JP6411268B2 - Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device - Google Patents

Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device Download PDF

Info

Publication number
JP6411268B2
JP6411268B2 JP2015072756A JP2015072756A JP6411268B2 JP 6411268 B2 JP6411268 B2 JP 6411268B2 JP 2015072756 A JP2015072756 A JP 2015072756A JP 2015072756 A JP2015072756 A JP 2015072756A JP 6411268 B2 JP6411268 B2 JP 6411268B2
Authority
JP
Japan
Prior art keywords
formula
aqueous electrolyte
additive
electrolytic solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015072756A
Other languages
Japanese (ja)
Other versions
JP2016192357A (en
Inventor
佑軌 河野
佑軌 河野
藤田 浩司
浩司 藤田
恭幸 高井
恭幸 高井
山本 紀子
紀子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015072756A priority Critical patent/JP6411268B2/en
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to CN201680019349.7A priority patent/CN107431248A/en
Priority to US15/562,348 priority patent/US20180358655A1/en
Priority to EP16772867.4A priority patent/EP3279995A4/en
Priority to PCT/JP2016/060201 priority patent/WO2016158986A1/en
Priority to KR1020177030797A priority patent/KR20170132239A/en
Priority to TW105110192A priority patent/TW201639225A/en
Publication of JP2016192357A publication Critical patent/JP2016192357A/en
Application granted granted Critical
Publication of JP6411268B2 publication Critical patent/JP6411268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解液用添加剤、非水電解液、及び蓄電デバイスに関する。   The present invention relates to an additive for non-aqueous electrolyte, a non-aqueous electrolyte, and an electricity storage device.

近年、環境問題の解決、持続可能な循環型社会の実現に対する関心が高まるにつれ、リチウムイオン電池に代表される非水電解液二次電池の研究が広範囲に行われている。リチウムイオン電池は、高い使用電圧とエネルギー密度を有していることから、ノート型パソコン、携帯電話等の電源として用いられている。リチウムイオン電池は、鉛電池及びニッケルカドミウム電池と比較して高いエネルギー密度を有していることから、電池の高容量化の実現が期待されている。   In recent years, research on non-aqueous electrolyte secondary batteries represented by lithium ion batteries has been extensively conducted as interest in solving environmental problems and realizing a sustainable recycling society has increased. Lithium ion batteries have high working voltage and energy density, and are therefore used as power sources for notebook computers and mobile phones. Since lithium ion batteries have a higher energy density than lead batteries and nickel cadmium batteries, realization of higher capacity of the batteries is expected.

しかし、リチウムイオン電池は、充放電サイクルの経過に伴って電池の容量が低下するという問題を有している。容量低下の要因は、例えば、長期間の充放電サイクルに伴って、電極反応による電解液の分解、電極活物質層への電解質の含浸性の低下、更にはリチウムイオンのインターカレーション効率の低下が生じることにあると考えられている。   However, the lithium ion battery has a problem that the capacity of the battery decreases as the charge / discharge cycle progresses. The cause of the decrease in capacity is, for example, the decomposition of the electrolyte solution due to the electrode reaction, the decrease in the impregnation property of the electrolyte into the electrode active material layer, and the decrease in the lithium ion intercalation efficiency with a long charge / discharge cycle. It is thought that this is caused by

充放電サイクルに伴う電池の容量低下を抑制する方法として、電解液に各種添加剤を加える方法が検討されている。添加剤は、一般に、最初の充放電時に分解され、電極表面上に固体電解質界面(SEI)と呼ばれる被膜を形成する。最初の充放電サイクルにおいてSEIが形成されるため、その後の充放電において、電解液の分解に電気が消費されることを抑制しながら、リチウムイオンがSEIを介して電極を行き来することができる。すなわち、SEIの形成が、充放電サイクルを繰り返したときの二次電池の劣化を抑制し、電池特性、保存特性及び負荷特性等を向上させることに大きな役割を果たすと考えられている。   Methods for adding various additives to an electrolytic solution have been studied as a method for suppressing a decrease in battery capacity associated with a charge / discharge cycle. Additives are generally decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface. Since the SEI is formed in the first charge / discharge cycle, lithium ions can move back and forth through the SEI while suppressing the consumption of electricity for the decomposition of the electrolyte during the subsequent charge / discharge. That is, it is considered that the formation of SEI plays a major role in suppressing the deterioration of the secondary battery when the charge / discharge cycle is repeated and improving the battery characteristics, storage characteristics, load characteristics, and the like.

電解液用添加剤として、例えば、特許文献1〜3には環状モノスルホン酸エステル、特許文献4には含硫黄芳香族化合物、特許文献5にはジスルフィド化合物、特許文献6〜9にはジスルホン酸エステルがそれぞれ開示されている。また、特許文献10〜15は環状炭酸エステル又は環状スルホン、特許文献16は含窒素環状基及び電子吸引性基を有する化合物、特許文献17はスルホン酸アミド基を含む化合物を含有する電解液を開示している。   Examples of the additive for the electrolytic solution include cyclic monosulfonic acid esters in Patent Documents 1 to 3, sulfur-containing aromatic compounds in Patent Document 4, disulfide compounds in Patent Document 5, and disulfonic acids in Patent Documents 6 to 9. Each ester is disclosed. Patent Documents 10 to 15 disclose cyclic carbonates or cyclic sulfones, Patent Document 16 discloses a compound having a nitrogen-containing cyclic group and an electron-withdrawing group, and Patent Document 17 discloses an electrolytic solution containing a compound containing a sulfonic acid amide group. doing.

特開昭63−102173号公報JP 63-102173 A 特開2000−003724号公報JP 2000-003724 A 特開平11−339850号公報JP 11-339850 A 特開平05−258753号公報JP 05-258753 A 特開2001−052735号公報JP 2001-052735 A 特開2009−038018号公報JP 2009-038018 A 特開2005−203341号公報JP-A-2005-203341 特開2004−281325号公報JP 2004-281325 A 特開2005−228631号公報JP 2005-228631 A 特開平04−87156号公報Japanese Unexamined Patent Publication No. 04-87156 特開平10−50342号公報Japanese Patent Laid-Open No. 10-50342 特開平08−45545号公報Japanese Patent Application Laid-Open No. 08-45545 特開2001−6729号公報JP 2001-6729 A 特開昭63−102173号公報JP 63-102173 A 特開平05−074486号公報Japanese Patent Laid-Open No. 05-074486 特開2014−127354号公報JP 2014-127354 A 特開2014−194866号公報JP 2014-194866 A

Geun−Chang,Hyung−Jin kim,Seung−ll Yu,Song−Hui Jun,Jong−Wook Choi,Myung−Hwan Kim.Journal of The Electrochemical Society,147,12,4391(2000)Geun-Chang, Hyung-Jin Kim, Seung-ll Yu, Song-Hui Jun, Jong-Wook Choi, Myung-Hwan Kim. Journal of The Electrochemical Society, 147, 12, 4391 (2000)

最低空分子軌道(LUMO)エネルギーが低い化合物は、優れた電子受容体であり、非水電解液二次電池等の電極表面上に安定なSEIを形成し得ると考えられている(例えば、非特許文献1)。   A compound having a low lowest unoccupied molecular orbital (LUMO) energy is an excellent electron acceptor and is considered to be able to form a stable SEI on the surface of an electrode such as a nonaqueous electrolyte secondary battery (for example, non Patent Document 1).

特許文献1〜9に開示される化合物等の従来の添加剤のいくつかは、低いLUMOエネルギーを示すものの、それらは化学的に不安定であり、水分及び温度の影響で劣化し易いという問題を有していた。例えば、ジスルホン酸エステル化合物は低いLUMOエネルギーを示すものの、水分に対する安定性が低く容易に劣化するため、長期間保管する場合には、厳密な水分含有量及び温度の管理を必要とする。一般的にリチウムイオン電池では約60℃、リチウムイオンキャパシタでは約80℃の耐熱温度が求められていることから、蓄電デバイスに用いられる非水電解液用添加剤の高温での安定性の向上は、重要な課題の1つであった。   Although some of conventional additives such as compounds disclosed in Patent Documents 1 to 9 exhibit low LUMO energy, they are chemically unstable and easily deteriorate due to the influence of moisture and temperature. Had. For example, although a disulfonic acid ester compound exhibits low LUMO energy, it has a low stability to moisture and easily deteriorates. Therefore, when it is stored for a long period of time, it is necessary to strictly control the moisture content and temperature. In general, the lithium ion battery is required to have a heat resistant temperature of about 60 ° C. and the lithium ion capacitor is about 80 ° C. Therefore, the improvement of the non-aqueous electrolyte additive used in the electricity storage device at high temperature is It was one of the important issues.

また、従来の添加剤を含有する電解液の場合、充放電サイクルを繰り返しながら長期に亘って蓄電デバイスを使用したときに、蓄電デバイスの電池特性が低下し易いため、サイクル特性の点で更なる改善が求められていた。   In addition, in the case of an electrolytic solution containing a conventional additive, when the power storage device is used over a long period of time while repeating the charge / discharge cycle, the battery characteristics of the power storage device are likely to be deteriorated. There was a need for improvement.

特許文献10〜14に記載されている電解液は、電気化学的還元分解によって負極表面上に生成するSEIによって、不可逆的な容量低下をある程度抑制することができる。しかし、これらの電解液中の添加剤によって形成されたSEIは、電極を保護する性能に優れるものの、長期間の使用に耐えるための強度の点で十分でなかった、そのため、蓄電デバイスの使用中にSEIが分解したり、SEIに亀裂が生じたりすることによって負極表面が露出し、電解液溶媒の分解が生じて電池特性が低下するといった問題があった。特許文献15に記載されるビニレンカーボネート系の化合物を添加剤として用いた電解液は、ビニレンカーボネートが電極上で分解された際に、二酸化炭素を初めとするガスを発生し、電池性能の低下につながるといった問題を有していた。ガス発生は、高温、又は長期に亘る充放電サイクルを繰り返したときに特に顕著である。   The electrolyte solutions described in Patent Documents 10 to 14 can suppress irreversible capacity reduction to some extent by SEI generated on the negative electrode surface by electrochemical reductive decomposition. However, although the SEI formed by the additive in these electrolytes is excellent in the performance of protecting the electrode, it is not sufficient in terms of strength to withstand long-term use. When the SEI is decomposed or the SEI is cracked, the surface of the negative electrode is exposed, and the electrolytic solution solvent is decomposed to deteriorate the battery characteristics. The electrolytic solution using the vinylene carbonate-based compound described in Patent Document 15 as an additive generates carbon dioxide and other gases when vinylene carbonate is decomposed on the electrode, resulting in a decrease in battery performance. It had the problem of being connected. The gas generation is particularly remarkable when a charge / discharge cycle is repeated at a high temperature or for a long time.

このように、非水電解液用添加剤に関して、保存安定性、充放電サイクルを繰り返したときに性能を維持するサイクル特性、又はガス発生の抑制の点で、更なる改善の余地があった。   As described above, the additive for non-aqueous electrolyte has room for further improvement in terms of storage stability, cycle characteristics for maintaining performance when a charge / discharge cycle is repeated, or suppression of gas generation.

そこで、本発明の主な目的は、高い保存安定性を有するとともに、蓄電デバイスに関して、サイクル特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤を提供することにある。   Accordingly, a main object of the present invention is to provide an additive for a non-aqueous electrolyte that has high storage stability and enables improvement of cycle characteristics and suppression of gas generation for an electricity storage device.

本発明者らは、特定の部分構造を含む化合物が、低いLUMOエネルギーを示し、かつ、化学的に安定であることを見出した。更に本発明者らは、係る化合物を非水電解液用添加剤として非水電解液二次電池等の蓄電デバイスに用いたときに、優れたサイクル特性が得られるとともに、ガス発生が抑制されることを見出し、本発明を完成させるに至った。   The present inventors have found that a compound containing a specific partial structure exhibits low LUMO energy and is chemically stable. Furthermore, the present inventors can obtain excellent cycle characteristics and suppress gas generation when the compound is used as an additive for a non-aqueous electrolyte in an electricity storage device such as a non-aqueous electrolyte secondary battery. As a result, the present invention has been completed.

すなわち、本発明の一側面は、下記式(1)又は式(2)で表される化合物を含む、非水電解液用添加剤を提供する。   That is, one aspect of the present invention provides a non-aqueous electrolyte additive containing a compound represented by the following formula (1) or formula (2).

Figure 0006411268
Figure 0006411268

式(1)又は式(2)中、X、X及びXはそれぞれ独立に、置換されていてもよいメチレン基、スルホニル基又はカルボニル基を示す。式(1)又は式(2)中、Y及びYはそれぞれ独立に、置換されていてもよい炭素数1〜6の炭化水素基を示す。 In formula (1) or formula (2), X 1 , X 2 and X 3 each independently represent an optionally substituted methylene group, sulfonyl group or carbonyl group. In formula (1) or formula (2), Y 1 and Y 2 each independently represent an optionally substituted hydrocarbon group having 1 to 6 carbon atoms.

式(1)又は式(2)で表される化合物は、電気化学的還元を受けた際に、環状アミド又は環状スルホンアミドが開環し、N、O、S等を含む極性基を多数含有するSEIを形成すると考えられる。このようなN、O、S等を含む極性基を多数含有しているSEIは、優れたイオン伝導度を示すことができることから、非常に高性能なSEIであると考えられる。また、式(1)又は式(2)で表される化合物は、環状アミド又は環状スルホンアミドがそれぞれ開環重合的にSEIを形成すると考えられる。このようなSEIの形成により、充放電に伴うSEIの崩壊、及び電解液の分解を起こりにくくし、サイクル特性、充放電容量、内部抵抗等の電池特性を改善し、ガス発生の抑制効果を発揮するものと考えられる。   The compound represented by formula (1) or formula (2) contains a large number of polar groups containing N, O, S, etc., when the cyclic amide or cyclic sulfonamide is opened upon electrochemical reduction. It is thought that SEI is formed. Such SEI containing a large number of polar groups including N, O, S and the like can exhibit excellent ionic conductivity, and thus is considered to be a very high performance SEI. Moreover, it is thought that the compound represented by Formula (1) or Formula (2) forms SEI by ring-opening polymerization of cyclic amide or cyclic sulfonamide, respectively. The formation of SEI makes it difficult for SEI to break down during charging and discharging, and electrolyte decomposition, improves battery characteristics such as cycle characteristics, charge and discharge capacity, and internal resistance, and exhibits gas generation suppression effects. It is thought to do.

本発明によれば、高い保存安定性を有するとともに、蓄電デバイスに関して、サイクル特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤が提供される。いくつかの実施形態に係る非水電解液用添加剤は、非水電解液二次電池、電気二重層キャパシタ等の蓄電デバイスに用いた場合に、電極表面上に安定なSEI(固体電解質界面)を形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having high storage stability, regarding an electrical storage device, the additive for nonaqueous electrolyte solutions which makes it possible to improve cycling characteristics and to suppress gas generation is provided. The non-aqueous electrolyte additive according to some embodiments is stable SEI (solid electrolyte interface) on the electrode surface when used in power storage devices such as non-aqueous electrolyte secondary batteries and electric double layer capacitors. Thus, battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance can be improved.

蓄電デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an electrical storage device.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

本実施形態に係る非水電解用添加剤は、下記式(1)又は式(2)で表される化合物を1種又は2種以上含む。

Figure 0006411268
The additive for nonaqueous electrolysis according to the present embodiment contains one or more compounds represented by the following formula (1) or formula (2).
Figure 0006411268

式(1)又は式(2)中、X、X及びXはそれぞれ独立に、置換されていてもよいメチレン基、スルホニル基又はカルボニル基を示す。式(1)又は式(2)中、Y及びYはそれぞれ独立に、置換されていてもよい炭素数1〜6の炭化水素基を示す。式(1)中、Xはメチレン基又はカルボニル基であってもよく、式(2)中、Xはメチレン基、スルホニル基又はカルボニル基であってもよい。 In formula (1) or formula (2), X 1 , X 2 and X 3 each independently represent an optionally substituted methylene group, sulfonyl group or carbonyl group. In formula (1) or formula (2), Y 1 and Y 2 each independently represent an optionally substituted hydrocarbon group having 1 to 6 carbon atoms. In formula (1), X 3 may be a methylene group or a carbonyl group, and in formula (2), X 3 may be a methylene group, a sulfonyl group or a carbonyl group.

式(1)又は式(2)で表される化合物としては、なかでも、X、X及びXがそれぞれ独立に、スルホニル基又はカルボニル基であってもよい。このような場合、式(1)又は式(2)で表される化合物は、2つの開環可能な重合部位を有することで、また、スルホニル基若しくはカルボニル基を含有することにより、抵抗の低いSEIを形成することができるため、更なる電池特性の改善及びガス発生の抑制等の効果が得られやすい。 As a compound represented by Formula (1) or Formula (2), X 1 , X 2 and X 3 may each independently be a sulfonyl group or a carbonyl group. In such a case, the compound represented by the formula (1) or the formula (2) has a low resistance by having two ring-opening polymerization sites and containing a sulfonyl group or a carbonyl group. Since SEI can be formed, effects such as further improvement of battery characteristics and suppression of gas generation are easily obtained.

式(1)又は式(2)中、Y及びYとして、置換されていてもよい炭素数1〜6の炭化水素基は、多重結合を含んでもよく、環状であってもよい。このような置換されていてもよい炭素数1〜6の炭化水素基としては、−CHCH−、−CHFCHF−、−CHCHCH−、−CH=CH−、−C−等が挙げられる。 In formula (1) or formula (2), the hydrocarbon group having 1 to 6 carbon atoms which may be substituted as Y 1 and Y 2 may contain multiple bonds or may be cyclic. Such optionally substituted good 1 to 6 carbon atoms hydrocarbon group, -CH 2 CH 2 -, - CHFCHF -, - CH 2 CH 2 CH 2 -, - CH = CH -, - C 6 H 4- and the like can be mentioned.

式(1)又は式(2)で表される化合物は、入手性及び反応性等の観点から、例えば、式(3−1)、式(3−2)、式(3−3)又は式(3−4)で表される化合物であってもよい。   The compound represented by Formula (1) or Formula (2) is, for example, from Formula (3-1), Formula (3-2), Formula (3-3), or Formula from the viewpoints of availability and reactivity. The compound represented by (3-4) may be sufficient.

Figure 0006411268
Figure 0006411268

式(3−1)、式(3−2)、式(3−3)及び式(3−4)中、X及びX、並びにYとしては、式(1)又は式(2)中のX及びX、並びにYに関して例示したものと同義である。 In Formula (3-1), Formula (3-2), Formula (3-3), and Formula (3-4), X 1 and X 2 , and Y 1 may be Formula (1) or Formula (2). X 1 and X 2 in, and is synonymous with those illustrated with respect to Y 1.

式(1)又は式(2)で表される化合物としては、フタルイミド−1−カルボン酸−2,5−ジオキソピロリジン、2,5−ピロールジオン−1−カルボン酸−2,5−ジオキソピロリジン、2,5−ジオキソピロリジン−1−カルボン酸−2,5−ジオキソピロリジン、o−ベンズスルホイミド−1−カルボン酸−2,5−ジオキソピロリジン、ベンゾイミド−1−カルボン酸−フタルイミド、2,5−ピロールジオン−1−カルボン酸−フタルイミド、2,5−ジオキソピロリジン−1−カルボン酸−フタルイミド、o−ベンズスルホイミド−1−カルボン酸−フタルイミド等が挙げられる。   Examples of the compound represented by formula (1) or formula (2) include phthalimide-1-carboxylic acid-2,5-dioxopyrrolidine, 2,5-pyrroldione-1-carboxylic acid-2,5-dioxo. Pyrrolidine, 2,5-dioxopyrrolidine-1-carboxylic acid-2,5-dioxopyrrolidine, o-benzsulfonimide-1-carboxylic acid-2,5-dioxopyrrolidine, benzoimide-1-carboxylic acid-phthalimide 2,5-pyrroldione-1-carboxylic acid-phthalimide, 2,5-dioxopyrrolidine-1-carboxylic acid-phthalimide, o-benzsulfonimide-1-carboxylic acid-phthalimide, and the like.

式(1)又は式(2)の化合物は、電気化学的還元を受けやすい低いLUMOエネルギーを示すため、これらを非水電解液用添加剤として含有する非水電解液は、非水電解液二次電池等の蓄電デバイスに用いられたときに、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。また、式(1)又は式(2)の化合物は、水分及び温度変化に対して安定であるため、これを含む非水電解液用添加剤及び非水電解液は、長期間、室温で保存することが可能である。   Since the compound of formula (1) or formula (2) exhibits low LUMO energy that is susceptible to electrochemical reduction, a non-aqueous electrolyte containing these as additives for non-aqueous electrolyte is non-aqueous electrolyte 2 When used in an electricity storage device such as a secondary battery, stable SEI can be formed on the electrode surface to improve battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance. Moreover, since the compound of Formula (1) or Formula (2) is stable with respect to moisture and temperature changes, the non-aqueous electrolyte additive and the non-aqueous electrolyte containing the compound are stored at room temperature for a long period of time. Is possible.

式(1)又は式(2)で表される化合物のLUMOエネルギーは、−3.0eV以上であってもよく、0.0eV以下であってもよい。LUMOエネルギーが−3.0eV以上であると、化合物の過剰な分解によって負極上に高い抵抗を示すSEIが形成されることをより回避することができる。LUMOエネルギーが0.0eV以下であると、負極表面により安定なSEIをより容易に形成することができる。同様の観点から、LUMOエネルギーは−2.9eV以上であってもよく、−0.5eV以下であってもよい。当業者であれば、式(1)又は式(2)で定義される化合物の範囲内であれば、これら数値範囲内のLUMOエネルギーを示す化合物を過度の試行錯誤なく見出すことができる。   The LUMO energy of the compound represented by formula (1) or formula (2) may be −3.0 eV or more, or 0.0 eV or less. When the LUMO energy is −3.0 eV or more, it is possible to further avoid the formation of SEI showing high resistance on the negative electrode due to excessive decomposition of the compound. When the LUMO energy is 0.0 eV or less, more stable SEI can be more easily formed on the negative electrode surface. From the same viewpoint, the LUMO energy may be -2.9 eV or more, or -0.5 eV or less. A person skilled in the art can find a compound exhibiting LUMO energy within these numerical ranges without undue trial and error within the range defined by the formula (1) or the formula (2).

本明細書において、「最低空分子軌道(LUMO)エネルギー」は、半経験的分子軌道計算法であるPM3と密度汎関数法であるB3LYP法とを組み合わせて算出される値である。具体的には、LUMOエネルギーは、Gaussian03(Revision B.03、米ガウシアン社製ソフトウェア)を用いて算出することができる。   In this specification, “lowest unoccupied molecular orbital (LUMO) energy” is a value calculated by combining the semi-empirical molecular orbital calculation method PM3 and the density functional method B3LYP method. Specifically, the LUMO energy can be calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA).

当業者は、式(1)又は式(2)の化合物を、入手可能な原料を用い、通常の反応を組み合わせて合成することができる。例えば、式(1)又は式(2)の化合物は、該当クロロギ酸エステルに環状イミド化合物を塩基存在下に反応させる方法によって、合成することができる。   A person skilled in the art can synthesize the compound of formula (1) or formula (2) by combining the usual reactions using available raw materials. For example, the compound of Formula (1) or Formula (2) can be synthesized by a method in which a cyclic imide compound is reacted with a corresponding chloroformate in the presence of a base.

本実施形態に係る非水電解液用添加剤は、式(1)又は式(2)の化合物の他に、SEI形成に寄与し得る化合物等の、他の一般的な成分を含んでいてもよい。あるいは、式(1)又は式(2)の化合物自体を非水電解液用添加剤として用いてもよい。本実施形態に係る非水電解液用添加剤は、本発明が奏する効果を損なわない範囲内で、他の一般的な成分を含んでいてもよい。他の一般的な成分としては、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、1,3−プロパンスルトン(PS)、負極保護剤、正極保護剤、難燃剤、過充電防止剤等が挙げられる。   The additive for non-aqueous electrolyte according to the present embodiment may contain other general components such as a compound that can contribute to SEI formation in addition to the compound of formula (1) or formula (2). Good. Or you may use the compound of Formula (1) or Formula (2) itself as an additive for non-aqueous electrolytes. The additive for non-aqueous electrolyte according to the present embodiment may contain other general components as long as the effects of the present invention are not impaired. Other common components include, for example, vinylene carbonate (VC), fluoroethylene carbonate (FEC), 1,3-propane sultone (PS), negative electrode protective agent, positive electrode protective agent, flame retardant, overcharge inhibitor, etc. Is mentioned.

本実施形態に係る非水電解液は、上記非水電解液用添加剤、非水溶媒、及び電解質を含有する。この非水電解液における非水電解液用添加剤(又は式(1)又は式(2)の化合物)の含有量は、非水電解液の全質量を基準として、0.005質量%以上であってもよいし、10質量%以下であってもよい。この含有量が0.005質量%以上であると、電極表面での電気化学反応によって安定なSEIが充分に形成され易くなる。この含有量が10質量%以下であると、非水電解液用添加剤を非水溶媒に容易に溶解させることができる。また、非水電解液用添加剤の含有量を過度に多くしないことにより、非水電解液の粘度上昇を抑制して、イオンの移動度を特に容易に確保することができる。イオンの移動度が充分に確保されないと、非水電解液の導電性等を充分に確保することができず、蓄電デバイスの充放電特性等に支障をきたすおそれがある。同様の観点から、非水電解液用添加剤(又は式(1)又は式(2)の化合物)の含有量の下限は0.01質量%であってもよい。   The non-aqueous electrolyte according to this embodiment contains the additive for non-aqueous electrolyte, a non-aqueous solvent, and an electrolyte. The content of the additive for nonaqueous electrolyte (or the compound of formula (1) or formula (2)) in this nonaqueous electrolyte is 0.005% by mass or more based on the total mass of the nonaqueous electrolyte. It may be 10% by mass or less. When the content is 0.005% by mass or more, stable SEI is easily formed by an electrochemical reaction on the electrode surface. When the content is 10% by mass or less, the non-aqueous electrolyte additive can be easily dissolved in the non-aqueous solvent. In addition, by not excessively increasing the content of the additive for nonaqueous electrolyte, an increase in viscosity of the nonaqueous electrolyte can be suppressed, and ion mobility can be particularly ensured. If the mobility of ions is not sufficiently ensured, the conductivity of the non-aqueous electrolyte cannot be sufficiently ensured, and the charge / discharge characteristics of the electricity storage device may be hindered. From the same viewpoint, the lower limit of the content of the additive for non-aqueous electrolyte (or the compound of formula (1) or formula (2)) may be 0.01% by mass.

非水電解液は、2種以上の非水電解液用添加剤(SEIを形成する2種以上の化合物)を含んでいてもよい。この場合、非水電解液用添加剤の合計の含有量は、非水電解液の全質量を基準として、0.005質量%以上であってもよく、10質量%以下であってもよい。他の添加剤としては、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、及び1,3−プロパンスルトン(PS)等がある。   The non-aqueous electrolyte may contain two or more additives for non-aqueous electrolyte (two or more compounds that form SEI). In this case, the total content of the non-aqueous electrolyte additive may be 0.005% by mass or more and 10% by mass or less based on the total mass of the non-aqueous electrolyte. Examples of other additives include vinylene carbonate (VC), fluoroethylene carbonate (FEC), and 1,3-propane sultone (PS).

非水溶媒としては、得られる非水電解液の粘度を低く抑える等の観点から、非プロトン性溶媒を選択することができる。非プロトン性溶媒は、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、スルホン、ニトリル、及び、これらのハロゲン誘導体からなる群より選択される少なくとも1種であってもよい。なかでも、非プロトン性溶媒としては、環状カーボネート、及び/又は鎖状カーボネートを選択することができる。   As the non-aqueous solvent, an aprotic solvent can be selected from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low. The aprotic solvent is at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. It may be. Among these, as the aprotic solvent, a cyclic carbonate and / or a chain carbonate can be selected.

環状カーボネートとしては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレンが挙げられる。鎖状カーボネートとしては、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルが挙げられる。脂肪族カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルが挙げられる。ラクトンとしては、例えば、γ−ブチロラクトンが挙げられる。ラクタムとしては、例えば、ε−カプロラクタム、N−メチルピロリドンが挙げられる。環状エーテルとしては、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソランが挙げられる。鎖状エーテルとしては、例えば、1,2−ジエトキシエタン、エトキシメトキシエタンが挙げられる。スルホンとしては、例えば、スルホランが挙げられる。ニトリルとしては、例えば、アセトニトリルが挙げられる。ハロゲン誘導体としては、例えば、4−フルオロ−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンが挙げられる。これらの非水溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの非水溶媒は、例えば、リチウムイオン電池等の非水電解液二次電池、リチウムイオンキャパシタ等の電気二重層キャパシタの用途に特に適している。   Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate. Examples of lactones include γ-butyrolactone. Examples of the lactam include ε-caprolactam and N-methylpyrrolidone. Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, and 1,3-dioxolane. Examples of the chain ether include 1,2-diethoxyethane and ethoxymethoxyethane. Examples of the sulfone include sulfolane. Examples of nitriles include acetonitrile. Examples of the halogen derivative include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one Is mentioned. These nonaqueous solvents may be used alone or in combination of two or more. These nonaqueous solvents are particularly suitable for use in non-aqueous electrolyte secondary batteries such as lithium ion batteries and electric double layer capacitors such as lithium ion capacitors.

非水電解液を構成する電解質は、リチウムイオンのイオン源となるリチウム塩であってもよい。なかでも、電解質は、LiAlCl、LiBF、LiPF、LiClO、LiAsF、及び、LiSbFからなる群より選択される少なくとも1種であってもよい。解離度が高く電解液のイオン伝導度を高めることができ、更には耐酸化還元特性により長期間使用による蓄電デバイスの性能劣化を抑制する作用がある等の観点から、電解質として、LiBF及び/又はLiPFを選択してもよい。これらの電解質は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。LiBF及びLiPFは、非水溶媒として、環状カーボネート及び鎖状カーボネートをそれぞれ1種以上と組み合わせることができる。特に、LiBF及び/又はLiPFと、炭酸エチレン及び炭酸ジエチルとを組み合わせてもよい。 The electrolyte constituting the non-aqueous electrolyte may be a lithium salt that serves as a source of lithium ions. Among them, the electrolyte, LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6, and may be at least one selected from the group consisting of LiSbF 6. It is possible to improve the ionic conductivity of the degree of dissociation is high electrolyte, even from the viewpoint of that function to suppress performance deterioration of the electric storage device according to long-term use by oxidation reduction characteristics, as an electrolyte, LiBF 4 and / Alternatively, LiPF 6 may be selected. These electrolytes may be used alone or in combination of two or more. LiBF 4 and LiPF 6 can be combined with one or more cyclic carbonates and chain carbonates as non-aqueous solvents. In particular, LiBF 4 and / or LiPF 6 may be combined with ethylene carbonate and diethyl carbonate.

非水電解液における電解質の濃度は、0.1mol/L以上であってもよく、2.0mol/L以下であってもよい。電解質の濃度が0.1mol/L以上であると、非水電解液の導電性等を充分に確保しやすい。そのため、蓄電デバイスの安定した放電特性及び充電特性が得られ易い。電解質の濃度が2.0mol/L以下であると、非水電解液の粘度上昇を抑制して、イオンの移動度を特に容易に確保することができる。イオンの移動度が充分に確保されないと、電解液の導電性等を充分に確保することができず、蓄電デバイスの充放電特性等に支障をきたすおそれがある。同様の観点から、電解質の濃度は0.5mol/L以上であってもよく、1.5mol/L以下であってもよい。   The concentration of the electrolyte in the nonaqueous electrolytic solution may be 0.1 mol / L or more, or 2.0 mol / L or less. When the concentration of the electrolyte is 0.1 mol / L or more, it is easy to sufficiently ensure the conductivity of the nonaqueous electrolytic solution. Therefore, it is easy to obtain stable discharge characteristics and charge characteristics of the electricity storage device. When the electrolyte concentration is 2.0 mol / L or less, an increase in the viscosity of the nonaqueous electrolytic solution can be suppressed, and the mobility of ions can be secured particularly easily. If the ion mobility is not sufficiently ensured, the conductivity of the electrolyte cannot be sufficiently ensured, and the charge / discharge characteristics of the electricity storage device may be hindered. From the same viewpoint, the concentration of the electrolyte may be 0.5 mol / L or more, or 1.5 mol / L or less.

本実施形態に係る蓄電デバイスは、上記非水電解液と、正極及び負極とから主として構成される。蓄電デバイスの具体例は、非水電解液二次電池(リチウムイオン電池等)及び電気二重層キャパシタ(リチウムイオンキャパシタ等)を含む。本実施形態に係る非水電解液は、リチウムイオン電池、及びリチウムイオンキャパシタの用途において特に効果的である。   The electricity storage device according to this embodiment is mainly composed of the non-aqueous electrolyte, a positive electrode, and a negative electrode. Specific examples of the electricity storage device include a non-aqueous electrolyte secondary battery (such as a lithium ion battery) and an electric double layer capacitor (such as a lithium ion capacitor). The nonaqueous electrolytic solution according to the present embodiment is particularly effective in applications of lithium ion batteries and lithium ion capacitors.

図1は、蓄電デバイスの一実施形態を模式的に示す断面図である。図1に示す蓄電デバイス1は、非水電解液二次電池である。蓄電デバイス1は、正極板4(正極)と、正極板4と対向する負極板7(負極)と、正極板4と負電極板7との間に配置された非水電解液8と、非水電解液8中に設けられたセパレータ9と、を備える。正極板4は、正極集電体2とその非水電解液8側に設けられた正極活物質層3とを有する。負極板7は、負極集電体5と非水電解液8側に設けられた負極活物質層6とを有する。非水電解液8として、上述の実施形態に係る非水電解液を用いることができる。図1では、蓄電デバイスとして非水電解液二次電池を示したが、当該非水電解液が適用され得る蓄電デバイスはこれに限定されることはなく、電気二重層キャパシタ等のその他の蓄電デバイスであってもよい。   FIG. 1 is a cross-sectional view schematically showing an embodiment of an electricity storage device. An electricity storage device 1 shown in FIG. 1 is a non-aqueous electrolyte secondary battery. The electricity storage device 1 includes a positive electrode plate 4 (positive electrode), a negative electrode plate 7 (negative electrode) opposed to the positive electrode plate 4, a non-aqueous electrolyte solution 8 disposed between the positive electrode plate 4 and the negative electrode plate 7, And a separator 9 provided in the water electrolyte 8. The positive electrode plate 4 includes a positive electrode current collector 2 and a positive electrode active material layer 3 provided on the nonaqueous electrolyte solution 8 side. The negative electrode plate 7 includes a negative electrode current collector 5 and a negative electrode active material layer 6 provided on the nonaqueous electrolyte solution 8 side. As the nonaqueous electrolytic solution 8, the nonaqueous electrolytic solution according to the above-described embodiment can be used. In FIG. 1, a non-aqueous electrolyte secondary battery is shown as the electricity storage device, but the electricity storage device to which the non-aqueous electrolyte can be applied is not limited to this, and other electricity storage devices such as an electric double layer capacitor. It may be.

正極集電体2及び負極集電体5は、例えば、アルミニウム、銅、ニッケル、及びステンレス等の金属からなる金属箔であってもよい。   The positive electrode current collector 2 and the negative electrode current collector 5 may be metal foils made of a metal such as aluminum, copper, nickel, and stainless steel, for example.

正極活物質層3は正極活物質を含む。正極活物質は、リチウム含有複合酸化物であってもよい。リチウム含有複合酸化物の具体例は、LiMnO、LiFeO、LiCoO、LiMn、LiFeSiO、LiNi1/3Co1/3Mn1/3、及びLiFePOを含む。 The positive electrode active material layer 3 contains a positive electrode active material. The positive electrode active material may be a lithium-containing composite oxide. Specific examples of the lithium-containing composite oxide includes LiMnO 2, LiFeO 2, LiCoO 2 , LiMn 2 O 4, Li 2 FeSiO 4, LiNi 1/3 Co 1/3 Mn 1/3 O 2, and LiFePO 4.

負極活物質層6は負極活物質を含む。負極活物質は、例えば、リチウムを吸蔵、放出することができる材料であってもよい。このような材料の具体例は、黒鉛及び非晶質炭素等の炭素材料、酸化インジウム、酸化シリコン、酸化スズ、酸化亜鉛及び酸化リチウム等の酸化物材料を含む。負極活物質は、リチウム金属、又は、リチウムと合金を形成することができる金属材料であってもよい。リチウムと合金を形成することができる金属の具体例は、Cu、Sn、Si、Co、Mn、Fe、Sb、及びAgを含む。これらの金属と、リチウムとを含む2元又は3元からなる合金を負極活物質として用いることもできる。これらの負極活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   The negative electrode active material layer 6 contains a negative electrode active material. The negative electrode active material may be a material that can occlude and release lithium, for example. Specific examples of such materials include carbon materials such as graphite and amorphous carbon, and oxide materials such as indium oxide, silicon oxide, tin oxide, zinc oxide and lithium oxide. The negative electrode active material may be a lithium metal or a metal material capable of forming an alloy with lithium. Specific examples of metals that can form alloys with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, and Ag. A binary or ternary alloy containing these metals and lithium can also be used as the negative electrode active material. These negative electrode active materials may be used alone or in combination of two or more.

セパレータ9は、例えば、ポリエチレン、ポリプロピレン、フッ素樹脂等からなる多孔質フィルムであってもよい。   For example, the separator 9 may be a porous film made of polyethylene, polypropylene, fluororesin, or the like.

蓄電デバイスを構成する各部材の形状、厚み等の具体的な形態は、当業者であれば適宜設定することができる。蓄電デバイスの構成は、図1の実施形態に限られず、適宜変更が可能である。   Specific forms such as the shape and thickness of each member constituting the power storage device can be set as appropriate by those skilled in the art. The configuration of the power storage device is not limited to the embodiment of FIG. 1 and can be changed as appropriate.

以下、実施例を挙げて本発明について更に具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

1.非水電解液の調製
(実施例1)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積比で混合して、混合非水溶媒を準備し、これに電解質としてLiPFを1.0mol/Lの濃度となるように溶解した。得られた溶液に、表1に示した化合物1を非水電解液用添加剤として添加し、非水電解液を調製した。非水電解液用添加剤(化合物1)の含有割合は、非水電解液の全質量を基準として0.5質量%とした。
1. Preparation of non-aqueous electrolyte (Example 1)
Ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of EC: DEC = 30: 70 to prepare a mixed non-aqueous solvent, to which LiPF 6 is added at 1.0 mol / L as an electrolyte. It dissolved so that it might become a density | concentration. To the obtained solution, the compound 1 shown in Table 1 was added as an additive for non-aqueous electrolyte solution to prepare a non-aqueous electrolyte solution. The content ratio of the additive for non-aqueous electrolyte (Compound 1) was 0.5% by mass based on the total mass of the non-aqueous electrolyte.

(実施例2)
化合物1の含有割合を1.0質量%としたこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the content ratio of Compound 1 was 1.0% by mass.

(実施例3)
非水電解液用添加剤を化合物1から表1に示した化合物2に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 3)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 2 shown in Table 1 and the content ratio was 1.0% by mass. did.

(実施例4)
非水電解液用添加剤を化合物1から表1に示した化合物3に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 4
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 3 shown in Table 1 and the content ratio was 1.0% by mass. did.

(実施例5)
非水電解液用添加剤を化合物1から表1に示した化合物4に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 5)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 4 shown in Table 1 and the content ratio was 1.0% by mass. did.

(実施例6)
非水電解液用添加剤を化合物1から表1に示した化合物5に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 6)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 5 shown in Table 1 and the content ratio was 1.0% by mass. did.

(実施例7)
非水電解液用添加剤を化合物1から表1に示した化合物6に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 7)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 6 shown in Table 1 and the content ratio was 1.0% by mass. did.

(実施例8)
非水電解液用添加剤を化合物1から表1に示した化合物7に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Example 8)
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 7 shown in Table 1 and the content ratio was 1.0% by mass. did.

(実施例9)
非水電解液用添加剤を化合物1から表1に示した化合物8に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
Example 9
The nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolyte solution was changed from compound 1 to compound 8 shown in Table 1 and the content ratio was 1.0% by mass. did.

(比較例1)
化合物1を添加しなかったこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 1)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 1 was not added.

(比較例2)
非水電解液用添加剤を化合物1から1,3−プロパンスルトンに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 2)
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the additive for non-aqueous electrolyte was changed from Compound 1 to 1,3-propane sultone and the content ratio was 1.0% by mass. .

(比較例3)
非水電解液用添加剤を化合物1からビニレンカーボネート(VC)に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from compound 1 to vinylene carbonate (VC) and the content ratio was 1.0% by mass.

(比較例4)
ビニレンカーボネート(VC)の含有割合を2.0質量%としたこと以外は比較例3と同様にして、非水電解液を調製した。
(Comparative Example 4)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.

(比較例5)
非水電解液用添加剤を化合物1からフルオロエチレンカーボネート(FEC)に変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 5)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to fluoroethylene carbonate (FEC) and the content ratio was 1.0% by mass. .

(比較例6)
フルオロエチレンカーボネート(FEC)の含有割合を2.0質量%としたこと以外は比較例5と同様にして、非水電解液を調製した。
(Comparative Example 6)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.

(比較例7)
非水電解液用添加剤を化合物1からフタルイミドに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 7)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to phthalimide and the content ratio was 1.0% by mass.

(比較例8)
非水電解液用添加剤を化合物1からマレイミドに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 8)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to maleimide and the content ratio was 1.0% by mass.

(比較例9)
非水電解液用添加剤を化合物1からスクシンイミドに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 9)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to succinimide and the content ratio was 1.0% by mass.

(比較例10)
非水電解液用添加剤を化合物1からサッカリンに変更し、その含有割合を1.0質量%としたこと以外は実施例1と同様にして、非水電解液を調製した。
(Comparative Example 10)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the additive for nonaqueous electrolytic solution was changed from Compound 1 to saccharin and the content ratio was 1.0% by mass.

2.評価
(LUMOエネルギーの計算)
実施例で用いた化合物1〜8のLUMO(最低空分子軌道)エネルギーを、Gaussian03ソフトウェアにより、半経験的分子軌道計算により求めた。算出されたLUMOエネルギーを表1に示した。
2. Evaluation (calculation of LUMO energy)
The LUMO (lowest unoccupied molecular orbital) energies of compounds 1-8 used in the examples were determined by semi-empirical molecular orbital calculation with Gaussian 03 software. The calculated LUMO energy is shown in Table 1.

Figure 0006411268
Figure 0006411268

(安定性)
実施例で用いた化合物1〜8、及び、比較例5、6で用いたフルオロエチレンカーボネート(FEC)を、温度40±2℃、湿度75±5%の恒温恒湿環境下で90日間放置する保存試験に供した。保存試験前後の各非水電解液用添加剤のH−核磁気共鳴スペクトル(H−NMR)を測定し、以下の基準で各化合物の安定性を評価した。表2は安定性の評価結果を示す。
○:保存試験前後でH−NMRスペクトルのピーク変化がなかった。
△:保存試験前後でH−NMRスペクトルのわずかなピーク変化が確認された。
×:保存試験前後でH−NMRスペクトルの明らかなピーク変化が確認された。
(Stability)
The compounds 1 to 8 used in the Examples and the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 are left for 90 days in a constant temperature and humidity environment with a temperature of 40 ± 2 ° C. and a humidity of 75 ± 5%. It used for the preservation | save test. The 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR) of each non-aqueous electrolyte additive before and after the storage test was measured, and the stability of each compound was evaluated according to the following criteria. Table 2 shows the stability evaluation results.
○: There was no peak changes in 1 H-NMR spectrum before and after the storage test.
Δ: Slight peak change in 1 H-NMR spectrum was confirmed before and after the storage test.
X: A clear peak change in the 1 H-NMR spectrum was confirmed before and after the storage test.

Figure 0006411268
Figure 0006411268

表2に示したように、比較例5、6で用いたフルオロエチレンカーボネート(FEC)は、一部加水分解されていると考えられ、安定性が劣るものであった。一方、実施例で用いた化合物1〜8は、ほとんど変化が見られず、安定性に優れるものであった。   As shown in Table 2, the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 was considered to be partially hydrolyzed and had poor stability. On the other hand, the compounds 1 to 8 used in the examples were hardly changed and excellent in stability.

(非水電解液二次電池の作製)
正極活物質としてのLiMnと、導電性付与剤としてのカーボンブラックとを乾式混合した。得られた混合物を、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーをアルミ金属箔(角型、厚さ20μm)の両面に塗布した。塗膜を乾燥してNMPを除去した後、全体をプレスして、正極集電体としてのアルミ金属箔と、その両面上に形成された正極活物質層とを有する正極シートを得た。得られた正極シートの正極活物質層における固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=90:5:5とした。
負極シートとしては、市販の黒鉛塗布電極シート(宝泉社製、商品名:電極シート負極単層)を用いた。
実施例及び比較例で得られた各種非水電解液中にて、ポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、実施例1〜9及び比較例1〜10で得られた各非水電解液を袋内に注入し、真空封止を行ない、シート状の非水電解液二次電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧し、非水電解液二次電池(シート型二次電池)を作製した。
(Preparation of non-aqueous electrolyte secondary battery)
LiMn 2 O 4 as a positive electrode active material and carbon black as a conductivity imparting agent were dry mixed. The obtained mixture was uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) was dissolved as a binder to prepare a slurry. The obtained slurry was applied to both surfaces of an aluminum metal foil (square shape, thickness 20 μm). After the coating film was dried to remove NMP, the whole was pressed to obtain a positive electrode sheet having an aluminum metal foil as a positive electrode current collector and a positive electrode active material layer formed on both surfaces thereof. The solid content ratio in the positive electrode active material layer of the obtained positive electrode sheet was a mass ratio, and was positive electrode active material: conductivity imparting agent: PVDF = 90: 5: 5.
As the negative electrode sheet, a commercially available graphite-coated electrode sheet (manufactured by Hosen Co., Ltd., trade name: electrode sheet negative electrode single layer) was used.
In various non-aqueous electrolytes obtained in Examples and Comparative Examples, a polyethylene separator was laminated in the order of a negative electrode, a separator, a positive electrode, a separator, and a negative electrode to prepare a battery element. After inserting this battery element into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 μm) were coated with a resin layer while projecting positive and negative terminals, Examples 1-9 and Comparative Examples 1-10 Each non-aqueous electrolyte obtained in (1) was poured into a bag and vacuum-sealed to produce a sheet-like non-aqueous electrolyte secondary battery. Furthermore, in order to improve the adhesiveness between electrodes, a sheet-like battery was sandwiched between glass plates and pressed to prepare a non-aqueous electrolyte secondary battery (sheet-type secondary battery).

(放電容量維持率及び内部抵抗比の評価)
得られた各非水電解液二次電池に対して、25℃において、充電レートを0.3C、放電レートを0.3C、充電終止電圧を4.2V、及び、放電終止電圧を2.5Vとして充放電サイクル試験を行った。表3は、200サイクル後の放電容量維持率(%)と200サイクル後の内部抵抗比を示す。
「200サイクル後の放電容量維持率(%)」とは、200サイクル試験後の放電容量(mAh)を、10サイクル試験後の放電容量(mAh)に対する割合(百分率)である。また、「200サイクル後の内部抵抗比」とは、サイクル試験前の抵抗を1としたときの、200サイクル試験後の抵抗の相対値である。
(Evaluation of discharge capacity maintenance ratio and internal resistance ratio)
For each of the obtained nonaqueous electrolyte secondary batteries, at 25 ° C., the charge rate was 0.3 C, the discharge rate was 0.3 C, the charge end voltage was 4.2 V, and the discharge end voltage was 2.5 V. A charge / discharge cycle test was conducted. Table 3 shows the discharge capacity retention rate (%) after 200 cycles and the internal resistance ratio after 200 cycles.
“Discharge capacity maintenance rate after 200 cycles (%)” is the ratio (percentage) of the discharge capacity (mAh) after the 200 cycle test to the discharge capacity (mAh) after the 10 cycle test. The “internal resistance ratio after 200 cycles” is the relative value of the resistance after the 200 cycle test when the resistance before the cycle test is 1.

Figure 0006411268
Figure 0006411268

(ガス発生量の測定)
サイクル試験に用いた電池とは別に、実施例及び比較例の各電解液を含む同様の構成の非水電解液二次電池を準備した。この電池を、25℃において、0.2Cに相当する電流で4.2Vまで充電した後、0.2Cに相当する電流で3Vまで放電する操作を3サイクル行なって電池を安定させた。次いで、充電レートを0.3Cとして再度4.2Vまで電池を充電した後、60℃、168時間の高温で電池を保存した。その後、室温まで冷却し、アルキメデス法により電池の体積を測定し、保存前後の体積変化からガス発生量を求めた。
(Measurement of gas generation amount)
Separately from the batteries used in the cycle test, non-aqueous electrolyte secondary batteries having the same configuration including the electrolytes of the examples and comparative examples were prepared. This battery was charged to 4.2 V at 25 ° C. with a current corresponding to 0.2 C, and then discharged to 3 V with a current corresponding to 0.2 C for 3 cycles to stabilize the battery. Next, after charging the battery to 4.2 V again at a charge rate of 0.3 C, the battery was stored at a high temperature of 60 ° C. and 168 hours. Then, it cooled to room temperature, measured the volume of the battery by Archimedes method, and calculated | required the gas generation amount from the volume change before and behind a preservation | save.

Figure 0006411268
Figure 0006411268

表3から、式(1)又は式(2)の化合物である化合物1〜8を含む各実施例の非水電解液を用いた非水電解液二次電池は、比較例の非水電解液を用いた非水電解液二次電池と比較して、サイクル試験時における放電容量維持率が高いことが分かる。また表4から、式(1)又は式(2)の化合物である化合物1〜8を含む各実施例の非水電解液を用いた非水電解液二次電池は、ガスの発生が少ないことが分かる。これは、式(1)又は式(2)の化合物が、非水電解液二次電池に用いられたときに、充放電サイクル、及び高温保存に対して安定なSEIを形成することを強く示唆している。また、式(1)又は式(2)の化合物は、充放電サイクルによる内部抵抗の増加が少ない点でも、優れていることが確認された。   From Table 3, the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte solution of each example containing compounds 1 to 8 which are compounds of formula (1) or formula (2) is a non-aqueous electrolyte solution of a comparative example. It can be seen that the discharge capacity retention rate during the cycle test is higher than that of the non-aqueous electrolyte secondary battery using the. Moreover, from Table 4, the nonaqueous electrolyte secondary battery using the nonaqueous electrolyte solution of each Example containing the compounds 1 to 8 which are the compounds of the formula (1) or the formula (2) has less gas generation. I understand. This strongly suggests that the compound of formula (1) or formula (2) forms a stable SEI for charge / discharge cycles and high temperature storage when used in non-aqueous electrolyte secondary batteries. doing. Moreover, it was confirmed that the compound of Formula (1) or Formula (2) is excellent also in the point that there is little increase in internal resistance by a charging / discharging cycle.

1…蓄電デバイス(非水電解液二次電池)、2…正極集電体、3…正極活物質層、4…正極板、5…負極集電体、6…負極活物質層、7…負極板、8…非水電解液、9…セパレータ。   DESCRIPTION OF SYMBOLS 1 ... Power storage device (nonaqueous electrolyte secondary battery), 2 ... Positive electrode current collector, 3 ... Positive electrode active material layer, 4 ... Positive electrode plate, 5 ... Negative electrode current collector, 6 ... Negative electrode active material layer, 7 ... Negative electrode Plate, 8 ... non-aqueous electrolyte, 9 ... separator.

Claims (8)

下記式(1)又は下記式(2)で表される化合物を含む、非水電解液用添加剤。
Figure 0006411268

[式(1)又は式(2)中、X、X及びXはそれぞれ独立に、置換されていてもよいメチレン基、スルホニル基又はカルボニル基を示す。式(1)又は式(2)中、Y及びYはそれぞれ独立に、置換されていてもよい炭素数1〜6の炭化水素基を示す。]
The additive for non-aqueous electrolyte containing the compound represented by following formula (1) or following formula (2).
Figure 0006411268

[In Formula (1) or Formula (2), X 1 , X 2 and X 3 each independently represent an optionally substituted methylene group, sulfonyl group or carbonyl group. In formula (1) or formula (2), Y 1 and Y 2 each independently represent an optionally substituted hydrocarbon group having 1 to 6 carbon atoms. ]
、X及びXがそれぞれ独立に、スルホニル基又はカルボニル基である、請求項1に記載の非水電解液用添加剤。 The additive for non-aqueous electrolyte according to claim 1 , wherein X 1 , X 2 and X 3 are each independently a sulfonyl group or a carbonyl group. 請求項1又は2に記載の非水電解液用添加剤、非水溶媒、及び電解質を含有する、非水電解液。   A nonaqueous electrolytic solution containing the additive for nonaqueous electrolytic solution according to claim 1, a nonaqueous solvent, and an electrolyte. 前記非水溶媒が非プロトン性溶媒である、請求項3に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 3, wherein the nonaqueous solvent is an aprotic solvent. 前記電解質がリチウム塩を含む、請求項3又は4に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 3 or 4, wherein the electrolyte contains a lithium salt. 請求項3〜5のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、蓄電デバイス。   An electrical storage device provided with the nonaqueous electrolyte solution as described in any one of Claims 3-5, a positive electrode, and a negative electrode. 請求項3〜5のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、リチウムイオン電池。   A lithium ion battery comprising the nonaqueous electrolytic solution according to any one of claims 3 to 5, and a positive electrode and a negative electrode. 請求項3〜5のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、リチウムイオンキャパシタ。   A lithium ion capacitor comprising the nonaqueous electrolytic solution according to any one of claims 3 to 5, and a positive electrode and a negative electrode.
JP2015072756A 2015-03-31 2015-03-31 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device Expired - Fee Related JP6411268B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015072756A JP6411268B2 (en) 2015-03-31 2015-03-31 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
US15/562,348 US20180358655A1 (en) 2015-03-31 2016-03-29 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
EP16772867.4A EP3279995A4 (en) 2015-03-31 2016-03-29 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
PCT/JP2016/060201 WO2016158986A1 (en) 2015-03-31 2016-03-29 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
CN201680019349.7A CN107431248A (en) 2015-03-31 2016-03-29 Addition agent of non-aqueous electrolyte, nonaqueous electrolytic solution and electrical storage device
KR1020177030797A KR20170132239A (en) 2015-03-31 2016-03-29 Additives for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
TW105110192A TW201639225A (en) 2015-03-31 2016-03-31 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072756A JP6411268B2 (en) 2015-03-31 2015-03-31 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device

Publications (2)

Publication Number Publication Date
JP2016192357A JP2016192357A (en) 2016-11-10
JP6411268B2 true JP6411268B2 (en) 2018-10-24

Family

ID=57247044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072756A Expired - Fee Related JP6411268B2 (en) 2015-03-31 2015-03-31 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device

Country Status (1)

Country Link
JP (1) JP6411268B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017337492B2 (en) 2016-09-29 2022-07-14 Ntt Docomo, Inc. User equipment, base station, and communication method
KR20200135381A (en) * 2018-03-30 2020-12-02 스미토모 세이카 가부시키가이샤 Additives for nonaqueous electrolytes, nonaqueous electrolytes and power storage devices
EP3706230B1 (en) 2018-06-12 2023-12-27 LG Energy Solution, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102452329B1 (en) * 2019-01-17 2022-10-11 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007023719A1 (en) * 2005-08-22 2009-02-26 クミアイ化学工業株式会社 Pesticide mitigation agent and herbicide composition with reduced phytotoxicity
KR100993432B1 (en) * 2006-07-19 2010-11-09 주식회사 엘지화학 Lactam-based additive for electrolyte and secondary battery comprising the same
TWI358843B (en) * 2006-10-09 2012-02-21 Lg Chemical Ltd Non-aqueous electrolyte and secondary battery usin
US8697291B2 (en) * 2010-10-07 2014-04-15 Uchicago Argonne, Llc Non-aqueous electrolyte for lithium-ion battery
JP2014127354A (en) * 2012-12-26 2014-07-07 Fujifilm Corp Electrolyte for nonaqueous secondary battery, nonaqueous secondary battery, and additive for electrolyte
JP2014127682A (en) * 2012-12-27 2014-07-07 Nec Tokin Corp Solid electrolytic capacitor
CN103078139B (en) * 2013-02-03 2015-10-28 宁德新能源科技有限公司 Lithium-ion battery electrolytes
JP6081264B2 (en) * 2013-03-28 2017-02-15 住友精化株式会社 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
KR101765191B1 (en) * 2013-04-10 2017-08-07 삼성에스디아이 주식회사 Rechargeable lithium battery and method of fabricating the same

Also Published As

Publication number Publication date
JP2016192357A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6472888B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6081264B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6411271B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2019164879A (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
WO2015146947A1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP2014194870A (en) Boron-containing sulfonic ester compound, additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device
JP6411268B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP5982201B2 (en) Disulfonic acid benzylamide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
WO2017078149A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
WO2012029418A1 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP6411270B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2015191808A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device
JP6411269B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2016192382A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
JPWO2019088127A1 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes and power storage devices
JP7166258B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2019180946A1 (en) Nonaqueous electrolyte solution for power storage devices
JP2016192360A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
WO2022054696A1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP2015015097A (en) Additive agent for nonaqueous electrolytic solution, nonaqueous electrolytic solution, and electric power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees