply destination 20 simply by maintaining the position and further adjusting the output of the hot water supply inductor 14.
  • the molten metal supply device is used to intermittently supply a fixed amount of molten metal 12 each time to a transport destination such as a die casting device or a gravity casting device.
  • a transport destination such as a die casting device or a gravity casting device.
  • the molten metal 12 is supplied by driving the hot water supply inductor 14, the duct 1 is heated by the heater 9, and the melting point of the molten metal 12 is higher than the melting metal 12 so that the molten metal 12 passing through the duct 1 does not solidify. The temperature is maintained.
  • the drive of the hot water supply inductor 14 and the startup inductor 24 is stopped and the supply of the molten metal 12 is stopped, the heating of the duct 1 by the heater 9 is also stopped.
  • the driving of the electromagnetic pump is stopped, the supply of the molten metal 12 is stopped, the heating of the duct 1 by the heater 9 is stopped for a while, and after a while, the duct 1 is heated again by the heater 9 and the electromagnetic pump
  • an oxide lump of the molten metal 12 may be mixed in the duct 1.
  • This oxide lump of the molten metal 12 hinders the flow of the molten metal 12 in the duct 1 or the oxide lump is conveyed to the intended supply destination, causing problems such as deterioration in casting quality. cause. Therefore, when the supply of the molten metal 12 is started, it is necessary to remove the oxide lump of the molten metal 12.
  • the inventors of the present invention examined the cause of the oxide lump of the molten metal 12 and found that it was in the following phenomenon.
  • a film of the molten metal 12 adheres to the inner surface of the duct 1.
  • the molten metal 12 adhering to the inner surface of the duct is constantly washed by the molten metal 12 passing through the duct 1 and continuously updated in the metallic state.
  • the molten metal 12 Since the molten metal 12 is supplied, it is inevitable that the molten metal 12 adheres to the inner surface of the duct 1 when the duct 1 is heated by the heater 9 and the molten metal 12 is passed through the duct 1. Then, in order to avoid the oxide lump of the molten metal 12 from floating in the molten metal 12, a measure for preventing the molten metal 12 adhering to the inner surface of the duct 1 from being oxidized can be considered.
  • the duct 1 is constantly filled with an inert gas and the molten metal 12 adhering to the inner surface of the duct 1 is prevented from coming into contact with air.
  • an inert gas it is necessary to continuously supply nitrogen gas or argon gas into the duct 1, and an inert gas supply source and a device for recovering it are required. Equipment becomes large.
  • the hot-water supply inductor 14 and the startup inductor 24 are reversely driven while the molten metal 12 in the duct 1 is pumped up. An example of this procedure will be described below.
  • the sensor 19 detects that the liquid level of the molten metal 12 in the pump side duct 1 has reached the height of the hot water supplying inductor 14, and the molten metal
  • the sensor 23 detects that the molten metal 12 is not supplied to the 12 supply destinations 20
  • a three-phase alternating current is applied to the hot water supply inductor 14, and a moving magnetic field is generated in the pump side duct 1.
  • the molten metal 12 in the pump side duct 1 is pumped up, and this molten metal 12 holds the molten metal 12 through the supply side duct 1 ′.
  • the startup inductor 24 and the hot water supply inductor 14 are energized so as to generate a moving magnetic field opposite to that at the time of pumping, and the molten metal 12 is returned to the molten metal tank.
  • the oxide in the pump side duct 1 is backwashed by the molten metal 12 in the duct 1, and the oxide is excluded in the molten metal 12 of the molten metal tank.
  • the startup inductor 24 is energized, the molten metal 12 is pumped up again into the pump-side duct 1, and the sensor 19 detects that the liquid level of the molten metal 12 has reached the height of the hot water supply inductor 14.
  • a three-phase alternating current is energized to the hot water supply inductor 14, and a moving magnetic field enters the pump side duct 1. Is generated. Thereby, the molten metal 12 in the pump side duct 1 is pumped up, and this molten metal 12 holds the molten metal 12 through the supply side duct 1 ′. This is repeated several times, and the peeled oxide is removed into the molten metal 12 in the molten metal tank while forcibly peeling the oxide of the molten metal 12 adhering to the inner periphery of the duct 1.
  • the oxide removed in the molten metal 12 floats on the upper layer of the molten metal 12, and is scraped and discarded.
  • the oxide in the pump-side duct 1 is cleaned prior to the replacement of the molten metal 12 in the molten metal tank, the oxide can be discarded at the same time as the old molten metal 12 is discarded. And it can prevent that an oxide is mixed with the molten metal 12 supplied next.
  • the tip of the protective tube 3 of the core 22 does not protrude from the inlet 18 of the molten metal 12 at the lower end of the pump-side duct 1.
  • the tip of the protective tube 3 of the core 22 is drawn, for example, by ⁇ h from the inlet 18 of the molten metal 12 at the lower end of the pump-side duct 1, it reaches the tip of the protective tube 3 of the core 22 from the inlet 18.
  • the channel cross-sectional area of the portion -h is wider than the portion of the core 22 where the protective tube 3 is present, and the flow rate of the molten metal 12 in that portion is reduced.
  • the tip of the core protective tube 3 has an R shape
  • the reverse injection speed v ′ is maintained to the outside of the pump side duct 1 and the reverse injection effect can be maintained.
  • 1/2 of the inner diameter D of 1 is the limit.
  • the tip of the protective tube 3 of the core 22 has an R shape
  • the tip of the protective tube 3 protrudes from the inlet 18 of the molten metal 12 at the lower end of the pump side duct 1 in the reverse injection speed v ′. Suitable for maintenance. If this protrusion dimension + h is too long, the rise of the oxide due to buoyancy is hindered, so it is preferable to set the protrusion dimension + h to 1/2 or less of the diameter D of the duct 1 from the end of the duct 1.
  • the embodiment shown in FIG. 1 is an example in which the molten metal 12 is supplied to the supply destination 20 of the molten metal 12 with the pump side duct 1 standing substantially vertically and the hot water supply side duct 1 ′ being substantially horizontal.
  • the pump side duct 1 made of a straight pipe and the hot water supply side duct 1 ′ made of an elbow pipe are arranged obliquely about ⁇ 45 °, and the molten metal 12 such as a mold is made of
  • the molten metal 12 is supplied to the supply destination 20 ′.
  • the startup inductor 24 and the hot water supply inductor 14 provided in the pump side duct 1 are also installed at the same angle as the pump side duct 1.
  • the mold that is the supply destination 20 ′ of the molten metal 12 is driven by the mold driving mechanism 21, and assembly and demolding are performed.
  • the configuration of the embodiment shown in FIG. 5 is basically the same as that of the embodiment described above with reference to FIGS. 1 to 4, and the corresponding parts are indicated by the same reference numerals. Detailed description of common corresponding parts is omitted.
  • the embodiment shown in FIG. 6 is basically in common with the molten metal supply apparatus of the embodiment described above with reference to FIG. That is, the pump-side duct 1 and the hot water supply-side duct 1 ′ are disposed obliquely by about ⁇ 45 °, and the molten metal 12 is supplied to the supply destination 20 ′ of the molten metal 12 such as a mold.
  • a gate valve 27 for opening and closing the hot water supply side duct 1 ′ is provided in the hot water supply side duct 1 ′ composed of an elbow pipe, and a liquid for detecting the liquid level of the molten metal 12 in the pump side duct 1 is provided there.
  • a sensor 19 such as a surface sensor is provided.
  • the gate valve 27 is driven to open and close for the fixed supply of the molten metal 12.
  • the other configuration of the embodiment shown in FIG. 6 is basically the same as that of the embodiment described above with reference to FIG. 5, and corresponding portions are denoted by the same reference numerals. Detailed description of common corresponding parts is omitted.
  • the embodiment shown in FIG. 7 is an example in which the molten metal 12 supply device is applied to a low-pressure casting device.
  • the pump side duct 1 and the hot water supply side duct 1 ′ are provided substantially vertically, and the supply destination 20 ′′ of the molten metal 12 as a mold is connected to the upper end of the hot water supply side duct 1 ′.
  • a certain mold is driven and operated by a mold driving mechanism 21 ', and its assembly and demolding are performed.
  • the molten metal 12 is supplied from the lower hot water supply port through the hot water supply side duct 1 ′ to the casting mold 20 ′′ to which the molten metal 12 is supplied.
  • the configuration of the embodiment shown in FIG. 1 to 4 are the same as those in the above-described embodiment, and corresponding portions are denoted by the same reference numerals, and detailed description of common corresponding portions is omitted.
  • the molten metal supply apparatus can supply the molten metal 12 repeatedly only by energization control of the inductors 14 and 24 without using vacuum suction or an immersion body. It can be used in fields that require the supply of molten metal 12.

Abstract

The disclosed molten metal supply device supplies a set amount of molten metal (12) each repetition of a short cycle through a simple operation, and enables the detachment of the oxide of the molten metal (12) adhered to the inner surface of a duct. The molten metal supply device, wherein the duct (1) is provided with an inductor (14), applies thrust to the molten metal (12) within the duct (1) by means of said inductor (14), thus supplying said molten metal (12), and is provided with: a hot-liquid supply inductor (14) for supplying by applying thrust to the molten metal (12) within the duct (1); and a startup inductor (24) that has the heat resistance needed to pump the molten metal (12) within the duct (1) to the height of the hot-liquid supply inductor. The startup inductor (24) is disposed at a lower position than the liquid level of the molten metal (12). Furthermore, the oxide of the molten metal (12) adhered to the inner surface of the duct (1) is forcibly detached by means of the hot-liquid supply inductor (14) and the startup inductor (24) supplying the molten metal (12) to the transportation destination and being able to drive the molten metal (12) in the opposite direction.

Description

溶融金属供給装置とそのダクト洗浄方法Molten metal supply apparatus and duct cleaning method thereof
 本発明は、溶融アルミニウムや溶融亜鉛等の溶融金属を搬送するために使用される溶融金属用誘導電磁ポンプを使用した溶融金属供給装置に関し、特に誘導子を2段に設け、下段の立上用誘導子で上段の給湯用誘導子の推力が作用する高さまで溶融金属のレベルを汲み上げ、その後給湯用誘導子への通電制御で溶融金属を随時供給出来るようにした溶融金属供給装置とそれを使用して溶融金属を供給するダクトを洗浄する方法に関する。 The present invention relates to a molten metal supply apparatus using an induction electromagnetic pump for molten metal used for conveying molten metal such as molten aluminum and molten zinc, and in particular, provided with two stages of inductors, Molten metal supply device that uses the inductor to pump up the molten metal level to the height at which the thrust of the upper hot water inductor acts, and then to supply the molten metal as needed by controlling the energization of the hot water inductor. And a method for cleaning a duct for supplying molten metal.
 例えば鋳造等の分野では溶融アルミニウムなどを搬送するために、電磁誘導作用により溶融金属に推力を与えて搬送する溶融金属用電磁ポンプが利用されている。このような溶融金属用電磁ポンプは、磁性体製のヨークにコイルを巻いた誘導子により筒状のダクト内部に移動磁界を発生させて溶融金属に推力を与え、供給する形式の誘導形電磁ポンプが主流である。 For example, in the field of casting or the like, an electromagnetic pump for molten metal is used to convey molten aluminum or the like by applying a thrust to the molten metal by electromagnetic induction. Such an electromagnetic pump for molten metal is an induction type electromagnetic pump of a type in which a moving magnetic field is generated inside a cylindrical duct by an inductor in which a coil is wound around a magnetic yoke, and thrust is applied to the molten metal to supply it. Is the mainstream.
 このような誘導形電磁ポンプは、例えば特開2006-341281号公報に記載されている。溶融金属が流れる管状のダクトをヨークにコイルを巻いた誘導子で囲み、管状のダクトの内部に誘導子により発生した磁界の磁路となる磁性体のコアを配置している。コアは耐熱性及び耐蝕性を有する筒状の保護管により覆われている。溶融金属の流路は管状のダクトとその中の保護管との間に形成される断面環状部分となり、この部分に移動磁界を発生し、溶融金属に推力を与える構造である。その流路形状からこの種の電磁ポンプは環状流路形電磁ポンプとも呼ばれている。 Such an induction type electromagnetic pump is described in, for example, Japanese Patent Application Laid-Open No. 2006-341281. A tubular duct through which molten metal flows is surrounded by an inductor having a coil wound around a yoke, and a magnetic core serving as a magnetic path of a magnetic field generated by the inductor is disposed inside the tubular duct. The core is covered with a cylindrical protective tube having heat resistance and corrosion resistance. The flow path of the molten metal is a cross-sectional annular portion formed between the tubular duct and the protective tube therein, and has a structure that generates a moving magnetic field in this portion and gives thrust to the molten metal. Due to its flow path shape, this type of electromagnetic pump is also called an annular flow path type electromagnetic pump.
 図8は、前述した溶融金属用電磁ポンプを使用した溶融金属供給装置の従来例を示しており、溶融アルミニウムや溶融亜鉛を搬送する一般的なものである。
 溶融金属12の液面にポンプ側ダクト1の下端が差し込まれている。このポンプ側ダクト1には、給湯側ダクト1’がフランジ継手等の継手5、5’を介して接続されている。この先の給湯側ダクト1’は、図示してないバネ等により手前のポンプ側ダクト1に押しつけられ、継手5、5’の間に挿入された耐熱性のガスケットにより継手5、5’の部分のシール性が確保されている。これらのダクト1、1’は、セラミック等の耐熱性、耐蝕性のある材料で作られており、保温のため外側にヒータ9が巻かれ、溶融金属12の融点以上の温度に加熱されるようになっている。
FIG. 8 shows a conventional example of a molten metal supply apparatus using the above-described electromagnetic pump for molten metal, and is a general one for conveying molten aluminum or molten zinc.
The lower end of the pump side duct 1 is inserted into the liquid surface of the molten metal 12. A hot water supply side duct 1 ′ is connected to the pump side duct 1 via joints 5 and 5 ′ such as flange joints. The hot water supply side duct 1 'is pressed against the pump side duct 1 by a spring or the like (not shown), and the joints 5, 5' are inserted by heat resistant gaskets inserted between the joints 5, 5 '. Sealability is ensured. These ducts 1, 1 ′ are made of a heat-resistant and corrosion-resistant material such as ceramic, and a heater 9 is wound on the outside for heat insulation so that the temperature is higher than the melting point of the molten metal 12. It has become.
 手前のポンプ側ダクト1の周囲には、磁性体製のヨーク15にコイル16を巻回した誘導子14が配置されている。また、このポンプ側ダクト1の中には、その中心軸が一致するように磁性体製の円柱体からなるコア2が配置されている。このコア2は、両端が閉じられた円筒形の保護管3の中に収納されており、ポンプ側ダクト1の中の溶融金属12と直接接触しないようになっている。保護管3は、セラミック等の耐熱性、耐蝕性のある材料で作られており、その中のコア2の周囲にクッション材としてアルミナ、マグネシア等のセラミック繊維或いはセラミック粉末等の充填材8が充填されている。 Around the pump side duct 1 on the front side, an inductor 14 in which a coil 16 is wound around a magnetic yoke 15 is disposed. In the pump side duct 1, a core 2 made of a cylindrical body made of a magnetic material is disposed so that the central axes thereof coincide with each other. The core 2 is accommodated in a cylindrical protective tube 3 whose both ends are closed, and is not in direct contact with the molten metal 12 in the pump-side duct 1. The protective tube 3 is made of a heat-resistant and corrosion-resistant material such as ceramic, and a ceramic fiber such as alumina or magnesia or a filler 8 such as ceramic powder is filled around the core 2 therein as a cushioning material. Has been.
 保護管3の給湯側ダクト1’に近い一端部の周囲にフランジ6が延設され、このフランジ6の外周に近い部分が前記ポンプ側ダクト1と給湯側ダクト1’とを接続する継手5、5’の間に挟持されている。これにより、コア2がポンプ側ダクト1の中心に位置するよう保持されている。ポンプ側ダクト1と給湯側ダクト1’は、その外周に設けた保温用のマイクロヒータ等からなるヒータ9、9’により加熱され、溶融金属12の凝固を防ぐ。フランジ6には、溶融金属12の通路となる複数の円弧状の通過孔7が設けられている。 A flange 6 extends around one end of the protective tube 3 near the hot water supply side duct 1 ', and a portion near the outer periphery of the flange 6 connects the pump side duct 1 and the hot water supply side duct 1'; Sandwiched between 5 '. Thereby, the core 2 is held so as to be positioned at the center of the pump-side duct 1. The pump side duct 1 and the hot water supply side duct 1 ′ are heated by heaters 9, 9 ′ made of a heat retaining microheater and the like provided on the outer periphery thereof to prevent the molten metal 12 from solidifying. The flange 6 is provided with a plurality of arc-shaped passage holes 7 serving as passages for the molten metal 12.
 このような形式の溶融金属供給装置において、誘導子14の運転を開始する前は、溶融金属12の液面が誘導子14の中には達していない。そのため、溶融金属12の供給時にダクト1内の溶融金属12の液面が誘導子14に達し、同誘導子14によりダクト1内の溶融金属12に推力が付与出来るようにダクト1内の溶融金属12のレベルを保持する補助的な手段が必要である。 In such a type of molten metal supply device, the liquid level of the molten metal 12 does not reach the inductor 14 before the operation of the inductor 14 is started. Therefore, when the molten metal 12 is supplied, the liquid level of the molten metal 12 in the duct 1 reaches the inductor 14, and the molten metal in the duct 1 can be given thrust to the molten metal 12 in the duct 1 by the inductor 14. An auxiliary means of holding 12 levels is required.
 このような補助的な手段を備えた溶融金属供給装置の例として、下記特許文献4として挙げた特開平11-10302号公報に記載されたように、溶融金属槽に浸漬体を浸漬する方式の溶融金属供給装置がある。すなわち、溶融金属を収納した溶融金属槽に浸漬体を浸漬し、その容積で溶融金属槽内の溶融金属を押し上げ、溶融金属槽に通じるダクトの溶融金属の液位を誘導子の高さまで高める。 As an example of the molten metal supply device provided with such auxiliary means, as described in Japanese Patent Application Laid-Open No. 11-10302 cited as Patent Document 4 below, a method of immersing an immersion body in a molten metal tank is used. There is a molten metal feeder. That is, the immersion body is immersed in a molten metal tank containing molten metal, the molten metal in the molten metal tank is pushed up by the volume, and the liquid level of the molten metal in the duct leading to the molten metal tank is increased to the height of the inductor.
 また他の例として、下記特許文献3として挙げた特開2007-69255号と下記特許文献5として挙げた実開平1-68156号公報に記載されたように、真空吸引ポンプでダクトを減圧する方式の溶融金属供給装置もある。すなわち、真空吸引ポンプでダクト内を減圧し、大気圧によってダクト内の溶融金属を誘導子の高さまで引き上げ、その後、誘導子への通電制御により溶融金属の供給を行う。 As another example, as described in Japanese Patent Application Laid-Open No. 2007-69255 cited as Patent Document 3 below and Japanese Utility Model Laid-Open No. 1-68156 cited as Patent Document 5 below, a method of reducing the pressure of a duct with a vacuum suction pump is used. There is also a molten metal supply apparatus. That is, the inside of the duct is depressurized by a vacuum suction pump, the molten metal in the duct is pulled up to the height of the inductor by atmospheric pressure, and then the molten metal is supplied by controlling energization to the inductor.
 しかしながら、前者の溶融金属槽に浸漬体を浸漬する方式の溶融金属供給装置では、重量のある浸漬体を取り扱うため、クレーン等のリフト装置を装備しなければならず、設備が大形となる。また、ダクト内の溶融金属の液位を微妙に調整することが難しく、定量の溶融金属を繰り返し正確に供給する要求には応じにくい。 However, in the former molten metal supply apparatus in which the immersion body is immersed in the molten metal tank, since a heavy immersion body is handled, a lifting device such as a crane must be equipped, and the equipment becomes large. Further, it is difficult to finely adjust the liquid level of the molten metal in the duct, and it is difficult to meet the demand for supplying a fixed amount of molten metal repeatedly and accurately.
 後者の真空吸引ポンプでダクトを減圧する方式の溶融金属供給装置では、ダクト内を減圧するための真空吸引ポンプを装備する必要があり、またダクトの気密性も確保しなければならず、装置が複雑となる。また、真空ポンプをダクトに接続するのに手数もかかる。しかも、運転前に溶融金属の供給を行う度にダクトの排出口を開いてダクト内を真空から大気圧に戻すため、溶融金属を供給する度にダクト内の減圧を行う必要がある。そのため、繰り返し速やかに溶融金属の供給を繰り返すことは出来ず、溶融金属の供給のサイクル時間が長くなる。 In the latter case, it is necessary to provide a vacuum suction pump for decompressing the inside of the duct, and also to ensure the airtightness of the duct. It becomes complicated. Also, it takes time to connect the vacuum pump to the duct. In addition, every time the molten metal is supplied before the operation, the duct outlet is opened to return the inside of the duct from the vacuum to the atmospheric pressure. Therefore, it is necessary to depressurize the duct every time the molten metal is supplied. Therefore, the supply of molten metal cannot be repeated quickly and repeatedly, and the cycle time of supplying the molten metal becomes long.
 また、溶融金属用電磁ポンプを使用した溶融金属供給装置において、溶融金属の供給の停止やそれに伴うダクトの加熱の停止等を行うと、ダクト内に溶融金属の酸化物が発生し付着する。この溶融金属の酸化物は、塊片となってダクト内の溶融金属の流通の妨げとなったり、或いは酸化物の塊片が目的の供給先に搬送され、鋳物の品質低下等の問題を引き起こす。このため、溶融金属の供給開始時には、この溶融金属の酸化物の塊片除去作業が必要となるが、その作業は煩雑且つ面倒である。 Also, in the molten metal supply device using the molten metal electromagnetic pump, when the supply of the molten metal is stopped or the heating of the duct is stopped accordingly, the oxide of the molten metal is generated and adhered in the duct. This molten metal oxide becomes a lump and hinders the flow of the molten metal in the duct, or the oxide lump is conveyed to the intended supply destination, causing problems such as deterioration in casting quality. . For this reason, at the start of the supply of the molten metal, an oxide lump removal operation of this molten metal is required, but this operation is complicated and troublesome.
特開2009-12024号公報JP 2009-12024 A 特開2009-6343号公報JP 2009-6343 A 特開2007-69255号公報JP 2007-69255 A 特開平11-10302号公報Japanese Patent Laid-Open No. 11-10302 実開平1-68156号広報Public Opening Hei 1-68156 特開昭62-142066号公報JP-A-62-142066
 本発明は、前述した従来の溶融金属用電磁ポンプにおける課題に鑑み、溶融金属槽における溶融金属の液面の上に配置した誘導子により溶融金属を供給するに当たり、簡単な操作で誘導子の高さまでダクト内の溶融金属の液位を上昇させ、且つその液位を溶融金属用電磁ポンプの電磁力の有無に関わらず維持することが出来、これにより、運転開始並びに毎回定量の溶融金属を短いサイクルで供給することが出来る溶融金属供給装置を提供することを目的とする。併せて、その溶融金属供給装置の構造を利用し、ダクト内の酸化物を容易に除去することを目的とする。 In view of the problems in the conventional electromagnetic pump for molten metal described above, the present invention provides a simple operation to increase the height of an inductor when supplying molten metal with an inductor disposed on the liquid surface of the molten metal in a molten metal tank. It is possible to raise the liquid level of the molten metal in the duct and maintain the liquid level regardless of the presence or absence of electromagnetic force of the molten metal electromagnetic pump. It aims at providing the molten metal supply apparatus which can be supplied by a cycle. In addition, an object of the present invention is to easily remove the oxide in the duct by utilizing the structure of the molten metal supply device.
 本発明では、前記の目的を達成するため、ダクト1内の溶融金属12に推力を与えて供給するための給湯用誘導子14と、この給湯用誘導子14の高さまでダクト1内の溶融金属12を汲み上げて、当該高さを維持するための耐熱性を有する立上用誘導子24とを用いた。これにより、それら誘導子14、24への通電制御のみで溶融金属12をダクト1、1’を通して目的の個所へ随時供給出来るようにした。 In the present invention, in order to achieve the above-described object, a hot water supply inductor 14 for supplying a molten metal 12 in the duct 1 with thrust, and a molten metal in the duct 1 up to the height of the hot water supply inductor 14 are provided. 12 was used, and a riser inductor 24 having heat resistance for maintaining the height was used. As a result, the molten metal 12 can be supplied to the target location through the ducts 1, 1 ′ at any time only by controlling the energization of the inductors 14, 24.
 すなわち、本発明による溶融金属供給装置は、ダクト1に誘導子14を設け、同誘導子14によりダクト1内の溶融金属12に推力を与えて同溶融金属12を供給する溶融金属供給装置において、ダクト1内の溶融金属12に推力を与えて供給するための給湯用誘導子14と、この給湯用誘導子14の高さまでダクト1内の溶融金属を汲み上げるための耐熱性を有する立上用誘導子24とを備え、立上用誘導子24を溶融金属槽内に収納した溶融金属12の液位より低い位置に配置したものである。 That is, in the molten metal supply apparatus according to the present invention, an inductor 14 is provided in the duct 1, and the molten metal 12 is supplied by supplying thrust to the molten metal 12 in the duct 1 by the inductor 14. A hot water supply inductor 14 for supplying a thrust to the molten metal 12 in the duct 1 and supplying the molten metal 12 in the duct 1 to the height of the hot water supply inductor 14 and having a heat resistance for pumping up the molten metal in the duct 1 The riser inductor 24 is disposed at a position lower than the liquid level of the molten metal 12 housed in the molten metal tank.
 耐熱性を有する立上用誘導子24としては、耐熱性の高い無機絶縁ケーブルを巻線として使用したものを挙げることが出来る。この無機絶縁ケーブルは、ステンレスチューブ等の金属シースの中に導電線を収納し、この導電線とシースとの間にマグネシア粉末等の無機絶縁粉末を充填してなる、いわゆるシースケーブルである。この無機絶縁ケーブルにより巻線を構成してコイル26とし、その外側にヨーク25を取り付けて、立上用誘導子24を構成する。無機絶縁ケーブルにより構成した立上用誘導子24は、耐熱性が高く、高温での使用が可能である。例えば金属がアルミニウムの場合、その融点より高い800℃前後での使用が可能である。このため立上用誘導子24は、冷却手段を有しない無冷却としながら、溶融金属槽内に収納した溶融金属12の液位より低い位置に配置して使用することが出来る。 As the riser inductor 24 having heat resistance, one using an inorganic insulating cable having high heat resistance as a winding can be cited. This inorganic insulated cable is a so-called sheathed cable in which a conductive wire is housed in a metal sheath such as a stainless tube, and an inorganic insulating powder such as magnesia powder is filled between the conductive wire and the sheath. A winding is constituted by this inorganic insulated cable to form a coil 26, and a yoke 25 is attached to the outside thereof to constitute a rising inductor 24. The rising inductor 24 made of an inorganic insulated cable has high heat resistance and can be used at high temperatures. For example, when the metal is aluminum, it can be used at around 800 ° C., which is higher than its melting point. For this reason, the riser inductor 24 can be used by being disposed at a position lower than the liquid level of the molten metal 12 stored in the molten metal tank, without cooling without the cooling means.
 無機絶縁ケーブルは、全体として通常のケーブルより太径であるため、これにより巻回される立上用誘導子24のコイル26の巻数は、給湯用誘導子14のコイル16の巻数より少なくする。しかしその分だけ立上用誘導子24のコイル26に通電する電流を給湯用誘導子14のコイル16に通電する電流より大きくする。これにより、ダクト1内に溶融金属12を汲み上げるのに十分な磁束密度を確保する。 Since the inorganic insulated cable has a larger diameter than that of a normal cable as a whole, the number of turns of the coil 26 of the riser inductor 24 wound thereby is set to be smaller than the number of turns of the coil 16 of the hot water supply inductor 14. However, the current supplied to the coil 26 of the startup inductor 24 is made larger than that to the current supplied to the coil 16 of the hot water supply inductor 14. This ensures a sufficient magnetic flux density to pump the molten metal 12 into the duct 1.
 この立上用誘導子24へは、ダクト1内の溶融金属12の液位を検知するセンサー19、あるいはセンサー13、23、23’と連動して通電制御することにより、ダクト1内の溶融金属12のレベルを常に給湯用誘導子14の高さまで維持するよう制御することが出来る。さらに液位を検知するセンサー19の位置に維持するように、立上用誘導子24の電磁力を弱めながら給湯用誘導子14の電磁力を増して行けば、立上用誘導子24の電磁力が零でも給湯用誘導子14の電磁力だけで液位を保持することができる。勿論、立上用誘導子24の電磁力を零にしないで、液位を保持できる事は言うまでもない。また、溶融金属12の供給が停止するとき、立上用誘導子24に逆位相の三相交流を通電することにより、ポンプ側ダクト1から給湯側ダクト1’に向けて流動する溶融金属12を制動し、溶融金属12の流れを停止することも出来る。 The riser inductor 24 is subjected to energization control in conjunction with the sensor 19 for detecting the liquid level of the molten metal 12 in the duct 1 or the sensors 13, 23, 23 ', so that the molten metal in the duct 1 is controlled. It can be controlled so that the level of 12 is always maintained up to the height of the inductor 14 for hot water supply. Further, if the electromagnetic force of the hot water supply inductor 14 is increased while weakening the electromagnetic force of the riser inductor 24 so as to maintain the position of the sensor 19 that detects the liquid level, the electromagnetic force of the riser inductor 24 is increased. Even when the force is zero, the liquid level can be maintained only by the electromagnetic force of the hot water supply inductor 14. Of course, it goes without saying that the liquid level can be maintained without making the electromagnetic force of the rising inductor 24 zero. Further, when the supply of the molten metal 12 is stopped, the molten metal 12 flowing from the pump side duct 1 toward the hot water supply side duct 1 ′ is supplied by energizing the rising-up inductor 24 with a three-phase alternating current in reverse phase. It is also possible to stop the flow of the molten metal 12 by braking.
 さらに本発明では、前述の溶融金属供給装置において、給湯用誘導子14と立上用誘導子24との2段の誘導子を有する構造を利用し、それら誘導子14、24を溶融金属の供給方向と逆方向に駆動し、ダクト1内を洗浄できるようにした。前述の溶融金属供給装置においては、立上用誘導子24を有するため、この立上用誘導子24で溶融金属槽からダクト1内の溶融金属12を汲み上げておくことが出来る。この状態で給湯用誘導子14と立上用誘導子24とを溶融金属12を搬送先に供給するのと逆方向に駆動することにより、ダクト1の内周に付着した溶融金属12の酸化物を強制的に剥離する。さらにダクト1の内の溶融金属12を溶融金属槽に吐き出すことで、ダクト1の内周に付着した溶融金属12の酸化物を溶融金属12と共に溶融金属槽に吐き出すことが出来る。 Furthermore, in the present invention, in the above-described molten metal supply apparatus, a structure having two-stage inductors of a hot water supply inductor 14 and a rising inductor 24 is used, and the inductors 14 and 24 are supplied with molten metal. Driven in the opposite direction, the inside of the duct 1 can be cleaned. Since the above-described molten metal supply apparatus has the riser inductor 24, the riser inductor 24 can pump up the molten metal 12 in the duct 1 from the molten metal tank. In this state, the hot metal inductor 14 and the riser inductor 24 are driven in a direction opposite to the direction in which the molten metal 12 is supplied to the conveyance destination, whereby the oxide of the molten metal 12 adhered to the inner periphery of the duct 1. Forcibly peel off. Further, by discharging the molten metal 12 in the duct 1 to the molten metal tank, the oxide of the molten metal 12 adhering to the inner periphery of the duct 1 can be discharged together with the molten metal 12 to the molten metal tank.
 この場合、コア保護管3の長さとダクト1の長さが同等または、コア保護管3がダクト1より長いことが好ましい。そうしないと、ダクト1とコア保護管3でできる還状流路で発生する逆向きの流速がダクト1内で遅くなってしまうからである。そうすることにより、より効率的に溶融金属12の酸化物を吐き出すことが出来る。また、コア保護管3の先端がR形状の場合、コア保護管3の先端は、保護ケースにより、最大、ダクト1径Dの1/2以下とすることが好ましい。 In this case, it is preferable that the length of the core protective tube 3 is equal to the length of the duct 1 or the core protective tube 3 is longer than the duct 1. Otherwise, the reverse flow velocity generated in the return channel formed by the duct 1 and the core protective tube 3 will be slow in the duct 1. By doing so, the oxide of the molten metal 12 can be discharged more efficiently. Moreover, when the front-end | tip of the core protection tube 3 is R shape, it is preferable that the front-end | tip of the core protection tube 3 is made into 1/2 or less of the duct 1 diameter D with a protective case.
 以上説明した通り、本発明による溶融金属供給装置では、溶融金属12に浸漬された立上用誘導子24で溶融金属12をダクト1内に汲み上げ、ダクト1内の溶融金属のレベルを給湯用誘導子14の高さまで高めることにより、給湯用誘導子14への電力制御により溶融金属12の供給が可能となる。立上用誘導子24により、ダクト1内の溶融金属12のレベルを給湯用誘導子14の高さまで立ち上げることが出来るので、給湯用誘導子14による溶融金属12の供給を短いサイクルで繰り返し行うことが可能となる。 As described above, in the molten metal supply apparatus according to the present invention, the molten metal 12 is pumped into the duct 1 by the rising inductor 24 immersed in the molten metal 12, and the level of the molten metal in the duct 1 is induced for hot water supply. By increasing the height to the height of the child 14, the molten metal 12 can be supplied by controlling the electric power to the hot water supply inductor 14. Since the level of the molten metal 12 in the duct 1 can be raised to the height of the hot water supply inductor 14 by the riser inductor 24, the supply of the molten metal 12 by the hot water supply inductor 14 is repeatedly performed in a short cycle. It becomes possible.
 さらに、ダクト1の内面から溶融金属12の酸化物を容易に剥離して除去出来るので、ダクト1内の流路が酸化物で狭くなったり、詰まったりしない。また、溶融金属12の酸化物が塊片として混じらない溶融金属12を搬送先に供給することが出来るようになり、溶融金属12の供給先で、例えば鋳物の中に溶融金属12の酸化物が混入しない等、製品の品質の向上を図ることが出来る。 Furthermore, since the oxide of the molten metal 12 can be easily peeled off from the inner surface of the duct 1, the flow path in the duct 1 is not narrowed or clogged with oxide. Moreover, it becomes possible to supply the molten metal 12 in which the oxide of the molten metal 12 is not mixed as a lump to the conveyance destination, and for example, the oxide of the molten metal 12 is present in the casting at the supply destination of the molten metal 12. It is possible to improve the quality of the product, such as not mixing.
溶融金属供給装置の一実施例を示す断面図である。It is sectional drawing which shows one Example of a molten metal supply apparatus. 溶融金属供給装置の一実施例を示す図1の部分拡大図である。It is the elements on larger scale of FIG. 1 which shows one Example of a molten metal supply apparatus. 溶融金属供給装置の一実施例を示す制御系統図である。It is a control system figure which shows one Example of a molten metal supply apparatus. 本発明による溶融金属供給装置の一実施例を示す立上用誘導子と給湯用誘導子の制御出力の例を示すグラフである。It is a graph which shows the example of the control output of the inductor for start-up which shows one Example of the molten metal supply apparatus by this invention, and the inductor for hot water supply. 溶融金属供給装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of a molten metal supply apparatus. 溶融金属供給装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of a molten metal supply apparatus. 溶融金属供給装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of a molten metal supply apparatus. 溶融金属供給装置の従来例を示す断面図である。It is sectional drawing which shows the prior art example of a molten metal supply apparatus.
 本発明では、溶融金属12を随時供給するための給湯用誘導子14と、この給湯用誘導子14の高さまでダクト1内の溶融金属12を汲み上げるための立上用誘導子24との2段の誘導子を設けることでその目的を達成する。また、この2段の誘導子という構造を利用し、ダクト1内の溶融金属12を汲み上げた状態で給湯用誘導子14と立上用誘導子24とを逆駆動することを可能とし、その目的を達成する。
 以下、本発明を実施するための最良の形態について、実施例をあげて詳細に説明する。
In the present invention, there are two stages of a hot water supply inductor 14 for supplying the molten metal 12 as needed and a rising inductor 24 for pumping the molten metal 12 in the duct 1 to the height of the hot water supply inductor 14. The purpose is achieved by providing an inductor. Further, by utilizing the structure of this two-stage inductor, it is possible to reversely drive the hot water supply inductor 14 and the startup inductor 24 while the molten metal 12 in the duct 1 is pumped up. To achieve.
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.
 図1は、本発明による溶融金属供給装置の一実施例である。この溶融金属供給装置は、上側の給湯用誘導子14と、下側の立上用誘導子24との2段の誘導子を有する。このうち、上側の給湯用誘導子14を配置した部分の構成は基本的に図8により前述した従来の電磁ポンプと同じであり、同じ部分は同じ符号を付してある。 FIG. 1 shows an embodiment of a molten metal supply apparatus according to the present invention. This molten metal supply apparatus has two stages of inductors, an upper hot water supply inductor 14 and a lower riser inductor 24. Among these, the configuration of the portion where the upper hot water supply inductor 14 is arranged is basically the same as that of the conventional electromagnetic pump described above with reference to FIG. 8, and the same portions are denoted by the same reference numerals.
 図示してない溶融金属槽に収納された溶融金属12の液面にポンプ側ダクト1の下端が差し込まれている。ポンプ側ダクト1の溶融金属12の液面より上にある部分の周囲には、磁性体製のヨーク15にコイル16を巻回した給湯用誘導子14が配置されている。ヨーク15は、ポンプ側ダクト1の溶融金属12の液面より上にある部分を囲むようにその外周側に嵌め込まれており、このヨーク15に三相コイルを構成するコイル16が巻回されている。 The lower end of the pump side duct 1 is inserted into the liquid level of the molten metal 12 stored in a molten metal tank (not shown). Around the portion above the liquid level of the molten metal 12 of the pump-side duct 1 is disposed a hot water supply inductor 14 in which a coil 16 is wound around a magnetic yoke 15. The yoke 15 is fitted on the outer peripheral side so as to surround a portion of the pump side duct 1 that is above the liquid level of the molten metal 12, and a coil 16 constituting a three-phase coil is wound around the yoke 15. Yes.
 前記ポンプ側ダクト1の中の給湯用誘導子14と対応する位置には、その中心軸が一致するように磁性体製の円柱体からなるコア2が配置されている。コア2は、両端が閉じられた円筒形の保護管3の中に収納されており、ポンプ側ダクト1の中の通路を通る溶融金属12と直接接触しないようになっている。ポンプ側ダクト1と保護管3との間は間隙となっており、この部分が溶融金属12の通路となる。保護管3は、セラミック等の耐熱性、耐蝕性のある材料で作られており、その中のコア2と保護管3との間にクッション材としてアルミナ、マグネシア等のセラミック繊維或いはセラミック粉末等の充填材8が充填されている。 The core 2 made of a magnetic cylinder is disposed at a position corresponding to the hot water supply inductor 14 in the pump side duct 1 so that the central axis thereof coincides. The core 2 is accommodated in a cylindrical protective tube 3 whose both ends are closed, and is not in direct contact with the molten metal 12 passing through the passage in the pump-side duct 1. A gap is formed between the pump-side duct 1 and the protective tube 3, and this portion becomes a passage for the molten metal 12. The protective tube 3 is made of a heat-resistant and corrosion-resistant material such as ceramic, and a ceramic fiber such as alumina or magnesia or ceramic powder is used as a cushioning material between the core 2 and the protective tube 3 therein. Filler 8 is filled.
 さらに前記ポンプ側ダクト1の誘導子14より下側の部分の周囲に立上用誘導子24が配置されている。図2にも示すように、この立上用誘導子24は、前記の給湯用誘導子14と同様に、前記ポンプ側ダクト1の誘導子14より下側の部分の外周に嵌め込まれた磁性体製のヨーク25にコイル26を巻回したものである。この立上用誘導子24のコイル26は耐熱性を有する無機絶縁ケーブルにより巻回されている。無機絶縁ケーブルは、ステンレスチューブ等からなるシースの中に導電線を収納し、この導電線とシースとをその間に充填したマグネシア粉末等の無機絶縁粉末で絶縁した構造を有する。いわゆるシースケーブルと呼ばれる。このような無機絶縁ケーブルは、耐熱性が高く、800℃の温度にも耐えることが出来る。但し、給湯用誘導子14のコイル16に比べて立上用誘導子24のコイル26の巻数は少ない。 Furthermore, a rising inductor 24 is disposed around a portion below the inductor 14 of the pump side duct 1. As shown in FIG. 2, similarly to the hot water supply inductor 14, the rising inductor 24 is a magnetic body fitted on the outer periphery of a portion below the inductor 14 of the pump side duct 1. A coil 26 is wound around a yoke 25 made of metal. The coil 26 of the rising inductor 24 is wound around a heat-resistant inorganic insulating cable. The inorganic insulated cable has a structure in which a conductive wire is housed in a sheath made of a stainless steel tube or the like, and the conductive wire and the sheath are insulated by an inorganic insulating powder such as magnesia powder filled therebetween. It is called a so-called sheath cable. Such an inorganic insulated cable has high heat resistance and can withstand a temperature of 800 ° C. However, the number of turns of the coil 26 of the startup inductor 24 is smaller than that of the coil 16 of the hot water supply inductor 14.
 ポンプ側ダクト1の中の前記立上用誘導子24と対応する位置には、その中心軸が一致するように磁性体製の円柱体からなるコア22が配置されている。このコア22は、前記上側のコア2が収納された保護管3の中の同コア2より下側の位置に収納されており、ポンプ側ダクト1の中の溶融金属12と直接接触しないようになっている。もちろんこの下側のコア22が収納された保護管3の部分にも、同コア22と保護管3との間にクッション材としてアルミナ、マグネシア等のセラミック繊維或いはセラミック粉末等の充填材8が充填されている。保護管3の下端は閉じている。なお、上側のコア2と下側のコア22を連続する一体のコアとして構成してもよい。 A core 22 made of a magnetic cylinder is disposed at a position corresponding to the rise-up inductor 24 in the pump-side duct 1 so that its central axis coincides. The core 22 is housed in a position below the core 2 in the protective tube 3 in which the upper core 2 is housed, so as not to directly contact the molten metal 12 in the pump-side duct 1. It has become. Of course, the portion of the protective tube 3 in which the lower core 22 is accommodated is also filled with a filler 8 such as ceramic fiber such as alumina or magnesia or ceramic powder as a cushioning material between the core 22 and the protective tube 3. Has been. The lower end of the protective tube 3 is closed. In addition, you may comprise the upper core 2 and the lower core 22 as a continuous integral core.
 この立上用誘導子24は耐熱性を有するセラミック等からなる筒状の保護ケース17で囲まれている。この保護ケース17の上端開口部は、上側の給湯用誘導子14の下端面に固定されている。また、この保護ケース17の下端の開口部は、前記ポンプ側ダクト1の下端と密に接合されており、この接合部に囲まれた内側は、ポンプ側ダクト1の下端の溶融金属12の導入口18となっている。 The rising inductor 24 is surrounded by a cylindrical protective case 17 made of heat-resistant ceramic or the like. The upper end opening of the protective case 17 is fixed to the lower end surface of the upper hot water supply inductor 14. The opening at the lower end of the protective case 17 is closely joined to the lower end of the pump-side duct 1, and the inside surrounded by the joint is the introduction of the molten metal 12 at the lower end of the pump-side duct 1. Mouth 18
 前記ポンプ側ダクト1の上端には、L字形のエルボ管からなる給湯側ダクト1’がフランジ継手等の継手5、5’を介して密に接続されている。前記保護管3の給湯側ダクト1’に近い一端部の周囲にフランジ6が延設され、このフランジ6の外周に近い部分が前記ポンプ側ダクト1と給湯側ダクト1’とを接続する前記の継手5、5’の間に挟持されている。これにより、保護管3の中のコア2、22がポンプ側ダクト1の中心に位置するよう保持されている。フランジ6には、溶融金属12の通路となる複数の円弧状の通過孔7が設けられている。給湯側ダクト1’は、図示してないバネ等により手前のポンプ側ダクト1に弾力的に押しつけられている。この状態で継手5、5’の間に挿入された耐熱性のガスケットにより継手5、5’の部分のシール性が確保されている。 A hot water supply side duct 1 ′ composed of an L-shaped elbow pipe is closely connected to the upper end of the pump side duct 1 via joints 5, 5 ′ such as flange joints. A flange 6 extends around one end portion of the protective tube 3 near the hot water supply side duct 1 ′, and a portion close to the outer periphery of the flange 6 connects the pump side duct 1 and the hot water supply side duct 1 ′. It is sandwiched between the joints 5 and 5 ′. As a result, the cores 2 and 22 in the protective tube 3 are held so as to be positioned at the center of the pump-side duct 1. The flange 6 is provided with a plurality of arc-shaped passage holes 7 serving as passages for the molten metal 12. The hot water supply side duct 1 ′ is elastically pressed against the pump side duct 1 in front by a spring or the like (not shown). In this state, the sealability of the joints 5 and 5 'is ensured by the heat-resistant gasket inserted between the joints 5 and 5'.
 ポンプ側ダクト1と給湯側ダクト1’は、セラミック等の耐熱性、耐蝕性のある材料で作られており、その外周に設けた保温用のマイクロヒータ等からなるヒータ9、9’により溶融金属12の融点以上の温度に加熱され、溶融金属12の凝固を防ぐ。
 給湯側ダクト1’のポンプ側ダクト1に接続された基端側に液面センサー等のセンサー19が設けられ、これによりポンプ側ダクト1の中の液位が検知される。また、液面センサー等のセンサー13が設けられ、溶融金属槽の液位が検知される。給湯側ダクト1’の先端側にはゲートバルブ27が設けられ、このゲートバルブ27の先に鋳型等の溶融金属の供給先20が配置されている。この溶融金属の供給先20には、それに溶融金属が供給されたことを検知するセンサ23が設けられている。ゲートバルブ27は、簡単な三角形或いは逆台形の蓋を上下動して開閉動作するもので良い。このゲートバルブ27は、給湯側ダクト1’とダクト1の内にある液面の酸化防止のために取り付けられているが、無くても良い。このゲートバルブ27は、給湯時は開いている。
The pump side duct 1 and the hot water supply side duct 1 ′ are made of a heat-resistant and corrosion-resistant material such as ceramic, and molten metal is formed by heaters 9, 9 ′ made of heat retaining microheaters provided on the outer periphery thereof. Heated to a temperature equal to or higher than the melting point of 12 to prevent the molten metal 12 from solidifying.
A sensor 19 such as a liquid level sensor is provided on the base end side of the hot water supply side duct 1 ′ connected to the pump side duct 1, whereby the liquid level in the pump side duct 1 is detected. Further, a sensor 13 such as a liquid level sensor is provided to detect the liquid level in the molten metal tank. A gate valve 27 is provided at the front end side of the hot water supply side duct 1 ′, and a molten metal supply destination 20 such as a mold is disposed at the tip of the gate valve 27. The molten metal supply destination 20 is provided with a sensor 23 that detects that molten metal has been supplied thereto. The gate valve 27 may be opened and closed by moving a simple triangular or inverted trapezoidal lid up and down. The gate valve 27 is attached to prevent oxidation of the liquid level in the hot water supply side duct 1 ′ and the duct 1, but may be omitted. This gate valve 27 is open during hot water supply.
 このような溶融金属供給装置では、例えば溶融金属12の供給運転前の段階のように、ポンプ側ダクト1の中で給湯用誘導子14の高さまで溶融金属12が汲み上げられてない状態では、まず立上用誘導子24に三相交流を通電し、その内側のポンプ側ダクト1の中に移動磁界を発生させ、これによりポンプ側ダクト1の中に溶融金属12を汲み上げ、図1に示すように、ポンプ側ダクト1の中の溶融金属12の液位を給湯用誘導子14の高さ、すなわち給湯用誘導子14により溶融金属1212に推力を及ぼし得る高さまで上昇させる。立上用誘導子24のコイル26の巻数は少ないが、その分だけ立上用誘導子24に大きな電流を通電し、ポンプ側ダクト1の中の溶融金属12の液位を給湯用誘導子14の高さまで上昇させるのに必要な磁束密度を形成する。 In such a molten metal supply device, for example, in a state where the molten metal 12 is not pumped up to the height of the hot water supply inductor 14 in the pump-side duct 1 as in the stage before the molten metal 12 supply operation, first, As shown in FIG. 1, a three-phase alternating current is energized in the startup inductor 24 to generate a moving magnetic field in the pump-side duct 1 inside, thereby pumping the molten metal 12 into the pump-side duct 1. In addition, the liquid level of the molten metal 12 in the pump side duct 1 is raised to the height of the hot water supply inductor 14, that is, the height at which the thrust can be exerted on the molten metal 1212 by the hot water supply inductor 14. Although the number of turns of the coil 26 of the riser inductor 24 is small, a large current is passed through the riser inductor 24 by that amount, and the liquid level of the molten metal 12 in the pump-side duct 1 is changed to the hot water supply inductor 14. The magnetic flux density necessary for raising the height to the height of is formed.
 立上用誘導子24の巻線26は、耐熱性のあるシースケーブルからなるため、大きな電流を通電するのに適している。また、運転前にはこの立上用誘導子24に前記とは逆位相の三相交流を通電すると、ポンプ側ダクト1に溶融金属12が入らないように出来、しかも、大きな電流を通電することによりコイル26の導電線の自己発熱と電磁誘導加熱の原理によりコイル26のシースが加熱され、ポンプ側ダクト1を予熱することが出来る。この予熱は前記の溶融金属12の汲み上げに先立って行う。勿論、ヒータ9によってもポンプ側ダクト1を予熱することが出来るのは、言うまでも無い。 Since the winding 26 of the startup inductor 24 is made of a heat-resistant sheath cable, it is suitable for supplying a large current. Further, if a three-phase alternating current having a phase opposite to the above is supplied to the startup inductor 24 before operation, the molten metal 12 can be prevented from entering the pump side duct 1 and a large current can be supplied. Thus, the sheath of the coil 26 is heated by the principle of self-heating of the conductive wire of the coil 26 and electromagnetic induction heating, and the pump-side duct 1 can be preheated. This preheating is performed prior to the pumping of the molten metal 12. Of course, it is needless to say that the pump-side duct 1 can be preheated also by the heater 9.
 立上用誘導子24への通電により、ポンプ側ダクト1の中の溶融金属12の液位が給湯用誘導子14の高さに達したことをセンサー19が検知し、なお且つ溶融金属12の供給先20に溶融金属12が供給されていないことをセンサー23が検知すると、給湯用誘導子14に三相交流が通電され、ポンプ側ダクト1の中に移動磁界を発生する。このときゲートバルブ27が開く。これによりポンプ側ダクト1の中の溶融金属12が汲み上げられ、この溶融金属が供給側ダクト1’を通して溶融金属12の供給先20に供給される。 The sensor 19 detects that the liquid level of the molten metal 12 in the pump-side duct 1 has reached the height of the hot water supply inductor 14 by energizing the startup inductor 24, and the molten metal 12 When the sensor 23 detects that the molten metal 12 is not supplied to the supply destination 20, a three-phase alternating current is energized to the hot water supply inductor 14, and a moving magnetic field is generated in the pump side duct 1. At this time, the gate valve 27 is opened. Thereby, the molten metal 12 in the pump side duct 1 is pumped up, and this molten metal is supplied to the supply destination 20 of the molten metal 12 through the supply side duct 1 ′.
 また後述するように、立上用誘導子24で給湯用誘導子14まで液位を上げて後、センサー19で検知する液位を維持するように、立上用誘導子24の出力を下げながら給湯用誘導子14の出力を上げて、最終的には立上用誘導子24の出力を零にして、給湯用誘導子14の出力だけで液位を保持し、さらに給湯用誘導子14の出力を調整するだけで溶融金属12を供給先20に供給することも出来る。一般的には、出力調整器1個だけを利用して出力調整した方が、制御性がよい。 Further, as described later, while raising the liquid level with the riser inductor 24 to the hot water supply inductor 14, the output of the riser inductor 24 is lowered so as to maintain the liquid level detected by the sensor 19. The output of the hot water supply inductor 14 is increased, finally the output of the startup inductor 24 is made zero, the liquid level is maintained only by the output of the hot water supply inductor 14, and further, It is also possible to supply the molten metal 12 to the supply destination 20 simply by adjusting the output. Generally, controllability is better when the output is adjusted using only one output adjuster.
 供給先20に所定量の溶融金属12の供給が完了すると、ゲートバルブ27が閉じ、溶融金属12の供給が停止される。ゲートバルブ27を閉じる前に、給湯用誘導子14の出力調整をしてセンサー19の液位検知位置に液面を戻す方法以外に、立上用誘導子24に逆位相の三相交流を通電することにより、ポンプ側ダクト1から給湯側ダクト1’に向けて流動する溶融金属12を制動することができ、溶融金属12の流れを瞬時に停止することが出来る。その後は給湯用誘導子14にポンプ側ダクト1の中の溶融金属12の液位が同給湯用誘導子14の高さに維持されるだけの電力が通電される。この状態では給湯用誘導子14への通電のみによってポンプ側ダクト1の中の溶融金属12の液位が維持されるため、立上用誘導子24への通電は不要となる。 When the supply of the predetermined amount of molten metal 12 to the supply destination 20 is completed, the gate valve 27 is closed and the supply of the molten metal 12 is stopped. Before closing the gate valve 27, the output of the hot water supply inductor 14 is adjusted and the liquid level is returned to the liquid level detection position of the sensor 19, and the startup inductor 24 is energized with an antiphase three-phase alternating current. By doing so, the molten metal 12 flowing from the pump side duct 1 toward the hot water supply side duct 1 ′ can be braked, and the flow of the molten metal 12 can be stopped instantaneously. Thereafter, the hot water inductor 14 is energized so that the liquid level of the molten metal 12 in the pump-side duct 1 is maintained at the height of the hot water inductor 14. In this state, since the liquid level of the molten metal 12 in the pump-side duct 1 is maintained only by energizing the hot water supply inductor 14, the energization of the start-up inductor 24 becomes unnecessary.
 このような運転を制御するための制御系を図3に示す。図3において制御器11は前記液位センサー13、19、23による検知信号を受けて電源31、電源32、電源33を制御し、給湯用誘導子14、立上用誘導子24、給湯用誘導子14及びゲートバルブ27をそれぞれ前述のように通電制御する。これにより、溶融金属12の供給を必要とする鋳型等の供給先20に毎回定量の溶融金属12を供給する。 Fig. 3 shows a control system for controlling such operation. In FIG. 3, the controller 11 receives the detection signals from the liquid level sensors 13, 19, 23 and controls the power supply 31, the power supply 32, and the power supply 33 to control the hot water supply inductor 14, the riser inductor 24, the hot water supply induction The child 14 and the gate valve 27 are energized as described above. Thereby, the fixed amount of molten metal 12 is supplied to the supply destination 20 such as a mold that requires the supply of the molten metal 12 each time.
 図4は、給湯用誘導子14と立上用誘導子24の制御出力の関係の一例を示す。図4に示した給湯用誘導子14と立上用誘導子24の制御出力の関係は、簡単な直線的なものを示したが、サインカーブのように立上用誘導子24は徐々に立ち上がり、給湯用誘導子14は徐々に下がって行くほうが、湯面変動がなくて良いことは言うまでも無い。 FIG. 4 shows an example of the relationship between the control outputs of the hot water supply inductor 14 and the startup inductor 24. The relationship between the control outputs of the hot water supply inductor 14 and the startup inductor 24 shown in FIG. 4 is a simple linear one, but the startup inductor 24 gradually rises like a sine curve. Needless to say, it is not necessary for the hot water supply inductor 14 to be gradually lowered so that there is no fluctuation of the hot water surface.
 運転開始時にまず立上用誘導子24の出力によりポンプ側ダクト1の溶融金属12を給湯用誘導子14の高さまで汲み上げる。その後、給湯用誘導子14の出力を徐々に大きくすると共に、その分だけ立上用誘導子24の出力を減少させ、その双方の出力のバランスを取りながらポンプ側ダクト1の溶融金属の液位を維持する。トリチェリーの原理からも明らかなように、立上用誘導子24の出力を零にしても給湯用誘導子14の出力が大気圧と同等の出力を出せれば、溶融アルミニウム合金の比重が2.5g/cmの場合4mまで保持できるので、給湯用誘導子14の出力が大きければ2つの誘導子14、24を制御するより、給湯時は立上用誘導子24の出力を無くて、給湯用誘導子だけを制御した方が、制御性が良い。 At the start of operation, the molten metal 12 in the pump duct 1 is first pumped up to the height of the hot water supply inductor 14 by the output of the startup inductor 24. Thereafter, the output of the hot water supply inductor 14 is gradually increased, and the output of the riser inductor 24 is decreased by that amount, and the liquid level of the molten metal in the pump side duct 1 is maintained while balancing the outputs of both. To maintain. As is clear from the principle of Trichery, if the output of the hot water supply inductor 14 can produce an output equivalent to the atmospheric pressure even if the output of the startup inductor 24 is zero, the specific gravity of the molten aluminum alloy is 2. In the case of 5 g / cm 3 , it is possible to hold up to 4 m. Therefore, if the output of the hot water supply inductor 14 is large, the two inductors 14 and 24 are controlled. Control is better when only the inductor is controlled.
 その後給湯用誘導子14の出力をさらに大きくすると給湯側ダクト1’に溶融金属12が送られ、その先端から溶融金属12が供給される。このように、ポンプ側ダクト1の溶融金属12が給湯用誘導子14の高さまで汲み上げられた後は、立上用誘導子24の出力を零にして、給湯用誘導子14の出力だけで液位を保持し、さらに給湯用誘導子14の出力を調整するだけで溶融金属12を供給先20に供給する。 Thereafter, when the output of the hot water supply inductor 14 is further increased, the molten metal 12 is sent to the hot water supply side duct 1 ′, and the molten metal 12 is supplied from the tip thereof. Thus, after the molten metal 12 in the pump-side duct 1 has been pumped up to the height of the hot water supply inductor 14, the output of the riser inductor 24 is set to zero, and only the output of the hot water supply inductor 14 is liquid. The molten metal 12 is supplied to the supply destination 20 simply by maintaining the position and further adjusting the output of the hot water supply inductor 14.
 このように溶融金属供給装置は、間欠的に毎回一定量の溶融金属12をダイキャスト装置や重力鋳造装置等の搬送先に供給するのに用いられる。前記給湯用誘導子14の駆動により、溶融金属12を供給するときは、ダクト1はヒータ9により加熱され、ダクト1内はそれを通る溶融金属12が凝固しないように溶融金属12の融点以上の温度が維持される。他方、前記給湯用誘導子14と立上用誘導子24との駆動を停止し、溶融金属12の供給を停止しているときは、ヒータ9によるダクト1の加熱も停止する。 As described above, the molten metal supply device is used to intermittently supply a fixed amount of molten metal 12 each time to a transport destination such as a die casting device or a gravity casting device. When the molten metal 12 is supplied by driving the hot water supply inductor 14, the duct 1 is heated by the heater 9, and the melting point of the molten metal 12 is higher than the melting metal 12 so that the molten metal 12 passing through the duct 1 does not solidify. The temperature is maintained. On the other hand, when the drive of the hot water supply inductor 14 and the startup inductor 24 is stopped and the supply of the molten metal 12 is stopped, the heating of the duct 1 by the heater 9 is also stopped.
 ところが、電磁ポンプの駆動を停止し、溶融金属12の供給を停止すると共に、ヒータ9によるダクト1の加熱を暫く停止した後、暫くしてから再度ヒータ9によりダクト1を加熱すると共に、電磁ポンプを駆動し、溶融金属12の供給を開始すると、ダクト1内に溶融金属12の酸化物の塊片が混ざることがある。この溶融金属12の酸化物の塊片は、ダクト1内の溶融金属12の流通の妨げとなったり、或いは酸化物の塊片が目的の供給先に搬送され、鋳物の品質低下等の問題を引き起こす。そこで、溶融金属12の供給開始時には、この溶融金属12の酸化物の塊片の除去作業が必要となる。 However, the driving of the electromagnetic pump is stopped, the supply of the molten metal 12 is stopped, the heating of the duct 1 by the heater 9 is stopped for a while, and after a while, the duct 1 is heated again by the heater 9 and the electromagnetic pump When the supply of the molten metal 12 is started, an oxide lump of the molten metal 12 may be mixed in the duct 1. This oxide lump of the molten metal 12 hinders the flow of the molten metal 12 in the duct 1 or the oxide lump is conveyed to the intended supply destination, causing problems such as deterioration in casting quality. cause. Therefore, when the supply of the molten metal 12 is started, it is necessary to remove the oxide lump of the molten metal 12.
 本件発明者らは、この溶融金属12の酸化物の塊片の発生原因について検討したところ、それは次のような現象にあることが分かった。溶融金属12を供給するため、ダクト1をヒータ9で加熱しながらダクト1内に溶融金属12を通すと、ダクト1の内面には溶融金属12の膜が付着する。溶融金属の供給時には、このダクトの内面に付着した溶融金属12がダクト1内を通る溶融金属12に絶えず洗われ、金属状態のまま連続的に更新される。ところが、溶融金属の供給を停止し、ダクト1の加熱を停止すると、ダクト1の内面に付着した溶融金属12の表面が空気と接触して酸化し、表面に酸化膜が生じる。この酸化膜は、ダクト1の内面から剥離し、塊片となりやすい。しかも酸化物であるため、溶融金属12の融点以上の温度に再加熱しても溶融しない。そのため、再びダクト1をヒータ9で加熱し、溶融金属12の供給を開始すると、溶融金属の酸化物の塊片が溶融金属12の中に固形物として浮遊することになる。 The inventors of the present invention examined the cause of the oxide lump of the molten metal 12 and found that it was in the following phenomenon. When the molten metal 12 is passed through the duct 1 while the duct 1 is heated by the heater 9 in order to supply the molten metal 12, a film of the molten metal 12 adheres to the inner surface of the duct 1. When supplying the molten metal, the molten metal 12 adhering to the inner surface of the duct is constantly washed by the molten metal 12 passing through the duct 1 and continuously updated in the metallic state. However, when the supply of the molten metal is stopped and the heating of the duct 1 is stopped, the surface of the molten metal 12 attached to the inner surface of the duct 1 comes into contact with air and oxidizes, and an oxide film is formed on the surface. This oxide film peels off from the inner surface of the duct 1 and tends to be a lump. Moreover, since it is an oxide, it does not melt even when reheated to a temperature higher than the melting point of the molten metal 12. Therefore, when the duct 1 is heated again by the heater 9 and the supply of the molten metal 12 is started, the oxide lump of the molten metal floats as a solid in the molten metal 12.
 溶融金属12を供給するため、ダクト1をヒータ9で加熱しながらダクト1内に溶融金属12を通しているときに、ダクト1の内面に溶融金属12が付着することは避けることは出来ない。そこでその後、溶融金属12の酸化物の塊片が溶融金属12の中に浮遊することを避けるためには、ダクト1の内面に付着した溶融金属12が酸化しないようにする方策が考えられる。 Since the molten metal 12 is supplied, it is inevitable that the molten metal 12 adheres to the inner surface of the duct 1 when the duct 1 is heated by the heater 9 and the molten metal 12 is passed through the duct 1. Then, in order to avoid the oxide lump of the molten metal 12 from floating in the molten metal 12, a measure for preventing the molten metal 12 adhering to the inner surface of the duct 1 from being oxidized can be considered.
 その一つとして、ダクト1内を絶えず不活性ガスで満たし、ダクト1の内面に付着した溶融金属12が空気と接触するのと避ける手段が考えられる。しかし、ダクト内を絶えず不活性ガスで満たしておくためには、窒素ガスやアルゴンガスをダクト1内に絶えず供給し続ける必要があり、不活性ガス供給源とそれを回収する装置が必要となり、設備が大掛かりとなる。 As one of the measures, it can be considered that the duct 1 is constantly filled with an inert gas and the molten metal 12 adhering to the inner surface of the duct 1 is prevented from coming into contact with air. However, in order to continuously fill the inside of the duct with an inert gas, it is necessary to continuously supply nitrogen gas or argon gas into the duct 1, and an inert gas supply source and a device for recovering it are required. Equipment becomes large.
 これについて前述した溶融金属供給装置では、立上用誘導子24と給湯用誘導子14との2段の誘導子を設けた前述の構造を利用し、ポンプ側ダクト1の内部に付着した酸化物を洗浄することが出来る。そのためにダクト1内の溶融金属12を汲み上げた状態で給湯用誘導子14と立上用誘導子24とを逆駆動する。この手順の例を以下に説明する。 In the molten metal supply apparatus described above, the oxide adhered to the inside of the pump-side duct 1 using the above-described structure provided with the two-stage inductors of the startup inductor 24 and the hot water supply inductor 14. Can be washed. For this purpose, the hot-water supply inductor 14 and the startup inductor 24 are reversely driven while the molten metal 12 in the duct 1 is pumped up. An example of this procedure will be described below.
 まず立上用誘導子24への通電により、ポンプ側ダクト1の中の、溶融金属12の液位が給湯用誘導子14の高さに達したことをセンサー19が検知し、なお且つ溶融金属12の供給先20に溶融金属12が供給されていないことをセンサー23が検知すると、給湯用誘導子14に三相交流が通電され、ポンプ側ダクト1の中に移動磁界を発生する。これによりポンプ側ダクト1の中の溶融金属12が汲み上げられ、この溶融金属12が供給側ダクト1’を通して溶融金属12を保持する。 First, by energizing the starting inductor 24, the sensor 19 detects that the liquid level of the molten metal 12 in the pump side duct 1 has reached the height of the hot water supplying inductor 14, and the molten metal When the sensor 23 detects that the molten metal 12 is not supplied to the 12 supply destinations 20, a three-phase alternating current is applied to the hot water supply inductor 14, and a moving magnetic field is generated in the pump side duct 1. Thereby, the molten metal 12 in the pump side duct 1 is pumped up, and this molten metal 12 holds the molten metal 12 through the supply side duct 1 ′.
 その後、くみ上げ時と逆の移動磁界を発生させるように、立上用誘導子24と給湯用誘導子14に通電し、溶融金属槽に溶融金属12を戻す。これにより、ポンプ側ダクト1の中の酸化物が同ダクト1の中の溶融金属12により逆洗され、酸化物が溶融金属槽の溶融金属12の中に排除される。その後、立上用誘導子24に通電しポンプ側ダクト1の中に溶融金属12を再び汲み上げ、その溶融金属12の液位が給湯用誘導子14の高さに達したことをセンサー19が検知し、なお且つ溶融金属12の供給先20に溶融金属12が供給されていないことをセンサー23が検知すると、給湯用誘導子14に三相交流が通電され、ポンプ側ダクト1の中に移動磁界を発生する。これによりポンプ側ダクト1の中の溶融金属12が汲み上げられ、この溶融金属12が供給側ダクト1’を通して溶融金属12を保持する。これを何度か繰り返し、ダクト1の内周に付着した溶融金属12の酸化物を強制的に剥離しながら、剥離した酸化物を溶融金属槽の溶融金属12の中に排除する。 Thereafter, the startup inductor 24 and the hot water supply inductor 14 are energized so as to generate a moving magnetic field opposite to that at the time of pumping, and the molten metal 12 is returned to the molten metal tank. Thereby, the oxide in the pump side duct 1 is backwashed by the molten metal 12 in the duct 1, and the oxide is excluded in the molten metal 12 of the molten metal tank. Thereafter, the startup inductor 24 is energized, the molten metal 12 is pumped up again into the pump-side duct 1, and the sensor 19 detects that the liquid level of the molten metal 12 has reached the height of the hot water supply inductor 14. In addition, when the sensor 23 detects that the molten metal 12 is not supplied to the supply destination 20 of the molten metal 12, a three-phase alternating current is energized to the hot water supply inductor 14, and a moving magnetic field enters the pump side duct 1. Is generated. Thereby, the molten metal 12 in the pump side duct 1 is pumped up, and this molten metal 12 holds the molten metal 12 through the supply side duct 1 ′. This is repeated several times, and the peeled oxide is removed into the molten metal 12 in the molten metal tank while forcibly peeling the oxide of the molten metal 12 adhering to the inner periphery of the duct 1.
 溶融金属12の中に排除された酸化物は溶融金属12の上層に浮くので、これをすくい取って廃棄する。或いは溶融金属槽の溶融金属12を新たに交換するときに先立ってこのポンプ側ダクト1の中の酸化物の洗浄を行うと、古い溶融金属12の廃棄と同時に酸化物も廃棄することが出来る。そして次に供給する溶融金属12に酸化物が混じるのを防止することが出来る。 The oxide removed in the molten metal 12 floats on the upper layer of the molten metal 12, and is scraped and discarded. Alternatively, if the oxide in the pump-side duct 1 is cleaned prior to the replacement of the molten metal 12 in the molten metal tank, the oxide can be discarded at the same time as the old molten metal 12 is discarded. And it can prevent that an oxide is mixed with the molten metal 12 supplied next.
 なお、図2に示すように、取り扱いの観点からは、コア22の保護管3の先端がポンプ側ダクト1の下端の溶融金属12の導入口18から突出していないのがよい。しかし、コア22の保護管3の先端がポンプ側ダクト1の下端の溶融金属12の導入口18から例えば-hだけ引き込まれていると、導入口18からコア22の保護管3の先端に至る-hの部分の流路断面積は、コア22の保護管3が存在する部分に比べて広くなり、その部分での溶融金属12の流速が遅くなる。そのため、コア保護管3の先端がR形状の場合、逆噴射速度v’がポンプ側ダクト1の外まで維持されて逆噴射効果が維持出来るのは、解析と試験に拠るとhがポンプ側ダクト1の内径Dの1/2が限度となる。むしろ、コア22の保護管3の先端がR形状の場合、同保護管3の先端がポンプ側ダクト1の下端の溶融金属12の導入口18から突出していることが前記逆噴射速度v’の維持には好適である。この突出寸法+hは、長すぎると浮力に依る酸化物の上昇が妨げられので、ダクト1の先端から同ダクト1の径Dの1/2以下とするのがよい。 As shown in FIG. 2, from the viewpoint of handling, it is preferable that the tip of the protective tube 3 of the core 22 does not protrude from the inlet 18 of the molten metal 12 at the lower end of the pump-side duct 1. However, if the tip of the protective tube 3 of the core 22 is drawn, for example, by −h from the inlet 18 of the molten metal 12 at the lower end of the pump-side duct 1, it reaches the tip of the protective tube 3 of the core 22 from the inlet 18. The channel cross-sectional area of the portion -h is wider than the portion of the core 22 where the protective tube 3 is present, and the flow rate of the molten metal 12 in that portion is reduced. Therefore, when the tip of the core protective tube 3 has an R shape, the reverse injection speed v ′ is maintained to the outside of the pump side duct 1 and the reverse injection effect can be maintained. 1/2 of the inner diameter D of 1 is the limit. Rather, when the tip of the protective tube 3 of the core 22 has an R shape, the tip of the protective tube 3 protrudes from the inlet 18 of the molten metal 12 at the lower end of the pump side duct 1 in the reverse injection speed v ′. Suitable for maintenance. If this protrusion dimension + h is too long, the rise of the oxide due to buoyancy is hindered, so it is preferable to set the protrusion dimension + h to 1/2 or less of the diameter D of the duct 1 from the end of the duct 1.
 次に、図5に示した溶融金属供給装置の他の実施例について説明する。図1に示した実施例は、ポンプ側ダクト1をほぼ垂直に立て、給湯側ダクト1’をほぼ水平として溶融金属12の供給先20に溶融金属12を供給した例である。これに対し、図5に示した実施例は、直管からなるポンプ側ダクト1とエルボ管からなる給湯側ダクト1’とを±45゜程度の斜めに配置し、鋳型等の溶融金属12の供給先20’に溶融金属12を供給する例である。ポンプ側ダクト1に設けられた立上用誘導子24と給湯側誘導子14もポンプ側ダクト1と同じ角度に設置される。溶融金属12の供給先20’である鋳型は鋳型駆動機構21により駆動され、組み立てと脱型が行われる。これ以外の図5に示された実施例の構成は基本的に図1~図4により前述した実施例と同じであり、対応する部分は同じ符合で示している。共通する対応する部分の詳細な説明は省略する。 Next, another embodiment of the molten metal supply apparatus shown in FIG. 5 will be described. The embodiment shown in FIG. 1 is an example in which the molten metal 12 is supplied to the supply destination 20 of the molten metal 12 with the pump side duct 1 standing substantially vertically and the hot water supply side duct 1 ′ being substantially horizontal. On the other hand, in the embodiment shown in FIG. 5, the pump side duct 1 made of a straight pipe and the hot water supply side duct 1 ′ made of an elbow pipe are arranged obliquely about ± 45 °, and the molten metal 12 such as a mold is made of In this example, the molten metal 12 is supplied to the supply destination 20 ′. The startup inductor 24 and the hot water supply inductor 14 provided in the pump side duct 1 are also installed at the same angle as the pump side duct 1. The mold that is the supply destination 20 ′ of the molten metal 12 is driven by the mold driving mechanism 21, and assembly and demolding are performed. Other than this, the configuration of the embodiment shown in FIG. 5 is basically the same as that of the embodiment described above with reference to FIGS. 1 to 4, and the corresponding parts are indicated by the same reference numerals. Detailed description of common corresponding parts is omitted.
 次に、図6に示した溶融金属供給装置の他の実施例について説明する。この図6に示した実施例は、図5により前述した実施例の溶融金属供給装置と基本的に共通する。すなわち、ポンプ側ダクト1と給湯側ダクト1’とを±45゜程度の斜めに配置し、鋳型等の溶融金属12の供給先20’に溶融金属12を供給する。但しこの実施例では、エルボ管からなる給湯側ダクト1’に、同給湯側ダクト1’を開閉するゲートバルブ27設けられ、これにポンプ側ダクト1内の溶融金属12の液位を検知する液面センサー等のセンサー19が設けられている。この実施例では、溶融金属12の定量供給のためゲートバルブ27の開閉駆動が行われる。これ以外の図6に示された実施例の構成は基本的に図5により前述した実施例と同じであり、対応する部分は同じ符合で示している。共通する対応する部分の詳細な説明は省略する。 Next, another embodiment of the molten metal supply apparatus shown in FIG. 6 will be described. The embodiment shown in FIG. 6 is basically in common with the molten metal supply apparatus of the embodiment described above with reference to FIG. That is, the pump-side duct 1 and the hot water supply-side duct 1 ′ are disposed obliquely by about ± 45 °, and the molten metal 12 is supplied to the supply destination 20 ′ of the molten metal 12 such as a mold. In this embodiment, however, a gate valve 27 for opening and closing the hot water supply side duct 1 ′ is provided in the hot water supply side duct 1 ′ composed of an elbow pipe, and a liquid for detecting the liquid level of the molten metal 12 in the pump side duct 1 is provided there. A sensor 19 such as a surface sensor is provided. In this embodiment, the gate valve 27 is driven to open and close for the fixed supply of the molten metal 12. The other configuration of the embodiment shown in FIG. 6 is basically the same as that of the embodiment described above with reference to FIG. 5, and corresponding portions are denoted by the same reference numerals. Detailed description of common corresponding parts is omitted.
 図7に示した実施例は、この溶融金属12の供給装置を低圧鋳造装置に適用した例である。ポンプ側ダクト1と給湯側ダクト1’とをほぼ垂直に設け、給湯側ダクト1’の上端に鋳型である溶融金属12の供給先20”を接続している。溶融金属の供給先20”である鋳型は、鋳型駆動機構21’により駆動、操作され、その組み立てと脱型が行われる。溶融金属12の供給先20”である鋳型へは給湯側ダクト1’を通して下側の給湯口から溶融金属12が供給される。これ以外の図5に示された実施例の構成は基本的に図1~図4により前述した実施例と同じであり、対応する部分は同じ符合で示している。共通する対応する部分の詳細な説明は省略する。 The embodiment shown in FIG. 7 is an example in which the molten metal 12 supply device is applied to a low-pressure casting device. The pump side duct 1 and the hot water supply side duct 1 ′ are provided substantially vertically, and the supply destination 20 ″ of the molten metal 12 as a mold is connected to the upper end of the hot water supply side duct 1 ′. A certain mold is driven and operated by a mold driving mechanism 21 ', and its assembly and demolding are performed. The molten metal 12 is supplied from the lower hot water supply port through the hot water supply side duct 1 ′ to the casting mold 20 ″ to which the molten metal 12 is supplied. The configuration of the embodiment shown in FIG. 1 to 4 are the same as those in the above-described embodiment, and corresponding portions are denoted by the same reference numerals, and detailed description of common corresponding portions is omitted.
 本発明による溶融金属供給装置は、真空吸引や浸漬体を用いず、誘導子14、24の通電制御のみにより繰り返し溶融金属12を供給することが可能であるため、鋳造のように、毎回定量の溶融金属12の供給を必要とする分野で利用することが出来る。 The molten metal supply apparatus according to the present invention can supply the molten metal 12 repeatedly only by energization control of the inductors 14 and 24 without using vacuum suction or an immersion body. It can be used in fields that require the supply of molten metal 12.
1  ポンプ側ダクト
1’ 給湯側ダクト
13 液位センサ
14 給湯用誘導子
19 液位センサ
23 液位センサ
24 立上用誘導子
DESCRIPTION OF SYMBOLS 1 Pump side duct 1 'Hot water supply side duct 13 Liquid level sensor 14 Hot water supply inductor 19 Liquid level sensor 23 Liquid level sensor 24 Startup inductor

Claims (12)

  1. ダクト1に誘導子14、24を設け、同誘導子14、24によりダクト1内の溶融金属12に推力を与えて同溶融金属12を供給する溶融金属供給装置において、ダクト1内の溶融金属12に推力を与えて供給するための給湯用誘導子14と、この給湯用誘導子14の高さまでダクト1内の溶融金属12を汲み上げるための耐熱性を有する立上用誘導子24とを備え、立上用誘導子24を溶融金属槽内に収納した溶融金属12の液位より低い位置に配置したことを特徴とする溶融金属供給装置。 In a molten metal supply device that provides inductors 14, 24 in the duct 1 and supplies the molten metal 12 by applying thrust to the molten metal 12 in the duct 1 by the inductors 14, 24, the molten metal 12 in the duct 1. A hot water induction inductor 14 for supplying a thrust to the hot water supply inductor 14 and a rising inductor 24 having heat resistance for pumping up the molten metal 12 in the duct 1 up to the height of the hot water supply inductor 14; A molten metal supply device, wherein the riser inductor 24 is disposed at a position lower than the liquid level of the molten metal 12 accommodated in the molten metal tank.
  2. 立上用誘導子24が無機絶縁ケーブルを巻線として使用したものからなることを特徴とする請求項1に記載の溶融金属供給装置。 2. The molten metal supply apparatus according to claim 1, wherein the rising inductor is made of an inorganic insulated cable used as a winding.
  3. 立上用誘導子24が冷却手段を有しない無冷却の誘導子であることを特徴とする請求項2に記載の溶融金属供給装置。 The molten metal supply apparatus according to claim 2, wherein the startup inductor 24 is an uncooled inductor having no cooling means.
  4. ダクト1内の溶融金属12の液位を検知するセンサー19と連動して給湯用誘導子14と立上用誘導子24へ通電制御することを特徴とする請求項1~3の何れかに記載の溶融金属供給装置。 4. The energization control of the hot water supply inductor 14 and the startup inductor 24 is performed in conjunction with a sensor 19 that detects the liquid level of the molten metal 12 in the duct 1. Molten metal supply device.
  5. ダクト1内の溶融金属12の供給を停止するとき、立上用誘導子24へ逆位相の電流を通電して溶融金属12を制動することを特徴とする請求項1~4の何れかに記載の溶融金属供給装置。 5. When the supply of the molten metal 12 in the duct 1 is stopped, the molten metal 12 is braked by supplying a current having an opposite phase to the startup inductor 24. Molten metal supply device.
  6. 立上用誘導子24のコイル25の巻数を給湯用誘導子14のコイル15の巻数より少なくし、且つ立上用誘導子24のコイル25に通電する電流を給湯用誘導子14のコイル15に通電する電流より大きくすることを特徴とする請求項1~5の何れかに記載の溶融金属供給装置。 The number of turns of the coil 25 of the riser inductor 24 is made smaller than the number of turns of the coil 15 of the hot water supply inductor 14, and the current supplied to the coil 25 of the riser inductor 24 is supplied to the coil 15 of the hot water inductor 14. The molten metal supply apparatus according to any one of claims 1 to 5, wherein the molten metal supply apparatus is larger than a current to be energized.
  7. 立上用誘導子24によって給湯用誘導子14まで液位を上げ、この液位を保持するように、立上用誘導子24の出力を下げ、給湯用誘導子14の出力を上げて行き、主に給湯用誘導子14の出力で液位を保持しながら、同給湯用誘導子14の出力を増加調整するだけで、給湯制御を行うことを特徴とする請求項1~6の何れかに記載の溶融金属供給装置。 The riser 24 raises the liquid level to the hot water supply inductor 14, lowers the output of the riser inductor 24 so as to maintain this liquid level, and increases the output of the hot water supply inductor 14. 7. The hot water supply control is performed by merely increasing and adjusting the output of the hot water supply inductor 14 while maintaining the liquid level mainly by the output of the hot water supply inductor 14. The molten metal supply apparatus as described.
  8. 給湯用誘導子14と立上用誘導子24とを溶融金属12を搬送先に供給するのと逆方向に駆動可能としたことを特徴とする請求項1~7の何れかに記載の溶融金属供給装置。 The molten metal according to any one of claims 1 to 7, wherein the hot water supply inductor 14 and the rising inductor 24 can be driven in a direction opposite to that when the molten metal 12 is supplied to the conveyance destination. Feeding device.
  9. コア22の保護管3の長さがダクト1の長さと同等かまたはそれより長いことを特徴とする請求項1~8の何れかに記載の溶融金属供給装置。 The molten metal supply apparatus according to any one of claims 1 to 8, wherein the length of the protective tube 3 of the core 22 is equal to or longer than the length of the duct 1.
  10. コア22の保護管3の先端がR形状の場合、同保護管3の先端の引き込み寸法-h並びに突出寸法+hを、ダクト1の先端から同ダクト1の径Dの1/2以下としたことを特徴とする請求項1~9の何れかに記載の溶融金属供給装置。 When the tip of the protective tube 3 of the core 22 is R-shaped, the retracting dimension −h and the protruding dimension + h of the protective tube 3 are set to be 1/2 or less of the diameter D of the duct 1 from the tip of the duct 1. The molten metal supply apparatus according to any one of claims 1 to 9, wherein:
  11. ダクト1に誘導子14、24を設け、同誘導子14、24によりダクト1内の溶融金属12に推力を与えて同溶融金属12を供給する溶融金属供給装置において、ダクト1内の溶融金属12に推力を与えて供給するための給湯用誘導子14と、この給湯用誘導子14の高さまでダクト1内の溶融金属12を汲み上げるための耐熱性を有する立上用誘導子24とを備え、立上用誘導子24を溶融金属槽内の溶融金属12の液位より低い位置に配置し、この立上用誘導子24で溶融金属槽からダクト1内に溶融金属12を汲み上げた状態で給湯用誘導子14と立上用誘導子24とを溶融金属12を搬送先に供給するのと逆方向に駆動することにより、ダクト1の内周に付着した溶融金属12の酸化物を強制的に剥離することを特徴とする溶融金属供給装置のダクト洗浄方法。 In a molten metal supply device that provides inductors 14, 24 in the duct 1 and supplies the molten metal 12 by applying thrust to the molten metal 12 in the duct 1 by the inductors 14, 24, the molten metal 12 in the duct 1. A hot water induction inductor 14 for supplying a thrust to the hot water supply inductor 14 and a rising inductor 24 having heat resistance for pumping up the molten metal 12 in the duct 1 up to the height of the hot water supply inductor 14; The riser inductor 24 is disposed at a position lower than the liquid level of the molten metal 12 in the molten metal tank, and hot water is supplied in a state where the molten metal 12 is pumped from the molten metal tank into the duct 1 by the riser inductor 24. By driving the induction inductor 14 and the startup inductor 24 in the opposite direction to the supply of the molten metal 12 to the conveyance destination, the oxide of the molten metal 12 adhering to the inner periphery of the duct 1 is forced. Molten metal characterized by exfoliation Duct cleaning method of feeding device.
  12. ダクト1の内周に付着した溶融金属12の酸化物が剥離させるため、液位を給湯用誘導子14まで上げ、その後、立上用誘導子24と同時に逆出力を増加調整しダクト1の内の溶融金属12を溶融金属槽に吐き出すことを特徴とする請求項11に記載の溶融金属供給装置のダクト洗浄方法。 Since the oxide of the molten metal 12 adhering to the inner periphery of the duct 1 is peeled off, the liquid level is raised to the hot water supply inductor 14, and then the reverse output is increased and adjusted simultaneously with the riser inductor 24. 12. The method for cleaning a duct of a molten metal supply apparatus according to claim 11, wherein the molten metal 12 is discharged into a molten metal tank.
PCT/JP2010/006000 2009-10-29 2010-10-07 Molten metal supply device and method for cleaning duct thereof WO2011052138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020117022195A KR101680919B1 (en) 2009-10-29 2010-10-07 Molten metal supply device and method for cleaning duct thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009248448 2009-10-29
JP2009-248448 2009-10-29
JP2010-055205 2010-03-12
JP2010055205A JP5113866B2 (en) 2009-10-29 2010-03-12 Molten metal feeder

Publications (1)

Publication Number Publication Date
WO2011052138A1 true WO2011052138A1 (en) 2011-05-05

Family

ID=43921575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006000 WO2011052138A1 (en) 2009-10-29 2010-10-07 Molten metal supply device and method for cleaning duct thereof

Country Status (3)

Country Link
JP (1) JP5113866B2 (en)
KR (1) KR101680919B1 (en)
WO (1) WO2011052138A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379847B2 (en) * 2014-08-19 2018-08-29 宇部興産機械株式会社 Casting equipment
JP6314080B2 (en) * 2014-11-10 2018-04-18 助川電気工業株式会社 Molten metal water heater
DE102016107278A1 (en) * 2016-04-20 2017-10-26 Chemex Gmbh Feeding insert with sensor opening, as well as feeder arrangement, use and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454954U (en) * 1987-09-30 1989-04-05
JPH02229660A (en) * 1989-03-02 1990-09-12 Toshiba Mach Co Ltd Method and device for pressure casting
JPH03258448A (en) * 1990-03-09 1991-11-18 Toshiba Mach Co Ltd Electromagnetic molten metal supplying device for die casting machine
JP2009000688A (en) * 2007-06-19 2009-01-08 Sukegawa Electric Co Ltd Electromagnetic pump for molten metal and operation method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454954U (en) * 1987-09-30 1989-04-05
JPH02229660A (en) * 1989-03-02 1990-09-12 Toshiba Mach Co Ltd Method and device for pressure casting
JPH03258448A (en) * 1990-03-09 1991-11-18 Toshiba Mach Co Ltd Electromagnetic molten metal supplying device for die casting machine
JP2009000688A (en) * 2007-06-19 2009-01-08 Sukegawa Electric Co Ltd Electromagnetic pump for molten metal and operation method therefor

Also Published As

Publication number Publication date
KR20120084661A (en) 2012-07-30
KR101680919B1 (en) 2016-11-29
JP2011115844A (en) 2011-06-16
JP5113866B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US5272720A (en) Induction heating apparatus and method
WO2011052138A1 (en) Molten metal supply device and method for cleaning duct thereof
JP4989329B2 (en) Molten metal electromagnetic pump and operation method thereof
JP4920061B2 (en) Electromagnetic pump for molten metal and its operation method
JP5015053B2 (en) Method of preheating immersion nozzle for continuous casting and continuous casting method
CN102927816A (en) Induction heating furnace
JP2002336942A (en) Immersion nozzle for continuous casting and continuous casting method
JP5043168B2 (en) Molten aluminum feeder and duct backwash method
JP5993294B2 (en) Die-cast sleeve molten metal supply device and method for supplying the same
JP2009000689A (en) Electromagnetic pump for molten metal and operation method therefor
JP4994972B2 (en) Electromagnetic pump for molten metal
CN106735158B (en) A kind of crystallizer submersed nozzle and its application method
JP5149951B2 (en) Molten metal supply apparatus and duct dirt detection method
JP5075231B2 (en) Molten aluminum feeder and its feeding method
JP2007069255A (en) Molten metal feeder, and method for feeding molten metal
JP6414739B2 (en) Conductor softening processing apparatus and conductor softening processing method
KR20210138659A (en) Electromagnetic devices and systems for pumping, circulating or transferring non-ferrous molten metal
EP0244254A1 (en) Extrusion of metals
JP6314080B2 (en) Molten metal water heater
JP5756316B2 (en) Induction electromagnetic pump for molten metal
JP2006084155A (en) Metal melting device
KR20120087524A (en) The device to prevent clogging of submerged entry nozzle
CN217265970U (en) Galvanized pot inductor corrosion damage early warning device
JP2015037796A (en) Die casting sleeve molten metal supply apparatus and die casting sleeve molten metal supply method
KR200423028Y1 (en) The mixing-device for molten-metal of thermostat-solution system it uses the electromagnetic pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117022195

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826275

Country of ref document: EP

Kind code of ref document: A1