WO2015146947A1 - Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device - Google Patents

Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device Download PDF

Info

Publication number
WO2015146947A1
WO2015146947A1 PCT/JP2015/058827 JP2015058827W WO2015146947A1 WO 2015146947 A1 WO2015146947 A1 WO 2015146947A1 JP 2015058827 W JP2015058827 W JP 2015058827W WO 2015146947 A1 WO2015146947 A1 WO 2015146947A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
optionally substituted
carbon atoms
aqueous electrolyte
Prior art date
Application number
PCT/JP2015/058827
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 浩司
恭幸 高井
佑軌 河野
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2016510364A priority Critical patent/JPWO2015146947A1/en
Priority to KR1020167025282A priority patent/KR20160138402A/en
Priority to US15/128,062 priority patent/US20170117588A1/en
Priority to CN201580017166.7A priority patent/CN106133984A/en
Priority to EP15769390.4A priority patent/EP3131153A4/en
Publication of WO2015146947A1 publication Critical patent/WO2015146947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an additive for a non-aqueous electrolyte.
  • the present invention also relates to a non-aqueous electrolyte containing the additive for non-aqueous electrolyte, and an electricity storage device using the non-aqueous electrolyte.
  • lithium ion batteries are used as power sources for notebook computers, mobile phones and the like because of their high operating voltage and energy density. These lithium ion batteries have higher energy density compared to lead batteries and nickel cadmium batteries, and are expected to realize higher capacities.
  • the lithium ion battery has a problem that the capacity of the battery decreases with the progress of charge / discharge cycles and storage under high temperature conditions.
  • SEI solid electrolyte interface
  • Patent Documents 1 to 3 include cyclic monosulfonic acid esters
  • Patent Document 4 includes sulfur-containing aromatic compounds
  • Patent Document 5 includes disulfide compounds
  • Patent Document 6 9 to 9 respectively disclose disulfonic acid esters.
  • Patent Documents 10 to 13 disclose electrolytic solutions containing vinylene carbonate or vinyl ethylene carbonate
  • Patent Documents 14 and 15 disclose electrolytic solutions containing 1,3-propane sultone or butane sultone. Has been.
  • a compound having a lower LUMO energy is an electron acceptor that is more excellent, and is a non-aqueous electrolyte additive that can form a stable SEI on the surface of an electrode such as a non-aqueous electrolyte secondary battery. It is supposed to be. Therefore, by measuring the LUMO energy of a compound, it is possible to easily evaluate whether the compound has the ability to form stable SEI on the electrode surface of a nonaqueous electrolyte secondary battery or the like. Is now a very useful tool.
  • the compounds disclosed in Patent Documents 1 to 9 have high LUMO energy, insufficient performance as additives for non-aqueous electrolytes, and are chemically unstable even when LUMO energy is low.
  • the disulfonic acid ester compound exhibits low LUMO energy, it has a low stability to moisture and easily deteriorates. Therefore, when it is stored for a long period of time, it is necessary to strictly control the moisture content and temperature.
  • a heat resistant temperature of about 60 ° C. is generally required for a lithium ion battery and about 80 ° C. for a lithium ion capacitor, the additive for non-aqueous electrolyte used in an electricity storage device is high. Improving the stability of was an important issue.
  • the performance of SEI formed on the electrode surface varies depending on the additive used, and is deeply involved in many battery characteristics such as cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, and reduction of internal resistance. .
  • conventional additives it has been difficult to form SEI with sufficient performance and to keep its battery characteristics high over a long period of time.
  • an electrolytic solution using a vinylene carbonate compound or a sultone compound such as 1,3-propane sultone described in Patent Documents 10 to 15 as an additive causes electrochemical reductive decomposition on the negative electrode surface.
  • the generated SEI can suppress irreversible capacity reduction.
  • SEI formed by these additives is excellent in the performance of protecting the electrode, the performance of lowering the internal resistance is small because of the low ion conductivity of lithium ions. Further, the formed SEI does not have the strength to withstand long-term use, and the SEI is decomposed during use or the SEI cracks, so that the surface of the negative electrode is exposed and the electrolyte is decomposed. There was a problem that the characteristics deteriorated.
  • the conventional additive for non-aqueous electrolyte does not have sufficient performance over a long period of time in performance of protecting the electrode or reducing internal resistance, and there is room for improvement. . That is, a novel electrolytic solution that improves the battery characteristics of an electricity storage device such as a non-aqueous electrolyte secondary battery by forming SEI that is stable on the electrode surface and that improves cycle characteristics, charge / discharge capacity, internal resistance, etc. Development of additives for use was required.
  • the present invention is excellent in storage stability and, when used in an electricity storage device, forms a stable solid electrolyte interface (SEI) on the electrode surface to provide cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, internal It aims at providing the additive for non-aqueous electrolyte which can improve battery characteristics, such as reduction of resistance.
  • Another object of the present invention is to provide a non-aqueous electrolyte using the additive for non-aqueous electrolyte and an electricity storage device using the non-aqueous electrolyte.
  • the present invention provides the following formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), formula (1-5)
  • the additive for non-aqueous electrolyte solution containing the cyclic imide compound represented by ⁇ 6) is not limited to the one containing only the cyclic imide compound according to the present invention, and may contain other components as long as the object of the present invention is not impaired. .
  • R 9 in the formula and R 11 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkenyl group having 2 to 4 carbon atoms.
  • R 10 in the formula and R 12 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkoxy group having 1 to 4 carbon atoms. Or a halogen atom.
  • L in the formula (1-1) represents an integer of 0 to 4
  • m in the formula (1-2) represents an integer of 0 to 2
  • n in the formula (1-3) represents 0 to 2.
  • the inventors of the present invention have said formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), and formula
  • the cyclic imide compound represented by (1-6) (hereinafter also referred to as “cyclic imide compound according to the present invention”) is a low LUMO that is susceptible to electrochemical reduction due to the influence of a carbonyl group bonded to nitrogen. It was found to be energy stable and chemically stable. Therefore, the present inventors include a non-aqueous electrolyte containing an additive for a non-aqueous electrolyte containing the cyclic imide compound according to the present invention, and further adding the non-aqueous electrolyte to a power storage device such as a non-aqueous electrolyte secondary battery.
  • a power storage device such as a non-aqueous electrolyte secondary battery.
  • the reason why the cyclic imide compound according to the present invention improves battery characteristics such as cycle characteristics, charge / discharge capacity, high-temperature storage characteristics, gas generation suppression, and reduction of internal resistance as an additive for non-aqueous electrolytes is not clear. It is considered as follows.
  • the cyclic imide compound according to the present invention is considered to open the cyclic imide when subjected to electrochemical reduction, and to form SEI containing a large number of polar groups including nitrogen atoms, oxygen atoms and the like.
  • SEI containing a large number of polar groups containing nitrogen atom, oxygen atom and the like exhibits excellent ionic conductivity and is electrochemically stable, and thus is considered to be a very high performance SEI.
  • the cyclic imide compound according to the present invention has three carbonyl groups bonded to the nitrogen atom, and the electron density of nitrogen is low. Therefore, an electrochemical reduction reaction is performed on the negative electrode surface. It is easy to receive. As a result, it is considered that electrochemical reductive decomposition occurs easily and it is easy to form SEI on the negative electrode surface.
  • an alkyl group or the like is directly bonded to the nitrogen atom, it is difficult to undergo a reduction reaction on the negative electrode surface, and as a result, it is considered that SEI is difficult to form.
  • the number of carbonyl groups bonded to the nitrogen atom is 2 or less, there is a possibility that a sufficient effect is not exhibited.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula R 9 in (1-5) and R 11 in formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms or an optionally substituted carbon number.
  • R 1 , R 3 , R 5 , R 7 , R 9 , and R 11 are more susceptible to electrochemical reduction reaction and can form good SEI.
  • a good alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenoxy group, an unsubstituted benzyloxy group, an optionally substituted alkenyloxy group having 2 to 4 carbon atoms, or R 13 and R 14 are each An NR 13 R 14 group which is an optionally substituted alkyl group having 1 to 4 carbon atoms or an optionally substituted benzyl group is preferable.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula R 9 in (1-5) and R 11 in the formula (1-6) are substituted alkyl groups having 1 to 4 carbon atoms, substituted alkenyl groups having 2 to 4 carbon atoms, The substituted alkoxy group having 1 to 4 carbon atoms, the substituted alkenyloxy group having 2 to 6 carbon atoms, the alkyl group having 1 to 4 carbon atoms in which at least one of R 13 and R 14 is substituted, or a substituted group;
  • examples of the substituent include a halogen atom.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), R 9 in the formula (1-5) and R 11 in the formula (1-6) are a substituted phenyl group, a substituted phenoxy group, a substituted benzyl group, a substituted benzyloxy Group, or when at least one of R 13 and R 14 is a substituted phenyl group or a substituted benzyl group NR 13 R 14 group, examples of the substituent include alkyl having 1 to 4 carbon atoms Group, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, and the like. Among these, a halogen atom is preferable, and a fluorine atom is more preferable because it exhibits low LUMO
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted alkyl group represented by R 9 in (1-5) and R 11 in the above formula (1-6) include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, monofluoromethyl group, 2-monofluoroethyl group, 3-monofluoropropyl group, 4-monofluorobutyl group, difluoro Methyl group, 2,2-difluoroethyl group, 3,3-difluoropropyl group, 4,4-difluorobutyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trimethyl Fluoropropyl group, 4,4,4-trifluorobuty Group, 1,1,2,
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted alkenyl group having 2 to 4 carbon atoms represented by R 9 in (1-5) and R 11 in the formula (1-6) include, for example, vinyl group, allyl Group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, isobutenyl group and the like. Of these, an allyl group is preferable.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted alkoxy group having 1 to 4 carbon atoms represented by R 9 in (1-5) and R 11 in the formula (1-6) include, for example, a methoxy group, ethoxy Group, n-propoxy group, n-butoxy group, trifluoromethoxy group, 2,2,2-trifluoroethyloxy group, 1,1,2,2,2-pentafluoroethyloxy group and the like. Of these, an ethoxy group and a 2,2,2-trifluoroethyloxy group are preferable.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted phenyl group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a phenyl group, a 2-methylphenyl group, 3 -Methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-ethoxy Phenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 2- (dimethylamino) phenyl group, 3- (dimethylamino) phenyl group, 4- (dimethylamino) phenyl group, 2-fluorophenyl group, 3- Fluorophenyl group 4-fluorophenyl
  • a phenyl group, a 2-fluorophenyl group, a 3-fluorophenyl group, and a 4-fluorophenyl group are preferable because they exhibit low LUMO energy that is easily subjected to electrochemical reduction.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted phenoxy group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a phenoxy group, a 2-methylphenoxy group, 3 -Methylphenoxy group, 4-methylphenoxy group, 2-ethylphenoxy group, 3-ethylphenoxy group, 4-ethylphenoxy group, 2-methoxyphenoxy group, 3-methoxyphenoxy group, 4-methoxyphenoxy group, 2-ethoxy Phenoxy group, 3-ethoxyphenoxy group, 4-ethoxyphenoxy group, 2- (dimethylamino) phenoxy group, 3- (dimethylamino) phenoxy group, 4- (dimethylamino) phenoxy group, 2-fluoro Enoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, 2-chlorophenoxy group, 3-chlorophenoxy group, 4-
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted benzyl group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a benzyl group, a 2-methylbenzyl group, 3 -Methylbenzyl group, 4-methylbenzyl group, 2-ethylbenzyl group, 3-ethylbenzyl group, 4-ethylbenzyl group, 2-methoxybenzyl group, 3-methoxybenzyl group, 4-methoxybenzyl group, 2-ethoxy Benzyl group, 3-ethoxybenzyl group, 4-ethoxybenzyl group, 2- (dimethylamino) benzyl group, 3- (dimethylamino) benzyl group, 4- (dimethylamino) benzyl group, 2-fluorobenzyl group, 3- Fluorobenzyl group 4-fluorobenzyl
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted benzyloxy group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a benzyloxy group, 2-methylbenzyloxy Group, 3-methylbenzyloxy group, 4-methylbenzyloxy group, 2-ethylbenzyloxy group, 3-ethylbenzyloxy group, 4-ethylbenzyloxy group, 2-methoxybenzyloxy group, 3-methoxybenzyloxy group 4-methoxybenzyloxy group, 2-ethoxybenzyloxy group, 3-ethoxybenzyloxy group, 4-ethoxybenzyloxy group, 2- (dimethylamino) benzyloxy group, 3- (dimethylamino) base Zyloxy group, 4- (dimethylamino) benzyloxy group, 2-fluorobenzyloxy group, 3-fluorobenzy
  • the optionally substituted alkenyloxy group having 2 to 6 carbon atoms represented by R 9 in (1-5) and R 11 in the formula (1-6) is, for example, 2-propenyl Examples thereof include an oxy group, a 1-methyl-2-propenyloxy group, a 2-methyl-2-propenyloxy group, a 2-butenyloxy group, a 3-butenyloxy group, a 2-hexenyloxy group, and a 5-hexenyloxy group. Of these, a 2-propenyloxy group and a 2-butenyloxy group are preferable because they exhibit low LUMO energy that is susceptible to electrochemical reduction.
  • R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the NR 13 R 14 group represented by R 9 in (1-5) and R 11 in the formula (1-6) include an N, N-dimethylamino group, N, N-diethylamino group, and the like.
  • R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula R 10 in (1-5) and R 12 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms or an optionally substituted carbon number. 1 to 4 alkoxy groups or a halogen atom.
  • l represents an integer of 0 to 4
  • m represents an integer of 0 to 2
  • n represents 0.
  • p in the formula (1-5) represents an integer of 0 to 4
  • Q in q represents an integer of 0 to 6.
  • R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula Examples of the optionally substituted alkyl group represented by R 10 in (1-5) and R 12 in the above formula (1-6) include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group and the like. Of these, a methyl group is preferable from the viewpoints of availability and reactivity.
  • R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula Examples of the optionally substituted alkoxy group having 1 to 4 carbon atoms represented by R 10 in (1-5) and R 12 in the formula (1-6) include, for example, a methoxy group, ethoxy Group, n-propoxy group, n-butoxy group and the like. Of these, a methoxy group is preferred from the viewpoints of availability and reactivity.
  • R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula Examples of the halogen atom represented by R 10 in (1-5) and R 12 in the above formula (1-6) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom is preferable from the viewpoint of availability, reactivity, and the like.
  • l is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability, reactivity, and the like.
  • the preferred substitution position of R 2 is the 4-position
  • the preferred substitution positions when l is 2 are the 4-position and 5-position.
  • each R 2 may be the same or different.
  • M in the formula (1-2) is preferably 0 or 1, and more preferably 0.
  • m in the formula (1-2) is 2, two R 4 s may be the same or different.
  • n is preferably 0 or 1, and more preferably 0.
  • two R 6 s may be the same or different.
  • o is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability and reactivity.
  • o in the formula (1-4) is an integer of 2 to 4, each R 8 may be the same or different.
  • p is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability, reactivity, and the like.
  • p in the formula (1-5) is an integer of 2 to 4, each R 10 may be the same or different.
  • Q in the formula (1-6) is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability and reactivity.
  • q in the formula (1-6) is an integer of 2 to 6, each R 12 may be the same or different.
  • examples of the compound represented by the formula (1-1) include N-benzoylphthalimide, N- (phenoxycarbonyl) phthalimide, N-acetylphthalimide, and N- (methoxycarbonyl).
  • examples of the compound represented by the formula (1-2) include N-benzoylmaleimide, N- (phenoxycarbonyl) maleimide, N-acetylmaleimide, N- (methoxycarbonyl).
  • examples of the compound represented by the formula (1-3) include N-benzoylsuccinimide, N- (phenoxycarbonyl) succinimide, and N-acetylsuccinimide.
  • N- (methoxycarbonyl) succinimide N-propanoyl succinimide, N- (ethoxycarbonyl) succinimide, N-butanoyl succinimide, N- (propoxycarbonyl) succinimide, N- ( 2-propenyloxycarbonyl) succinimide, N- (N ′, N′-dimethylaminocarbonyl) succinimide, N- (N′-methyl-N′-benzylaminocarbonyl) succinimide and the like.
  • examples of the compound represented by the formula (1-4) include N-benzoylhexahydrophthalimide, N- (phenoxycarbonyl) hexahydrophthalimide, and N-acetylhexahydrophthalimide.
  • examples of the compound represented by the formula (1-5) include N-benzoyl-1,2,3,6-tetrahydrophthalimide, N- (phenoxycarbonyl) -1 , 2,3,6-tetrahydrophthalimide, N-acetyl-1,2,3,6-tetrahydrophthalimide, N- (methoxycarbonyl) -1,2,3,6-tetrahydrophthalimide, N-propanoyl-1,2 , 3,6-tetrahydrophthalimide, N- (ethoxycarbonyl) -1,2,3,6-tetrahydrophthalimide, N-butanoyl-1,2,3,6-tetrahydrophthalimide, N- (propoxycarbonyl) -1, 2,3,6-tetrahydrophthalimide, N- (2-propenyloxycarbonyl) -1,2,3,6-tetra Drophthalimide, N-benzoyl-4-
  • examples of the compound represented by the formula (1-6) include N-benzoylnaphthalimide, N- (phenoxycarbonyl) naphthalimide, N-acetylnaphthalimide, N- (Methoxycarbonyl) naphthalimide, N-propanoylnaphthalimide, N- (ethoxycarbonyl) naphthalimide, N-butanoylnaphthalimide, N- (propoxycarbonyl) naphthalimide, N- (2-propenyloxycarbonyl) naphthalimide N-benzoyl-4-methylnaphthalimide, N- (phenoxycarbonyl) -4-methylnaphthalimide, N-acetyl-4-methylnaphthalimide, N- (methoxycarbonyl) -4-methylnaphthalimide, N-propanoyl -4-Methylnaphthalimi N- (ethoxy
  • the additive for non-aqueous electrolyte of the present invention includes a cyclic imide compound represented by the formula (1-1) and a cyclic imide compound represented by the formula (1-2) as the cyclic imide compound according to the present invention.
  • the non-aqueous electrolyte additive of the present invention is a compound represented by the following formula (2-1), a compound represented by the following formula (2-1) as a cyclic imide compound according to the present invention from the viewpoints of availability and reactivity.
  • Equation (2-1) in the R 15, R 16 in the formula (2-2), R 17 in the formula (2-3), R 18 in the formula (2-4), the formula (2-5) R 19 in the formula and R 20 in the formula (2-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkenyl group having 2 to 4 carbon atoms.
  • R 25 in the formula and R 26 in the formula (3-6) each represent an optionally substituted alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenoxy group, or an unsubstituted benzyloxy group
  • R 25 in the formula and R 26 in the formula (3-6) each represent an optionally substituted alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenoxy group, or an unsubstituted benzyloxy group
  • R 13 and R 14 each independently represents an optionally substituted 1 to 4 carbon atom
  • An alkyl group or an optionally substituted benzyl group is shown.
  • the optionally substituted benzyloxy group, the optionally substituted alkenyloxy group having 2 to 4 carbon atoms, and the NR 13 R 14 group are represented by R 1 in the above formula (1-1), (1-2) in R 3, R 5 in the formula (1-3) in the formula (1-4) in R 7, the formula (1-5) in R 9, and the formula (1-6) the same as those exemplified in R 11, or, the corresponding ones of the number of carbon atoms among those shown ⁇ Can be mentioned.
  • Examples of the alkenyloxy group of 2 to 4 and the NR 13 R 14 group include R 1 in the formula (1-1), R 3 in the formula (1-2), and the formula (1-3), respectively.
  • Examples of the method for producing the cyclic imide compound according to the present invention include a method of reacting a corresponding cyclic imide compound with a halide.
  • a method of reacting a corresponding cyclic imide compound with a halide for example, in the case of producing a compound (N- (phenoxycarbonyl) phthalimide) in which R 1 is a phenoxy group and l is 0 in the formula (1-1), phthalimide and triethylamine are used as an organic solvent. Then, after adding phenyl chloroformate dropwise and stirring at room temperature for 2 hours, washing with water, crystallization, filtration, and the like can be used.
  • the cyclic imide compound according to the present invention has a preferred lower limit of the lowest unoccupied molecular orbital (LUMO) energy of ⁇ 3.1 eV and a preferred upper limit of 0.0 eV.
  • LUMO energy When the LUMO energy is less than ⁇ 3.1 eV, excessive decomposition may occur, and a film showing high resistance may be formed on the negative electrode surface.
  • the LUMO energy exceeds 0.0 eV, stable SEI may not be formed on the negative electrode surface.
  • a more preferable lower limit of the LUMO energy is ⁇ 3.0 eV, and a more preferable upper limit is ⁇ 0.5 eV.
  • the “lowest unoccupied molecular orbital (LUMO) energy” is calculated by combining the semi-empirical molecular orbital calculation method PM3 and the density functional method B3LYP method. Specifically, in the present invention, a value calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA) is used.
  • the non-aqueous electrolyte additive of the present invention containing the cyclic imide compound according to the present invention is added to the non-aqueous electrolyte.
  • stable SEI can be formed on the electrode surface to improve battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance.
  • the additive for non-aqueous electrolyte of the present invention containing the cyclic imide compound according to the present invention can be used at room temperature for a long time. It is possible to save. Therefore, the non-aqueous electrolyte containing the non-aqueous electrolyte additive can withstand long-term storage and use.
  • non-aqueous electrolyte containing the additive for non-aqueous electrolyte, the non-aqueous solvent, and the electrolyte of the present invention is also one aspect of the present invention.
  • the minimum with preferable content of the additive for nonaqueous electrolytes of this invention in the nonaqueous electrolyte of this invention is 0.005 mass%, and a preferable upper limit is 10 mass%.
  • a preferable upper limit is 10 mass%.
  • the content of the additive for non-aqueous electrolyte of the present invention is less than 0.005% by mass, stable SEI is sufficiently obtained by electrolysis on the electrode surface when used in a non-aqueous electrolyte secondary battery or the like. May not be formed.
  • the content of the additive for non-aqueous electrolyte of the present invention exceeds 10% by mass, not only is it difficult to dissolve, but also the viscosity of the non-aqueous electrolyte increases, and it becomes impossible to ensure sufficient ion mobility. The electroconductivity etc.
  • the more preferable lower limit of the content of the additive for non-aqueous electrolyte of the present invention is 0.01% by mass.
  • the content of the additive for non-aqueous electrolyte of the present invention is in the above range, the effect of the present invention can be easily obtained, and in particular, the reductive decomposition reaction of the non-aqueous solvent occurring at high temperatures can be suppressed to a lower temperature. It is possible to improve capacity deterioration and gas generation due to storage underneath.
  • the additive for non-aqueous electrolytes of this invention may be used independently, and may be used in combination of 2 or more type.
  • a preferable minimum is 0.005 mass% and a preferable upper limit is 10 mass%.
  • non-aqueous electrolyte of the present invention if necessary, together with the additive for non-aqueous electrolyte of the present invention, such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), 1,3-propane sultone (PS), etc.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • PS 1,3-propane sultone
  • You may contain a general additive.
  • an aprotic solvent is preferable from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low.
  • it contains at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. It is preferable. Of these, cyclic carbonates and chain carbonates are more preferably used.
  • Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate, butylene carbonate, and the like.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), and ethyl methyl carbonate.
  • Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate.
  • Examples of the lactone include ⁇ -butyrolactone.
  • Examples of the lactam include ⁇ -caprolactam and N-methylpyrrolidone.
  • Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane and the like.
  • Examples of the chain ether include 1,2-diethoxyethane, ethoxymethoxyethane, and the like.
  • Examples of the sulfone include sulfolane.
  • Examples of the nitrile include acetonitrile.
  • Examples of the halogen derivative include 4-fluoro-1,3-dioxolane-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolane-2- ON etc. are mentioned.
  • nonaqueous solvents may be used alone or in combination of two or more. These nonaqueous solvents are preferably used for nonaqueous electrolyte secondary batteries such as lithium ion batteries, electric double layer capacitors such as lithium ion capacitors, and the like.
  • the electrolyte is preferably a lithium salt that serves as a source of lithium ions.
  • LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6 and is preferably at least one selected from the group consisting of LiSbF 6.
  • These electrolytes may be used alone or in combination of two or more.
  • the LiBF 4, if the LiPF 6 is used as the non-aqueous solvent preferably mixed one or more respective cyclic carbonate and chain carbonate is more preferable to mix ethylene carbonate and diethyl carbonate.
  • the preferable lower limit of the concentration of the electrolyte in the nonaqueous electrolytic solution of the present invention is 0.1 mol / L, and the preferable upper limit is 2.0 mol / L.
  • concentration of the electrolyte is less than 0.1 mol / L, the conductivity of the non-aqueous electrolyte cannot be sufficiently ensured, and the discharge characteristics and the charge characteristics are hindered when used in an electricity storage device.
  • concentration of the electrolyte exceeds 2.0 mol / L, the viscosity increases and the mobility of ions cannot be sufficiently ensured, so that the conductivity of the non-aqueous electrolyte cannot be sufficiently secured and When used in a device, the discharge characteristics and charging characteristics may be hindered.
  • a more preferred lower limit of the electrolyte concentration is 0.5 mol / L, and a more preferred upper limit is 1.5 mol / L.
  • An electricity storage device including the non-aqueous electrolyte, positive electrode, and negative electrode of the present invention is also one aspect of the present invention.
  • Examples of the electricity storage device include a non-aqueous electrolyte secondary battery and an electric double layer capacitor. Of these, lithium ion batteries and lithium ion capacitors are preferred.
  • FIG. 1 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
  • a nonaqueous electrolyte secondary battery 1 according to an electricity storage device of the present invention includes a positive electrode plate 4 in which a positive electrode active material layer 3 is provided on one side of a positive electrode current collector 2, and a negative electrode current collector.
  • a negative electrode plate 7 having a negative electrode active material layer 6 provided on one surface side of the body 5 is provided.
  • the positive electrode plate 4 and the negative electrode plate 7 are disposed to face each other with a separator 9 provided in the non-aqueous electrolyte 8 and the non-aqueous electrolyte 8 of the present invention.
  • a non-aqueous electrolyte secondary battery is shown as the electricity storage device, but the electricity storage device of the present invention is not limited to this, and can be applied to other electricity storage devices such as electric double layer capacitors. .
  • the positive electrode current collector 2 and the negative electrode current collector 5 for example, a metal foil made of a metal such as aluminum, copper, nickel, and stainless steel can be used.
  • a lithium-containing composite oxide is preferably used as the positive electrode active material used for the positive electrode active material layer 3.
  • a lithium-containing composite oxide is preferably used.
  • LiMnO 2 , LiFeO 2 , LiCoO 2 , LiMn 2 O 4 , Li 2 FeSiO 4 , LiNi 1/3 Co examples thereof include lithium-containing composite oxides such as 1/3 Mn 1/3 O 2 and LiFePO 4 .
  • Examples of the negative electrode active material used for the negative electrode active material layer 6 include a material that can occlude and release lithium. Examples of such materials include carbon materials such as graphite and amorphous carbon, and oxide materials such as indium oxide, silicon oxide, tin oxide, zinc oxide, and lithium oxide.
  • lithium metal and a metal material capable of forming an alloy with lithium can be used as the negative electrode active material. Examples of the metal capable of forming an alloy with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, Ag, and the like, and are composed of binary or ternary containing these metals and lithium. An alloy can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • separator 9 for example, a porous film made of polyethylene, polypropylene, fluororesin, or the like can be used.
  • the present invention when used in an electricity storage device, it has excellent storage stability and forms a stable SEI on the electrode surface to provide cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, and reduction of internal resistance. It is possible to provide an additive for a non-aqueous electrolyte that can improve battery characteristics such as the above. Moreover, according to this invention, the nonaqueous electrolyte using this additive for nonaqueous electrolytes, and the electrical storage device using this nonaqueous electrolyte can be provided.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a concentration of 1.0 mol / L of LiPF 6 as an electrolyte
  • the content of the compound 1 shown in Table 1 as an additive for a non-aqueous electrolyte is 0.5% by mass with respect to the total amount of the solution composed of the mixed non-aqueous solvent and the electrolyte.
  • a non-aqueous electrolyte was prepared.
  • Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the content ratio of Compound 1 was 1.0% by mass.
  • Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 2 shown in Table 1 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 4 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 3 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 5 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 4 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 6 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 5 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 7 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 6 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 8 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 7 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 9 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 8 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 10 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 9 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 11 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 10 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 12 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 11 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 13 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 12 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 14 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 13 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 15 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 14 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 16 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 15 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 17 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 16 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 18 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 17 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 19 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 18 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 1 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 1 was not used.
  • Example 2 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that 1,3-propane sultone was added in such a manner that the content ratio was 1.0 mass% instead of Compound 1.
  • Example 3 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that vinylene carbonate (VC) was added so as to have a content ratio of 1.0% by mass instead of Compound 1.
  • VC vinylene carbonate
  • Comparative Example 4 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.
  • Example 5 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that fluoroethylene carbonate (FEC) was added so that the content ratio was 1.0% by mass instead of Compound 1.
  • FEC fluoroethylene carbonate
  • Comparative Example 6 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.
  • FEC fluoroethylene carbonate
  • Example 8 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that maleimide was added so that the content ratio was 1.0% by mass instead of Compound 1.
  • Example 9 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that succinimide was added in such a manner that the content ratio was 1.0% by mass instead of Compound 1.
  • Example 10 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 19 shown in Table 3 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 11 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 20 shown in Table 3 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 12 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 21 shown in Table 3 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
  • Example 13 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 22 shown in Table 3 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • Example 14 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that the compound 23 shown in Table 3 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
  • NMP N-methyl-2-pyrrolidone
  • LiMn 2 O 4 as a positive electrode active material and carbon black as a conductivity imparting agent are dry-mixed and polyvinylidene fluoride (PVDF) is dissolved as a binder
  • PVDF polyvinylidene fluoride
  • the obtained slurry was applied on an aluminum metal foil (square shape, thickness 20 ⁇ m) serving as a positive electrode current collector, and then NMP was evaporated to prepare a positive electrode sheet.
  • the negative electrode sheet a commercially available graphite coated electrode sheet (manufactured by Hosen Co., Ltd.) was used.
  • a negative electrode sheet and a positive electrode sheet were laminated via a separator made of polyethylene to produce a cylindrical secondary battery.
  • Each cylindrical secondary battery obtained was charged at 25 ° C. with a charge rate of 0.3 C, a discharge rate of 0.3 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V.
  • a discharge cycle test was conducted. Tables 5 and 6 show the discharge capacity retention ratio (%) after 200 cycles and the internal resistance ratio after 200 cycles.
  • discharge capacity maintenance rate after 200 cycles is obtained by multiplying the value obtained by dividing discharge capacity (mAh) after 200 cycle test by discharge capacity (mAh) after 10 cycle test by 100. It is.
  • the “internal resistance ratio after 200 cycles” is a relative value of the resistance after the 200 cycle test when the resistance before the cycle test is 1.
  • the cylindrical secondary batteries using the non-aqueous electrolytes of Examples including the compounds 1 to 18 which are cyclic imide compounds according to the present invention are the non-aqueous electrolytes of Comparative Examples 1 to 9. It can be seen that the discharge capacity retention rate during the cycle test is higher than that of the used cylindrical secondary battery. Therefore, when the non-aqueous electrolyte of the example containing the cyclic imide compound according to the present invention as an additive for a non-aqueous electrolyte is used for a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte of a comparative example is used.
  • NMP N-methyl-2-pyrrolidone
  • LiCoO 2 lithium cobaltate
  • carbon black as a conductivity imparting agent
  • PVDF polyvinylidene fluoride
  • graphite powder as a negative electrode active material and carbon black as a conductivity imparting agent are dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) is dissolved as a binder.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • the positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode to produce a battery element.
  • the battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness 40 ⁇ m) were coated with a resin layer while projecting positive and negative terminals, and then Examples 1 to 19 and Comparative Examples 1 to 14
  • Each non-aqueous electrolyte obtained in (1) was poured into a bag and vacuum sealed to produce a sheet-like non-aqueous electrolyte battery.
  • the sheet-like battery was sandwiched between glass plates and pressurized.
  • the obtained nonaqueous electrolyte battery was charged to 4.2 V at a current corresponding to 0.2 C at 25 ° C. and then discharged to 3 V at a current corresponding to 0.2 C for 3 cycles.
  • the battery was stabilized.
  • high temperature storage at 60 ° C. for 168 hours was performed.
  • it cooled to room temperature, measured the volume by Archimedes method, and calculated
  • the battery after high-temperature storage was discharged to 3.0 V with a current corresponding to 0.2 C to obtain the remaining capacity of the battery.
  • the operation of discharging to 0.2 V at 3 C was repeated twice, and the capacity indicated by the battery in the final discharge was taken as the battery recovery capacity.
  • the ratios of the remaining capacity and the recovery capacity obtained above to the discharge capacity before storage were defined as the remaining capacity ratio (%) and the recovery capacity ratio (%), respectively. The results are shown in Tables 7 and 8.
  • the non-aqueous electrolyte battery using the non-aqueous electrolyte solution of each example containing compounds 1 to 18 which are the cyclic imide compounds according to the present invention is a non-aqueous electrolyte solution using the non-aqueous electrolyte solution of the comparative example.
  • the amount of gas generated during high-temperature storage is low, and the remaining capacity and recovery capacity after high-temperature storage are excellent, so that high-temperature storage characteristics can be improved.
  • the present invention when used in an electricity storage device, it has excellent storage stability and forms a stable SEI on the electrode surface to provide cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, and reduction of internal resistance. It is possible to provide an additive for a non-aqueous electrolyte that can improve battery characteristics such as the above. Moreover, according to this invention, the nonaqueous electrolyte using this additive for nonaqueous electrolytes, and the electrical storage device using this nonaqueous electrolyte can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The purpose of the present invention is to provide: an additive for a non-aqueous electrolyte, the additive having an excellent storage stability and the capability, when used in a power storage device, of forming a stable solid electrolyte interface on the surface of the electrode and improving cell characteristics such as cycle characteristics, charge/discharge capacity, high-temperature storage characteristics, suppressed gas generation, and reduction in internal resistance, wherein the additive for a non-aqueous electrolyte contains a cyclic imide compound represented by formula (1-1), (1-2), (1-3), (1-4), (1-5), or (1-6); or to provide a non-aqueous electrolyte in which the additive for a non-aqueous electrolyte is used, and a power storage device in which the non-aqueous electrolyte is used.

Description

非水電解液用添加剤、非水電解液、及び、蓄電デバイスNon-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
本発明は、非水電解液用添加剤に関する。また、本発明は、該非水電解液用添加剤を含む非水電解液、及び、該非水電解液を用いた蓄電デバイスに関する。 The present invention relates to an additive for a non-aqueous electrolyte. The present invention also relates to a non-aqueous electrolyte containing the additive for non-aqueous electrolyte, and an electricity storage device using the non-aqueous electrolyte.
近年、環境問題の解決、持続可能な循環型社会の実現に対する関心が高まるにつれ、リチウムイオン電池に代表される非水電解液二次電池の研究が広範囲に行われている。なかでも、リチウムイオン電池は高い使用電圧とエネルギー密度から、ノート型パソコン、携帯電話等の電源として用いられている。これらのリチウムイオン電池は、鉛電池やニッケルカドミウム電池と比較してエネルギー密度が高く、高容量化の実現が期待されている。
しかしながら、リチウムイオン電池には、充放電サイクルの経過や高温条件下での保存に伴って電池の容量が低下するという問題がある。これは、長期間の充放電サイクルの経過に伴い、電極と電解液との副反応、電極反応による電解液の分解や電極活物質層への電解質の含浸性の低下、更にリチウムイオンのインターカレーション効率の低下が生じること等が要因に挙げられる。
In recent years, research on non-aqueous electrolyte secondary batteries represented by lithium ion batteries has been extensively conducted as interest in solving environmental problems and realizing a sustainable recycling society has increased. In particular, lithium ion batteries are used as power sources for notebook computers, mobile phones and the like because of their high operating voltage and energy density. These lithium ion batteries have higher energy density compared to lead batteries and nickel cadmium batteries, and are expected to realize higher capacities.
However, the lithium ion battery has a problem that the capacity of the battery decreases with the progress of charge / discharge cycles and storage under high temperature conditions. This is due to the side reaction between the electrode and the electrolyte, the degradation of the electrolyte due to the electrode reaction, the impregnation of the electrolyte into the electrode active material layer, and the intercalation of lithium ions. Factors such as a decrease in the efficiency of the service are listed.
充放電サイクルの経過や高温条件下での保存に伴う電池の容量の低下を抑制する方法として、電解液に各種添加剤を加える方法が検討されている。添加剤は、最初の充放電時に分解され、電極表面上に固体電解質界面(SEI)と呼ばれる被膜を形成する。SEIは、充放電サイクルの最初のサイクルにおいて形成するため、電解液の分解に電気が消費されることはなく、リチウムイオンはSEIを介して電極を行き来することができる。すなわち、SEIの形成は充放電サイクルを繰り返した場合の非水電解液二次電池等の蓄電デバイスの劣化を防ぎ、電池特性、保存特性又は負荷特性等を向上させることに大きな役割を果たすと考えられている。 Methods for adding various additives to an electrolytic solution have been studied as a method for suppressing the decrease in battery capacity accompanying the storage of charge / discharge cycles and high temperature conditions. The additive is decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface. Since the SEI is formed in the first cycle of the charge / discharge cycle, electricity is not consumed for the decomposition of the electrolytic solution, and lithium ions can move back and forth through the SEI. That is, the formation of SEI is considered to play a major role in preventing deterioration of power storage devices such as non-aqueous electrolyte secondary batteries when charging / discharging cycles are repeated, and improving battery characteristics, storage characteristics, load characteristics, etc. It has been.
SEIを形成する電解液用添加剤として、例えば、特許文献1~3には、環状モノスルホン酸エステル、特許文献4には、含硫黄芳香族化合物、特許文献5にはジスルフィド化合物、特許文献6~9にはジスルホン酸エステルがそれぞれ開示されている。
また、特許文献10~13には、ビニレンカーボネートやビニルエチレンカーボネートを含有する電解液が開示されており、特許文献14、15には、1,3-プロパンスルトンやブタンスルトンを含有する電解液が開示されている。
As an additive for an electrolytic solution for forming SEI, for example, Patent Documents 1 to 3 include cyclic monosulfonic acid esters, Patent Document 4 includes sulfur-containing aromatic compounds, Patent Document 5 includes disulfide compounds, and Patent Document 6 9 to 9 respectively disclose disulfonic acid esters.
Patent Documents 10 to 13 disclose electrolytic solutions containing vinylene carbonate or vinyl ethylene carbonate, and Patent Documents 14 and 15 disclose electrolytic solutions containing 1,3-propane sultone or butane sultone. Has been.
特開昭63-102173号公報JP 63-102173 A 特開2000-003724号公報JP 2000-003724 A 特開平11-339850号公報JP 11-339850 A 特開平05-258753号公報JP 05-258753 A 特開2001-052735号公報Japanese Patent Laid-Open No. 2001-052735 特開2009-038018号公報JP 2009-038018 A 特開2005-203341号公報Japanese Patent Laid-Open No. 2005-203341 特開2004-281325号公報JP 2004-281325 A 特開2005-228631号公報JP 2005-228631 A 特開平04-87156号公報Japanese Patent Laid-Open No. 04-87156 特開平05-74486号公報Japanese Patent Laid-Open No. 05-74486 特開平08-45545号公報Japanese Patent Laid-Open No. 08-45545 特開2001-6729号公報JP 2001-6729 A 特開昭63-102173号公報JP 63-102173 A 特開平10-50342号公報Japanese Patent Laid-Open No. 10-50342
非水電解液二次電池等の電極における電気化学的還元に対する非水電解液用添加剤の適応性の指標として、例えば、「Geun-Chang,Hyung-Jin kim,Seung-ll Yu,Song-Hui Jun,Jong-Wook Choi,Myung-Hwan Kim.Journal of The Electrochemical Society,147,12,4391(2000)」には、非水電解液用添加剤を構成する化合物のLUMO(最低空分子軌道)エネルギーのエネルギー準位を用いる方法が報告されている。このような文献では、LUMOエネルギーが低い化合物ほど優れた電子受容体であり、非水電解液二次電池等の電極表面上に安定なSEIを形成することができる非水電解液用添加剤になるとされている。従って、化合物のLUMOエネルギーを測定することにより、該化合物が非水電解液二次電池等の電極表面上に安定なSEIを形成する性能を有するかどうかを容易に評価することができ、この方法が現在では非常に有用な手段となっている。 As an index of the adaptability of non-aqueous electrolyte additives for electrochemical reduction in electrodes of non-aqueous electrolyte secondary batteries, for example, “Geun-Chang, Hyung-Jin Kim, Seung-ll Yu, Song-Hui Jun, Jong-Wook Choi, Myung-Hwan Kim.Journal of The Electrochemical Society, 147, 12, 4391 (2000) "shows the LUMO (minimum empty molecular orbital) energy of the compound constituting the additive for non-aqueous electrolytes. A method using a plurality of energy levels has been reported. In such a document, a compound having a lower LUMO energy is an electron acceptor that is more excellent, and is a non-aqueous electrolyte additive that can form a stable SEI on the surface of an electrode such as a non-aqueous electrolyte secondary battery. It is supposed to be. Therefore, by measuring the LUMO energy of a compound, it is possible to easily evaluate whether the compound has the ability to form stable SEI on the electrode surface of a nonaqueous electrolyte secondary battery or the like. Is now a very useful tool.
一方で、特許文献1~9に開示されている化合物は、LUMOエネルギーが高く、非水電解液用添加剤としての性能が不充分であったり、LUMOエネルギーが低くても化学的に不安定であったりする等の問題があった。とりわけ、ジスルホン酸エステル化合物は低いLUMOエネルギーを示すものの、水分に対する安定性が低く容易に劣化するため、長期間保管する場合には、厳密な水分含有量及び温度の管理が必要であった。更に、例えば、一般的にリチウムイオン電池としては約60℃、リチウムイオンキャパシタとしては約80℃の耐熱温度が求められていることから、蓄電デバイスに用いられる非水電解液用添加剤の高温での安定性の向上は重要な課題の1つであった。 On the other hand, the compounds disclosed in Patent Documents 1 to 9 have high LUMO energy, insufficient performance as additives for non-aqueous electrolytes, and are chemically unstable even when LUMO energy is low. There was a problem such as. In particular, although the disulfonic acid ester compound exhibits low LUMO energy, it has a low stability to moisture and easily deteriorates. Therefore, when it is stored for a long period of time, it is necessary to strictly control the moisture content and temperature. Furthermore, for example, since a heat resistant temperature of about 60 ° C. is generally required for a lithium ion battery and about 80 ° C. for a lithium ion capacitor, the additive for non-aqueous electrolyte used in an electricity storage device is high. Improving the stability of was an important issue.
また、電極表面に形成されるSEIの性能は、用いる添加剤によって異なり、サイクル特性、充放電容量、高温保存特性、ガス発生抑制、内部抵抗の低減等、多くの電池特性に深く関与している。しかしながら、従来の添加剤を用いた場合では、充分な性能を持つSEIを形成させ、長期に亘ってその電池特性を高く維持し続けることは困難であった。
例えば、特許文献10~15に記載されているビニレンカーボネート系化合物や1,3-プロパンスルトン等のスルトン系化合物を添加剤として用いた電解液は、負極表面上に電気化学的還元分解を生じて生成したSEIによって、不可逆的な容量低下を抑制することが可能となっている。しかし、これらの添加剤によって形成されたSEIは電極を保護する性能に優れるものの、リチウムイオンのイオン伝導性が低いため、内部抵抗を低下させる性能は小さかった。更に、形成されたSEIは、長期間の使用に耐える強度がなく、使用中にSEIが分解したり、SEIに亀裂が生じたりすることによって負極表面が露出し、電解液の分解が生じて電池特性が低下するといった問題点があった。
In addition, the performance of SEI formed on the electrode surface varies depending on the additive used, and is deeply involved in many battery characteristics such as cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, and reduction of internal resistance. . However, when conventional additives are used, it has been difficult to form SEI with sufficient performance and to keep its battery characteristics high over a long period of time.
For example, an electrolytic solution using a vinylene carbonate compound or a sultone compound such as 1,3-propane sultone described in Patent Documents 10 to 15 as an additive causes electrochemical reductive decomposition on the negative electrode surface. The generated SEI can suppress irreversible capacity reduction. However, although SEI formed by these additives is excellent in the performance of protecting the electrode, the performance of lowering the internal resistance is small because of the low ion conductivity of lithium ions. Further, the formed SEI does not have the strength to withstand long-term use, and the SEI is decomposed during use or the SEI cracks, so that the surface of the negative electrode is exposed and the electrolyte is decomposed. There was a problem that the characteristics deteriorated.
このように、従来の非水電解液用添加剤は、電極を保護する性能や内部抵抗を低下させる等の性能において、長期に亘って充分な性能を有するものではなく、改善の余地があった。即ち、電極表面上に安定で、かつ、サイクル特性、充放電容量、内部抵抗等を向上させるSEIを形成させ、非水電解液二次電池等の蓄電デバイスの電池特性を向上させる新規な電解液用添加剤の開発が求められていた。 As described above, the conventional additive for non-aqueous electrolyte does not have sufficient performance over a long period of time in performance of protecting the electrode or reducing internal resistance, and there is room for improvement. . That is, a novel electrolytic solution that improves the battery characteristics of an electricity storage device such as a non-aqueous electrolyte secondary battery by forming SEI that is stable on the electrode surface and that improves cycle characteristics, charge / discharge capacity, internal resistance, etc. Development of additives for use was required.
本発明は、保存安定性に優れ、蓄電デバイスに用いた場合に、電極表面上に安定な固体電解質界面(SEI)を形成してサイクル特性、充放電容量、高温保存特性、ガス発生抑制、内部抵抗の低減等の電池特性を改善することができる非水電解液用添加剤を提供することを目的とする。また、本発明は、該該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスを提供することを目的とする。 The present invention is excellent in storage stability and, when used in an electricity storage device, forms a stable solid electrolyte interface (SEI) on the electrode surface to provide cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, internal It aims at providing the additive for non-aqueous electrolyte which can improve battery characteristics, such as reduction of resistance. Another object of the present invention is to provide a non-aqueous electrolyte using the additive for non-aqueous electrolyte and an electricity storage device using the non-aqueous electrolyte.
本発明は、下記式(1-1)、下記式(1-2)、下記式(1-3)、下記式(1-4)、下記式(1-5)、又は、下記式(1-6)で表される環状イミド化合物を含有する非水電解液用添加剤である。
なお、本発明の非水電解液用添加剤は、本発明にかかる環状イミド化合物のみを含有するものに限定されず、本発明の目的を損なわない範囲で、他の成分を含有してもよい。
The present invention provides the following formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), formula (1-5) The additive for non-aqueous electrolyte solution containing the cyclic imide compound represented by −6).
In addition, the additive for non-aqueous electrolyte of the present invention is not limited to the one containing only the cyclic imide compound according to the present invention, and may contain other components as long as the object of the present invention is not impaired. .
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
式(1-1)中のR、式(1-2)中のR、式(1-3)中のR、式(1-4)中のR、式(1-5)中のR、及び、式(1-6)中のR11は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換されていてもよいベンジル基、置換されていてもよいベンジルオキシ基、置換されていてもよい炭素数2~6のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよいフェニル基、又は、置換されていてもよいベンジル基を示す。式(1-1)中のR、式(1-2)中のR、式(1-3)中のR、式(1-4)中のR、式(1-5)中のR10、及び、式(1-6)中のR12は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数1~4のアルコキシ基、又は、ハロゲン原子を示す。式(1-1)中のlは0~4の整数を示し、式(1-2)中のmは0~2の整数を示し、式(1-3)中のnは0~2の整数を示し、式(1-4)中のoは0~4の整数を示し、式(1-5)中のpは0~4の整数を示し、式(1-6)中のqは0~6の整数を示す。
以下に本発明を詳細に説明する。
R 1 in formula (1-1), R 3 in formula (1-2), R 5 in formula (1-3), R 7 in formula (1-4), formula (1-5) R 9 in the formula and R 11 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkenyl group having 2 to 4 carbon atoms. , An optionally substituted alkoxy group having 1 to 4 carbon atoms, an optionally substituted phenyl group, an optionally substituted phenoxy group, an optionally substituted benzyl group, an optionally substituted benzyl An oxy group, an optionally substituted alkenyloxy group having 2 to 6 carbon atoms, or an NR 13 R 14 group, wherein R 13 and R 14 are each independently a hydrogen atom or an optionally substituted carbon; An alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms which may be substituted, A phenyl group which may be substituted or a benzyl group which may be substituted is shown. R 2 in formula (1-1), R 4 in formula (1-2), R 6 in formula (1-3), R 8 in formula (1-4), formula (1-5) R 10 in the formula and R 12 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkoxy group having 1 to 4 carbon atoms. Or a halogen atom. L in the formula (1-1) represents an integer of 0 to 4, m in the formula (1-2) represents an integer of 0 to 2, and n in the formula (1-3) represents 0 to 2. Represents an integer, o in the formula (1-4) represents an integer of 0 to 4, p in the formula (1-5) represents an integer of 0 to 4, and q in the formula (1-6) represents An integer from 0 to 6 is shown.
The present invention is described in detail below.
本発明者らは、前記式(1-1)、前記式(1-2)、前記式(1-3)、前記式(1-4)、前記式(1-5)、及び、前記式(1-6)で表される環状イミド化合物(以下、併せて「本発明にかかる環状イミド化合物」ともいう)は、窒素に結合したカルボニル基の影響で、電気化学的還元を受けやすい低いLUMOエネルギーを示し、かつ、化学的に安定であることを見出した。そこで本発明者らは、本発明にかかる環状イミド化合物を含有する非水電解液用添加剤を非水電解液に含有させ、更に該非水電解液を非水電解液二次電池等の蓄電デバイスに用いた場合に、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができることを見出し、本発明を完成させるに至った。 The inventors of the present invention have said formula (1-1), formula (1-2), formula (1-3), formula (1-4), formula (1-5), and formula The cyclic imide compound represented by (1-6) (hereinafter also referred to as “cyclic imide compound according to the present invention”) is a low LUMO that is susceptible to electrochemical reduction due to the influence of a carbonyl group bonded to nitrogen. It was found to be energy stable and chemically stable. Therefore, the present inventors include a non-aqueous electrolyte containing an additive for a non-aqueous electrolyte containing the cyclic imide compound according to the present invention, and further adding the non-aqueous electrolyte to a power storage device such as a non-aqueous electrolyte secondary battery. When used for the above, it has been found that stable SEI can be formed on the electrode surface to improve battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance, and the present invention has been completed.
本発明にかかる環状イミド化合物が、非水電解液用添加剤として、サイクル特性、充放電容量、高温保存特性、ガス発生抑制、内部抵抗の低減等の電池特性を改善する理由は詳らかではないが、次のように考えられる。本発明にかかる環状イミド化合物は、電気化学的還元を受けた際に環状イミドが開環し、窒素原子、酸素原子等を含む極性基を多数含有するSEIを形成すると考えられる。このような窒素原子、酸素原子等を含む極性基を多数含有するSEIは、優れたイオン伝導度を示し、電気化学的に安定であることから、非常に高性能なSEIであると考えられる。また、定かではないが、本発明にかかる環状イミド化合物は、窒素原子にカルボニル基が3つ結合しており、窒素の電子密度が低くなっているため、負極表面上で電気化学的還元反応を受けやすくなっている。その結果、電気化学的還元分解が容易に起こり、負極表面にSEIを形成しやすくなると考えられる。一方で、窒素原子にアルキル基等が直接結合している場合は、負極表面上で還元反応を受けにくくなり、その結果、SEIが形成しにくくなると考えられる。また、窒素原子に結合しているカルボニル基が2つ以下である場合、充分な効果は発揮されないおそれがある。 The reason why the cyclic imide compound according to the present invention improves battery characteristics such as cycle characteristics, charge / discharge capacity, high-temperature storage characteristics, gas generation suppression, and reduction of internal resistance as an additive for non-aqueous electrolytes is not clear. It is considered as follows. The cyclic imide compound according to the present invention is considered to open the cyclic imide when subjected to electrochemical reduction, and to form SEI containing a large number of polar groups including nitrogen atoms, oxygen atoms and the like. Such SEI containing a large number of polar groups containing nitrogen atom, oxygen atom and the like exhibits excellent ionic conductivity and is electrochemically stable, and thus is considered to be a very high performance SEI. Moreover, although not certain, the cyclic imide compound according to the present invention has three carbonyl groups bonded to the nitrogen atom, and the electron density of nitrogen is low. Therefore, an electrochemical reduction reaction is performed on the negative electrode surface. It is easy to receive. As a result, it is considered that electrochemical reductive decomposition occurs easily and it is easy to form SEI on the negative electrode surface. On the other hand, when an alkyl group or the like is directly bonded to the nitrogen atom, it is difficult to undergo a reduction reaction on the negative electrode surface, and as a result, it is considered that SEI is difficult to form. Moreover, when the number of carbonyl groups bonded to the nitrogen atom is 2 or less, there is a possibility that a sufficient effect is not exhibited.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換されていてもよいベンジル基、置換されていてもよいベンジルオキシ基、置換されていてもよい炭素数2~6のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよいフェニル基、又は、置換されていてもよいベンジル基を示す。なかでも、R、R、R、R、R、及び、R11は、より電気化学的還元反応を受けやすく、良好なSEIを形成することができることから、置換されていてもよい炭素数1~4のアルコキシ基、置換されていないフェノキシ基、置換されていないベンジルオキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、又は、R13及びR14がそれぞれ独立に置換されていてもよい炭素数1~4のアルキル基若しくは置換されていてもよいベンジル基であるNR1314基が好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula R 9 in (1-5) and R 11 in formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms or an optionally substituted carbon number. 2 to 4 alkenyl groups, optionally substituted alkoxy groups having 1 to 4 carbon atoms, optionally substituted phenyl groups, optionally substituted phenoxy groups, optionally substituted benzyl groups, substituted A benzyloxy group which may be substituted, an alkenyloxy group having 2 to 6 carbon atoms which may be substituted, or an NR 13 R 14 group, wherein R 13 and R 14 are each independently a hydrogen atom, Optionally substituted alkyl group having 1 to 4 carbon atoms, optionally substituted carbon number 2 to 4 alkenyl groups, an optionally substituted phenyl group, or an optionally substituted benzyl group. Among them, R 1 , R 3 , R 5 , R 7 , R 9 , and R 11 are more susceptible to electrochemical reduction reaction and can form good SEI. A good alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenoxy group, an unsubstituted benzyloxy group, an optionally substituted alkenyloxy group having 2 to 4 carbon atoms, or R 13 and R 14 are each An NR 13 R 14 group which is an optionally substituted alkyl group having 1 to 4 carbon atoms or an optionally substituted benzyl group is preferable.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11が、置換された炭素数1~4のアルキル基、置換された炭素数2~4のアルケニル基、置換された炭素数1~4のアルコキシ基、置換された炭素数2~6のアルケニルオキシ基、又は、R13及びR14のうち少なくとも一方が置換された炭素数1~4のアルキル基若しくは置換された炭素数2~4のアルケニル基であるNR1314基である場合、置換基としては、例えば、ハロゲン原子等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、ハロゲン原子が好ましく、フッ素原子がより好ましい。
また、前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11が、置換されたフェニル基、置換されたフェノキシ基、置換されたベンジル基、置換されたベンジルオキシ基、又は、R13及びR14のうち少なくとも一方が置換されたフェニル基若しくは置換されたベンジル基であるNR1314基である場合、置換基としては、例えば、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、ハロゲン原子が好ましく、フッ素原子がより好ましい。
R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula R 9 in (1-5) and R 11 in the formula (1-6) are substituted alkyl groups having 1 to 4 carbon atoms, substituted alkenyl groups having 2 to 4 carbon atoms, The substituted alkoxy group having 1 to 4 carbon atoms, the substituted alkenyloxy group having 2 to 6 carbon atoms, the alkyl group having 1 to 4 carbon atoms in which at least one of R 13 and R 14 is substituted, or a substituted group; In the case of the NR 13 R 14 group which is an alkenyl group having 2 to 4 carbon atoms, examples of the substituent include a halogen atom. Among these, a halogen atom is preferable, and a fluorine atom is more preferable because it exhibits low LUMO energy that is easily subjected to electrochemical reduction.
R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), R 9 in the formula (1-5) and R 11 in the formula (1-6) are a substituted phenyl group, a substituted phenoxy group, a substituted benzyl group, a substituted benzyloxy Group, or when at least one of R 13 and R 14 is a substituted phenyl group or a substituted benzyl group NR 13 R 14 group, examples of the substituent include alkyl having 1 to 4 carbon atoms Group, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, and the like. Among these, a halogen atom is preferable, and a fluorine atom is more preferable because it exhibits low LUMO energy that is easily subjected to electrochemical reduction.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよい炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、モノフルオロメチル基、2-モノフルオロエチル基、3-モノフルオロプロピル基、4-モノフルオロブチル基、ジフルオロメチル基、2,2-ジフルオロエチル基、3,3-ジフルオロプロピル基、4,4-ジフルオロブチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、4,4,4-トリフルオロブチル基、1,1,2,2,2-ペンタフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、3,3,4,4,4-ペンタフルオロブチル基等が挙げられる。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted alkyl group represented by R 9 in (1-5) and R 11 in the above formula (1-6) include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, monofluoromethyl group, 2-monofluoroethyl group, 3-monofluoropropyl group, 4-monofluorobutyl group, difluoro Methyl group, 2,2-difluoroethyl group, 3,3-difluoropropyl group, 4,4-difluorobutyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trimethyl Fluoropropyl group, 4,4,4-trifluorobuty Group, 1,1,2,2,2-pentafluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 3,3,4,4,4-pentafluorobutyl group and the like. .
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよい炭素数2~4のアルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、イソブテニル基等が挙げられる。なかでも、アリル基が好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted alkenyl group having 2 to 4 carbon atoms represented by R 9 in (1-5) and R 11 in the formula (1-6) include, for example, vinyl group, allyl Group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, isobutenyl group and the like. Of these, an allyl group is preferable.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよい炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、トリフルオロメトキシ基、2,2,2-トリフルオロエチルオキシ基、1,1,2,2,2-ペンタフルオロエチルオキシ基等が挙げられる。なかでも、エトキシ基、2,2,2-トリフルオロエチルオキシ基が好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted alkoxy group having 1 to 4 carbon atoms represented by R 9 in (1-5) and R 11 in the formula (1-6) include, for example, a methoxy group, ethoxy Group, n-propoxy group, n-butoxy group, trifluoromethoxy group, 2,2,2-trifluoroethyloxy group, 1,1,2,2,2-pentafluoroethyloxy group and the like. Of these, an ethoxy group and a 2,2,2-trifluoroethyloxy group are preferable.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよいフェニル基としては、例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、2-エトキシフェニル基、3-エトキシフェニル基、4-エトキシフェニル基、2-(ジメチルアミノ)フェニル基、3-(ジメチルアミノ)フェニル基、4-(ジメチルアミノ)フェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、フェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基であることが好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted phenyl group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a phenyl group, a 2-methylphenyl group, 3 -Methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-ethoxy Phenyl group, 3-ethoxyphenyl group, 4-ethoxyphenyl group, 2- (dimethylamino) phenyl group, 3- (dimethylamino) phenyl group, 4- (dimethylamino) phenyl group, 2-fluorophenyl group, 3- Fluorophenyl group 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, a 4-bromophenyl group. Of these, a phenyl group, a 2-fluorophenyl group, a 3-fluorophenyl group, and a 4-fluorophenyl group are preferable because they exhibit low LUMO energy that is easily subjected to electrochemical reduction.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよいフェノキシ基としては、例えば、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2-エチルフェノキシ基、3-エチルフェノキシ基、4-エチルフェノキシ基、2-メトキシフェノキシ基、3-メトキシフェノキシ基、4-メトキシフェノキシ基、2-エトキシフェノキシ基、3-エトキシフェノキシ基、4-エトキシフェノキシ基、2-(ジメチルアミノ)フェノキシ基、3-(ジメチルアミノ)フェノキシ基、4-(ジメチルアミノ)フェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、2-クロロフェノキシ基、3-クロロフェノキシ基、4-クロロフェノキシ基、2-ブロモフェノキシ基、3-ブロモフェノキシ基、4-ブロモフェノキシ基等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、フェノキシ基、4-メトキシフェノキシ基、4-フルオロフェノキシ基であることが好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted phenoxy group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a phenoxy group, a 2-methylphenoxy group, 3 -Methylphenoxy group, 4-methylphenoxy group, 2-ethylphenoxy group, 3-ethylphenoxy group, 4-ethylphenoxy group, 2-methoxyphenoxy group, 3-methoxyphenoxy group, 4-methoxyphenoxy group, 2-ethoxy Phenoxy group, 3-ethoxyphenoxy group, 4-ethoxyphenoxy group, 2- (dimethylamino) phenoxy group, 3- (dimethylamino) phenoxy group, 4- (dimethylamino) phenoxy group, 2-fluoro Enoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, 2-chlorophenoxy group, 3-chlorophenoxy group, 4-chlorophenoxy group, 2-bromophenoxy group, 3-bromophenoxy group, 4-bromophenoxy group Etc. Among these, a phenoxy group, a 4-methoxyphenoxy group, and a 4-fluorophenoxy group are preferable because they exhibit low LUMO energy that is easily subjected to electrochemical reduction.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよいベンジル基としては、例えば、ベンジル基、2-メチルベンジル基、3-メチルベンジル基、4-メチルベンジル基、2-エチルベンジル基、3-エチルベンジル基、4-エチルベンジル基、2-メトキシベンジル基、3-メトキシベンジル基、4-メトキシベンジル基、2-エトキシベンジル基、3-エトキシベンジル基、4-エトキシベンジル基、2-(ジメチルアミノ)ベンジル基、3-(ジメチルアミノ)ベンジル基、4-(ジメチルアミノ)ベンジル基、2-フルオロベンジル基、3-フルオロベンジル基、4-フルオロベンジル基、2-クロロベンジル基、3-クロロベンジル基、4-クロロベンジル基、2-ブロモベンジル基、3-ブロモベンジル基、4-ブロモベンジル基等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、ベンジル基、4-メトキシベンジル基、4-フルオロベンジル基であることが好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted benzyl group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a benzyl group, a 2-methylbenzyl group, 3 -Methylbenzyl group, 4-methylbenzyl group, 2-ethylbenzyl group, 3-ethylbenzyl group, 4-ethylbenzyl group, 2-methoxybenzyl group, 3-methoxybenzyl group, 4-methoxybenzyl group, 2-ethoxy Benzyl group, 3-ethoxybenzyl group, 4-ethoxybenzyl group, 2- (dimethylamino) benzyl group, 3- (dimethylamino) benzyl group, 4- (dimethylamino) benzyl group, 2-fluorobenzyl group, 3- Fluorobenzyl group 4-fluorobenzyl group, 2-chlorobenzyl group, 3-chlorobenzyl group, 4-chlorobenzyl group, 2-bromobenzyl group, 3-bromobenzyl group, 4-bromobenzyl group, and the like. Of these, a benzyl group, a 4-methoxybenzyl group, and a 4-fluorobenzyl group are preferable because they exhibit low LUMO energy that is susceptible to electrochemical reduction.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよいベンジルオキシ基としては、例えば、ベンジルオキシ基、2-メチルベンジルオキシ基、3-メチルベンジルオキシ基、4-メチルベンジルオキシ基、2-エチルベンジルオキシ基、3-エチルベンジルオキシ基、4-エチルベンジルオキシ基、2-メトキシベンジルオキシ基、3-メトキシベンジルオキシ基、4-メトキシベンジルオキシ基、2-エトキシベンジルオキシ基、3-エトキシベンジルオキシ基、4-エトキシベンジルオキシ基、2-(ジメチルアミノ)ベンジルオキシ基、3-(ジメチルアミノ)ベンジルオキシ基、4-(ジメチルアミノ)ベンジルオキシ基、2-フルオロベンジルオキシ基、3-フルオロベンジルオキシ基、4-フルオロベンジルオキシ基、2-クロロベンジルオキシ基、3-クロロベンジルオキシ基、4-クロロベンジルオキシ基、2-ブロモベンジルオキシ基、3-ブロモベンジルオキシ基、4-ブロモベンジルオキシ基等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、ベンジルオキシ基、4-メトキシベンジルオキシ基、4-フルオロベンジルオキシ基であることが好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the optionally substituted benzyloxy group represented by R 9 in (1-5) and R 11 in the formula (1-6) include a benzyloxy group, 2-methylbenzyloxy Group, 3-methylbenzyloxy group, 4-methylbenzyloxy group, 2-ethylbenzyloxy group, 3-ethylbenzyloxy group, 4-ethylbenzyloxy group, 2-methoxybenzyloxy group, 3-methoxybenzyloxy group 4-methoxybenzyloxy group, 2-ethoxybenzyloxy group, 3-ethoxybenzyloxy group, 4-ethoxybenzyloxy group, 2- (dimethylamino) benzyloxy group, 3- (dimethylamino) base Zyloxy group, 4- (dimethylamino) benzyloxy group, 2-fluorobenzyloxy group, 3-fluorobenzyloxy group, 4-fluorobenzyloxy group, 2-chlorobenzyloxy group, 3-chlorobenzyloxy group, 4- Examples include chlorobenzyloxy group, 2-bromobenzyloxy group, 3-bromobenzyloxy group, 4-bromobenzyloxy group and the like. Of these, a benzyloxy group, a 4-methoxybenzyloxy group, and a 4-fluorobenzyloxy group are preferable because they exhibit low LUMO energy that is susceptible to electrochemical reduction.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、置換されていてもよい炭素数2~6のアルケニルオキシ基としては、例えば、2-プロペニルオキシ基、1-メチル-2-プロペニルオキシ基、2-メチル-2-プロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-へキセニルオキシ基、5-ヘキセニルオキシ基等が挙げられる。なかでも、電気化学的還元を受けやすい低いLUMOエネルギーを示すこと等から、2-プロペニルオキシ基、2-ブテニルオキシ基であることが好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula The optionally substituted alkenyloxy group having 2 to 6 carbon atoms represented by R 9 in (1-5) and R 11 in the formula (1-6) is, for example, 2-propenyl Examples thereof include an oxy group, a 1-methyl-2-propenyloxy group, a 2-methyl-2-propenyloxy group, a 2-butenyloxy group, a 3-butenyloxy group, a 2-hexenyloxy group, and a 5-hexenyloxy group. Of these, a 2-propenyloxy group and a 2-butenyloxy group are preferable because they exhibit low LUMO energy that is susceptible to electrochemical reduction.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)中のR11で示される、NR1314基としては、例えば、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N-メチル-N-ベンジルアミノ基、N-メチル-N-フェニルアミノ基、N,N-ジベンジルアミノ基、N,N-ジフェニルアミノ基等が挙げられる。なかでも、N,N-ジメチルアミノ基、N-メチル-N-ベンジルアミノ基であることが好ましい。 R 1 in the formula (1-1), R 3 in the formula (1-2), R 5 in the formula (1-3), R 7 in the formula (1-4), the formula Examples of the NR 13 R 14 group represented by R 9 in (1-5) and R 11 in the formula (1-6) include an N, N-dimethylamino group, N, N-diethylamino group, and the like. Group, N-methyl-N-benzylamino group, N-methyl-N-phenylamino group, N, N-dibenzylamino group, N, N-diphenylamino group and the like. Of these, an N, N-dimethylamino group and an N-methyl-N-benzylamino group are preferable.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR10、及び、前記式(1-6)中のR12は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数1~4のアルコキシ基、又は、ハロゲン原子を示す。前記式(1-1)中、lは0~4の整数を示し、前記式(1-2)中、mは0~2の整数を示し、前記式(1-3)中、nは0~2の整数を示し、式(1-4)中のoは0~4の整数を示し、式(1-5)中のpは0~4の整数を示し、式(1-6)中のqは0~6の整数を示す。 R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula R 10 in (1-5) and R 12 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms or an optionally substituted carbon number. 1 to 4 alkoxy groups or a halogen atom. In the formula (1-1), l represents an integer of 0 to 4, in the formula (1-2), m represents an integer of 0 to 2, and in the formula (1-3), n represents 0. In the formula (1-4) represents an integer of 0 to 4, p in the formula (1-5) represents an integer of 0 to 4, and in the formula (1-6) Q in q represents an integer of 0 to 6.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR10、及び、前記式(1-6)中のR12で示される、置換されていてもよい炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。なかでも、入手性や反応性等の観点から、メチル基が好ましい。 R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula Examples of the optionally substituted alkyl group represented by R 10 in (1-5) and R 12 in the above formula (1-6) include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group and the like. Of these, a methyl group is preferable from the viewpoints of availability and reactivity.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR10、及び、前記式(1-6)中のR12で示される、置換されていてもよい炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等が挙げられる。なかでも、入手性や反応性等の観点から、メトキシ基が好ましい。 R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula Examples of the optionally substituted alkoxy group having 1 to 4 carbon atoms represented by R 10 in (1-5) and R 12 in the formula (1-6) include, for example, a methoxy group, ethoxy Group, n-propoxy group, n-butoxy group and the like. Of these, a methoxy group is preferred from the viewpoints of availability and reactivity.
前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR10、及び、前記式(1-6)中のR12で示される、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。なかでも、入手性や反応性等の観点から、塩素原子が好ましい。 R 2 in the formula (1-1), R 4 in the formula (1-2), R 6 in the formula (1-3), R 8 in the formula (1-4), the formula Examples of the halogen atom represented by R 10 in (1-5) and R 12 in the above formula (1-6) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom is preferable from the viewpoint of availability, reactivity, and the like.
前記式(1-1)中のlは、0~2であることが好ましく、0~1であることがより好ましく、入手性や反応性等の観点から、0であることが更に好ましい。
前記式(1-1)中のlが1である場合、Rの好ましい置換位置は4位であり、lが2の場合の好ましい置換位置は、4位と5位である。
前記式(1-1)中のlが2~4の整数である場合、各Rは、それぞれ同一であってもよいし異なっていてもよい。
In the formula (1-1), l is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability, reactivity, and the like.
When l in the formula (1-1) is 1, the preferred substitution position of R 2 is the 4-position, and the preferred substitution positions when l is 2 are the 4-position and 5-position.
When l in the formula (1-1) is an integer of 2 to 4, each R 2 may be the same or different.
前記式(1-2)中のmは、0又は1であることが好ましく、0であることがより好ましい。
前記式(1-2)中のmが2である場合、2つのRは、それぞれ同一であってもよいし異なっていてもよい。
M in the formula (1-2) is preferably 0 or 1, and more preferably 0.
When m in the formula (1-2) is 2, two R 4 s may be the same or different.
前記式(1-3)中のnは、0又は1であることが好ましく、0であることがより好ましい。
前記式(1-3)中のnが2である場合、2つのRは、それぞれ同一であってもよいし異なっていてもよい。
In the formula (1-3), n is preferably 0 or 1, and more preferably 0.
When n in the formula (1-3) is 2, two R 6 s may be the same or different.
前記式(1-4)中のoは、0~2であることが好ましく、0~1であることがより好ましく、入手性や反応性等の観点から、0であることが更に好ましい。
前記式(1-4)中のoが2~4の整数である場合、各Rは、それぞれ同一であってもよいし異なっていてもよい。
In the formula (1-4), o is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability and reactivity.
When o in the formula (1-4) is an integer of 2 to 4, each R 8 may be the same or different.
前記式(1-5)中のpは、0~2であることが好ましく、0~1であることがより好ましく、入手性や反応性等の観点から、0であることが更に好ましい。
前記式(1-5)中のpが2~4の整数である場合、各R10は、それぞれ同一であってもよいし異なっていてもよい。
In the formula (1-5), p is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability, reactivity, and the like.
When p in the formula (1-5) is an integer of 2 to 4, each R 10 may be the same or different.
前記式(1-6)中のqは、0~2であることが好ましく、0~1であることがより好ましく、入手性や反応性等の観点から、0であることが更に好ましい。
前記式(1-6)中のqが2~6の整数である場合、各R12は、それぞれ同一であってもよいし異なっていてもよい。
Q in the formula (1-6) is preferably 0 to 2, more preferably 0 to 1, and still more preferably 0 from the viewpoints of availability and reactivity.
When q in the formula (1-6) is an integer of 2 to 6, each R 12 may be the same or different.
本発明にかかる環状イミド化合物のうち、前記式(1-1)で表される化合物としては、例えば、N-ベンゾイルフタルイミド、N-(フェノキシカルボニル)フタルイミド、N-アセチルフタルイミド、N-(メトキシカルボニル)フタルイミド、N-プロパノイルフタルイミド、N-(エトキシカルボニル)フタルイミド、N-ブタノイルフタルイミド、N-(プロポキシカルボニル)フタルイミド、N-(2-プロペニルオキシカルボニル)フタルイミド、N-ベンゾイル-4-メチルフタルイミド、N-(フェノキシカルボニル)-4-メチルフタルイミド、N-アセチル-4-メチルフタルイミド、N-(メトキシカルボニル)-4-メチルフタルイミド、N-プロパノイル-4-メチルフタルイミド、N-(エトキシカルボニル)-4-メチルフタルイミド、N-ブタノイル-4-メチルフタルイミド、N-(プロポキシカルボニル)-4-メチルフタルイミド、N-ベンゾイル-5-メチルフタルイミド、N-(フェノキシカルボニル)-5-メチルフタルイミド、N-アセチル-5-メチルフタルイミド、N-(メトキシカルボニル)-5-メチルフタルイミド、N-プロパノイル-5-メチルフタルイミド、N-(エトキシカルボニル)-5-メチルフタルイミド、N-ブタノイル-5-メチルフタルイミド、N-(プロポキシカルボニル)-5-メチルフタルイミド、N-(N’,N’-ジメチルアミノカルボニル)フタルイミド、N-(N’-メチル-N’-ベンジルアミノカルボニル)フタルイミド等が挙げられる。 Among the cyclic imide compounds according to the present invention, examples of the compound represented by the formula (1-1) include N-benzoylphthalimide, N- (phenoxycarbonyl) phthalimide, N-acetylphthalimide, and N- (methoxycarbonyl). ) Phthalimide, N-propanoylphthalimide, N- (ethoxycarbonyl) phthalimide, N-butanoylphthalimide, N- (propoxycarbonyl) phthalimide, N- (2-propenyloxycarbonyl) phthalimide, N-benzoyl-4-methylphthalimide N- (phenoxycarbonyl) -4-methylphthalimide, N-acetyl-4-methylphthalimide, N- (methoxycarbonyl) -4-methylphthalimide, N-propanoyl-4-methylphthalimide, N- (ethoxycarbonyl) -4-methylphthalimide, N-butanoyl-4-methylphthalimide, N- (propoxycarbonyl) -4-methylphthalimide, N-benzoyl-5-methylphthalimide, N- (phenoxycarbonyl) -5-methylphthalimide, N- Acetyl-5-methylphthalimide, N- (methoxycarbonyl) -5-methylphthalimide, N-propanoyl-5-methylphthalimide, N- (ethoxycarbonyl) -5-methylphthalimide, N-butanoyl-5-methylphthalimide, N -(Propoxycarbonyl) -5-methylphthalimide, N- (N ', N'-dimethylaminocarbonyl) phthalimide, N- (N'-methyl-N'-benzylaminocarbonyl) phthalimide and the like.
本発明にかかる環状イミド化合物のうち、前記式(1-2)で表される化合物としては、例えば、N-ベンゾイルマレイミド、N-(フェノキシカルボニル)マレイミド、N-アセチルマレイミド、N-(メトキシカルボニル)マレイミド、N-プロパノイルマレイミド、N-(エトキシカルボニル)マレイミド、N-ブタノイルマレイミド、N-(プロポキシカルボニル)マレイミド、N-(2-プロペニルオキシカルボニル)マレイミド、N-(N’,N’-ジメチルアミノカルボニル)マレイミド、N-(N’-メチル-N’-ベンジルアミノカルボニル)マレイミド等が挙げられる。 Among the cyclic imide compounds according to the present invention, examples of the compound represented by the formula (1-2) include N-benzoylmaleimide, N- (phenoxycarbonyl) maleimide, N-acetylmaleimide, N- (methoxycarbonyl). ) Maleimide, N-propanoylmaleimide, N- (ethoxycarbonyl) maleimide, N-butanoylmaleimide, N- (propoxycarbonyl) maleimide, N- (2-propenyloxycarbonyl) maleimide, N- (N ′, N ′ -Dimethylaminocarbonyl) maleimide, N- (N′-methyl-N′-benzylaminocarbonyl) maleimide and the like.
本発明にかかる環状イミド化合物のうち、前記式(1-3)で表される化合物としては、例えば、N-ベンゾイルコハク酸イミド、N-(フェノキシカルボニル)コハク酸イミド、N-アセチルコハク酸イミド、N-(メトキシカルボニル)コハク酸イミド、N-プロパノイルコハク酸イミド、N-(エトキシカルボニル)コハク酸イミド、N-ブタノイルコハク酸イミド、N-(プロポキシカルボニル)コハク酸イミド、N-(2-プロペニルオキシカルボニル)コハク酸イミド、N-(N’,N’-ジメチルアミノカルボニル)コハク酸イミド、N-(N’-メチル-N’-ベンジルアミノカルボニル)コハク酸イミド等が挙げられる。 Among the cyclic imide compounds according to the present invention, examples of the compound represented by the formula (1-3) include N-benzoylsuccinimide, N- (phenoxycarbonyl) succinimide, and N-acetylsuccinimide. N- (methoxycarbonyl) succinimide, N-propanoyl succinimide, N- (ethoxycarbonyl) succinimide, N-butanoyl succinimide, N- (propoxycarbonyl) succinimide, N- ( 2-propenyloxycarbonyl) succinimide, N- (N ′, N′-dimethylaminocarbonyl) succinimide, N- (N′-methyl-N′-benzylaminocarbonyl) succinimide and the like.
本発明にかかる環状イミド化合物のうち、前記式(1-4)で表される化合物としては、例えば、N-ベンゾイルヘキサヒドロフタルイミド、N-(フェノキシカルボニル)ヘキサヒドロフタルイミド、N-アセチルヘキサヒドロフタルイミド、N-(メトキシカルボニル)ヘキサヒドロフタルイミド、N-プロパノイルヘキサヒドロフタルイミド、N-(エトキシカルボニル)ヘキサヒドロフタルイミド、N-ブタノイルヘキサヒドロフタルイミド、N-(プロポキシカルボニル)ヘキサヒドロフタルイミド、N-(2-プロペニルオキシカルボニル)ヘキサヒドロフタルイミド、N-ベンゾイル-4-メチルヘキサヒドロフタルイミド、N-(フェノキシカルボニル)-4-メチルヘキサヒドロフタルイミド、N-アセチル-4-メチルヘキサヒドロフタルイミド、N-(メトキシカルボニル)-4-メチルヘキサヒドロフタルイミド、N-プロパノイル-4-メチルヘキサヒドロフタルイミド、N-(エトキシカルボニル)-4-メチルヘキサヒドロフタルイミド、N-ブタノイル-4-メチルヘキサヒドロフタルイミド、N-(プロポキシカルボニル)-4-メチルヘキサヒドロフタルイミド、N-ベンゾイル-5-メチルヘキサヒドロフタルイミド、N-(フェノキシカルボニル)-5-メチルヘキサヒドロフタルイミド、N-アセチル-5-メチルヘキサヒドロフタルイミド、N-(メトキシカルボニル)-5-メチルヘキサヒドロフタルイミド、N-プロパノイル-5-メチルヘキサヒドロフタルイミド、N-(エトキシカルボニル)-5-メチルヘキサヒドロフタルイミド、N-ブタノイル-5-メチルヘキサヒドロフタルイミド、N-(プロポキシカルボニル)-5-メチルヘキサヒドロフタルイミド、N-(N’,N’-ジメチルアミノカルボニル)ヘキサヒドロフタルイミド、N-(N’-メチル-N’-ベンジルアミノカルボニル)ヘキサヒドロフタルイミド等が挙げられる。 Among the cyclic imide compounds according to the present invention, examples of the compound represented by the formula (1-4) include N-benzoylhexahydrophthalimide, N- (phenoxycarbonyl) hexahydrophthalimide, and N-acetylhexahydrophthalimide. N- (methoxycarbonyl) hexahydrophthalimide, N-propanoylhexahydrophthalimide, N- (ethoxycarbonyl) hexahydrophthalimide, N-butanoylhexahydrophthalimide, N- (propoxycarbonyl) hexahydrophthalimide, N- ( 2-propenyloxycarbonyl) hexahydrophthalimide, N-benzoyl-4-methylhexahydrophthalimide, N- (phenoxycarbonyl) -4-methylhexahydrophthalimide, N-acetyl-4-methyl Xahydrophthalimide, N- (methoxycarbonyl) -4-methylhexahydrophthalimide, N-propanoyl-4-methylhexahydrophthalimide, N- (ethoxycarbonyl) -4-methylhexahydrophthalimide, N-butanoyl-4-methyl Hexahydrophthalimide, N- (propoxycarbonyl) -4-methylhexahydrophthalimide, N-benzoyl-5-methylhexahydrophthalimide, N- (phenoxycarbonyl) -5-methylhexahydrophthalimide, N-acetyl-5-methyl Hexahydrophthalimide, N- (methoxycarbonyl) -5-methylhexahydrophthalimide, N-propanoyl-5-methylhexahydrophthalimide, N- (ethoxycarbonyl) -5-methylhexahydrophthal Imido, N-butanoyl-5-methylhexahydrophthalimide, N- (propoxycarbonyl) -5-methylhexahydrophthalimide, N- (N ', N'-dimethylaminocarbonyl) hexahydrophthalimide, N- (N'- Methyl-N′-benzylaminocarbonyl) hexahydrophthalimide and the like.
本発明にかかる環状イミド化合物のうち、前記式(1-5)で表される化合物としては、例えば、N-ベンゾイル-1,2,3,6-テトラヒドロフタルイミド、N-(フェノキシカルボニル)-1,2,3,6-テトラヒドロフタルイミド、N-アセチル-1,2,3,6-テトラヒドロフタルイミド、N-(メトキシカルボニル)-1,2,3,6-テトラヒドロフタルイミド、N-プロパノイル-1,2,3,6-テトラヒドロフタルイミド、N-(エトキシカルボニル)-1,2,3,6-テトラヒドロフタルイミド、N-ブタノイル-1,2,3,6-テトラヒドロフタルイミド、N-(プロポキシカルボニル)-1,2,3,6-テトラヒドロフタルイミド、N-(2-プロペニルオキシカルボニル)-1,2,3,6-テトラヒドロフタルイミド、N-ベンゾイル-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(フェノキシカルボニル)-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-アセチル-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(メトキシカルボニル)-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-プロパノイル-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(エトキシカルボニル)-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-ブタノイル-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(プロポキシカルボニル)-4-メチル-1,2,3,6-テトラヒドロフタルイミド、N-ベンゾイル-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(フェノキシカルボニル)-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-アセチル-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(メトキシカルボニル)-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-プロパノイル-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(エトキシカルボニル)-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-ブタノイル-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(プロポキシカルボニル)-5-メチル-1,2,3,6-テトラヒドロフタルイミド、N-(N’,N’-ジメチルアミノカルボニル)-1,2,3,6-テトラヒドロフタルイミド、N-(N’-メチル-N’-ベンジルアミノカルボニル)-1,2,3,6-テトラヒドロフタルイミド等が挙げられる。 Among the cyclic imide compounds according to the present invention, examples of the compound represented by the formula (1-5) include N-benzoyl-1,2,3,6-tetrahydrophthalimide, N- (phenoxycarbonyl) -1 , 2,3,6-tetrahydrophthalimide, N-acetyl-1,2,3,6-tetrahydrophthalimide, N- (methoxycarbonyl) -1,2,3,6-tetrahydrophthalimide, N-propanoyl-1,2 , 3,6-tetrahydrophthalimide, N- (ethoxycarbonyl) -1,2,3,6-tetrahydrophthalimide, N-butanoyl-1,2,3,6-tetrahydrophthalimide, N- (propoxycarbonyl) -1, 2,3,6-tetrahydrophthalimide, N- (2-propenyloxycarbonyl) -1,2,3,6-tetra Drophthalimide, N-benzoyl-4-methyl-1,2,3,6-tetrahydrophthalimide, N- (phenoxycarbonyl) -4-methyl-1,2,3,6-tetrahydrophthalimide, N-acetyl-4- Methyl-1,2,3,6-tetrahydrophthalimide, N- (methoxycarbonyl) -4-methyl-1,2,3,6-tetrahydrophthalimide, N-propanoyl-4-methyl-1,2,3,6 -Tetrahydrophthalimide, N- (ethoxycarbonyl) -4-methyl-1,2,3,6-tetrahydrophthalimide, N-butanoyl-4-methyl-1,2,3,6-tetrahydrophthalimide, N- (propoxycarbonyl) ) -4-Methyl-1,2,3,6-tetrahydrophthalimide, N-benzoyl-5-methyl-1,2 3,6-tetrahydrophthalimide, N- (phenoxycarbonyl) -5-methyl-1,2,3,6-tetrahydrophthalimide, N-acetyl-5-methyl-1,2,3,6-tetrahydrophthalimide, N- (Methoxycarbonyl) -5-methyl-1,2,3,6-tetrahydrophthalimide, N-propanoyl-5-methyl-1,2,3,6-tetrahydrophthalimide, N- (ethoxycarbonyl) -5-methyl- 1,2,3,6-tetrahydrophthalimide, N-butanoyl-5-methyl-1,2,3,6-tetrahydrophthalimide, N- (propoxycarbonyl) -5-methyl-1,2,3,6-tetrahydro Phthalimide, N- (N ′, N′-dimethylaminocarbonyl) -1,2,3,6-tetrahydrophthalimide, N -(N'-methyl-N'-benzylaminocarbonyl) -1,2,3,6-tetrahydrophthalimide and the like.
本発明にかかる環状イミド化合物のうち、前記式(1-6)で表される化合物としては、例えば、N-ベンゾイルナフタルイミド、N-(フェノキシカルボニル)ナフタルイミド、N-アセチルナフタルイミド、N-(メトキシカルボニル)ナフタルイミド、N-プロパノイルナフタルイミド、N-(エトキシカルボニル)ナフタルイミド、N-ブタノイルナフタルイミド、N-(プロポキシカルボニル)ナフタルイミド、N-(2-プロペニルオキシカルボニル)ナフタルイミド、N-ベンゾイル-4-メチルナフタルイミド、N-(フェノキシカルボニル)-4-メチルナフタルイミド、N-アセチル-4-メチルナフタルイミド、N-(メトキシカルボニル)-4-メチルナフタルイミド、N-プロパノイル-4-メチルナフタルイミド、N-(エトキシカルボニル)-4-メチルナフタルイミド、N-ブタノイル-4-メチルナフタルイミド、N-(N’,N’-ジメチルアミノカルボニル)ナフタルイミド、N-(N’-メチル-N’-ベンジルアミノカルボニル)ナフタルイミド等が挙げられる。 Among the cyclic imide compounds according to the present invention, examples of the compound represented by the formula (1-6) include N-benzoylnaphthalimide, N- (phenoxycarbonyl) naphthalimide, N-acetylnaphthalimide, N- (Methoxycarbonyl) naphthalimide, N-propanoylnaphthalimide, N- (ethoxycarbonyl) naphthalimide, N-butanoylnaphthalimide, N- (propoxycarbonyl) naphthalimide, N- (2-propenyloxycarbonyl) naphthalimide N-benzoyl-4-methylnaphthalimide, N- (phenoxycarbonyl) -4-methylnaphthalimide, N-acetyl-4-methylnaphthalimide, N- (methoxycarbonyl) -4-methylnaphthalimide, N-propanoyl -4-Methylnaphthalimi N- (ethoxycarbonyl) -4-methylnaphthalimide, N-butanoyl-4-methylnaphthalimide, N- (N ′, N′-dimethylaminocarbonyl) naphthalimide, N- (N′-methyl-N ′ -Benzylaminocarbonyl) naphthalimide and the like.
本発明の非水電解液用添加剤は、本発明にかかる環状イミド化合物として、前記式(1-1)で表される環状イミド化合物、前記式(1-2)で表される環状イミド化合物、前記式(1-3)で表される環状イミド化合物、前記式(1-4)で表される環状イミド化合物、前記式(1-5)で表される環状イミド化合物、及び、前記式(1-6)で表される環状イミド化合物のうちの少なくともいずれか1種を含有すればよいが、これらのうちの2種以上を含有してもよい。
なかでも、本発明の非水電解液用添加剤は、入手性や反応性等の観点から、本発明にかかる環状イミド化合物として、下記式(2-1)で表される化合物、下記式(2-2)で表される化合物、下記式(2-3)で表される化合物、下記式(2-4)で表される化合物、下記式(2-5)で表される化合物、及び、下記式(2-6)で表される化合物からなる群より選択される少なくとも1種を含有することが好ましく、下記式(3-1)で表される化合物、下記式(3-2)で表される化合物、下記式(3-3)で表される化合物、下記式(3-4)で表される化合物、下記式(3-5)で表される化合物、及び、下記式(3-6)で表される化合物からなる群より選択される少なくとも1種を含有することがより好ましい。
The additive for non-aqueous electrolyte of the present invention includes a cyclic imide compound represented by the formula (1-1) and a cyclic imide compound represented by the formula (1-2) as the cyclic imide compound according to the present invention. A cyclic imide compound represented by the formula (1-3), a cyclic imide compound represented by the formula (1-4), a cyclic imide compound represented by the formula (1-5), and the formula It suffices to contain at least one of the cyclic imide compounds represented by (1-6), but it may contain two or more of them.
Among them, the non-aqueous electrolyte additive of the present invention is a compound represented by the following formula (2-1), a compound represented by the following formula (2-1) as a cyclic imide compound according to the present invention from the viewpoints of availability and reactivity. 2-2), a compound represented by the following formula (2-3), a compound represented by the following formula (2-4), a compound represented by the following formula (2-5), and It is preferable to contain at least one selected from the group consisting of compounds represented by the following formula (2-6), and a compound represented by the following formula (3-1), A compound represented by the following formula (3-3), a compound represented by the following formula (3-4), a compound represented by the following formula (3-5), and the following formula ( It is more preferable to contain at least one selected from the group consisting of compounds represented by 3-6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式(2-1)中のR15、式(2-2)中のR16、式(2-3)中のR17、式(2-4)中のR18、式(2-5)中のR19、及び、式(2-6)中のR20は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換されていてもよいベンジル基、置換されていてもよいベンジルオキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよいフェニル基、又は、置換されていてもよいベンジル基を示す。 Equation (2-1) in the R 15, R 16 in the formula (2-2), R 17 in the formula (2-3), R 18 in the formula (2-4), the formula (2-5) R 19 in the formula and R 20 in the formula (2-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkenyl group having 2 to 4 carbon atoms. , An optionally substituted alkoxy group having 1 to 4 carbon atoms, an optionally substituted phenyl group, an optionally substituted phenoxy group, an optionally substituted benzyl group, an optionally substituted benzyl An oxy group, an optionally substituted alkenyloxy group having 2 to 4 carbon atoms, or an NR 13 R 14 group, wherein R 13 and R 14 are each independently a hydrogen atom or an optionally substituted carbon; An alkyl group having 1 to 4 carbon atoms and an alkenyl having 2 to 4 carbon atoms which may be substituted An nyl group, an optionally substituted phenyl group, or an optionally substituted benzyl group is shown.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(3-1)中のR21、式(3-2)中のR22、式(3-3)中のR23、式(3-4)中のR24、式(3-5)中のR25、及び、式(3-6)中のR26は、それぞれ、置換されていてもよい炭素数1~4のアルコキシ基、置換されていないフェノキシ基、置換されていないベンジルオキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、置換されていてもよい炭素数1~4のアルキル基、又は、置換されていてもよいベンジル基を示す。 R 21 in formula (3-1), R 22 in formula (3-2), R 23 in formula (3-3), R 24 in formula (3-4), formula (3-5) R 25 in the formula and R 26 in the formula (3-6) each represent an optionally substituted alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenoxy group, or an unsubstituted benzyloxy group Represents an optionally substituted alkenyloxy group having 2 to 4 carbon atoms or an NR 13 R 14 group, and R 13 and R 14 each independently represents an optionally substituted 1 to 4 carbon atom An alkyl group or an optionally substituted benzyl group is shown.
前記式(2-1)中のR15、前記式(2-2)中のR16、前記式(2-3)中のR17、前記式(2-4)中のR18、前記式(2-5)中のR19、及び、前記式(2-6)中のR20で示される、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換されていてもよいベンジル基、置換されていてもよいベンジルオキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、及び、NR1314基としては、それぞれ前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)のR11において例示したものと同様のもの、又は、該例示したもののうち炭素数の対応するものが挙げられる。
また、前記式(3-1)中のR21、前記式(3-2)中のR22、前記式(3-3)中のR23、前記式(3-4)中のR24、前記式(3-5)中のR25、及び、前記式(3-6)中のR26における、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、及び、NR1314基としては、それぞれ前記式(1-1)中のR、前記式(1-2)中のR、前記式(1-3)中のR、前記式(1-4)中のR、前記式(1-5)中のR、及び、前記式(1-6)のR11において例示したものと同様のもの、又は、該例示したもののうち炭素数の対応するものが挙げられる。
R 15 in the formula (2-1), R 16 in the formula (2-2), R 17 in the formula (2-3), R 18 in the formula (2-4), the formula R 19 in (2-5) and R 20 in the above formula (2-6), optionally substituted alkyl group having 1 to 4 carbon atoms, optionally substituted carbon number 2 to 4 alkenyl groups, optionally substituted alkoxy groups having 1 to 4 carbon atoms, optionally substituted phenyl groups, optionally substituted phenoxy groups, optionally substituted benzyl groups, substituted The optionally substituted benzyloxy group, the optionally substituted alkenyloxy group having 2 to 4 carbon atoms, and the NR 13 R 14 group are represented by R 1 in the above formula (1-1), (1-2) in R 3, R 5 in the formula (1-3) in the formula (1-4) in R 7, the formula (1-5) in R 9, and the formula (1-6) the same as those exemplified in R 11, or, the corresponding ones of the number of carbon atoms among those shown該例Can be mentioned.
R 21 in the formula (3-1), R 22 in the formula (3-2), R 23 in the formula (3-3), R 24 in the formula (3-4), R 25 in the above formula (3-5) and R 26 in the above formula (3-6), an optionally substituted alkoxy group having 1 to 4 carbon atoms, an optionally substituted carbon number Examples of the alkenyloxy group of 2 to 4 and the NR 13 R 14 group include R 1 in the formula (1-1), R 3 in the formula (1-2), and the formula (1-3), respectively. R 5 in the R 7 in the formula (1-4), the formula (1-5) in R 9, and, the same as those exemplified in R 11 in the formula (1-6), Or the thing corresponding to carbon number is mentioned among this illustrated thing.
本発明にかかる環状イミド化合物を製造する方法としては、例えば、対応する環状イミド化合物にハロゲン化物を反応させる方法等が挙げられる。
具体的には例えば、前記式(1-1)における、Rがフェノキシ基であり、lが0である化合物(N-(フェノキシカルボニル)フタルイミド)を製造する場合は、有機溶媒にフタルイミドとトリエチルアミンを溶解させ、次いで、クロロ蟻酸フェニルを滴下し、室温で2時間撹拌した後、水洗浄し、結晶化させ、濾過する方法等を用いることができる。
Examples of the method for producing the cyclic imide compound according to the present invention include a method of reacting a corresponding cyclic imide compound with a halide.
Specifically, for example, in the case of producing a compound (N- (phenoxycarbonyl) phthalimide) in which R 1 is a phenoxy group and l is 0 in the formula (1-1), phthalimide and triethylamine are used as an organic solvent. Then, after adding phenyl chloroformate dropwise and stirring at room temperature for 2 hours, washing with water, crystallization, filtration, and the like can be used.
本発明にかかる環状イミド化合物は、最低空分子軌道(LUMO)エネルギーの好ましい下限が-3.1eV、好ましい上限が0.0eVである。前記LUMOエネルギーが-3.1eV未満であると、過剰な分解を起こし、負極表面上に高い抵抗を示す被膜を形成することがある。前記LUMOエネルギーが0.0eVを超えると、負極表面に安定なSEIを形成することができなくなることがある。前記LUMOエネルギーのより好ましい下限は-3.0eV、より好ましい上限は-0.5eVである。
なお、前記「最低空分子軌道(LUMO)エネルギー」は、半経験的分子軌道計算法であるPM3と密度汎関数法であるB3LYP法とを組み合わせて算出される。具体的に本発明では、Gaussian03(Revision B.03、米ガウシアン社製ソフトウェア)を用いて算出された値を用いる。
The cyclic imide compound according to the present invention has a preferred lower limit of the lowest unoccupied molecular orbital (LUMO) energy of −3.1 eV and a preferred upper limit of 0.0 eV. When the LUMO energy is less than −3.1 eV, excessive decomposition may occur, and a film showing high resistance may be formed on the negative electrode surface. When the LUMO energy exceeds 0.0 eV, stable SEI may not be formed on the negative electrode surface. A more preferable lower limit of the LUMO energy is −3.0 eV, and a more preferable upper limit is −0.5 eV.
The “lowest unoccupied molecular orbital (LUMO) energy” is calculated by combining the semi-empirical molecular orbital calculation method PM3 and the density functional method B3LYP method. Specifically, in the present invention, a value calculated using Gaussian 03 (Revision B.03, software manufactured by Gaussian, USA) is used.
本発明にかかる環状イミド化合物は、電気化学的還元を受けやすい低いLUMOエネルギーを示すため、本発明にかかる環状イミド化合物を含有する本発明の非水電解液用添加剤は、非水電解液に配合されて非水電解液二次電池等の蓄電デバイスに用いた場合に、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。また、本発明にかかる環状イミド化合物は、水分や温度変化に対して安定であるため、本発明にかかる環状イミド化合物を含有する本発明の非水電解液用添加剤は、長期間、室温で保存することが可能である。したがって、該非水電解液用添加剤を含有する非水電解液も、長期間の保存及び使用に耐えることができる。 Since the cyclic imide compound according to the present invention exhibits low LUMO energy that is susceptible to electrochemical reduction, the non-aqueous electrolyte additive of the present invention containing the cyclic imide compound according to the present invention is added to the non-aqueous electrolyte. When blended and used for power storage devices such as non-aqueous electrolyte secondary batteries, stable SEI can be formed on the electrode surface to improve battery characteristics such as cycle characteristics, charge / discharge capacity, and internal resistance. . In addition, since the cyclic imide compound according to the present invention is stable against moisture and temperature change, the additive for non-aqueous electrolyte of the present invention containing the cyclic imide compound according to the present invention can be used at room temperature for a long time. It is possible to save. Therefore, the non-aqueous electrolyte containing the non-aqueous electrolyte additive can withstand long-term storage and use.
本発明の非水電解液用添加剤、非水溶媒、及び、電解質を含有する非水電解液もまた、本発明の1つである。 The non-aqueous electrolyte containing the additive for non-aqueous electrolyte, the non-aqueous solvent, and the electrolyte of the present invention is also one aspect of the present invention.
本発明の非水電解液における本発明の非水電解液用添加剤の含有量の好ましい下限は0.005質量%、好ましい上限は10質量%である。本発明の非水電解液用添加剤の含有量が0.005質量%未満であると、非水電解液二次電池等に用いた場合に電極表面での電気的分解によって安定なSEIを充分に形成できないおそれがある。本発明の非水電解液用添加剤の含有量が10質量%を超えると、溶解しにくくなるだけでなく非水電解液の粘度が上昇し、イオンの移動度を充分に確保できなくなるため、電解液の導電性等を充分に確保することができず、非水電解液二次電池等の蓄電デバイスに用いた場合に充放電特性等に支障をきたすことがある。本発明の非水電解液用添加剤の含有量のより好ましい下限は0.01質量%である。本発明の非水電解液用添加剤の含有量が前記範囲であると本発明の効果が得られ易く、特に、高温時に起こる非水溶媒の還元分解反応をより低く抑えることができ、高温条件下での保存に伴う容量劣化とガス発生の改善を図ることができる。
なお、本発明の非水電解液用添加剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、本発明の非水電解液用添加剤を2種以上用いる場合の合計の含有量は、好ましい下限が0.005質量%、好ましい上限が10質量%である。
The minimum with preferable content of the additive for nonaqueous electrolytes of this invention in the nonaqueous electrolyte of this invention is 0.005 mass%, and a preferable upper limit is 10 mass%. When the content of the additive for non-aqueous electrolyte of the present invention is less than 0.005% by mass, stable SEI is sufficiently obtained by electrolysis on the electrode surface when used in a non-aqueous electrolyte secondary battery or the like. May not be formed. When the content of the additive for non-aqueous electrolyte of the present invention exceeds 10% by mass, not only is it difficult to dissolve, but also the viscosity of the non-aqueous electrolyte increases, and it becomes impossible to ensure sufficient ion mobility. The electroconductivity etc. of electrolyte solution cannot fully be ensured, but when it uses for electrical storage devices, such as a nonaqueous electrolyte secondary battery, it may interfere with charging / discharging characteristics. The more preferable lower limit of the content of the additive for non-aqueous electrolyte of the present invention is 0.01% by mass. When the content of the additive for non-aqueous electrolyte of the present invention is in the above range, the effect of the present invention can be easily obtained, and in particular, the reductive decomposition reaction of the non-aqueous solvent occurring at high temperatures can be suppressed to a lower temperature. It is possible to improve capacity deterioration and gas generation due to storage underneath.
In addition, the additive for non-aqueous electrolytes of this invention may be used independently, and may be used in combination of 2 or more type. In addition, as for the total content when using 2 or more types of additives for non-aqueous electrolytes of this invention, a preferable minimum is 0.005 mass% and a preferable upper limit is 10 mass%.
本発明の非水電解液は、必要に応じて、本発明の非水電解液用添加剤と共に、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、1,3-プロパンスルトン(PS)等の一般的な添加剤を含有してもよい。 The non-aqueous electrolyte of the present invention, if necessary, together with the additive for non-aqueous electrolyte of the present invention, such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), 1,3-propane sultone (PS), etc. You may contain a general additive.
前記非水溶媒としては、得られる非水電解液の粘度を低く抑える等の観点から、非プロトン性溶媒が好適である。なかでも、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、スルホン、ニトリル、及び、これらのハロゲン誘導体からなる群より選択される少なくとも1種を含有することが好ましい。なかでも、環状カーボネート、鎖状カーボネートがより好ましく用いられる。 As the non-aqueous solvent, an aprotic solvent is preferable from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low. Among them, it contains at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. It is preferable. Of these, cyclic carbonates and chain carbonates are more preferably used.
前記環状カーボネートとしては、例えば、炭酸エチレン(EC)、炭酸プロピレン、炭酸ブチレン等が挙げられる。
前記鎖状カーボネートとしては、例えば、炭酸ジメチル、炭酸ジエチル(DEC)、炭酸エチルメチル等が挙げられる。
前記脂肪族カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル等が挙げられる。
前記ラクトンとしては、例えば、γ-ブチロラクトン等が挙げられる。
前記ラクタムとしては、例えば、ε-カプロラクタム、N-メチルピロリドン等が挙げられる。
前記環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等が挙げられる。
前記鎖状エーテルとしては、例えば、1,2-ジエトキシエタン、エトキシメトキシエタン等が挙げられる。
前記スルホンとしては、例えば、スルホラン等が挙げられる。
前記ニトリルとしては、例えば、アセトニトリル等が挙げられる。
前記ハロゲン誘導体としては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4-クロロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン等が挙げられる。
これらの非水溶媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの非水溶媒は、例えば、リチウムイオン電池等の非水電解液二次電池や、リチウムイオンキャパシタ等の電気二重層キャパシタ等に好ましく用いられる。
Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate, butylene carbonate, and the like.
Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (DEC), and ethyl methyl carbonate.
Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate.
Examples of the lactone include γ-butyrolactone.
Examples of the lactam include ε-caprolactam and N-methylpyrrolidone.
Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane and the like.
Examples of the chain ether include 1,2-diethoxyethane, ethoxymethoxyethane, and the like.
Examples of the sulfone include sulfolane.
Examples of the nitrile include acetonitrile.
Examples of the halogen derivative include 4-fluoro-1,3-dioxolane-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolane-2- ON etc. are mentioned.
These nonaqueous solvents may be used alone or in combination of two or more.
These nonaqueous solvents are preferably used for nonaqueous electrolyte secondary batteries such as lithium ion batteries, electric double layer capacitors such as lithium ion capacitors, and the like.
前記電解質としては、リチウムイオンのイオン源となるリチウム塩が好ましい。なかでも、LiAlCl、LiBF、LiPF、LiClO、LiAsF、及び、LiSbFからなる群より選択される少なくとも1種であることが好ましい。なかでも、解離度が高く電解液のイオン伝導度を高めることができ、さらには耐酸化還元特性により長期間使用による蓄電デバイスの性能劣化を抑制する作用がある等の観点から、LiBF及び/又はLiPFであることがより好ましい。これらの電解質は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、前記LiBF、LiPFが用いられる場合、非水溶媒としては、環状カーボネート及び鎖状カーボネートをそれぞれ1種以上混合することが好ましく、炭酸エチレン及び炭酸ジエチルを混合することがより好ましい。
The electrolyte is preferably a lithium salt that serves as a source of lithium ions. Among them, LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6 and is preferably at least one selected from the group consisting of LiSbF 6. Among them, LiBF 4 and / or LiBF 4 and / or LiF 4 and / or from the viewpoint that the degree of dissociation is high, the ionic conductivity of the electrolytic solution can be increased, and further, the oxidation-reduction properties have an effect of suppressing performance deterioration of the electricity storage device due to long-term use. or more preferably LiPF 6. These electrolytes may be used alone or in combination of two or more.
Incidentally, the LiBF 4, if the LiPF 6 is used as the non-aqueous solvent, preferably mixed one or more respective cyclic carbonate and chain carbonate is more preferable to mix ethylene carbonate and diethyl carbonate.
本発明の非水電解液における前記電解質の濃度の好ましい下限は0.1mol/L、好ましい上限は2.0mol/Lである。前記電解質の濃度が0.1mol/L未満であると、非水電解液の導電性等を充分に確保することができず、蓄電デバイスに用いた場合に放電特性及び充電特性等に支障をきたすことがある。前記電解質の濃度が2.0mol/Lを超えると、粘度が上昇し、イオンの移動度を充分に確保できなくなるため、非水電解液の導電性等を充分に確保することができず、蓄電デバイスに用いた場合に放電特性及び充電特性等に支障をきたすことがある。前記電解質の濃度のより好ましい下限は0.5mol/L、より好ましい上限は1.5mol/Lである。 The preferable lower limit of the concentration of the electrolyte in the nonaqueous electrolytic solution of the present invention is 0.1 mol / L, and the preferable upper limit is 2.0 mol / L. When the concentration of the electrolyte is less than 0.1 mol / L, the conductivity of the non-aqueous electrolyte cannot be sufficiently ensured, and the discharge characteristics and the charge characteristics are hindered when used in an electricity storage device. Sometimes. When the concentration of the electrolyte exceeds 2.0 mol / L, the viscosity increases and the mobility of ions cannot be sufficiently ensured, so that the conductivity of the non-aqueous electrolyte cannot be sufficiently secured and When used in a device, the discharge characteristics and charging characteristics may be hindered. A more preferred lower limit of the electrolyte concentration is 0.5 mol / L, and a more preferred upper limit is 1.5 mol / L.
本発明の非水電解液、正極、及び、負極を備えた蓄電デバイスもまた、本発明の1つである。蓄電デバイスとしては、非水電解液二次電池や電気二重層キャパシタ等がある。これらの中でもリチウムイオン電池、リチウムイオンキャパシタが好適である。 An electricity storage device including the non-aqueous electrolyte, positive electrode, and negative electrode of the present invention is also one aspect of the present invention. Examples of the electricity storage device include a non-aqueous electrolyte secondary battery and an electric double layer capacitor. Of these, lithium ion batteries and lithium ion capacitors are preferred.
図1は、本発明の蓄電デバイスの一例を模式的に示した断面図である。
図1において、本発明の蓄電デバイスにかかる非水電解液二次電池1は、正極集電体2の一方面側に正極活物質層3が設けられてなる正極板4、及び、負極集電体5の一方面側に負極活物質層6が設けられてなる負極板7を有する。正極板4と負極板7とは、本発明の非水電解液8と非水電解液8中に設けたセパレータ9を介して対向配置されている。
なお、図1では、蓄電デバイスとして非水電解液二次電池を示したが、本発明の蓄電デバイスはこれに限定されることはなく、その他の電気二重層キャパシタ等の蓄電デバイスにも適用できる。
FIG. 1 is a cross-sectional view schematically showing an example of the electricity storage device of the present invention.
In FIG. 1, a nonaqueous electrolyte secondary battery 1 according to an electricity storage device of the present invention includes a positive electrode plate 4 in which a positive electrode active material layer 3 is provided on one side of a positive electrode current collector 2, and a negative electrode current collector. A negative electrode plate 7 having a negative electrode active material layer 6 provided on one surface side of the body 5 is provided. The positive electrode plate 4 and the negative electrode plate 7 are disposed to face each other with a separator 9 provided in the non-aqueous electrolyte 8 and the non-aqueous electrolyte 8 of the present invention.
In FIG. 1, a non-aqueous electrolyte secondary battery is shown as the electricity storage device, but the electricity storage device of the present invention is not limited to this, and can be applied to other electricity storage devices such as electric double layer capacitors. .
前記正極集電体2及び前記負極集電体5としては、例えば、アルミニウム、銅、ニッケル、ステンレス等の金属からなる金属箔を用いることができる。 As the positive electrode current collector 2 and the negative electrode current collector 5, for example, a metal foil made of a metal such as aluminum, copper, nickel, and stainless steel can be used.
前記正極活物質層3に用いる正極活物質としては、リチウム含有複合酸化物が好ましく用いられ、例えば、LiMnO、LiFeO、LiCoO、LiMn、LiFeSiO、LiNi1/3Co1/3Mn1/3、LiFePO等のリチウム含有複合酸化物が挙げられる。 As the positive electrode active material used for the positive electrode active material layer 3, a lithium-containing composite oxide is preferably used. For example, LiMnO 2 , LiFeO 2 , LiCoO 2 , LiMn 2 O 4 , Li 2 FeSiO 4 , LiNi 1/3 Co Examples thereof include lithium-containing composite oxides such as 1/3 Mn 1/3 O 2 and LiFePO 4 .
前記負極活物質層6に用いる負極活物質としては、例えば、リチウムを吸蔵、放出することができる材料が挙げられる。このような材料としては、黒鉛、非晶質炭素等の炭素材料や、酸化インジウム、酸化シリコン、酸化スズ、酸化亜鉛、酸化リチウム等の酸化物材料等が挙げられる。
また、負極活物質として、リチウム金属、及び、リチウムと合金を形成することができる金属材料を用いることもできる。前記リチウムと合金を形成することができる金属としては、例えば、Cu、Sn、Si、Co、Mn、Fe、Sb、Ag等が挙げられ、これらの金属とリチウムを含む2元又は3元からなる合金を用いることもできる。
これらの負極活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the negative electrode active material used for the negative electrode active material layer 6 include a material that can occlude and release lithium. Examples of such materials include carbon materials such as graphite and amorphous carbon, and oxide materials such as indium oxide, silicon oxide, tin oxide, zinc oxide, and lithium oxide.
In addition, as the negative electrode active material, lithium metal and a metal material capable of forming an alloy with lithium can be used. Examples of the metal capable of forming an alloy with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, Ag, and the like, and are composed of binary or ternary containing these metals and lithium. An alloy can also be used.
These negative electrode active materials may be used alone or in combination of two or more.
前記セパレータ9としては、例えば、ポリエチレン、ポリプロピレン、フッ素樹脂等からなる多孔質フィルムを用いることができる。 As the separator 9, for example, a porous film made of polyethylene, polypropylene, fluororesin, or the like can be used.
本発明によれば、保存安定性に優れ、蓄電デバイスに用いた場合に、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、高温保存特性、ガス発生抑制、内部抵抗の低減等の電池特性を改善することができる非水電解液用添加剤を提供することができる。また、本発明によれば、該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスを提供することができる。 According to the present invention, when used in an electricity storage device, it has excellent storage stability and forms a stable SEI on the electrode surface to provide cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, and reduction of internal resistance. It is possible to provide an additive for a non-aqueous electrolyte that can improve battery characteristics such as the above. Moreover, according to this invention, the nonaqueous electrolyte using this additive for nonaqueous electrolytes, and the electrical storage device using this nonaqueous electrolyte can be provided.
本発明の蓄電デバイスの一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the electrical storage device of this invention.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解し、該混合非水溶媒と該電解質とからなる溶液全量に対し、非水電解液用添加剤として表1に示した化合物1を、含有割合が0.5質量%となるように添加し、非水電解液を調製した。
(Example 1)
In a mixed non-aqueous solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume composition ratio of EC: DEC = 30: 70, a concentration of 1.0 mol / L of LiPF 6 as an electrolyte The content of the compound 1 shown in Table 1 as an additive for a non-aqueous electrolyte is 0.5% by mass with respect to the total amount of the solution composed of the mixed non-aqueous solvent and the electrolyte. Thus, a non-aqueous electrolyte was prepared.
(実施例2)
化合物1の含有割合を1.0質量%となるようにしたこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the content ratio of Compound 1 was 1.0% by mass.
(実施例3)
化合物1に代えて、表1に示した化合物2を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 2 shown in Table 1 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(実施例4)
化合物1に代えて、表1に示した化合物3を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
Example 4
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 3 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例5)
化合物1に代えて、表1に示した化合物4を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 5)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 4 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例6)
化合物1に代えて、表1に示した化合物5を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 6)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 5 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例7)
化合物1に代えて、表1に示した化合物6を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 7)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 6 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例8)
化合物1に代えて、表1に示した化合物7を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 8)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 7 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例9)
化合物1に代えて、表1に示した化合物8を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
Example 9
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 8 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例10)
化合物1に代えて、表1に示した化合物9を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 10)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 9 shown in Table 1 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例11)
化合物1に代えて、表2に示した化合物10を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。 
(Example 11)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 10 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例12)
化合物1に代えて、表2に示した化合物11を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
Example 12
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 11 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(実施例13)
化合物1に代えて、表2に示した化合物12を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 13)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 12 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(実施例14)
化合物1に代えて、表2に示した化合物13を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 14)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 13 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例15)
化合物1に代えて、表2に示した化合物14を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 15)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 14 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例16)
化合物1に代えて、表2に示した化合物15を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 16)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 15 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例17)
化合物1に代えて、表2に示した化合物16を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 17)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 16 shown in Table 2 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(実施例18)
化合物1に代えて、表2に示した化合物17を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 18)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 17 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(実施例19)
化合物1に代えて、表2に示した化合物18を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Example 19)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 18 shown in Table 2 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(比較例1)
化合物1を用いなかったこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 1)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 1 was not used.
(比較例2)
化合物1に代えて、1,3-プロパンスルトンを含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 2)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that 1,3-propane sultone was added in such a manner that the content ratio was 1.0 mass% instead of Compound 1.
(比較例3)
化合物1に代えて、ビニレンカーボネート(VC)を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that vinylene carbonate (VC) was added so as to have a content ratio of 1.0% by mass instead of Compound 1.
(比較例4)
ビニレンカーボネート(VC)の含有割合を2.0質量%となるようにしたこと以外は、比較例3と同様にして非水電解液を調製した。
(Comparative Example 4)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.
(比較例5)
化合物1に代えて、フルオロエチレンカーボネート(FEC)を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 5)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that fluoroethylene carbonate (FEC) was added so that the content ratio was 1.0% by mass instead of Compound 1.
(比較例6)
フルオロエチレンカーボネート(FEC)の含有割合を2.0質量%となるようにしたこと以外は、比較例5と同様にして非水電解液を調製した。
(Comparative Example 6)
A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.
(比較例7)
化合物1に代えて、フタルイミドを含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 7)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that phthalimide was added so that the content ratio was 1.0% by mass instead of Compound 1.
(比較例8)
化合物1に代えて、マレイミドを含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 8)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that maleimide was added so that the content ratio was 1.0% by mass instead of Compound 1.
(比較例9)
化合物1に代えて、スクシンイミドを含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 9)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that succinimide was added in such a manner that the content ratio was 1.0% by mass instead of Compound 1.
(比較例10)
化合物1に代えて、表3に示した化合物19を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 10)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 19 shown in Table 3 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(比較例11)
化合物1に代えて、表3に示した化合物20を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 11)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that Compound 20 shown in Table 3 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(比較例12)
化合物1に代えて、表3に示した化合物21を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 12)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 21 shown in Table 3 was added instead of Compound 1 so that the content ratio was 1.0% by mass.
(比較例13)
化合物1に代えて、表3に示した化合物22を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 13)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the compound 22 shown in Table 3 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
(比較例14)
化合物1に代えて、表3に示した化合物23を含有割合が1.0質量%となるように添加したこと以外は、実施例1と同様にして非水電解液を調製した。
(Comparative Example 14)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that the compound 23 shown in Table 3 was added instead of the compound 1 so that the content ratio was 1.0% by mass.
<評価>
(LUMOエネルギーの測定)
実施例で用いた化合物1~18について、LUMO(最低空分子軌道)エネルギーを測定するため、Gaussian03ソフトウェアにより、半経験的分子軌道計算を行った。軌道計算により得られた化合物1~18のLUMOエネルギーを表1、2に示した。
<Evaluation>
(Measurement of LUMO energy)
For compounds 1-18 used in the examples, semi-empirical molecular orbital calculations were performed with Gaussian 03 software to measure LUMO (lowest unoccupied molecular orbital) energy. Tables 1 and 2 show LUMO energies of compounds 1 to 18 obtained by orbit calculation.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(安定性)
実施例で用いた化合物1~18、及び、比較例5、6で用いたフルオロエチレンカーボネート(FEC)について、温度40±2℃、湿度75±5%の恒温恒湿環境下で90日間の保存試験を行い、H-核磁気共鳴スペクトル(H-NMR)を測定し、保存前後の各化合物のピークを確認し、保存前後でH-NMRのピーク変化がなかった場合を「○」、保存前後でH-NMRのわずかなピーク変化が確認された場合を「△」、保存前後でH-NMRの明らかなピーク変化が確認された場合を「×」として安定性を評価した。結果を表4に示した。
(Stability)
The compounds 1 to 18 used in the examples and the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 were stored for 90 days in a constant temperature and humidity environment at a temperature of 40 ± 2 ° C. and a humidity of 75 ± 5%. test carried out, 1 H- measure nuclear magnetic resonance spectra (1 H-NMR), check the peak of each compound before and after the storage, the case where there is no peak change in 1 H-NMR before and after storage "○" The stability was evaluated as “Δ” when a slight change in 1 H-NMR peak was observed before and after storage, and “×” when a clear peak change in 1 H-NMR was confirmed before and after storage. . The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
表4に示したように、比較例5、6で用いたフルオロエチレンカーボネート(FEC)は、一部加水分解されていると考えられ、安定性が劣るものであった。一方、実施例で用いた化合物1~18は、ほとんど変化が見られず、安定性に優れるものであった。 As shown in Table 4, the fluoroethylene carbonate (FEC) used in Comparative Examples 5 and 6 was considered to be partially hydrolyzed and had poor stability. On the other hand, compounds 1 to 18 used in the examples were hardly changed and excellent in stability.
(放電容量維持率及び内部抵抗比の評価)
正極活物質としてLiMn、及び、導電性付与剤としてカーボンブラックを乾式混合し、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーを正極集電体となるアルミ金属箔(角型、厚さ20μm)上に塗布後、NMPを蒸発させることにより正極シートを作製した。得られた正極シート中の固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=80:10:10とした。
一方、負極シートとして、市販の黒鉛塗布電極シート(宝泉社製)を用いた。
実施例1~19及び比較例1~9で得られた各非水電解液中にて、負極シートと正極シートとを、ポリエチレンからなるセパレータを介して積層し、円筒型二次電池を作製した。
得られた各円筒型二次電池に対して、25℃において、充電レートを0.3C、放電レートを0.3C、充電終止電圧を4.2V、及び、放電終止電圧を2.5Vとして充放電サイクル試験を行った。200サイクル後の放電容量維持率(%)と200サイクル後の内部抵抗比を表5、6に示した。
なお、「200サイクル後の放電容量維持率(%)」とは、200サイクル試験後の放電容量(mAh)を、10サイクル試験後の放電容量(mAh)で割った値に100をかけたものである。また、「200サイクル後の内部抵抗比」とは、サイクル試験前の抵抗を1としたときの、200サイクル試験後の抵抗を相対値で示したものである。
(Evaluation of discharge capacity maintenance ratio and internal resistance ratio)
Disperse uniformly in N-methyl-2-pyrrolidone (NMP) in which LiMn 2 O 4 as a positive electrode active material and carbon black as a conductivity imparting agent are dry-mixed and polyvinylidene fluoride (PVDF) is dissolved as a binder To prepare a slurry. The obtained slurry was applied on an aluminum metal foil (square shape, thickness 20 μm) serving as a positive electrode current collector, and then NMP was evaporated to prepare a positive electrode sheet. The solid content ratio in the obtained positive electrode sheet was a mass ratio of positive electrode active material: conductivity imparting agent: PVDF = 80: 10: 10.
On the other hand, as the negative electrode sheet, a commercially available graphite coated electrode sheet (manufactured by Hosen Co., Ltd.) was used.
In each of the nonaqueous electrolyte solutions obtained in Examples 1 to 19 and Comparative Examples 1 to 9, a negative electrode sheet and a positive electrode sheet were laminated via a separator made of polyethylene to produce a cylindrical secondary battery. .
Each cylindrical secondary battery obtained was charged at 25 ° C. with a charge rate of 0.3 C, a discharge rate of 0.3 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. A discharge cycle test was conducted. Tables 5 and 6 show the discharge capacity retention ratio (%) after 200 cycles and the internal resistance ratio after 200 cycles.
“Discharge capacity maintenance rate after 200 cycles (%)” is obtained by multiplying the value obtained by dividing discharge capacity (mAh) after 200 cycle test by discharge capacity (mAh) after 10 cycle test by 100. It is. The “internal resistance ratio after 200 cycles” is a relative value of the resistance after the 200 cycle test when the resistance before the cycle test is 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
表5、6から、本発明にかかる環状イミド化合物である化合物1~18を含む各実施例の非水電解液を用いた円筒型二次電池は、比較例1~9の非水電解液を用いた円筒型二次電池と比較して、サイクル試験時における放電容量維持率が高いことが分かる。従って、本発明にかかる環状イミド化合物を非水電解液用添加剤として含む実施例の非水電解液を非水電解液二次電池に用いた場合、比較例の非水電解液を用いた場合と比較して、非水電解液二次電池の電極表面上に充放電サイクルに対して安定なSEIを形成していることがわかる。また、実施例の非水電解液は、内部抵抗比が小さいことから、サイクル時による内部抵抗の増加を抑制できることが分かる。
Figure JPOXMLDOC01-appb-T000012
From Tables 5 and 6, the cylindrical secondary batteries using the non-aqueous electrolytes of Examples including the compounds 1 to 18 which are cyclic imide compounds according to the present invention are the non-aqueous electrolytes of Comparative Examples 1 to 9. It can be seen that the discharge capacity retention rate during the cycle test is higher than that of the used cylindrical secondary battery. Therefore, when the non-aqueous electrolyte of the example containing the cyclic imide compound according to the present invention as an additive for a non-aqueous electrolyte is used for a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte of a comparative example is used. It can be seen that SEI that is stable with respect to the charge / discharge cycle is formed on the electrode surface of the nonaqueous electrolyte secondary battery. Moreover, since the non-aqueous electrolyte of an Example has a small internal resistance ratio, it turns out that the increase in internal resistance by the time of a cycle can be suppressed.
(高温保存特性、及び、ガス発生量の測定)
正極活物質としてコバルト酸リチウム(LiCoO)、及び、導電性付与剤としてカーボンブラックを乾式混合し、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーを正極集電体となるアルミ金属箔(角型、厚さ20μm)の両面に塗布後、NMPを乾燥した後、プレスして正極とした。得られた正極シート中の固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=90:5:5とした。
一方、負極活物質としてグラファイト粉末、及び、導電性付与剤としてカーボンブラックを乾式混合し、バインダーとしてポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーを負極集電体となる銅箔(角型、厚さ10μm)の片面に塗布後、NMPを乾燥した後、プレスして負極とした。得られた負極シート中の固形分比率は、質量比で、負極活物質:導電性付与剤:PVDF=93:3:4とした。
上記の正極、負極、及び、ポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、実施例1~19及び比較例1~14で得られた各非水電解液を袋内に注入し、真空封止を行ない、シート状の非水電解液電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
得られた非水電解液電池に対して、25℃において、0.2Cに相当する電流で4.2Vまで充電した後、0.2Cに相当する電流で3Vまで放電する操作を3サイクル行なって電池を安定させた。
次いで、充電レートを0.3Cとして再度4.2Vまで充電を行なった後、60℃、168時間の高温保存を行なった。その後、室温まで冷却し、アルキメデス法により体積を測定し、保存前後の体積変化からガス発生量を求めた。また、高温保存を経た後の電池を0.2Cに相当する電流で3.0Vまで放電し、電池の残存容量とした。最後に、0.2Cに相当する電流で4.2Vまで充電した後、0.2Cで3Vまで放電する操作を2回繰り返し、最後の放電において電池が示した容量をもって電池の回復容量とした。上記で得られた残存容量及び回復容量の、保存前の放電容量に対する割合をそれぞれ残存容量率(%)及び回復容量率(%)とした。結果を表7、8に示した。
表7、8から、本発明にかかる環状イミド化合物である化合物1~18を含む各実施例の非水電解液を用いた非水系電解液電池は、比較例の非水電解液を用いた非水系電解液電池と比較して、高温保存時のガス発生量が低く、かつ、高温保存後の残存容量・回復容量に優れており、高温保存特性を改善することができる。また、本発明にかかる環状イミド化合物に代えて、本発明にかかる環状イミド化合物と類似する構造を有する化合物(フタルイミド、マレイミド、スクシンイミド、化合物19~23)を用いた場合、高温保存時の発生ガス抑制及び高温保存後の残存容量・回復容量向上に若干の効果は見られるものの、添加剤として不充分であることがわかる。
(Measurement of high-temperature storage characteristics and gas generation amount)
In N-methyl-2-pyrrolidone (NMP) in which lithium cobaltate (LiCoO 2 ) as a positive electrode active material and carbon black as a conductivity imparting agent are dry-mixed and polyvinylidene fluoride (PVDF) is dissolved as a binder. The slurry was uniformly dispersed to prepare a slurry. The obtained slurry was applied to both surfaces of an aluminum metal foil (square shape, thickness 20 μm) serving as a positive electrode current collector, NMP was dried, and pressed to obtain a positive electrode. The solid content ratio in the obtained positive electrode sheet was a mass ratio, and was positive electrode active material: conductivity imparting agent: PVDF = 90: 5: 5.
On the other hand, graphite powder as a negative electrode active material and carbon black as a conductivity imparting agent are dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) is dissolved as a binder. To prepare a slurry. The obtained slurry was applied to one side of a copper foil (square shape, thickness 10 μm) serving as a negative electrode current collector, NMP was dried, and then pressed to obtain a negative electrode. The solid content ratio in the obtained negative electrode sheet was a mass ratio, and was negative electrode active material: conductivity imparting agent: PVDF = 93: 3: 4.
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode to produce a battery element. The battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness 40 μm) were coated with a resin layer while projecting positive and negative terminals, and then Examples 1 to 19 and Comparative Examples 1 to 14 Each non-aqueous electrolyte obtained in (1) was poured into a bag and vacuum sealed to produce a sheet-like non-aqueous electrolyte battery. Furthermore, in order to improve the adhesion between the electrodes, the sheet-like battery was sandwiched between glass plates and pressurized.
The obtained nonaqueous electrolyte battery was charged to 4.2 V at a current corresponding to 0.2 C at 25 ° C. and then discharged to 3 V at a current corresponding to 0.2 C for 3 cycles. The battery was stabilized.
Next, after charging to 4.2 V again at a charge rate of 0.3 C, high temperature storage at 60 ° C. for 168 hours was performed. Then, it cooled to room temperature, measured the volume by Archimedes method, and calculated | required the gas generation amount from the volume change before and behind a preservation | save. Further, the battery after high-temperature storage was discharged to 3.0 V with a current corresponding to 0.2 C to obtain the remaining capacity of the battery. Finally, after charging to 4.2 V at a current corresponding to 0.2 C, the operation of discharging to 0.2 V at 3 C was repeated twice, and the capacity indicated by the battery in the final discharge was taken as the battery recovery capacity. The ratios of the remaining capacity and the recovery capacity obtained above to the discharge capacity before storage were defined as the remaining capacity ratio (%) and the recovery capacity ratio (%), respectively. The results are shown in Tables 7 and 8.
From Tables 7 and 8, the non-aqueous electrolyte battery using the non-aqueous electrolyte solution of each example containing compounds 1 to 18 which are the cyclic imide compounds according to the present invention is a non-aqueous electrolyte solution using the non-aqueous electrolyte solution of the comparative example. Compared with an aqueous electrolyte battery, the amount of gas generated during high-temperature storage is low, and the remaining capacity and recovery capacity after high-temperature storage are excellent, so that high-temperature storage characteristics can be improved. In addition, when a compound having a structure similar to the cyclic imide compound according to the present invention (phthalimide, maleimide, succinimide, compounds 19 to 23) is used in place of the cyclic imide compound according to the present invention, the generated gas at high temperature storage Although a slight effect is seen in suppression and improvement of the remaining capacity and recovery capacity after high-temperature storage, it can be seen that it is insufficient as an additive.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
本発明によれば、保存安定性に優れ、蓄電デバイスに用いた場合に、電極表面上に安定なSEIを形成してサイクル特性、充放電容量、高温保存特性、ガス発生抑制、内部抵抗の低減等の電池特性を改善することができる非水電解液用添加剤を提供することができる。また、本発明によれば、該非水電解液用添加剤を用いた非水電解液、及び、該非水電解液を用いた蓄電デバイスを提供することができる。 According to the present invention, when used in an electricity storage device, it has excellent storage stability and forms a stable SEI on the electrode surface to provide cycle characteristics, charge / discharge capacity, high temperature storage characteristics, gas generation suppression, and reduction of internal resistance. It is possible to provide an additive for a non-aqueous electrolyte that can improve battery characteristics such as the above. Moreover, according to this invention, the nonaqueous electrolyte using this additive for nonaqueous electrolytes, and the electrical storage device using this nonaqueous electrolyte can be provided.
1 非水電解液二次電池
2 正極集電体
3 正極活物質層
4 正極板
5 負極集電体
6 負極活物質層
7 負極板
8 非水電解液
9 セパレータ
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Positive electrode collector 3 Positive electrode active material layer 4 Positive electrode plate 5 Negative electrode collector 6 Negative electrode active material layer 7 Negative electrode plate 8 Nonaqueous electrolyte 9 Separator

Claims (11)

  1. 下記式(1-1)、下記式(1-2)、下記式(1-3)、下記式(1-4)、下記式(1-5)、又は、下記式(1-6)で表される環状イミド化合物を含有することを特徴とする非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    式(1-1)中のR、式(1-2)中のR、式(1-3)中のR、式(1-4)中のR、式(1-5)中のR、及び、式(1-6)中のR11は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換されていてもよいベンジル基、置換されていてもよいベンジルオキシ基、置換されていてもよい炭素数2~6のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよいフェニル基、又は、置換されていてもよいベンジル基を示す。式(1-1)中のR、式(1-2)中のR、式(1-3)中のR、式(1-4)中のR、式(1-5)中のR10、及び、式(1-6)中のR12は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数1~4のアルコキシ基、又は、ハロゲン原子を示す。式(1-1)中のlは0~4の整数を示し、式(1-2)中のmは0~2の整数を示し、式(1-3)中のnは0~2の整数を示し、式(1-4)中のoは0~4の整数を示し、式(1-5)中のpは0~4の整数を示し、式(1-6)中のqは0~6の整数を示す。
    In the following formula (1-1), the following formula (1-2), the following formula (1-3), the following formula (1-4), the following formula (1-5), or the following formula (1-6) A non-aqueous electrolyte additive comprising a cyclic imide compound represented.
    Figure JPOXMLDOC01-appb-C000001
    R 1 in formula (1-1), R 3 in formula (1-2), R 5 in formula (1-3), R 7 in formula (1-4), formula (1-5) R 9 in the formula and R 11 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkenyl group having 2 to 4 carbon atoms. , An optionally substituted alkoxy group having 1 to 4 carbon atoms, an optionally substituted phenyl group, an optionally substituted phenoxy group, an optionally substituted benzyl group, an optionally substituted benzyl An oxy group, an optionally substituted alkenyloxy group having 2 to 6 carbon atoms, or an NR 13 R 14 group, wherein R 13 and R 14 are each independently a hydrogen atom or an optionally substituted carbon; An alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms which may be substituted, A phenyl group which may be substituted or a benzyl group which may be substituted is shown. R 2 in formula (1-1), R 4 in formula (1-2), R 6 in formula (1-3), R 8 in formula (1-4), formula (1-5) R 10 in the formula and R 12 in the formula (1-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkoxy group having 1 to 4 carbon atoms. Or a halogen atom. L in the formula (1-1) represents an integer of 0 to 4, m in the formula (1-2) represents an integer of 0 to 2, and n in the formula (1-3) represents 0 to 2. Represents an integer, o in the formula (1-4) represents an integer of 0 to 4, p in the formula (1-5) represents an integer of 0 to 4, and q in the formula (1-6) represents An integer from 0 to 6 is shown.
  2. 環状イミド化合物として、下記式(2-1)で表される化合物、下記式(2-2)で表される化合物、下記式(2-3)で表される化合物、下記式(2-4)で表される化合物、下記式(2-5)で表される化合物、及び、下記式(2-6)で表される化合物からなる群より選択される少なくとも1種を含有する請求項1記載の非水電解液用添加剤。
    式(2-1)中のR15、式(2-2)中のR16、式(2-3)中のR17、式(2-4)中のR18、式(2-5)中のR19、及び、式(2-6)中のR20は、それぞれ、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換されていてもよいベンジル基、置換されていてもよいベンジルオキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、水素原子、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよいフェニル基、又は、置換されていてもよいベンジル基を示す。
    As the cyclic imide compound, a compound represented by the following formula (2-1), a compound represented by the following formula (2-2), a compound represented by the following formula (2-3), the following formula (2-4) And at least one selected from the group consisting of a compound represented by the following formula (2-5) and a compound represented by the following formula (2-6). The additive for non-aqueous electrolyte described.
    Equation (2-1) in the R 15, R 16 in the formula (2-2), R 17 in the formula (2-3), R 18 in the formula (2-4), the formula (2-5) R 19 in the formula and R 20 in the formula (2-6) are each an optionally substituted alkyl group having 1 to 4 carbon atoms and an optionally substituted alkenyl group having 2 to 4 carbon atoms. , An optionally substituted alkoxy group having 1 to 4 carbon atoms, an optionally substituted phenyl group, an optionally substituted phenoxy group, an optionally substituted benzyl group, an optionally substituted benzyl An oxy group, an optionally substituted alkenyloxy group having 2 to 4 carbon atoms, or an NR 13 R 14 group, wherein R 13 and R 14 are each independently a hydrogen atom or an optionally substituted carbon; An alkyl group having 1 to 4 carbon atoms and an alkenyl having 2 to 4 carbon atoms which may be substituted An nyl group, an optionally substituted phenyl group, or an optionally substituted benzyl group is shown.
  3. 環状イミド化合物として、下記式(3-1)で表される化合物、下記式(3-2)で表される化合物、下記式(3-3)で表される化合物、下記式(3-4)で表される化合物、下記式(3-5)で表される化合物、及び、下記式(3-6)で表される化合物からなる群より選択される少なくとも1種を含有する請求項1又は2記載の非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000003
    式(3-1)中のR21、式(3-2)中のR22、式(3-3)中のR23、式(3-4)中のR24、式(3-5)中のR25、及び、式(3-6)中のR26は、それぞれ、置換されていてもよい炭素数1~4のアルコキシ基、置換されていないフェノキシ基、置換されていないベンジルオキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、又は、NR1314基を示し、R13及びR14は、それぞれ独立に、置換されていてもよい炭素数1~4のアルキル基、又は、置換されていてもよいベンジル基を示す。
    As the cyclic imide compound, a compound represented by the following formula (3-1), a compound represented by the following formula (3-2), a compound represented by the following formula (3-3), and the following formula (3-4) And at least one selected from the group consisting of a compound represented by the following formula (3-5) and a compound represented by the following formula (3-6). Or the additive for non-aqueous electrolytes of 2.
    Figure JPOXMLDOC01-appb-C000003
    R 21 in formula (3-1), R 22 in formula (3-2), R 23 in formula (3-3), R 24 in formula (3-4), formula (3-5) R 25 in the formula and R 26 in the formula (3-6) each represent an optionally substituted alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenoxy group, or an unsubstituted benzyloxy group Represents an optionally substituted alkenyloxy group having 2 to 4 carbon atoms or an NR 13 R 14 group, and R 13 and R 14 each independently represents an optionally substituted 1 to 4 carbon atom An alkyl group or an optionally substituted benzyl group is shown.
  4. 請求項1、2又は3記載の非水電解液用添加剤、非水溶媒、及び、電解質を含有する非水電解液。 A nonaqueous electrolytic solution comprising the additive for nonaqueous electrolytic solution according to claim 1, 2, or 3, a nonaqueous solvent, and an electrolyte.
  5. 非水溶媒は、非プロトン性溶媒である請求項4記載の非水電解液。 The nonaqueous electrolytic solution according to claim 4, wherein the nonaqueous solvent is an aprotic solvent.
  6. 非プロトン性溶媒は、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、スルホン、ニトリル、及び、これらのハロゲン誘導体からなる群より選択される少なくとも1種である請求項5記載の非水電解液。 The aprotic solvent is at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. The non-aqueous electrolyte according to claim 5.
  7. 電解質は、リチウム塩を含有する請求項4、5又は6記載の非水電解液。 The nonaqueous electrolytic solution according to claim 4, 5 or 6, wherein the electrolyte contains a lithium salt.
  8. リチウム塩は、LiAlCl、LiBF、LiPF、LiClO、LiAsF、及び、LiSbFからなる群より選択される少なくとも1種である請求項7記載の非水電解液。 Lithium salt, LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6, and the nonaqueous electrolytic solution according to claim 7, wherein at least one selected from the group consisting of LiSbF 6.
  9. 請求項4、5、6、7又は8記載の非水電解液、正極、及び、負極を備えた蓄電デバイス。 The electrical storage device provided with the non-aqueous electrolyte of Claim 4, 5, 6, 7 or 8, a positive electrode, and a negative electrode.
  10. 蓄電デバイスがリチウムイオン電池である、請求項9記載の蓄電デバイス。 The electricity storage device according to claim 9, wherein the electricity storage device is a lithium ion battery.
  11. 蓄電デバイスがリチウムイオンキャパシタである、請求項9記載の蓄電デバイス。 The power storage device according to claim 9, wherein the power storage device is a lithium ion capacitor.
PCT/JP2015/058827 2014-03-28 2015-03-24 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device WO2015146947A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016510364A JPWO2015146947A1 (en) 2014-03-28 2015-03-24 Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
KR1020167025282A KR20160138402A (en) 2014-03-28 2015-03-24 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
US15/128,062 US20170117588A1 (en) 2014-03-28 2015-03-24 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
CN201580017166.7A CN106133984A (en) 2014-03-28 2015-03-24 Addition agent of non-aqueous electrolyte, nonaqueous electrolytic solution and electrical storage device
EP15769390.4A EP3131153A4 (en) 2014-03-28 2015-03-24 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068814 2014-03-28
JP2014068814 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146947A1 true WO2015146947A1 (en) 2015-10-01

Family

ID=54195460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058827 WO2015146947A1 (en) 2014-03-28 2015-03-24 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device

Country Status (7)

Country Link
US (1) US20170117588A1 (en)
EP (1) EP3131153A4 (en)
JP (1) JPWO2015146947A1 (en)
KR (1) KR20160138402A (en)
CN (1) CN106133984A (en)
TW (1) TW201542519A (en)
WO (1) WO2015146947A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3669390A4 (en) * 2017-08-17 2021-05-05 The Trustees of Columbia University in the City of New York Redox flow batteries and compounds for battery application
KR102474678B1 (en) * 2018-12-17 2022-12-08 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US20220089548A1 (en) * 2019-01-17 2022-03-24 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution additive, and non-aqueous electroltye solution for lithium secondary battery and lithium secondary battery which include the same
EP3893312A4 (en) 2019-01-17 2022-03-09 Lg Energy Solution, Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN110400970B (en) * 2019-06-04 2023-09-05 江西力能新能源科技有限公司 Electrolyte material and application thereof in high-temperature lithium battery
CN111162317A (en) * 2019-12-17 2020-05-15 山东海科创新研究院有限公司 Electrolyte and lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035636A1 (en) * 2000-10-20 2002-05-02 Dainippon Ink And Chemicals, Inc. Solid polymer electrolyte and cell containing the electrolyte
JP2006024407A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Organic electrolyte battery
CN1964127A (en) * 2005-11-10 2007-05-16 财团法人工业技术研究院 High ion conductivity colloid polyelectrolyte for chargeable and dischargeable polymer secondary battery
JP2011524620A (en) * 2008-06-16 2011-09-01 エルコマックス メンブランズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of proton conductivity-imparting materials in the manufacture of fuel cells
WO2012029387A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
US20130048077A1 (en) * 2008-04-10 2013-02-28 Samsung Sdi Co., Ltd. Gel electrolyte and dye-sensitized solar cell using the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1940370A1 (en) * 1969-07-16 1971-02-18 Bayer Ag New Dicarboximides
DE2023078A1 (en) * 1969-07-16 1971-11-25 Bayer Ag New carboxylic acid imide derivatives from bifunctional cyanamides and dicarboxylic acid anhydrides
JP2597091B2 (en) 1986-10-16 1997-04-02 日立マクセル株式会社 Lithium secondary battery
JP2962782B2 (en) 1990-07-26 1999-10-12 三洋電機株式会社 Non-aqueous electrolyte battery
JP3066126B2 (en) 1991-09-10 2000-07-17 三洋電機株式会社 Non-aqueous electrolyte battery
JP3086510B2 (en) 1991-11-01 2000-09-11 三洋電機株式会社 Non-aqueous electrolyte lithium battery
FR2719161B1 (en) 1994-04-22 1996-08-02 Accumulateurs Fixes Electrochemical rechargeable lithium battery with carbon anode.
JP3669064B2 (en) 1996-08-01 2005-07-06 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP3978881B2 (en) 1997-08-22 2007-09-19 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
JPH11339850A (en) 1998-05-29 1999-12-10 Nec Mori Energy Kk Lithium-ion secondary battery
JP2001006729A (en) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP3444243B2 (en) 1999-08-03 2003-09-08 宇部興産株式会社 Nonaqueous electrolyte and lithium secondary battery using the same
JP4465968B2 (en) 2003-03-18 2010-05-26 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP4345641B2 (en) 2003-12-15 2009-10-14 日本電気株式会社 Secondary battery
JP4433163B2 (en) 2004-02-13 2010-03-17 日本電気株式会社 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
TWI377717B (en) * 2006-12-29 2012-11-21 Ind Tech Res Inst Nonaqueous electrolyte having maleimide additives and rechargeable cells employing the same
WO2008110466A1 (en) * 2007-03-09 2008-09-18 Basf Se Nitroxides for lithium-ion batteries
CN101632198A (en) * 2007-03-09 2010-01-20 巴斯夫欧洲公司 Nitroxides for lithium-ion batteries
JP5306681B2 (en) * 2007-03-30 2013-10-02 富士フイルム株式会社 Polymerizable compound, polymer, ink composition, printed matter, and inkjet recording method
US8197964B2 (en) 2007-07-09 2012-06-12 Sony Corporation Battery
EP2367189B1 (en) * 2010-03-18 2013-09-04 ABB Technology AG Switch unit, and related method
CN102332607A (en) * 2011-03-22 2012-01-25 东莞新能源科技有限公司 Nonaqueous electrolyte for secondary lithium ion battery
KR102188424B1 (en) * 2013-12-19 2020-12-08 에스케이이노베이션 주식회사 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035636A1 (en) * 2000-10-20 2002-05-02 Dainippon Ink And Chemicals, Inc. Solid polymer electrolyte and cell containing the electrolyte
JP2006024407A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Organic electrolyte battery
CN1964127A (en) * 2005-11-10 2007-05-16 财团法人工业技术研究院 High ion conductivity colloid polyelectrolyte for chargeable and dischargeable polymer secondary battery
US20130048077A1 (en) * 2008-04-10 2013-02-28 Samsung Sdi Co., Ltd. Gel electrolyte and dye-sensitized solar cell using the same
JP2011524620A (en) * 2008-06-16 2011-09-01 エルコマックス メンブランズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of proton conductivity-imparting materials in the manufacture of fuel cells
WO2012029387A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3131153A4 *

Also Published As

Publication number Publication date
EP3131153A1 (en) 2017-02-15
KR20160138402A (en) 2016-12-05
CN106133984A (en) 2016-11-16
US20170117588A1 (en) 2017-04-27
TW201542519A (en) 2015-11-16
JPWO2015146947A1 (en) 2017-04-13
EP3131153A4 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6472888B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
WO2016158986A1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2015146947A1 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2018016195A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
JP2016523429A (en) Novel electrolyte compositions for high energy anodes
JP6411271B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2019515443A (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery using this electrolyte
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6411268B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP5982201B2 (en) Disulfonic acid benzylamide compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP6765380B2 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes, and power storage devices
JP6066645B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP6411270B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2015191807A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device
KR101023374B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP6411269B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2015191808A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte and power storage device
JP2016192360A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device
JPWO2019088127A1 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes and power storage devices
JP7166258B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
JP2016192382A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510364

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025282

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015769390

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769390

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15128062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE