JP6406741B1 - Vibration control equipment to be installed on column beams - Google Patents

Vibration control equipment to be installed on column beams Download PDF

Info

Publication number
JP6406741B1
JP6406741B1 JP2018028459A JP2018028459A JP6406741B1 JP 6406741 B1 JP6406741 B1 JP 6406741B1 JP 2018028459 A JP2018028459 A JP 2018028459A JP 2018028459 A JP2018028459 A JP 2018028459A JP 6406741 B1 JP6406741 B1 JP 6406741B1
Authority
JP
Japan
Prior art keywords
leaf spring
arc
vibration control
control devices
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028459A
Other languages
Japanese (ja)
Other versions
JP2019143363A (en
Inventor
武人 前島
武人 前島
古城 耕一
耕一 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNDINE CORPORATION
Original Assignee
UNDINE CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNDINE CORPORATION filed Critical UNDINE CORPORATION
Priority to JP2018028459A priority Critical patent/JP6406741B1/en
Application granted granted Critical
Publication of JP6406741B1 publication Critical patent/JP6406741B1/en
Publication of JP2019143363A publication Critical patent/JP2019143363A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

【課題】入隅あるいは梁に本願発明の1組の制震器具を設置し、地震の揺れの軽減を図る。【解決手段】3つの連続する円弧曲げ加工した板バネと、当該円弧の内径と同径の振動減衰用円筒ゴムを組み合わせた制震器具であって、当該円弧中心と同位置に円筒ゴムの内側のガイドローラーとともに位置決めされる抑え板を使った1組の制震器具を入隅あるいは梁の下部中央に設置固定し、入隅の角度変位あるいは梁と土台の相対変位を抑制させることで、地震による揺れの軽減を図ることができる。【選択図】図12A set of vibration control devices according to the present invention is installed at a corner or a beam to reduce the shaking of the earthquake. A vibration control device combining three continuous arc-bent leaf springs and a vibration-damping cylindrical rubber having the same diameter as the inner diameter of the arc, and the inner side of the cylindrical rubber at the same position as the arc center. By installing and fixing a set of vibration control devices using a restraining plate that is positioned together with the guide rollers of the entrance, the angular displacement of the entrance corner or the relative displacement between the beam and the foundation is suppressed by installing and fixing at the center of the entrance corner or the lower part of the beam. It is possible to reduce the shaking caused by. [Selection] Figure 12

Description

本発明は、家屋の梁と柱の入り隅あるいは梁と土台に設置する制震器具に関するものである。   The present invention relates to a vibration control device installed at a corner of a house and a pillar of a house or a beam and a base.

木造住宅における地震対策として、入隅からの筋交の増設や耐震壁の増設などが主流であるが、特開2007−77786号公報で開示された特許発明は、「複数枚の鋼製板バネを円弧状に設置した」制震工法であり、特開2005− 42403号公報で示された特許発明には、「超塑性合金による木造住宅用制震ダンパー」が開示され、特開2013−108013号公報で開示された特許発明には、「高減衰組成物」を使用した制震工法が示されている。   As countermeasures against earthquakes in wooden houses, the addition of braces from the corners and the addition of earthquake-resistant walls are the mainstream. However, the patent invention disclosed in Japanese Patent Application Laid-Open No. 2007-77786 discloses “a plurality of steel leaf springs”. Is installed in a circular arc shape ”, and the patent invention disclosed in Japanese Patent Application Laid-Open No. 2005-42403 discloses a“ damping damper for a wooden house using a superplastic alloy ”, which is disclosed in Japanese Patent Application Laid-Open No. 2013-108013. The patent invention disclosed in Japanese Patent Publication No. Gazette discloses a vibration control method using a “high damping composition”.

また、特開2017−116003号公報には、「ボルト頭部の首振り機構」を利用した制震方法が開示され、非特許文献1には、家屋全体を空気の力で浮上させ、地震の揺れを家屋に伝播させない方法が示され、販売されている。   Japanese Patent Application Laid-Open No. 2017-111003 discloses a vibration control method using a “bolt head swing mechanism”, and Non-Patent Document 1 discloses that an entire house is levitated by the force of air. A method to prevent the shaking from propagating to the house is shown and sold.

2016年の熊本地震においては、本震と思われていた前震の翌々日に、前震の規模と同規模の本震が発生し、4月14日の前震(最大震度7)で破壊を免れていた家屋も4月16日の本震(最大震度7)により倒壊したケースが数多く見受けられ、免震工法や制震工法を取り入れた木造建築の需要が益々高まっていくものと思われる。   In the 2016 Kumamoto earthquake, the main shock of the same magnitude as the foreshock occurred two days after the foreshock, which was thought to be the main shock, and some of the houses that were spared from destruction by the foreshock on April 14 (maximum seismic intensity 7) Many cases were destroyed by the April 16 main shock (maximum seismic intensity 7), and the demand for wooden buildings incorporating the seismic isolation method and seismic control method is expected to increase.

特開平10 −246281号公報JP-A-10-246281 特開2004−308118号公報JP 2004-308118 A 特開2005− 42403号公報JP-A-2005-42403 特開2006− 90486号公報JP 2006-90486 A 特開2006− 90127号公報JP 2006-90127 A 特開2007− 77786号公報JP 2007-77786 A 特開2009− 13782号公報JP 2009-13782 A 特開2012−102829号公報JP 2012-102829 A 特開2013−170373号公報JP 2013-170373 A 特開2013−108013号公報JP2013-108013A 特開2017−116003号公報Japanese Patent Laid-Open No. 2017-111003

株式会社三誠ホールディングス(http://www.airdanshin.jp/#main)Sansei Holdings Co., Ltd. (http://www.airdanshin.jp/#main) 国土交通省資料(http://www.mlit.go.jp/common/001169847.pdf)MLIT document (http://www.mlit.go.jp/common/001169847.pdf)

地震による木造家屋の揺れを軽減するために、梁と柱で囲まれる入隅の角度変位を抑える制震器具の設置、あるいは、梁と土台の相対変位を軽減させる制震器具の設置により、家屋の破壊の程度を軽減させることが、本願発明の解決しようとする課題である。   In order to reduce the shaking of the wooden house due to the earthquake, install a damping device that suppresses the angular displacement of the entrance corner surrounded by the beam and column, or install a damping device that reduces the relative displacement of the beam and the base. It is a problem to be solved by the present invention to reduce the degree of destruction.

時計回り方向(C.W)→反時計回り方向(C.C.W)→時計回り方向(C.W)又は、反時計回り方向(C.C.W)→時計回り方向(C.W)→反時計回り方向(C.C.W)の様に連続する奇数個の円弧に曲げ加工した金属製又はカーボン樹脂製の板バネと、当該円弧の中心位置と同位置に固定ピン用の貫通穴を加工した2枚の抑え板の間に、板バネの変形を減衰するための円筒形ゴム(以下、単に円筒ゴムともいう)と当該円筒ゴムの内側に密着挿入する円筒形状のガイドローラー各3組を、当該3つの貫通穴位置で当該板バネ自体を当該3つの円筒ゴムで挟む様に固定ピンで配置固定した1組の制震器具を梁と柱の入隅に設置することにより、地震に対する揺れを抑えることが可能である。   Clockwise direction (CW) → Counterclockwise direction (CCW) → Clockwise direction (CW) or Counterclockwise direction (CCW) → Clockwise direction (CW ) → Metal or carbon resin leaf spring bent into an odd number of continuous arcs as in the counterclockwise direction (CCW), and for the fixing pin at the same position as the center of the arc. A cylindrical rubber for attenuating the deformation of the leaf spring (hereinafter also simply referred to as a cylindrical rubber) and two cylindrical guide rollers that are tightly inserted inside the cylindrical rubber between two holding plates with through holes. By installing a set of vibration control devices in the corners of the beam and column, the set is fixed with a fixing pin so that the leaf spring itself is sandwiched between the three cylindrical rubbers at the three through-hole positions. Can be suppressed.

また、1組の制震器具を梁の中央あたりに設置固定し、土台と当該制震器具を接続固定すれば、梁と柱の相対変位を抑えることが可能となる。   Further, if a set of vibration control devices is installed and fixed around the center of the beam, and the base and the vibration control device are connected and fixed, the relative displacement between the beam and the column can be suppressed.

入隅に1組の制震器具を設置した場合、地震の揺れにより入隅の鈍角変形に伴って、連続する3つの円弧曲げ加工した金属製板バネも鈍角変形するが、当該板バネの復元力により入隅の鈍角変形を抑える方向に働くことに加えて、3つの円弧中心に抑え板とともに位置固定した減衰用円筒ゴムが板バネの変形を抑えるとともに、当該板バネの振幅を減衰するダンパーとしての働きにより、家屋の揺れの軽減を図ることができる。   When a set of vibration control devices is installed in the corner, the metal leaf springs that have been subjected to three consecutive arc-bending processes are also obtusely deformed due to the shaking of the corner due to the shaking of the earthquake. In addition to acting in a direction to suppress obtuse angle deformation at the corner of the corner by force, a damping cylindrical rubber fixed with the restraining plate at the center of the three arcs suppresses the deformation of the leaf spring and also attenuates the amplitude of the leaf spring. As a result, it is possible to reduce the shaking of the house.

梁の中央に1組の制震器具を設置した場合、当該1組の制震器具を土台(床)と連結器具で接続固定すれば、地震の揺れに対する梁の自由振動を抑えることにより、梁と土台(床)の相対変位を抑えることができ、家屋の揺れの軽減を図る効果がある。   If a set of vibration control devices is installed at the center of the beam, the beam can be controlled by suppressing the free vibration of the beam against earthquake shaking if the set of vibration control devices are connected and fixed to the base (floor) with a connecting device. And the relative displacement of the base (floor) can be suppressed, and the effect of reducing the shaking of the house is achieved.

また、各円弧の半径を同径で数値を大小変化させるだけでなく、違径の円弧を組み合せること、あるいは各円弧に適する減衰用円筒ゴムの外径も変えること等により、1組の減衰器具のばね定数や減衰係数を変えることができ、家屋の設計に適した制震器具が可能となる。   In addition to changing the value of each arc with the same radius, the set of damping devices can be changed by combining different diameters of arcs or changing the outer diameter of the damping rubber suitable for each arc. The spring constant and damping coefficient can be changed, and a vibration control device suitable for the design of the house becomes possible.

図1は、入隅に設置する本願発明の1組の制震器具1001の正面図である。(実施例1)FIG. 1 is a front view of a set of vibration control devices 1001 of the present invention installed in the corner. (Example 1) 図2は、本願発明の1組の制震器具1001の側面図である。(実施例1)FIG. 2 is a side view of a set of vibration control devices 1001 according to the present invention. (Example 1) 図3は、本願発明の1組の制震器具1001の上面図である。(実施例1)FIG. 3 is a top view of a set of vibration control devices 1001 according to the present invention. (Example 1) 図4は、本願発明の1組の制震器具1001に使用する板バネ1の正面図である。(実施例1)FIG. 4 is a front view of the leaf spring 1 used in the set of vibration control devices 1001 of the present invention. (Example 1) 図5は、本願発明の1組の制震器具1001の板バネ1と円筒ゴム3及びガイドローラー9の位置関係を示した正面図である。(実施例1)FIG. 5 is a front view showing the positional relationship between the leaf spring 1, the cylindrical rubber 3, and the guide roller 9 of a set of vibration control devices 1001 according to the present invention. (Example 1) 図6は、本願発明の1組の制震器具1001の制震器具の斜視図である。(実施例1)FIG. 6 is a perspective view of the damping device of the set of damping devices 1001 of the present invention. (Example 1) 図7は、本願発明の1組の制震器具1001の制震器具の分解組み立て図である。(実施例1)FIG. 7 is an exploded view of the damping device of the set of damping devices 1001 of the present invention. (Example 1) 図8は、梁19・柱21・土台23で囲まれる4つの入隅に板バネ1を設置固定した場合の正面図である。(実施例1)FIG. 8 is a front view when the leaf spring 1 is installed and fixed at four corners surrounded by the beam 19, the column 21, and the base 23. (Example 1) 図9は、図8で示す4つの入隅に板バネ1を設置した場合の斜視図である。(実施例1)FIG. 9 is a perspective view when the leaf springs 1 are installed at the four corners shown in FIG. (Example 1) 図10は、地震の揺れで梁19が土台23に対して相対変位した場合の板バネ1の変形概念を示した正面図である。(実施例1)FIG. 10 is a front view showing a deformation concept of the leaf spring 1 when the beam 19 is relatively displaced with respect to the base 23 due to an earthquake. (Example 1) 図11は、図10における変形概念を示した斜視図である。(実施例1)FIG. 11 is a perspective view showing a modified concept in FIG. (Example 1) 図12は、図1に示す板バネ1を使用した1組の制震器具1001を梁19・柱21・土台23で囲まれる4つの入隅に設置固定した正面図である。(実施例1)FIG. 12 is a front view in which a set of vibration control devices 1001 using the leaf spring 1 shown in FIG. 1 is installed and fixed at four corners surrounded by the beam 19, the column 21, and the base 23. (Example 1) 図13は、図12のA−Aで示した断面図である。(実施例1)13 is a cross-sectional view taken along line AA in FIG. (Example 1) 図14は、図12で示した本願発明の斜視図である。(実施例1)14 is a perspective view of the present invention shown in FIG. (Example 1) 図15は、図1に示す1組の制震器具1001の抑え板5及び7に替えて、筋交固定部73を持つ抑え板25及び27に変更した1組の制震器具1003の正面図である。(実施例2)FIG. 15 is a front view of a set of seismic control devices 1003 that are changed to the control plates 25 and 27 having the bracing fixing portions 73 instead of the control plates 5 and 7 of the set of seismic control devices 1001 shown in FIG. It is. (Example 2) 図16は、図15で示す1組の制震器具1003の側面図である。(実施例2)FIG. 16 is a side view of the set of vibration control devices 1003 shown in FIG. (Example 2) 図17は、図15で示す1組の制震器具1003の斜視図である。(実施例2)FIG. 17 is a perspective view of the set of vibration control devices 1003 shown in FIG. (Example 2) 図18は、制震器具1003と制震器具1001を組合せて使用した場合の各入隅に設置固定した斜視図である。(実施例2)FIG. 18 is a perspective view in which the vibration control device 1003 and the vibration control device 1001 are used in combination and installed and fixed at each corner. (Example 2) 図19は、図1に示す1組の制震器具1001の抑え板5及び7に替えて、筋交39が回転摺動できる抑え板35及び37に変更した1組の制震器具1005の正面図である。(実施例3)FIG. 19 is a front view of a set of seismic control devices 1005 that are changed to the control plates 35 and 37 that can rotate and slide the brace 39 instead of the control plates 5 and 7 of the set of seismic control devices 1001 shown in FIG. FIG. Example 3 図20は、図19で示す1組の制震器具1005の斜視図である。(実施例3)FIG. 20 is a perspective view of the set of vibration control devices 1005 shown in FIG. Example 3 図21は、1組の制震器具1005を梁19と柱21で囲まれる2箇所の入隅に設置固定した場合の正面図である。(実施例3)FIG. 21 is a front view when a set of vibration control devices 1005 is installed and fixed at two corners surrounded by the beam 19 and the column 21. Example 3 図22は、図21のA−A方向から見た側面断面図である。(実施例3)FIG. 22 is a side cross-sectional view seen from the AA direction of FIG. Example 3 図23は、板バネ1の半径R12の円弧の曲げ半径を半径R12’に変更した板バネ47の正面図である。(実施例4)FIG. 23 is a front view of the leaf spring 47 in which the radius of bending of the arc of radius R 12 of the leaf spring 1 is changed to the radius R 12 ′. Example 4 図24は、板バネ47と半径R12’の円弧に使用する円筒ゴム49の関係を示した正面図である。(実施例4)FIG. 24 is a front view showing the relationship between the leaf spring 47 and the cylindrical rubber 49 used for the arc having the radius R 12 ′. Example 4 図25は、半径R11、R12’、R13の円弧中心と同位置に固定ピン13用の貫通穴を持つ抑え板51と板バネ47を装着した1組の制震器具1007の正面図である。(実施例4)FIG. 25 is a front view of a set of vibration control devices 1007 in which a holding plate 51 having a through hole for the fixing pin 13 and a leaf spring 47 are mounted at the same position as the arc centers of the radii R 11 , R 12 ′, and R 13 . It is. Example 4 図26は、図25で示す1組の制震器具1007の上面図である。(実施例4)FIG. 26 is a top view of the set of vibration control devices 1007 shown in FIG. (Example 4) 図27は、図26で示す1組の制震器具1007の斜視図である。(実施例4)FIG. 27 is a perspective view of the set of vibration control devices 1007 shown in FIG. (Example 4) 図28は、連続曲げ加工をする円弧の半径をR21、R22、R23の3つの異なる半径で曲げ加工した板バネ55の正面図である。(実施例5)FIG. 28 is a front view of a leaf spring 55 that is bent at three different radii of R 21 , R 22 , and R 23 in the radius of a circular arc that is continuously bent. (Example 5) 図29は、板バネ55と円筒ゴム57、59、61及びガイドローラー63、65、67の関係を示した正面図である。(実施例5)FIG. 29 is a front view showing the relationship between the leaf spring 55, the cylindrical rubbers 57, 59, 61 and the guide rollers 63, 65, 67. (Example 5) 図30は、半径R21、R22、R23の円弧中心と同位置に固定ピン13用の貫通穴を備えた抑え板69を使用した1組の制震器具1009の正面図である。(実施例5)FIG. 30 is a front view of a set of vibration control devices 1009 using a holding plate 69 having a through hole for the fixing pin 13 at the same position as the arc centers of the radii R 21 , R 22 , and R 23 . (Example 5) 図31は、図30で示す1組の制震器具1009の側面図である。(実施例5)FIG. 31 is a side view of the set of vibration control devices 1009 shown in FIG. (Example 5) 図32は、図30で示す1組の制震器具1009の上面図である。(実施例5)FIG. 32 is a top view of the set of vibration control devices 1009 shown in FIG. (Example 5) 図33は、図30で示す1組の制震器具1009の斜視図である。(実施例5)FIG. 33 is a perspective view of the set of vibration control devices 1009 shown in FIG. (Example 5) 図34は、1組の制震器具1009と筋交75を使用して、梁19・柱21で囲まれる2つの入隅のうちの1つに設置固定し、他の入隅に1組の制震器具1001を設置固定した場合の正面図である。(実施例5)FIG. 34 shows a set of seismic control devices 1009 and bracing 75, which is installed and fixed in one of the two corners surrounded by the beam 19 and the column 21, and one set in the other corner. It is a front view at the time of installing and fixing the damping device 1001. (Example 5) 図35は、梁19に設置する制震器具用の板バネであって、半径R31、R32、R33の3つの連続円弧で曲げ加工した板バネ79の正面図である。(実施例6)FIG. 35 is a front view of a leaf spring 79 installed on the beam 19 and bent by three continuous arcs having radii R 31 , R 32 , and R 33 . (Example 6) 図36は、図35で示す板バネ79と、半径R31、R32、R33の3つの円弧に使用する円筒ゴム81、83、85とガイドローラー87、89、91の位置関係を示した正面図である。(実施例6)FIG. 36 shows the positional relationship between the leaf spring 79 shown in FIG. 35 and the cylindrical rubbers 81, 83, 85 used for the three arcs of the radii R 31 , R 32 , R 33 and the guide rollers 87, 89, 91. It is a front view. (Example 6) 図37は、図35で示す3つの円弧中心と同位置に固定ピン13用の貫通穴を加工した抑え板93等を使用して、図36で示す板バネ79等を取り付けた1組の梁用制震器具1011の正面図である。(実施例6)FIG. 37 shows a set of beams to which a leaf spring 79 shown in FIG. 36 is attached using a holding plate 93 etc. in which a through hole for the fixing pin 13 is processed at the same position as the three arc centers shown in FIG. FIG. (Example 6) 図38は、図37で示す1組の梁用制震器具1011の斜視図である。(実施例6)FIG. 38 is a perspective view of the set of beam damping devices 1011 shown in FIG. (Example 6) 図39は、図37で示す1組の梁用制震器具1011を梁19に設置固定し、貫通穴101に連結器具99をネジ75で留め加工して、当該連結器具99を土台固定具97へボルト15で連結固定した梁19・柱21・土台23の正面図である。(実施例6)In FIG. 39, the set of beam damping devices 1011 for beams shown in FIG. 37 is installed and fixed to the beam 19, and the connecting device 99 is fastened to the through hole 101 with a screw 75, and the connecting device 99 is fixed to the base fixture 97. FIG. 3 is a front view of a beam 19, a column 21, and a base 23 that are connected and fixed by a heavy bolt 15. (Example 6) 図40は、図39のA-A断面図である。(実施例6)40 is a cross-sectional view taken along the line AA in FIG. (Example 6) 図41は、図39で示す正面図を図40のB-B位置で切断した正面断面図である。(実施例6)41 is a front sectional view of the front view shown in FIG. 39 taken along the line BB of FIG. (Example 6) 図42は、梁19に設置する制震器具用の板バネであって、半径R41、R42、R43の3つの連続円弧で曲げ加工した板バネ103の正面図である。(実施例7)FIG. 42 is a front view of a leaf spring 103 installed on the beam 19 and bent by three continuous arcs having radii R 41 , R 42 , and R 43 . (Example 7) 図43は、図35で示す板バネ103と、半径R41、R42、R43の3つの円弧に使用する円筒ゴム105、107、109とガイドローラー111、113、115の位置関係を示した正面図である。(実施例7)FIG. 43 shows the positional relationship between the leaf spring 103 shown in FIG. 35 and the cylindrical rubbers 105, 107, 109 and the guide rollers 111, 113, 115 used for the three arcs of radius R 41 , R 42 , R 43 . It is a front view. (Example 7) 図44は、抑え板117等で固定した1組の梁用制震器具1013の正面図である。(実施例7)FIG. 44 is a front view of a set of beam damping devices 1013 fixed with a holding plate 117 or the like. (Example 7) 図45は、図44で示す1組の梁用制震器具1013の側面図である。(実施例7)FIG. 45 is a side view of the pair of beam damping devices 1013 shown in FIG. (Example 7) 図46は、図44で示す1組の梁用制震器具1013の上面図である。(実施例7)FIG. 46 is a top view of the set of beam damping devices 1013 shown in FIG. (Example 7) 図47は、図44で示す1組の梁用制震器具1013の斜視図である。(実施例7)FIG. 47 is a perspective view of the set of beam damping devices 1013 shown in FIG. (Example 7) 図48は、梁19に設置した、図44で示す1組の梁用制震器具1013と土台23に固定した土台固定具97を連結器具99で連結固定した制震構造の正面図である。(実施例7)FIG. 48 is a front view of a seismic control structure in which a set of beam damping devices 1013 shown in FIG. 44 and a base fixture 97 fixed to the base 23 are connected and fixed by a connecting device 99 installed on the beam 19. (Example 7) 図49は、図48のA-A断面図である。(実施例7)49 is a cross-sectional view taken along the line AA in FIG. (Example 7) 図50は、図49のB-Bから見た図48の中央左部分断面図である。(実施例7)FIG. 50 is a partial left sectional view of the center of FIG. 48 as viewed from BB of FIG. (Example 7) 図51は、図48の斜視図である。(実施例7)FIG. 51 is a perspective view of FIG. (Example 7) 図52は、梁19と土台23のそれぞれに、1組の制震器具1011を設置固定し、連結器具99で接続した制震構造の正面図である。(実施例8)FIG. 52 is a front view of a vibration control structure in which a set of vibration control devices 1011 is installed and fixed on each of the beam 19 and the base 23 and connected by a connecting device 99. (Example 8) 図53は、図52の斜視図である。(実施例8)FIG. 53 is a perspective view of FIG. (Example 8) 図54は、梁19と土台23のそれぞれに、1組の制震器具1015を設置固定し、回転摺動部を有する連結器具39で接続した制震構造の正面図である。(実施例9)FIG. 54 is a front view of a vibration control structure in which a set of vibration control devices 1015 is installed and fixed on each of the beam 19 and the base 23 and connected by a connecting device 39 having a rotating sliding portion. Example 9 図55は、図54の斜視図である。(実施例9)FIG. 55 is a perspective view of FIG. Example 9 図56は、7個の連続する円弧を有する板バネを使用した入隅用1組の制震器具の正面図である。(実施例10)FIG. 56 is a front view of a set of damping devices for a corner using a leaf spring having seven continuous arcs. (Example 10) 図57は、L-L線で切断した抑え板123の一部断面図を使用した図56の斜視図である。(実施例10)57 is a perspective view of FIG. 56 using a partial cross-sectional view of the holding plate 123 cut along the line LL. (Example 10) 図58は、7個の連続する円弧を有する板バネを使用した梁用の1組の制震器具の正面図である。(実施例11)FIG. 58 is a front view of a set of vibration control devices for a beam using a leaf spring having seven continuous arcs. (Example 11) 図59は、L-L線で切断した抑え板129の一部断面図を使用した図58の斜視図である。(実施例11)59 is a perspective view of FIG. 58 using a partial cross-sectional view of the holding plate 129 cut along line LL. (Example 11) 図60は、3重板バネ133、135、137を使用した入隅用の1組の制震器具1021の正面図である。(実施例12)FIG. 60 is a front view of a set of vibration control devices 1021 for corners using triple leaf springs 133, 135, and 137. (Example 12) 図61は、1組の制震器具1021の上面図である。(実施例12)FIG. 61 is a top view of a pair of vibration control devices 1021. (Example 12) 図62は、3重板バネ133、135、137のみの位置関係を示した正面図である。(実施例12)FIG. 62 is a front view showing the positional relationship of only the triple leaf springs 133, 135, and 137. (Example 12) 図63は、3重板バネ133、135、137の円弧内径を表した正面図である。(実施例12)FIG. 63 is a front view showing the arc inner diameters of the triple leaf springs 133, 135, and 137. (Example 12) 図64は、3重板バネ133、135、137と円筒ゴム及びガイドローラーのみの位置関係を示した正面図である。(実施例12)FIG. 64 is a front view showing the positional relationship between the triple leaf springs 133, 135, and 137, the cylindrical rubber, and the guide roller only. (Example 12) 図65は、図60のL-L線で切断した抑え板151を一部断面図で示した1組の制震器具1021の斜視図である。(実施例12)FIG. 65 is a perspective view of a set of vibration control devices 1021 showing the holding plate 151 cut along the line LL in FIG. 60 in a partial cross-sectional view. (Example 12) 図66は、3重板バネ155、157、159を使用した梁用の1組の制震器具1023の正面図である。(実施例13)FIG. 66 is a front view of a set of vibration control devices 1023 for beams using triple leaf springs 155, 157, and 159. FIG. (Example 13) 図67は、図66で示す1組の制震器具1023の上面図である。(実施例13)67 is a top view of the set of vibration control devices 1023 shown in FIG. (Example 13) 図68は、3重板バネ155、157、159のみの位置関係を示した正面図である。(実施例13)68 is a front view showing the positional relationship of only the triple leaf springs 155, 157, 159. FIG. (Example 13) 図69は、3重板バネ155、157、159の円弧内径を表した正面図である。(実施例13)FIG. 69 is a front view showing the arc inner diameters of the triple leaf springs 155, 157, and 159. FIG. (Example 13) 図70は、3重板バネ155、157、159と円筒ゴム及びガイドローラーの位置関係を示した正面図である。(実施例13)FIG. 70 is a front view showing the positional relationship between the triple leaf springs 155, 157 and 159, the cylindrical rubber and the guide roller. (Example 13) 図71は、図66のL-L線で切断した抑え板173を一部断面図で示した1組の制震器具1023の斜視図である。(実施例13)FIG. 71 is a perspective view of a set of vibration control devices 1023 in which a holding plate 173 cut along line LL in FIG. 66 is shown in a partial cross-sectional view. (Example 13)

3つの連続した円弧を有する金属製板バネの両端の直線部分を延長した直線の交差角度が90°になるように円弧の中心側へ近づく様に、円弧と直線部の接続部分で折り曲げた板バネであって、当該両端の直線部分には入隅へ接地固定するためのネジ穴あるいはボルト穴を複数個穴あけ加工した板バネに、3つの円弧と同径の外径を有する減衰用円筒ゴムと円筒ゴムの内側に収まるガイドローラーを当該3つの円弧中心点と同位置にそれぞれ配置して、当該3つの円弧中心点と同位置に固定ピン用の貫通穴を持つ抑え板で円筒形ガイドローラー(以下、単にガイドローラーという)の両端から板バネと円筒ゴムを挟み込んで構成した1組の制震器具を入隅に梁や柱へ複数個の通しボルトとナットで設置することで、地震の揺れに伴う梁と柱の鈍角変形又は鋭角変形を軽減させることが可能な制震工法となる。     A plate that is bent at the connecting portion of the arc and the straight line so that the crossing angle of the straight line extending from the straight line at both ends of the metal leaf spring having three continuous arcs approaches the center of the arc so that it becomes 90 ° A cylindrical rubber for damping having an outer diameter of the same diameter as three arcs on a leaf spring in which a plurality of screw holes or bolt holes for drilling and fixing to the corners are formed in the straight portions at both ends. And a guide roller that fits inside the cylindrical rubber at the same position as the three arc center points, and a cylindrical guide roller with a holding plate having a through hole for a fixing pin at the same position as the three arc center points. By installing a set of vibration control devices with leaf springs and cylindrical rubber sandwiched from both ends (hereinafter referred to simply as “guide rollers”), a plurality of through bolts and nuts are installed in the corners of the beams and columns. Of beams and columns accompanying shaking Possible to reduce the angular distortion or acute deformation becomes capable Damping method.

さらに、上記段落0014の1組の制震器具に使用する抑え板に替えて、当該抑え板に筋交を固定する機能を付加した抑え板の間に筋交をネジ留めすれば、当該1組の制震器具が入隅と筋交の間に加わることで、地震の揺れによる入隅の変形振動を減衰するとともに、筋交の座屈破壊を軽減することが可能な制震工法となる。   Furthermore, if the bracing is screwed between the restraining plates to which the bracing is added to the restraining plates instead of the restraining plates used for the one set of vibration control devices in the above paragraph 0014, the one set of damping devices is provided. By adding a seismic device between the entrance corner and the bracing, the seismic control method can attenuate the deformation vibration of the entrance corner due to the shaking of the earthquake and reduce buckling fracture of the bracing.

また、上記段落0014で示した3つの連続した円弧を有する板バネの両端の直線部分を曲げずに、円弧と直線部の接続部分で円弧の接線方向に伸ばした両端の直線部分が1直線上になるように加工した板バネであって、当該直線部分には梁や土台(床)に固定するためのボルト穴あるいはネジ穴の穴あけ加工を施して、当該3つの円弧と同径の外径を持つ減衰用円筒ゴムと当該円筒ゴムの内側に密着挿入するガイドローラーを当該3つの円弧中心と同位置にそれぞれ配置して板バネとともに、当該円弧中心と同位置に固定ピン用の貫通穴を有する抑え板でガイドローラーの両端を挟み込むと同時に、当該抑え板には土台(床)と連結器具を固定できる形状を付加した1組の制震器具を梁の下部に設置固定し、梁の鉛直下にある土台(床)と連結固定することにより、地震の揺れによる梁と土台(床)の相対変位を抑えることが可能な制震工法となる。   Also, without bending the straight portions at both ends of the leaf spring having three continuous arcs shown in the above paragraph 0014, the straight portions at both ends extending in the tangential direction of the arc at the connecting portion between the arc and the straight portion are on one straight line. The straight spring is drilled with bolt holes or screw holes for fixing to the beam or foundation (floor), and the outer diameter is the same diameter as the three arcs. A damping cylindrical rubber with a guide roller and a guide roller that is closely inserted inside the cylindrical rubber are arranged at the same position as the three arc centers, together with a leaf spring, and a through hole for a fixing pin is located at the same position as the arc center. At the same time as sandwiching both ends of the guide roller with the holding plate, a set of vibration control devices with a shape that can fix the base (floor) and connecting device is installed and fixed to the lower part of the beam. With the foundation (floor) below By binding fixed, the vibration control method capable of suppressing the relative displacement of the beam and the base by the earthquake shaking (floor).

図1には、本願発明の1組の制震器具1001の正面図を示しているが、図4に示す様に、厚さtの金属製板バネ1の1端(a−a)部は直線形状をしており、内径R11、R12、R13の3つの連続する円弧となるように曲げ加工し、さらに他端(b−b)部を直線形状に加工した板バネ1の当該3つの円弧中心と同位置に円筒ゴム3とガイドローラー9を配置し、図2及び図3で示すように当該円弧中心と同位置に固定ピン13のための挿入穴8(以後の実施例の抑え板においても、位置決め固定ピン用挿入穴8とする。)を有する抑え板5と7の間に挟む様に、板バネ1と円筒ゴム3と金属製ガイドローラー9を固定ピン13とE型留め輪11で固定して構成した1組の制震器具1001の概要を示している。 FIG. 1 shows a front view of a set of damping device 1001 of the present invention. As shown in FIG. 4, one end (aa) portion of a metal leaf spring 1 having a thickness t is shown in FIG. The leaf spring 1 has a linear shape, is bent so as to form three continuous arcs having inner diameters R 11 , R 12 , and R 13 , and the other end (bb) is processed into a linear shape. The cylindrical rubber 3 and the guide roller 9 are arranged at the same position as the three arc centers, and as shown in FIGS. 2 and 3, the insertion hole 8 (for the following embodiments) for the fixing pin 13 is located at the same position as the arc center. The plate spring 1, the cylindrical rubber 3, and the metal guide roller 9 are fixed to the fixing pin 13 and the E type so as to be sandwiched between the holding plates 5 and 7 having the fixing plate insertion hole 8 for the holding plate. An outline of a set of vibration control devices 1001 configured to be fixed by a retaining ring 11 is shown.

また、図1で示すように、当該板バネ1が梁あるいは柱に設置する際の直線部分(a−a)含む設置平面と直線部分(b−b)を含む設置平面の各延長平面が90°で交差し、その交線上にX-Y座標の座標原点Oとなるように、板バネ1を成形させることで、直線部分(a−a)及び(b-b)を入隅にボルト15とナット17で設置固定することができる。   Further, as shown in FIG. 1, each extension plane of the installation plane including the straight portion (aa) and the installation plane including the straight portion (bb) when the leaf spring 1 is installed on the beam or column is 90. The leaf spring 1 is formed so that it intersects at an angle and becomes the coordinate origin O of the XY coordinate on the intersecting line, so that the straight portions (aa) and (bb) are bolts 15 at the corners. And the nut 17 can be installed and fixed.

板バネ1の形状と円筒ゴム3とガイドローラー9の位置関係を詳説したものが図4及び図5である。厚さtの板バネ1を内径R11で時計回り方向(C.W)に円弧曲げ加工をし、続いて、内径R12で反時計回り方向(C.C.W)に円弧曲げ加工をし、さらに、内径R13で時計回り方向(C.W)に連続円弧曲げ加工をした部分が(c−c)であって、その両端は直線部分(a−a)と(b−b)になっている。ここで、R11=R12=R13の場合には、当該3つの円弧中心点を結ぶ線は直角二等辺三角形を形成する。図5で示す円筒ゴム3は、それぞれの円弧の内径と等しい外径であり、この図では、R11=R12=R13の場合としているため、同一の円筒ゴム3を使用している。さらに円筒ゴム3の内径と同じ外径のガイドローラー9を円筒ゴム3の内側に密着挿入することにより、位置ずれを防止している。 4 and 5 show details of the shape of the leaf spring 1 and the positional relationship between the cylindrical rubber 3 and the guide roller 9. The leaf spring 1 having a thickness of t and an arc bending in a clockwise direction (C.W) in inner diameter R 11, subsequently, an arc bending in a counterclockwise direction (C.C.W) at the inner diameter R 12 Furthermore, the portion of the inner radius R 13 that has been subjected to continuous arc bending in the clockwise direction (C.W) is (cc), and both ends thereof are straight portions (aa) and (bb). It has become. Here, when R 11 = R 12 = R 13 , the line connecting the three arc center points forms a right isosceles triangle. The cylindrical rubber 3 shown in FIG. 5 has an outer diameter equal to the inner diameter of each arc. In this figure, R 11 = R 12 = R 13 is used, and therefore the same cylindrical rubber 3 is used. Further, the guide roller 9 having the same outer diameter as the inner diameter of the cylindrical rubber 3 is tightly inserted into the inner side of the cylindrical rubber 3 to prevent the positional deviation.

図6は1組の制震器具1001の斜視図であり、図7は、分解組み立て図である。段落0018と同様、図6に示すように、直線部分(a−a)を含む板バネ1の設置面をX座標平面とし、直線部分(b−b)を含む板バネ1の設置面をY座標平面とし、当該X-Y座標平面と抑え板7の3円弧中心の2等辺三角形を含む面との交点を原点Oとした場合に、当該X座標平面とY座標平面の交線であって、固定ピン13と並行線で抑え板7から抑え板5へ向かう方向をZ座標の正(+)方向と見做すこととする。図7は、板バネ1の各円弧の中心点と同位置に固定ピン13の貫通穴を有する抑え板5及び7の間に、板バネ1の3つの円弧中心位置に配置した各々ガイドローラー9と円筒ゴム3が板バネ1から外れないように抑え板5と7で挟み込むとともに、固定ピン13とE型留め輪11で位置決め固定した1組の制震器具1001の分解組み立ての構成を示している。   FIG. 6 is a perspective view of a set of vibration control devices 1001, and FIG. 7 is an exploded view. As in the paragraph 0018, as shown in FIG. 6, the installation surface of the leaf spring 1 including the straight portion (aa) is the X coordinate plane, and the installation surface of the leaf spring 1 including the straight portion (bb) is Y. When the origin of the intersection of the XY coordinate plane and the plane including the isosceles triangle at the center of the three arcs of the restraint plate 7 is the origin O, the intersection of the X coordinate plane and the Y coordinate plane The direction from the restraining plate 7 to the restraining plate 5 along a parallel line with the fixing pin 13 is regarded as the positive (+) direction of the Z coordinate. FIG. 7 shows the guide rollers 9 arranged at the three arc center positions of the leaf spring 1 between the holding plates 5 and 7 having the through holes of the fixing pin 13 at the same position as the center point of each arc of the leaf spring 1. And the cylindrical rubber 3 is sandwiched between restraining plates 5 and 7 so as not to be detached from the leaf spring 1, and a disassembled and assembled structure of a set of vibration control devices 1001 positioned and fixed by a fixing pin 13 and an E-type retaining ring 11 is shown. Yes.

ここで、梁19と柱21及び土台(床)23で囲まれる4つの入隅に、それぞれ板バネ1のみをボルト15とナット17で固定した場合の正面図が図8であり、その斜視図が図9である。さらに地震の揺れで柱21が傾き、梁19と土台(床)23が相対変位したことを想定した正面図が図10であり、その斜視図が図11である。ここで、図10及び図11に示す4つの入隅のうち、左斜め上と右斜め下の入隅は鋭角(<90°)となり、右斜め上と左斜め下の入隅は鈍角(>90°)となるため、円弧の形状は楕円形に変形し、その変形に伴って、それぞれの板バネ1の復元力が地震の揺れを抑制する働きとなる。   Here, FIG. 8 is a front view when only the leaf spring 1 is fixed with bolts 15 and nuts 17 at four corners surrounded by the beam 19, the column 21 and the base (floor) 23, respectively. Is FIG. Further, FIG. 10 is a front view assuming that the column 21 is inclined due to the earthquake and the beam 19 and the base (floor) 23 are relatively displaced, and FIG. 11 is a perspective view thereof. Here, among the four corners shown in FIGS. 10 and 11, the corners on the upper left and the lower right corners are acute angles (<90 °), and the corners on the upper right and lower corners are obtuse angles (> 90 °), the arc shape is deformed into an ellipse, and the restoring force of each leaf spring 1 serves to suppress the shaking of the earthquake in accordance with the deformation.

次に、1組の制震器具1001を梁19・柱21・土台(床)23で囲まれる4つの入隅にボルト15とナット17で設置固定した正面図が図12であり、その図12のA-A方向から見た断面側面図が図13である。図12の斜視図が図14である。この様に、1組の制震器具1001を入隅に設置固定することで、地震の揺れにより柱21が梁19や土台(床)23に対して傾斜することで、それぞれの入隅が鋭角あるいは鈍角変形し、それに伴って、板バネ1の円弧形状が楕円形状に変形し、板バネ1がその円弧中心に位置する円筒ゴム3を挟み込むことにより、板バネ1の振動変形を抑制減衰させることとなり、結果として、梁19と土台(床)23の相対変位が小さくなる。
ここで、固定ピン13とE型留め輪11を使用して、抑え板5と7の位置決め固定をしているが、固定ピン13やE型留め輪11に替えて、ボルト・ナット等の組み合わせることも可能であり、以下の実施例においても同様に固定ピンとE型留め輪にこだわるものではない。また、板バネの材質は、金属製だけではなく、カーボン樹脂等の樹脂製であっても構わないし、円筒ゴム3と金属製ガイドローラー9とは、接着剤や加硫で固着したり、一体成型した部品を用いても構わない。さらに、ガイドローラー9は金属製だけではなく、硬質樹脂製であっても構わない。
Next, FIG. 12 is a front view in which a set of vibration control devices 1001 is installed and fixed with bolts 15 and nuts 17 at four corners surrounded by beams 19, columns 21 and a base (floor) 23. FIG. FIG. 13 is a cross-sectional side view seen from the AA direction. FIG. 14 is a perspective view of FIG. In this way, by installing and fixing one set of vibration control devices 1001 in the corners, the column 21 is inclined with respect to the beam 19 and the base (floor) 23 by the shaking of the earthquake, so that each corner is an acute angle. Or the obtuse angle deformation | transformation WHEREIN: The circular arc shape of the leaf | plate spring 1 deform | transforms into an elliptical shape, and the leaf | plate spring 1 suppresses and dampens the vibration deformation of the leaf | plate spring 1 by pinching | interposing the cylindrical rubber 3 located in the circular arc center. As a result, the relative displacement between the beam 19 and the base (floor) 23 is reduced.
Here, the fixing pins 13 and the E-type retaining ring 11 are used to position and fix the holding plates 5 and 7. However, in place of the fixing pins 13 and the E-type retaining ring 11, a combination of bolts and nuts is combined. Similarly, in the following embodiments, the fixing pin and the E-type retaining ring are not particularly concerned. The material of the leaf spring may be not only made of metal but also resin such as carbon resin. The cylindrical rubber 3 and the metal guide roller 9 are fixed by an adhesive or vulcanization, or integrated. Molded parts may be used. Furthermore, the guide roller 9 may be made of not only metal but also hard resin.

1組の制震器具1001に使用される抑え板5及び7に替えて、板バネ1の3つの円弧中心と同位置に位置決め固定ピン13用の貫通穴を有し、筋交固定用の貫通穴73を備えた抑え板25及び27を使用した1組の制震器具1003の正面図が図15であり、その側面図が16で、その斜視図が図17である。また、実施例1の段落0018と段落0020と同様、図15及び図17で示すように、直線部分(a−a)を含む板バネ1の面をX座標平面とし、直線部分(b−b)を含む板バネ1の面をY座標平面とした場合、当該X−Y座標平面は90°で交差し、その交線と抑え板27の3円弧中心を結ぶ2等辺三角形を含む面との交点を座標原点Oとした場合、当該交線であって、図17に示すように、当該X座標方向及びY座標方向と各々90°の角度をなし、固定ピン13と並行線で抑え板27から抑え板25へ向かう方向をZ座標の正(+)方向と見做すこととして、以後の入隅用の1組の制震器具においても同様の座標系の考え方とする。   Instead of the restraining plates 5 and 7 used in a set of vibration control devices 1001, the plate spring 1 has through holes for positioning and fixing pins 13 at the same position as the center of the arc, and penetrates for fixing the braces. FIG. 15 is a front view of a set of vibration control devices 1003 using the holding plates 25 and 27 provided with holes 73, FIG. 17 is a side view thereof, and FIG. Similarly to the paragraphs 0018 and 0020 of the first embodiment, as shown in FIGS. 15 and 17, the surface of the leaf spring 1 including the straight portion (aa) is defined as an X coordinate plane, and the straight portion (bb) is obtained. ) Is a Y coordinate plane, the XY coordinate plane intersects at 90 °, and a plane including an isosceles triangle connecting the intersecting line and the three arc centers of the restraining plate 27. When the intersection point is the coordinate origin O, as shown in FIG. 17, the intersection point forms an angle of 90 ° with each of the X coordinate direction and the Y coordinate direction, and is suppressed by a parallel line with the fixing pin 13. Assuming that the direction from the base plate to the holding plate 25 is the positive (+) direction of the Z coordinate, the same coordinate system concept is applied to a set of vibration control devices for the corners thereafter.

梁19と柱21で囲まれる2つの入隅にそれぞれ1組の制震器具1003を設置固定し、筋交29を取り付けて、筋交連結固定部材31及び筋交-土台固定部材33を使って、当該2つの制震器具1003を土台(床)23と連結し、さらに、図面上の他の入隅に、それぞれ1組の制震器具1001を設置固定した場合の様子を示した斜視図が図18である。1組の制震器具1003を介して筋交に揺れが伝達されるため、入隅に直接筋交設置する場合と比較して筋交の座屈が生じる確率が低減される。さらに、1組の制震器具1001を併用すれば、それぞれの制震性能の向上を図ることが可能である。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。   A set of vibration control devices 1003 is installed and fixed at each of the two corners surrounded by the beam 19 and the column 21, the bracing 29 is attached, and the bracing connection fixing member 31 and the bracing-base fixing member 33 are used. The perspective view which showed the mode at the time of connecting the said 2 damping device 1003 with the base (floor) 23, and also installing and fixing one set of damping devices 1001 in the other corner of the drawing, respectively. FIG. Since the vibration is transmitted to the braces via one set of vibration control devices 1003, the probability that the buckling of the braces will occur is reduced as compared with the case where the braces are installed directly in the corner. Furthermore, if one set of seismic control devices 1001 is used in combination, it is possible to improve each seismic performance. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

1組の制震器具1001の抑え板5及び7に替えて、板バネ1の3つの円弧中心と同位置に位置決め固定ピン13用の貫通穴を有し、回転軸用の貫通穴40を有する抑え板35及び37を使用した1組の制震器具1005の正面図が図19であり、斜視図が図20である。図19及び図20におけるX-Y-Zの座標及び原点Oの関係は、上記の段落0018、段落0020あるいは段落0023と同様なので省略する。   Instead of the holding plates 5 and 7 of the set of vibration control devices 1001, the plate spring 1 has a through hole for the positioning fixing pin 13 at the same position as the three arc centers and a through hole 40 for the rotating shaft. FIG. 19 is a front view of a set of vibration control devices 1005 using the holding plates 35 and 37, and FIG. 20 is a perspective view thereof. The relationship between the XYZ coordinates and the origin O in FIGS. 19 and 20 is the same as that in the above paragraphs 0018, 0020, or 0023, and is therefore omitted.

梁19と柱21で囲まれる2か所の入隅にそれぞれ1組の制震器具1005をボルト15とナット17で設置固定し、抑え板35と37にある回転軸用貫通穴40の位置に回転軸穴付連結器具39を回転軸用ボルト43と同ナット44で回転摺動できるように固定し、さらに、それぞれの連結器具39の他端を土台固定部材41に回転摺動できるようにボルト43とナット44で固定した様子を示した正面一部断面図が図21である。図21に示すように、梁19と土台(床)23の中点を結ぶ中心線の右半分を断面図で示している。また、A1-A1方向から見た断面側面図が図22である。   A set of vibration control devices 1005 are installed and fixed with bolts 15 and nuts 17 at two corners surrounded by the beam 19 and the column 21, respectively, at the positions of the through holes 40 for the rotating shafts in the holding plates 35 and 37. The connecting tool 39 with a rotation shaft hole is fixed so as to be able to rotate and slide with the rotating shaft bolt 43 and the same nut 44, and the other end of each connecting device 39 is also fixed to the base fixing member 41 so as to be able to rotate and slide. FIG. 21 is a partial front sectional view showing a state in which the nut 43 and the nut 44 are fixed. As shown in FIG. 21, the right half of the center line connecting the midpoint of the beam 19 and the base (floor) 23 is shown in a sectional view. Further, FIG. 22 is a cross-sectional side view seen from the A1-A1 direction.

連結器具39が土台固定部材41の回転摺動部分を中心に円弧運動が可能となり、制震器具1005の回転部の位置もそれに伴って変化することにより、板バネ1の変形も大きく加味されることで、地震に対する復元力も大きくなり、その板バネの変形に伴って円筒ゴム3の減衰力も大きくなることで、地震に対する揺れが軽減されることとなる。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、炭素繊維強化プラスティック製やカーボン樹脂製や樹脂製であっても構わない。   The connecting device 39 can move in a circular arc around the rotating sliding portion of the base fixing member 41, and the position of the rotating portion of the vibration control device 1005 changes accordingly, so that the deformation of the leaf spring 1 is greatly taken into account. As a result, the restoring force against the earthquake is increased, and the damping force of the cylindrical rubber 3 is increased along with the deformation of the leaf spring, so that the shaking with respect to the earthquake is reduced. Further, the material of the leaf spring shown in the embodiment is not particularly made of metal, and may be made of carbon fiber reinforced plastic, carbon resin or resin.

図23は、厚さtの板バネを内径R11で時計回り方向(C.W)に円弧曲げ加工をし、続いて、内径R12’で反時計回り方向(C.C.W)に円弧曲げ加工をし、さらに、内径R13で時計回り方向(C.W)に連続円弧曲げ加工をした部分が(c−c)であって、その両端は直線部分(a−a)と(b−b)で構成される板バネ47の正面図である。各円弧の半径の大きさの関係は、R12’>R11=R13であり、当該3つの円弧中心を結ぶ線も二等辺三角形を形成する。図24で示す様に円筒ゴム49は、円弧の内径R12’と等しい外径であり、円弧R11、R13の部分には、板バネ1と同じ円筒ゴム3を使用している。このように、中央の円弧の内径を他の円弧径に比べて大きくすることで、板バネ47のばね定数を変えることが可能であり、また、それに適した振動減衰用円筒ゴム49とすることで、復元力及び減衰力が板バネ1と異なる板バネ47の提供が可能になる。また、図24に示す様に、直線部分(a−a)と(b-b)には、1例として、それぞれ3本のボルト15用の貫通穴が加工されており、梁19や柱21へ当該ボルト15とナット17で固定することができる。ただし、ボルト15用の貫通穴の数は、板バネ47の各直線部分に3個のみにこだわるものではない。 Figure 23 is a leaf spring having a thickness of t and an arc bending in a clockwise direction (C.W) in inner diameter R 11, subsequently, an inner diameter R 12 'in a counterclockwise direction (C.C.W) arc bending and machining, further, a portion of the continuous arc bending in a clockwise direction (C.W) inner diameter R 13 is (c-c), and both ends of the linear portion (a-a) and ( It is a front view of the leaf | plate spring 47 comprised by bb). The relationship between the radii of each arc is R 12 ′> R 11 = R 13 , and the line connecting the three arc centers also forms an isosceles triangle. As shown in FIG. 24, the cylindrical rubber 49 has an outer diameter equal to the inner diameter R 12 ′ of the arc, and the same cylindrical rubber 3 as that of the leaf spring 1 is used for the arcs R 11 and R 13 . As described above, the spring constant of the leaf spring 47 can be changed by increasing the inner diameter of the central arc as compared with other arc diameters, and the vibration damping cylindrical rubber 49 suitable for this can be obtained. Thus, it is possible to provide a leaf spring 47 having a restoring force and a damping force different from those of the leaf spring 1. Further, as shown in FIG. 24, in the straight portions (aa) and (bb), as an example, through holes for three bolts 15 are processed, and the beam 19 and the column 21 are formed. It can be fixed with the bolt 15 and the nut 17. However, the number of through holes for the bolts 15 is not limited to only three in each linear portion of the leaf spring 47.

図25は、板バネ47の円弧中心に円筒ゴム3と49及びガイドローラー9を配置し、当該円弧中心に固定ピン用貫通穴を有する抑え板51と53で挟み込んで、固定ピン13と留め輪11で構成される1組の制震器具1007の正面図を示している。図26は、1組の制震器具1007の上面図であり、図27は、その斜視図である。図25及び図27におけるX-Y-Zの座標及び原点Oの関係は、上記の段落0018、段落0020あるいは段落0023と同様なので省略する。また、当該制震器具1007の梁19・柱21への設置例は省略するが、制震器具1001の設置方法を示した図12と同様となる。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。   In FIG. 25, the cylindrical rubbers 3 and 49 and the guide roller 9 are arranged at the center of the arc of the leaf spring 47, and are sandwiched between holding plates 51 and 53 having a fixing pin through hole at the center of the arc. 11 shows a front view of a set of vibration control devices 1007 composed of 11. FIG. 26 is a top view of a set of vibration control devices 1007, and FIG. 27 is a perspective view thereof. The relationship between the XYZ coordinates and the origin O in FIGS. 25 and 27 is the same as that in the above paragraphs 0018, 0020, or 0023, and is therefore omitted. Further, although an example of installation of the vibration control device 1007 on the beam 19 and the column 21 is omitted, the vibration control device 1007 is the same as FIG. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図28は、厚さtの板バネを内径R21で時計回り方向(C.W)に円弧曲げ加工をし、続いて、内径R22で反時計回り方向(C.C.W)に円弧曲げ加工をし、さらに、内径R23で時計回り方向(C.W)に連続円弧曲げ加工をした部分の両端には直線部分(a−a)と(b−b)から構成される板バネ55の正面図である。R21≠R22≠R23であるが、梁あるいは柱に取り付ける直線部(a−a)と(b−b)を含む板バネ55のそれぞれの面とX−Y−Z座標及び原点の関係は、上記の段落0018、段落0020あるいは段落0023と同様なので省略する。 Figure 28 is a leaf spring having a thickness of t and an arc bending in a clockwise direction (C.W) in inner diameter R 21, subsequently, an arc with an inner diameter R 22 in the counterclockwise direction (C.C.W) bending and machining, and further, the linear portion at both ends of the portion of the continuous arc bending in a clockwise direction (C.W) inside diameter R 23 (a-a) and (b-b) composed leaf spring from 55 is a front view of FIG. R 21 ≠ R 22 ≠ R 23 , but the relationship between each surface of the leaf spring 55 including the straight portions (aa) and (bb) attached to the beam or column, the XYZ coordinates, and the origin Is the same as paragraph 0018, paragraph 0020 or paragraph 0023 described above, and is omitted.

図29は、板バネ55の内径R21の円弧に内接する振動減衰用円筒ゴム57とガイドローラー63、内径R22の円弧に内接する振動減衰用円筒ゴム59とガイドローラー65および内径R23の円弧に内接する振動減衰用円筒ゴム61とガイドローラー67からなる(c−c)部分の両端に直線部(a−a)と(b−b)が繋がる板バネ55の構成を示した正面図である。 29, the vibration damping cylinder rubber 57 and the guide rollers 63 inscribed in the arc of the inner diameter R 21 of the leaf spring 55, the vibration damping cylinder rubber 59 inscribed in the arc of the inner diameter R 22 and guide rollers 65 and the inner diameter R 23 The front view which showed the structure of the leaf | plate spring 55 to which the linear part (aa) and (bb) are connected to the both ends of the (cc) part which consists of the cylindrical rubber | gum 61 for vibration damping inscribed in a circular arc, and the guide roller 67. It is.

図30は、R21≠R22≠R23を特徴とする板バネ55を使用した1組の制震器具1009の正面図である。図30に示す様に、不等の円弧半径を利用することで、筋交固定用貫通穴73を加工した抑え板73に固定される筋交77と直線部分(b−b)との間の角度をθ°とした場合に、図18の筋交29が入隅の角度2等分線の角度45°よりも鋭角(<45°)で設置可能となる。 FIG. 30 is a front view of a set of damping devices 1009 using leaf springs 55 characterized by R 21 ≠ R 22 ≠ R 23 . As shown in FIG. 30, by using an unequal arc radius, the bracing 77 fixed to the holding plate 73 in which the bracing fixing through-hole 73 is processed and the straight portion (bb) are between. When the angle is θ °, the bracing 29 in FIG. 18 can be installed at an acute angle (<45 °) than the angle 45 ° of the angle bisector of the entering corner.

図31は、図30に示す1組の制震器具1009の側面図であり、図32はその上面図、図33はその斜視図である。図34は、梁19と柱21で囲まれる1つの入隅に、当該制震器具1009を設置し、筋交77を固定ネジ75で当該制震器具1009に固定して、筋交77の他端を土台(床)23に釘あるいはネジあるいはボルト・ナットで固定することで、地震の揺れを制震器具1009で減衰するとともに、筋交77で梁19と土台(床)23の相対変位を抑えることが可能である。また、当該制震器具1009とともに、他の入隅に1組の制震器具1001等を併用することも可能である。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。   31 is a side view of the set of vibration control devices 1009 shown in FIG. 30, FIG. 32 is a top view thereof, and FIG. 33 is a perspective view thereof. In FIG. 34, the damping device 1009 is installed at one corner surrounded by the beam 19 and the column 21, and the bracing 77 is fixed to the damping device 1009 with a fixing screw 75. By fixing the end to the base (floor) 23 with nails, screws or bolts and nuts, the vibration of the earthquake is attenuated by the vibration control device 1009 and the relative displacement between the beam 19 and the base (floor) 23 is caused by the bracing 77. It is possible to suppress. In addition to the vibration control device 1009, a pair of vibration control devices 1001 and the like can be used in another corner. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図35に示す板バネ79は、厚さtの板バネの直線部分(x0-x1)に続いて、内径R31で反時計回り(C.C.W)に円弧曲げ加工し、続いて内径R32で時計回り(C.W)で円弧曲げ加工をし、内径R33で反時計回り(C.C.W)で円弧曲げ加工した後に直線部分(x2-x3)が形成されるように連続曲げ加工した板バネの正面図であり、直線部分(x0-x1)と(x2-x3)は同一直線上(図35では、X線上)に位置し、当該直線部分を含む各平面は同一平面(X座標平面)上にある。また、図35中の部分拡大図で示す様に、直線部分(x0-x1)の端点を原点Oとし、当該直線部分の(x0-x1)から(x2-x3)へ向かう方向がX座標の正方向(+)であり、当該X座標方向と直交し、円弧の中心側がY座標の正方向(+)とする。図36は、当該連続円弧曲げ加工した板バネ79の内径R31の円弧に適した振動減衰用円筒ゴム81とガイドローラー87及び、内径R32の円弧用円筒ゴム83とガイドローラー89、内径R33の円弧用円筒ゴム85とガイドローラー91の位置関係を示している。ここで、R31=R32=R33の場合、これらの円弧の中心点を結ぶ形状は、直角二等辺三角形となるが、当該板バネ79の直線部分を梁19に設置固定する制震器具であり、図35に示すY座標の+方向は、梁19から土台(床)23へ向かう方向となるが、当該板バネ79の3つの円弧中心を結ぶ形状は、二等辺三角形又は正三角形であっても構わない。 Leaf spring 79 shown in FIG. 35, following the straight portion of the plate spring thickness t (x0-x1), and an arc bending counterclockwise (C.C.W) in inner diameter R 31, followed by an inner diameter an arc bent clockwise (C.W) in R 32, as the linear portion after the arc bending counter-clockwise (C.C.W) inside diameter R 33 (x2-x3) is formed It is a front view of the leaf | plate spring which carried out the continuous bending process, and a straight part (x0-x1) and (x2-x3) are located on the same straight line (in FIG. 35 on X-ray), and each plane containing the said linear part is the same It lies on a plane (X coordinate plane). 35, the end point of the straight line portion (x0-x1) is the origin O, and the direction from (x0-x1) to (x2-x3) of the straight line portion is the X coordinate. The positive direction (+) is orthogonal to the X coordinate direction, and the center side of the arc is the positive direction (+) of the Y coordinate. Figure 36 is an inner diameter vibration damping cylinder rubber 81 which is suitable for arc R 31 and guide rollers 87 and the arc for a cylindrical rubber 83 of the inner diameter R 32 and guide rollers 89 of the continuous arc bending the leaf spring 79, the inner diameter R The positional relationship between the 33 circular arc cylindrical rubber 85 and the guide roller 91 is shown. Here, in the case of R 31 = R 32 = R 33 , the shape connecting the center points of these arcs is a right-angled isosceles triangle, but the damping device for installing and fixing the straight portion of the leaf spring 79 to the beam 19 The + direction of the Y coordinate shown in FIG. 35 is the direction from the beam 19 toward the base (floor) 23, but the shape connecting the three arc centers of the leaf spring 79 is an isosceles triangle or an equilateral triangle. It does not matter.

図37は、図36に示す板バネ79及び円筒ゴム81、83、85及びガイドローラー87、89、91を、当該板バネ79の3つの円弧中心と同位置に固定ピン13用の貫通穴を有する抑え板93及び95で挟み込むようにして、固定ピン13と留め輪11で位置決めして梁に設置固定する1組の制震器具1011の正面図を示しており、当該抑え板93と95には、土台連結器具99固定用の貫通穴101が設けられている。図38は、当該1組の制震器具1011の斜視図であり、当該1組の制震器具1011のX-Y-Z座標の関係は、上記段落0034に記載の直線部分(x0-x1)と(x2-x3)の含むX座標平面に直交し、板バネ79の3つの円弧中心を結ぶ三角形と同位置の貫通穴を含む抑え板95の面を含む平面をY座標平面として、板バネ79の端点x0を原点OとしたX座標方向及びY座標方向と直交し、固定ピン13の長さ方向と平行をなし、抑え板95から93へ向かう方向をZ座標の正方向(+)としている。以後の実施例における梁用の1組の制震器具のX−Y−Z座標の関係も同様とする。     37 shows a plate spring 79, cylindrical rubbers 81, 83, 85 and guide rollers 87, 89, 91 shown in FIG. 36 having through holes for the fixing pin 13 at the same positions as the three arc centers of the plate spring 79. A front view of a set of vibration control devices 1011 that are positioned by the fixing pins 13 and the retaining ring 11 and fixed to the beam so as to be sandwiched between the holding plates 93 and 95 is shown. Is provided with a through hole 101 for fixing the base connecting device 99. FIG. 38 is a perspective view of the set of vibration control devices 1011. The relationship of the XYZ coordinates of the set of vibration control devices 1011 is the straight line portion (x0-x1) described in paragraph 0034 above. And a plane including the surface of the holding plate 95 including the through hole at the same position as the triangle connecting the three arc centers of the leaf spring 79 and perpendicular to the X coordinate plane including (x2-x3) 79. The end point x0 of 79 is orthogonal to the X coordinate direction and the Y coordinate direction, and is parallel to the length direction of the fixing pin 13, and the direction from the holding plate 95 to 93 is defined as the positive direction (+) of the Z coordinate. Yes. The same applies to the XYZ coordinate relationship of a set of vibration control devices for beams in the following embodiments.

図39は、当該1組の制震器具1011を梁19の下部(土台側)中央にボルト15とナット17で固定し、土台(床)23にボルト15とナット17で設置固定した土台固定具97と連結器具99で接続した場合の正面図を示している。図40は、図39で示すA-A方向から見た断面側面図であり、図41は図40で示すB-B方向から見た図38の断面図である。   FIG. 39 shows a base fixture in which the set of vibration control devices 1011 is fixed to the center of the lower part (base side) of the beam 19 with bolts 15 and nuts 17 and is installed and fixed to the base (floor) 23 with bolts 15 and nuts 17. The front view at the time of connecting with 97 and the connection tool 99 is shown. 40 is a sectional side view as seen from the AA direction shown in FIG. 39, and FIG. 41 is a sectional view of FIG. 38 as seen from the BB direction shown in FIG.

図41に示す様に、当該1組の制震器具1011に使用している板バネ79は、地震の揺れにより生じた梁19と土台(床)23の相対変位により変形し、板バネ79による復元力とともに抑え板93と95で挟まれ固定された振動減衰用円筒ゴム81、83、85による減衰効果により、梁19と土台(床)23の相対変位が軽減される。また、当該円筒ゴム81、83、85は、それぞれ円筒ゴムの内側に挿入したガイドローラー87、89、91によって、板バネ79を内径R31、R32、R33で曲げ加工した円弧中心と同位置に貫通穴加工された抑え板93と95に挟み込まれるとともにピン13で位置決めされ、一定の三角形状を保持されている。そのため、当該1組の制震器具1011の動きは、板バネ79の内径R32の円弧中心とした回転運動を伴う左右への揺れが生じることになる。例えば、梁19が土台(床)23に対して、図41の右側へ相対変位した場合、板バネ79の3つの円弧のうち、円筒ゴム83と85を圧縮する方向に板バネ79が変形し、逆に図41の左側へ相対した場合には、円筒ゴム81と83を圧縮する方向に板バネ79が変形し、それぞれに伴って振動を減衰させる力が働くことになる。 As shown in FIG. 41, the leaf spring 79 used in the set of vibration control devices 1011 is deformed by the relative displacement of the beam 19 and the base (floor) 23 caused by the earthquake and is caused by the leaf spring 79. The relative displacement between the beam 19 and the base (floor) 23 is reduced by the damping effect of the vibration damping cylindrical rubbers 81, 83, 85 sandwiched between the holding plates 93 and 95 together with the restoring force. The cylindrical rubbers 81, 83, 85 are the same as the arc centers obtained by bending the leaf springs 79 with the inner diameters R 31 , R 32 , R 33 by the guide rollers 87, 89, 91 inserted inside the cylindrical rubbers. It is sandwiched between holding plates 93 and 95 having through holes formed at positions and positioned by pins 13 to maintain a certain triangular shape. For this reason, the movement of the set of vibration control devices 1011 causes a left-right swing accompanied by a rotational movement about the arc center of the inner diameter R 32 of the leaf spring 79. For example, when the beam 19 is displaced relative to the base (floor) 23 to the right in FIG. 41, the leaf spring 79 is deformed in the direction of compressing the cylindrical rubbers 83 and 85 among the three arcs of the leaf spring 79. On the contrary, when opposed to the left side of FIG. 41, the leaf spring 79 is deformed in the direction in which the cylindrical rubbers 81 and 83 are compressed, and a force for damping the vibration acts accordingly.

本願発明の1組の梁用制震器具1011を複数個並べて梁19に設置固定し、それぞれ土台(床)23と連結することも可能である。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。   It is also possible to arrange a plurality of sets of beam damping devices 1011 of the invention of the present application side by side and install and fix them to the beam 19 and to connect to the base (floor) 23 respectively. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図42は、実施例4で示した図23と同様に、板バネに加工する連続する3つの円弧の1つの内径を他の円弧と相違させ、ばね定数を変化させたもので、部分拡大図で示す様に、板バネ103の1端を座標原点に置き、直線部分(x4-x5)をX座標方向とし、当該X座標と直交し、円弧曲げ加工した側をY座標の正方向(+)とする。ここで、原点OからX座標の正方向(+)へ延びる直線部分(x4-x5)に続いて、内径R41の円弧となるように反時計回り方向(C.C.W)に曲げ加工をし、さらに内径R42の円弧となるように時計回り方向(C.W)に曲げ加工の後、内径R43の円弧となるように反時計回り方向(C.C.W)で曲げ加工した先に、直線部分(x4-x5)と同一直線状に直線部分(x6-x7)を形成した板バネ103の正面図である。この図では、R42>R41=R43としているため、当該円弧の中心線を結ぶ線は二等辺三角形の形状をなしている。 FIG. 42 is similar to FIG. 23 shown in the fourth embodiment, except that one inner diameter of three consecutive arcs processed into a leaf spring is different from the other arcs, and the spring constant is changed. As shown in the figure, one end of the leaf spring 103 is placed at the coordinate origin, the straight line portion (x4−x5) is set as the X coordinate direction, the side orthogonal to the X coordinate and the arc-bending side is the positive direction of the Y coordinate (+ ). Here, bending following the straight portion (x4-x5) extending in the positive direction of the X coordinate from the origin O (+), in such an arc of the inner diameter R 41 counterclockwise (C.C.W) Processing were, after a further bending in a clockwise direction (C.W) so that the arc of the inner diameter R 42, so that the arc of the inner diameter R 43 bent in a counterclockwise direction (C.C.W) processing 3 is a front view of the leaf spring 103 in which a straight line portion (x6-x7) is formed in the same straight line as the straight line portion (x4-x5). In this figure, since R 42 > R 41 = R 43 , the line connecting the center lines of the arc has an isosceles triangle shape.

図43は、上記段落0039で説明したように加工した厚さtの板バネ103をR41、R42、R43で円弧加工した部分に装着する円筒ゴム105、107、109とガイドローラー111、113、115の関係を示した正面図であり、図44は、図43に示す板バネ103等を固定ピン13等で抑え板117と119で挟み込んで構成した1組の制震器具1013の正面図である。この抑え板117と119には、連結器具99固定用のための貫通穴101が設けられている。図45は、図44に示す当該1組の制震器具1013の側面図であり、図46はその上面図であり、図47はその斜視図である。 FIG. 43 shows cylindrical rubbers 105, 107, 109 and guide rollers 111, which are attached to portions where the leaf spring 103 having a thickness t processed as described in the above paragraph 0039 is arc processed with R 41 , R 42 , R 43 . FIG. 44 is a front view showing the relationship between 113 and 115, and FIG. 44 is a front view of a set of vibration control devices 1013 configured by holding the plate spring 103 and the like shown in FIG. FIG. The holding plates 117 and 119 are provided with a through hole 101 for fixing the connecting device 99. 45 is a side view of the set of vibration control devices 1013 shown in FIG. 44, FIG. 46 is a top view thereof, and FIG. 47 is a perspective view thereof.

当該1組の制震器具1013を梁19の中央下部にボルト15とナット17で設置固定し、連結器具99を使って、土台固定具97と連結設置した様子を示した正面図が図48であり、図48のA-A方向から見た断面側面図が図49であり、図49のB-B方向から見た部分断面図が図50であり、斜視図が図51である。当該1組の制震器具1013の地震の揺れに対する作用は上記段落0037と同様であるが、中央の円弧の内径R42が実施例6と比較して大きく、梁19と土台(床)23の相対変位の許容範囲も大きくなるものの、当該円弧に適した円筒ゴム107の外径も大きくなる。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。 FIG. 48 is a front view showing a state in which the set of vibration control devices 1013 is installed and fixed at the lower center of the beam 19 with bolts 15 and nuts 17 and connected to the base fixture 97 using the connecting device 99. 48 is a sectional side view seen from the AA direction in FIG. 48, FIG. 50 is a partial sectional view seen from the BB direction in FIG. 49, and FIG. 51 is a perspective view. While effects on the earthquake shaking of the set of seismic control device 1013 is the same as the above-mentioned paragraph 0037, large central arc of the inner diameter R 42 is compared with Example 6, the beam 19 and the base (floor) 23 Although the allowable range of relative displacement increases, the outer diameter of the cylindrical rubber 107 suitable for the arc also increases. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図52は、1組の制震器具1011の1つを梁19の下部中央に設置し、もう1つの1組の制震器具1011を土台(床)23の中央に設置し、これらの2つの制震器具1011同士を連結器具99で接続固定した正面図であり、C-C線から左側部分を断面図で表わしている。また、図53は、その斜視図である。   In FIG. 52, one set of vibration control devices 1011 is installed in the lower center of the beam 19, and another set of vibration control devices 1011 is installed in the center of the base (floor) 23. It is the front view which connected and fixed the damping devices 1011 with the connection tool 99, and represents the left side part from CC line with sectional drawing. FIG. 53 is a perspective view thereof.

地震の揺れで梁19と土台(床)23が相対変位した場合に、梁19に設置した1組の制震器具1011と土台(床)23に設置した1組の制震器具1011がともに、板バネ79による復元力と円筒ゴム81、83、85による振動減衰効果を発揮することができる。ここで、梁19又は土台(床)23に設置する1組の制震器具の種類を実施例7で示した1組の制震器具1013との組み合わせることも可能である。   When the beam 19 and the base (floor) 23 are displaced relative to each other due to the shaking of the earthquake, the set of vibration control devices 1011 installed on the beam 19 and the set of vibration control devices 1011 installed on the base (floor) 23 are both The restoring force by the leaf spring 79 and the vibration damping effect by the cylindrical rubbers 81, 83, 85 can be exhibited. Here, it is also possible to combine the type of one set of vibration control devices installed on the beam 19 or the base (floor) 23 with the one set of vibration control devices 1013 shown in the seventh embodiment.

図54は、1組の制震器具1015の1つを梁19の下部中央に設置し、もう1つの1組の制震器具1015を土台(床)23に設置固定し、これらの制震器具1015同士を回転軸穴付連結器具39で連結固定した様子を示した正面図であり、中央線C-Cに沿って左半分を断面図で表わしている。また、図55は、その斜視図である。   In FIG. 54, one of a set of vibration control devices 1015 is installed in the lower center of the beam 19, and another set of vibration control devices 1015 is installed and fixed on a base (floor) 23. It is the front view which showed a mode that 1015 mutually connected and fixed with the connection tool 39 with a rotating shaft hole, and represents the left half with sectional drawing along the centerline CC. FIG. 55 is a perspective view thereof.

実施例8と同様に、梁19と土台(床)23にそれぞれ1組の制震器具1015を設置固定し、連結させることで、1基のみの設置と比べて、梁19と土台(床)23の相対変位を軽減させることが可能となる。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。   Similar to the eighth embodiment, the beam 19 and the base (floor) 23 are installed, fixed, and connected to the beam 19 and the base (floor) 23, respectively. The relative displacement of 23 can be reduced. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図56は、入隅に設置する1組の制震器具1017の正面図であり、図57は、当該制震器具1017の抑え板123をL-L線に沿って切断した一部断面図を使用した斜視図である。当該制震器具1017に使用する板バネ121は、実施例1から実施例5で示す入隅用の制震器具の板バネと異なり、連続する円弧曲げを複数個(7個)に増やすことにより、板バネのばね定数を変化させることを特徴としているが、当該板バネの円弧曲げ箇所を7個所以上に増やすことも可能である。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。   56 is a front view of a set of vibration control devices 1017 installed in the corners, and FIG. 57 is a partial cross-sectional view of the control plate 123 of the vibration control device 1017 cut along the line LL. It is the perspective view used. The plate spring 121 used for the vibration control device 1017 is different from the plate spring of the corner control device shown in the first to fifth embodiments by increasing the number of continuous arc bends to a plurality (seven). Although the spring constant of the leaf spring is changed, the arc bending portions of the leaf spring can be increased to 7 or more. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図58は、梁下部に設置する1組の制震器具1019の正面図であり、図59は、当該制震器具1019の抑え板129をL-L線に沿って切断した一部断面図を使用した斜視図である。当該制震器具1019に使用する板バネ127は、実施例6から実施例9で示す梁用の制震器具の板バネと異なり、連続する円弧曲げを複数個(7個)に増やすことにより、板バネのばね定数を変化させることを特徴としている。当該板バネの円弧曲げ箇所を7個所以上に増やすことも可能である。   FIG. 58 is a front view of a set of vibration control devices 1019 installed at the lower part of the beam, and FIG. 59 is a partial sectional view of the control plate 129 of the vibration control device 1019 cut along the line LL. It is the perspective view used. The plate spring 127 used for the vibration control device 1019 is different from the plate spring of the beam vibration control device shown in Example 6 to Example 9, by increasing the number of continuous arc bending to a plurality (seven), It is characterized by changing the spring constant of the leaf spring. It is also possible to increase the number of arc bending portions of the leaf spring to seven or more.

図60に示す1組の制震器具1021は、厚さtの金属製板バネを3枚重ねた入隅用の制震器具であり、図1に示す1組の制震器具1001と比べて、板の厚さが3倍となり、ばね定数が大きくすることが可能であり、また、板バネ同士の板間摩擦による制震機能が加味されることが期待できる。図61は、当該1組の制震器具1021の上面図を表しており、3重の板バネ133、135、137とともに、円筒ゴム139、141、143を抑え板151と153の間に挟み込み、1組の制震器具1001と同様に、3つの円弧中心位置に固定ピン13と留め輪11で位置決め固定し、円筒ゴム139、141、143及びガイドローラー145、147、149は、当該円弧を中心に回転摺動可能である。   A set of vibration control devices 1021 shown in FIG. 60 is a cornering vibration control device in which three metal leaf springs having a thickness t are stacked. Compared with the one set of vibration control devices 1001 shown in FIG. The plate thickness can be tripled, the spring constant can be increased, and it can be expected that the damping function by the friction between the plate springs will be taken into account. FIG. 61 shows a top view of the set of vibration damping devices 1021, and the cylindrical rubbers 139, 141, and 143 are sandwiched between the holding plates 151 and 153 together with the triple leaf springs 133, 135, and 137, Similar to the one set of vibration control device 1001, the fixing pins 13 and the retaining ring 11 are positioned and fixed at three arc center positions, and the cylindrical rubbers 139, 141, 143 and the guide rollers 145, 147, 149 are centered on the arc. It is possible to rotate and slide.

図62には、板バネ133、135及び137の3枚の金属製板バネを重ねた様子を示した正面図であり、それぞれ直線部(a-a)に続いて、連続する時計回り方向(C.W)の円弧・反時計回り方向(C.C.W)の円弧・時計回り方向(C.W)の円弧形状の後、直線部(b-b)となる板バネの全体形状を示している。次に、図63は、それぞれの板バネに分けて示した正面図であり、厚さtの板バネ133は、直線部(a-a)、内径R51の時計回り方向円弧曲げ、内径R52の反時計回り方向円弧曲げ、R53の時計回り方向円弧曲げ及び直線部(b-b)から成り、同様に、厚さtの板バネ135は、直線部(a-a)、内径R61の時計回り方向円弧曲げ、内径R62の反時計回り方向円弧曲げ、R63の時計回り方向円弧曲げ及び直線部(b-b)から成り、厚さtの板バネ137は、直線部(a-a)、内径R71の時計回り方向円弧曲げ、内径R72の反時計回り方向円弧曲げ、R73の時計回り方向円弧曲げ及び直線部(b-b)となる様に曲げ加工をしている。重なり合うそれぞれの円弧の内径の関係は、R51=R61+t=R71+2×t、R52=R62-t=R72-2×t、R53=R63+t=R73+2×tの関係にあり、それぞれの板バネを接着あるいは固着させていないので、地震の揺れの際の変形には板間摩擦が生じるので、振動減衰効果の向上を図ることができる。 FIG. 62 is a front view showing a state in which three metal leaf springs of leaf springs 133, 135, and 137 are overlapped, and each of them follows a straight line portion (aa) and continues in a clockwise direction ( C.W) circular arc, counterclockwise direction (C.C.W) circular arc, clockwise direction (C.W) circular arc shape, and the overall shape of the leaf spring that becomes the straight portion (bb) Show. Next, FIG. 63 is a front view showing separately the respective leaf spring, the leaf spring 133 of thickness t, the linear portion (a-a), bending clockwise arc of the inner diameter R 51, the inner diameter R 52 , counterclockwise arc bending of R 53 , clockwise arc bending of R 53 , and straight portion (bb). Similarly, a plate spring 135 having a thickness t has a straight portion (aa) and an inner diameter R. 61 clockwise arc bending, bending counterclockwise arc of the inner diameter R 62, consists clockwise arc bending and straight portion of the R 63 (b-b), the thickness t leaf spring 137, straight portion ( a-a), clockwise arc bending of inner diameter R 71 , counterclockwise arc bending of inner diameter R 72 , clockwise arc bending of R 73 , and bending so as to be a straight line portion (bb). ing. The relationship between the inner diameters of the overlapping arcs is as follows: R 51 = R 61 + t = R 71 + 2 × t, R 52 = R 62 -t = R 72 -2 × t, R 53 = R 63 + t = R 73 Since there is a relationship of + 2 × t and the respective leaf springs are not bonded or fixed, friction between the plates occurs in the deformation at the time of shaking of the earthquake, so that the vibration damping effect can be improved.

図64は、板バネ133、135、137を重ねた場合にできる3つの円弧に密着させる円筒ゴムと当該円筒ゴムの内側に挿入するガイドローラーを表している。右側の円筒ゴム139とガイドローラー145は、板バネ137の内径R71の円弧に適合するものであり、中央の円筒ゴム141とガイドローラー147は、板バネ133の内径R52の円弧に適合するものであり、左側の円筒ゴム143とガイドローラー149は、板バネ137の内径R73の円弧に適合するものである。これらの円筒ゴム139、141、143は、それぞれガイドローラー145、147、149とともに、図61に示す様に抑え板151と153に挟まれる形で、それぞれの円弧中心位置で位置決めされている。そのような構成を示した図が図65であり、1組の制震器具1021の斜視図であり、当図の抑え板151を図60に示すL-L線で切断した部分断面図である。 FIG. 64 shows a cylindrical rubber that is brought into close contact with three circular arcs that are formed when the leaf springs 133, 135, and 137 are stacked, and a guide roller that is inserted inside the cylindrical rubber. The right cylindrical rubber 139 and the guide roller 145 are adapted to the arc of the inner diameter R 71 of the leaf spring 137, and the central cylindrical rubber 141 and the guide roller 147 are adapted to the arc of the inner radius R 52 of the leaf spring 133. The left cylindrical rubber 143 and the guide roller 149 are adapted to the arc of the inner diameter R 73 of the leaf spring 137. These cylindrical rubbers 139, 141, and 143 are positioned at respective arc center positions in such a manner that they are sandwiched between holding plates 151 and 153 as shown in FIG. 61 together with guide rollers 145, 147, and 149, respectively. FIG. 65 is a view showing such a configuration, and is a perspective view of a set of vibration control devices 1021, and is a partial cross-sectional view of the holding plate 151 of FIG. 60 cut along the line LL shown in FIG. .

1組の制震器具1021は、3重の板バネ構造を示しているが、2枚以上の板バネを重ねて使用することは当然可能であり、重ねた板バネ全体のばね定数の効果やそれぞれの板バネの板間摩擦による減衰効果の向上を図ることが可能であるため、3重の板バネ構造にこだわるものではない。例えば、n重の板バネ構造とした場合、板バネ1、2、3、・・・・、k、・・・・、n(k≧2、n≧k、n、k:整数)とすると、k番目の厚さtの板バネkは、直線部(a-a)、内径Rk1の時計回り円弧曲げ、内径Rk2の反時計回り円弧曲げ、Rk3の時計回り円弧曲げ及び直線部(b-b)からなる構成で成形され、
k1=R11−(k-1)×t、Rk2=R12+(k-1)×t、Rk3=R13−(k-1)×t
の関係を有する正数(Rk1>0、Rk2>0、Rk3>0)となる。n個の重ね板バネを使用した1組の入隅用制震器具には、外径がRn1、R12、Rn3の3つの円筒ゴムが必要となり、ガイドローラー等を含めて、実施例1乃至5あるいは実施例12に示す入隅用制震器具の構成と同様である。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。
Although one set of vibration control devices 1021 shows a triple leaf spring structure, it is naturally possible to use two or more leaf springs in a stacked manner, and the effect of the spring constant of the whole stacked leaf springs Since it is possible to improve the damping effect due to the friction between the leaf springs of each leaf spring, the triple leaf spring structure is not particular. For example, in the case of an n-fold leaf spring structure, if leaf springs 1, 2, 3,..., K,..., N (k ≧ 2, n ≧ k, n, k: integer) , The k-th thickness t of the leaf spring k is a straight part (aa), a clockwise arc bend with an inner diameter R k1, a counterclockwise arc bend with an inner diameter R k2, a clockwise arc bend with R k3 , and a straight part. (B-b)
R k1 = R 11 − (k−1) × t, R k2 = R 12 + (k−1) × t, R k3 = R 13 − (k−1) × t
It is a positive number (R k1 > 0, R k2 > 0, R k3 > 0) having the following relationship. A set of corner damping devices using n stacked leaf springs requires three cylindrical rubbers with outer diameters of R n1 , R 12 , and R n3 , including guide rollers, etc. This is the same as the structure of the cornering damping device shown in 1 to 5 or Example 12. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

図66に示す1組の制震器具1023は、厚さtの金属製板バネを3枚重ねた梁用の制震器具であり、図37に示す1組の制震器具1011と比べて、板の厚さが3倍となり、ばね定数が大きくすることが可能であり、また、板バネ同士の板間摩擦による制震機能が加味されることが期待できる。図67は、当該1組の制震器具1023の上面図を表しており、3重の板バネ155、157、159とともに、円筒ゴム161、163、165を抑え板173と175の間に挟み込み、1組の制震器具1011と同様に、3つの円弧中心位置に固定ピン13と留め輪11で位置決め固定し、円筒ゴム161、163、165及びガイドローラー167、169、171は、当該円弧を中心に回転摺動可能である。当該梁中央下部と土台97とを連結器具99で連結固定することにより、梁と土台の相対変位を抑えることができる。また、連結具99は、1組の制震器具1023の抑え板173と175に挟み込んで、当該抑え板の貫通穴部101でネジ留め固定する。   A set of vibration control devices 1023 shown in FIG. 66 is a vibration control device for a beam in which three metal leaf springs having a thickness t are stacked, and compared with the set of vibration control devices 1011 shown in FIG. The plate thickness can be tripled, the spring constant can be increased, and it can be expected that the damping function by the friction between the plate springs will be added. FIG. 67 shows a top view of the set of vibration control devices 1023, and the cylindrical rubbers 161, 163, 165 are sandwiched between the holding plates 173, 175 together with the triple leaf springs 155, 157, 159, As with the one set of vibration control device 1011, positioning and fixing are performed at three arc center positions by the fixing pin 13 and the retaining ring 11, and the cylindrical rubbers 161, 163, 165 and the guide rollers 167, 169, 171 are centered on the arc. It is possible to rotate and slide. By connecting and fixing the lower center of the beam and the base 97 with the connecting device 99, the relative displacement between the beam and the base can be suppressed. In addition, the connector 99 is sandwiched between the holding plates 173 and 175 of the set of vibration control devices 1023 and fixed with screws through the through-hole portions 101 of the holding plate.

図68には、板バネ155、157及び159の3枚の金属製板バネを重ねた様子を示した正面図であり、それぞれ直線部(m-m)に続いて、連続する反時計回り方向(C.C.W)の円弧・時計回り方向(C.W)の円弧・反時計回り方向(C.C.W)の円弧形状の後、直線部(n-n)となる板バネの全体形状を示している。次に、図69は、それぞれの板バネに分けて示した正面図であり、厚さtの板バネ155は、直線部(m-m)、内径R81の反時計回り方向円弧曲げ、内径R82の時計回り方向円弧曲げ、R83の反時計回り方向円弧曲げ及び直線部(n-n)から成り、同様に、厚さtの板バネ157は、直線部(m-m)、内径R91の反時計回り方向円弧曲げ、内径R92の時計回り方向円弧曲げ、R93の反時計回り方向円弧曲げ及び直線部(n-n)から成り、厚さtの板バネ159は、直線部(m-m)、内径R101の反時計回り方向円弧曲げ、内径R102の時計回り方向円弧曲げ、R103の反時計回り方向円弧曲げ及び直線部(n-n)となる様に曲げ加工をしている。重なり合うそれぞれの円弧の内径の関係は、R81=R91+t=R101+2×t、R82=R92-t=R102-2×t、R83=R93+t=R103+2×tの関係にあり、それぞれの板バネを接着あるいは固着させていないので、地震の揺れの際の変形には板間摩擦が生じるので、振動減衰効果の向上を図ることができる。 FIG. 68 is a front view showing a state in which three metal leaf springs of leaf springs 155, 157 and 159 are overlapped, each following a straight line portion (mm) and continuously in a counterclockwise direction. (C.C.W) arc, clockwise direction (C.W) arc, counterclockwise direction (C.C.W) arc shape, and leaf spring of the straight line portion (nn) The overall shape is shown. Next, FIG. 69 is a front view showing separately the respective leaf spring, the leaf spring 155 of thickness t, the linear portion (m-m), bend counterclockwise arc of the inner diameter R 81, the inner diameter clockwise arc of R 82 bent counterclockwise direction arc bending and straight portion of the R 83 consists (n-n), similarly, the leaf spring 157 of thickness t, the linear portion (m-m), the inner diameter The leaf spring 159 having a thickness t is composed of a counterclockwise arc bend of R 91, a clockwise arc bend of the inner diameter R 92, a counterclockwise arc bend of R 93 and a straight portion (nn). part (m-m), bend counterclockwise arc of the inner diameter R 101, bent clockwise arc of the inner diameter R 102, bent as a counterclockwise direction circular arc bending and straight portion of R 103 (n-n) Processing. The relationship between the inner diameters of the overlapping arcs is R 81 = R 91 + t = R 101 + 2 × t, R 82 = R 92 −t = R 102 −2 × t, R 83 = R 93 + t = R 103 Since there is a relationship of + 2 × t and the respective leaf springs are not bonded or fixed, friction between the plates occurs in the deformation at the time of shaking of the earthquake, so that the vibration damping effect can be improved.

図70は、板バネ155、157、159を重ねた場合にできる3つの円弧に密着させる円筒ゴムと当該円筒ゴムの内側に挿入するガイドローラーを表している。左側の円筒ゴム161とガイドローラー167は、板バネ159の内径R101の円弧に適合するものであり、中央の円筒ゴム163とガイドローラー169は、板バネ155の内径R82の円弧に適合するものであり、右側の円筒ゴム165とガイドローラー171は、板バネ159の内径R103の円弧に適合するものである。これらの円筒ゴム161、163、165は、それぞれガイドローラー167、169、171とともに、図67に示す様に抑え板173と175に挟まれる形で、それぞれの円弧中心位置で位置決めされている。そのような構成を示した図が図71であり、1組の制震器具1023の斜視図であり、当図の抑え板173を図66に示すL-L線で切断した部分断面図である。 FIG. 70 shows a cylindrical rubber that is brought into close contact with three circular arcs that are formed when the leaf springs 155, 157, and 159 are stacked, and a guide roller that is inserted inside the cylindrical rubber. The left cylindrical rubber 161 and the guide roller 167 are adapted to the arc of the inner diameter R 101 of the leaf spring 159, and the central cylindrical rubber 163 and the guide roller 169 are adapted to the arc of the inner radius R 82 of the leaf spring 155. The right cylindrical rubber 165 and the guide roller 171 are adapted to the arc of the inner diameter R 103 of the leaf spring 159. These cylindrical rubbers 161, 163, and 165 are positioned at the center positions of the respective arcs so as to be sandwiched between holding plates 173 and 175 as shown in FIG. 67 together with the guide rollers 167, 169, and 171, respectively. FIG. 71 is a view showing such a configuration, which is a perspective view of a set of vibration control devices 1023, and is a partial cross-sectional view of the holding plate 173 of FIG. 66 cut along the line LL shown in FIG. .

1組の制震器具1023は、3重の板バネ構造を示しているが、2枚以上の板バネを重ねて使用することは当然可能であり、重ねた板バネ全体のばね定数の効果やそれぞれの板バネの板間摩擦による減衰効果の向上を図ることが可能であるため、3重の板バネ構造にこだわるものではない。 例えば、n重の板バネ構造とした場合、板バネ1、2、3、・・・・、k、・・・・・、n(k≧2、n≧k、n、k:整数)とすると、k番目の厚さtの板バネkは、直線部(m-m)、内径Rk1の反時計回り方向円弧曲げ、内径Rk2の時計回り方向円弧曲げ、Rk3の反時計回り方向弧曲げ及び直線部(n-n)からなる構成で成形され、
k1=R11−(k-1)×t、Rk2=R12+(k-1)×t、Rk3=R13−(k-1)×t
の関係を有する正数(Rk1>0、Rk2>0、Rk3>0)となる。
また、n個の重ね板バネを使用した1組の梁用制震器具には、外径がRn1、R12、Rn3の3つの円筒ゴムが必要となり、ガイドローラー等を含め、実施例6から11及び13に示す梁用制震器具の構成と同様である。また、当該実施例に示す板バネの材質は、金属製にこだわるものではなく、カーボン樹脂製をはじめ、樹脂製板バネであっても構わない。
Although one set of vibration control devices 1023 shows a triple leaf spring structure, it is naturally possible to use two or more leaf springs in a stacked manner, and the effect of the spring constant of the whole of the stacked leaf springs Since it is possible to improve the damping effect due to the friction between the leaf springs of each leaf spring, the triple leaf spring structure is not particular. For example, in the case of an n-fold leaf spring structure, leaf springs 1, 2, 3,..., K,..., N (k ≧ 2, n ≧ k, n, k: integer) and Then, the plate spring k of the k-th thickness t, the linear portion (m-m), bend counterclockwise arc of the inner diameter R k1, bent clockwise arc of the inner diameter R k2, the counterclockwise direction R k3 Molded with a configuration consisting of an arc bend and a straight part (nn),
R k1 = R 11 − (k−1) × t, R k2 = R 12 + (k−1) × t, R k3 = R 13 − (k−1) × t
It is a positive number (R k1 > 0, R k2 > 0, R k3 > 0) having the following relationship.
In addition, one set of beam damping devices using n overlapping leaf springs requires three cylindrical rubbers with outer diameters R n1 , R 12 , and R n3 , including guide rollers, etc. The configuration is similar to that of the beam damping device shown in 6 to 11 and 13. Further, the material of the leaf spring shown in the embodiment is not limited to metal, and may be made of carbon resin or resin leaf spring.

梁と柱に囲まれる入隅に本願発明の1組の制震器具を設置することで、当該制震器具に使用される板バネの復元力及び円筒ゴムの振動減衰効果により、地震の揺れによる梁と土台(床)の相対変位が抑えられ、家屋の被害を軽減させることが期待される。 また、梁の中央下部に本願発明の梁用の1組の制震器具を設置し、土台(床)と連結させることで、同様に梁と土台(床)の相対変位を抑えることができ、1組の制震器具単体だけでなく、複数個の当該制震器具を梁に設置固定し、それぞれの当該制震器具と土台(床)と連結させることで、制震機能の向上を図ることができる。   By installing a set of vibration control devices of the present invention in the corners surrounded by beams and columns, the restoring force of the leaf springs used in the vibration control devices and the vibration damping effect of the cylindrical rubber can It is expected that the relative displacement between the beam and the foundation (floor) will be suppressed, reducing the damage to the house. In addition, by installing a set of vibration control devices for the beam of the present invention at the lower center of the beam and connecting it to the base (floor), the relative displacement of the beam and the base (floor) can be similarly suppressed, In addition to a single set of vibration control devices, a plurality of vibration control devices are installed and fixed to the beam, and each vibration control device and base (floor) are connected to improve the vibration control function. Can do.

本願発明の入隅に設置する制震器具は、主に木造建築家屋を対象としているが、板バネの大きさと振動減衰円筒ゴムの大きさを適宜変更して、図14に示す方法で、梁・柱・土台で囲まれる1平面内の4つの入隅に設置すれば、コンクリート構造物の長周期揺れの減衰方法としての応用が可能である。   The vibration control device installed in the corner of the present invention is mainly intended for wooden buildings. However, the size of the leaf spring and the size of the vibration-damping cylindrical rubber are changed as appropriate, -If installed in four corners in one plane surrounded by pillars and foundations, it can be applied as a method for damping long-period shaking of concrete structures.

1 内径R11、R12、R13の各半径で、3円弧連続曲げ加工をした金属製板バネ
3 板バネ1の振動を減衰するための円筒ゴム
5 板バネ1の3つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
7 板バネ1の3つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
8 位置決め固定ピン用挿入穴
9 円筒ゴム3のための金属製又は樹脂製円筒形状ガイドローラー
11 E型留め輪
13 抑え板5と7の間にガイドローラー9と円筒ゴム3を位置決め固定ピン
15 ボルト
17 ナット
19 梁
21 柱
23 土台
25 板バネ1の3つの円弧中心と同位置にピン挿入穴と筋交固定部を有する抑え板(上)
27 板バネ1の3つの円弧中心と同位置にピン挿入穴と筋交固定部を有する抑え板(下)
29 筋交
31 筋交連結固定部材
33 筋交-土台固定部材
35 板バネ1の3つの円弧中心と同位置にピン挿入穴と筋交回転軸穴部を有する抑え板(上)
37 板バネ1の3つの円弧中心と同位置にピン挿入穴と筋交回転軸穴部を有する抑え板(下)
39 回転軸穴付連結器具
40 回転軸穴部
41 土台固定部材
43 回転軸用ボルト
45 回転軸用ナット
47 内径R11、R12’、R13(R12’>R11=R13)の各半径で、3円弧連続曲げ加工をした板バネ
49 板バネ47の振動を減衰するための外径R12’の円筒ゴム
51 板バネ47の3つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
53 板バネ47の3つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
55 内径R21、R22、R23(R21≠R22≠R23)の3円弧連続曲げ加工した金属製板バネ
57 板バネ55の内径R21の円弧用振動減衰用円筒ゴム
59 板バネ55の内径R22の円弧用振動減衰用円筒ゴム
61 板バネ55の内径R23の円弧用振動減衰用円筒ゴム
63 円筒ゴム57用のガイドローラー
65 円筒ゴム59用のガイドローラー
67 円筒ゴム61用のガイドローラー
69 板バネ55の3つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
71 板バネ55の3つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
73 筋交固定ネジ用貫通穴
75 筋交固定ネジ
77 板バネ55用の筋交
79 内径R31、R32、R33の半径の3つの連続する円弧に曲げ加工した梁に設置する制震器具用金属製板バネ
81 板バネ79の内径R31の円弧用振動減衰用円筒ゴム
83 板バネ79の内径R32の円弧用振動減衰用円筒ゴム
85 板バネ79の内径R33の円弧用振動減衰用円筒ゴム
87 円筒ゴム81用のガイドローラー
89 円筒ゴム83用のガイドローラー
91 円筒ゴム85用のガイドローラー
93 板バネ79の3つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
95 板バネ79の3つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
97 土台固定具
99 土台固定具97と梁からの1組の制震器具1011との連結器具
101 連結器具99の固定用貫通穴
103 内径R41、R42、R43の半径の3つの連続する円弧に曲げ加工した梁に設置する制震器具用金属製板バネ
105 板バネ103の内径R41の円弧用振動減衰用円筒ゴム
107 板バネ103の内径R42の円弧用振動減衰用円筒ゴム
109 板バネ103の内径R43の円弧用振動減衰用円筒ゴム
111 円筒ゴム105用のガイドローラー
113 円筒ゴム107用のガイドローラー
115 円筒ゴム109用のガイドローラー
117 板バネ103の3つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
119 板バネ103の3つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
121 7つの連続する円弧に曲げ加工した入隅用金属製板バネ
123 板バネ121の7つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
125 板バネ121の7つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
127 7つの連続する円弧に曲げ加工した梁用金属製板バネ
129 板バネ127の7つの円弧中心と同位置にピン挿入穴を有する抑え板(上)
131 板バネ127の7つの円弧中心と同位置にピン挿入穴を有する抑え板(下)
133 内径R51、R52、R53の各半径で、3円弧連続曲げ加工をした金属製板バネ
135 内径R61、R62、R63の各半径で、3円弧連続曲げ加工をした金属製板バネ
137 内径R71、R72、R73の各半径で、3円弧連続曲げ加工をした金属製板バネ
139 板バネ137の内径R71の円弧用振動減衰用円筒ゴム
141 板バネ133の内径R52の円弧用振動減衰用円筒ゴム
143 板バネ137の内径R73の円弧用振動減衰用円筒ゴム
145 円筒ゴム139用のガイドローラー
147 円筒ゴム141用のガイドローラー
149 円筒ゴム143用のガイドローラー
151 重ね板バネ133、135、137等用抑え板(上)
153 重ね板バネ133、135、137等用抑え板(下)
155 内径R81、R82、R83の各半径で、3円弧連続曲げ加工をした金属製板バネ
157 内径R91、R92、R93の各半径で、3円弧連続曲げ加工をした金属製板バネ
159 内径R101、R102、R103の各半径で、3円弧連続曲げ加工をした金属製板バネ
161 板バネ159の内径R101の円弧用振動減衰用円筒ゴム
163 板バネ155の内径R82の円弧用振動減衰用円筒ゴム
165 板バネ159の内径R103の円弧用振動減衰用円筒ゴム
167 円筒ゴム161用のガイドローラー
169 円筒ゴム163用のガイドローラー
171 円筒ゴム165用のガイドローラー
173 重ね板バネ155、157、159等用抑え板(上)
175 重ね板バネ155、157、159等用抑え板(下)
1001 外径R11、R12、R13(R11=R12=R13)の円筒ゴムと板バネ1を有する入隅に設置固定する1組の制震器具
1003 制震器具1001に筋交固定部を有する機能を付加した入隅に設置固定する1組の制震器具
1005 制震器具1001に回転筋交連結器機能を付加した入隅に設置固定する1組の制震器具
1007 外径R11、R12’、R13(R12’>R11、R13)の円筒ゴムと板バネ47を有する入隅に設置固定する1組の制震器具
1009 外径R21、R22、R23(R21≠R22≠R23)の円筒ゴムと板バネ55を有する入隅に設置固定する1組の制震器具
1011 外径R31、R32、R33の円筒ゴム及び板バネ79を有する梁に設置固定する1組の制震器具
1013 R41、R42、R43の円筒ゴム及び板バネ103を有する梁に設置固定する1組の制震器具
1015 R31、R32、R33の円筒ゴム及び板バネ79を有し、筋交回転軸部を有する抑え板35及び37で構成される梁に設置固定する1組の制震器具
1017 複数の円弧を有する板バネ121を使用した入隅用の1組の制震器具
1019 複数の円弧を有する板バネ127を使用した梁用の1組の制震器具
1021 3重板バネ133、135、137を使用した入隅用の1組の制震器具
1023 3重板バネを使用した梁用の1組の制震器具
1 Metal leaf spring that has been continuously bent by 3 arcs at each radius R 11 , R 12 , R 13 3 Cylindrical rubber for attenuating vibration of the leaf spring 1 5 Same as the 3 arc centers of the leaf spring 1 Holding plate with pin insertion hole in position (top)
7 Holding plate (bottom) with pin insertion holes at the same position as the three arc centers of leaf spring 1
8 Insertion hole for positioning fixing pin 9 Metal or resin cylindrical guide roller 11 for cylindrical rubber 3 E-type retaining ring 13 Positioning fixing pin 15 between guide plate 9 and cylindrical rubber 3 between holding plates 5 and 7 15 bolt 17 Nut 19 Beam 21 Column 23 Base 25 Retaining plate having pin insertion holes and bracing fixing portions at the same position as the three arc centers of the leaf spring 1 (upper)
27 Holding plate (bottom) having pin insertion holes and bracing fixing portions at the same position as the three arc centers of the leaf spring 1
29 Bracing 31 Bracing connection fixing member 33 Bracing-base fixing member 35 Holding plate having pin insertion hole and bracing rotation shaft hole at the same position as the three arc centers of the leaf spring 1 (upper)
37 Holding plate (bottom) having a pin insertion hole and a brace rotation shaft hole at the same position as the three arc centers of the leaf spring 1
39 Connecting Device with Rotating Shaft Hole 40 Rotating Shaft Hole 41 Base Fixing Member 43 Rotating Shaft Bolt 45 Rotating Shaft Nut 47 Inner Diameters R 11 , R 12 ′, R 13 (R 12 ′> R 11 = R 13 ) A leaf spring that has been continuously bent by three arcs with a radius 49 Cylindrical rubber having an outer diameter R 12 ′ for damping vibration of the leaf spring 47
51 Holding plate (top) having pin insertion holes at the same position as the three arc centers of the leaf spring 47
53 Holding plate (bottom) having pin insertion holes at the same position as the three arc centers of the leaf spring 47
55 Metal leaf spring which is continuously bent by three arcs of inner diameters R 21 , R 22 and R 23 (R 21 ≠ R 22 ≠ R 23 ) 57 Cylindrical rubber for vibration damping for arc of inner diameter R 21 of leaf spring 55 59 Leaf spring Cylindrical rubber for vibration damping for arc with inner diameter R 22 of 55 61 Cylindrical rubber for vibration damping for arc with inner diameter R 23 of leaf spring 55 63 Guide roller for cylindrical rubber 57 65 Guide roller for cylindrical rubber 59 67 For cylindrical rubber 61 Guide roller 69 Retaining plate with pin insertion holes at the same position as the three arc centers of leaf spring 55 (top)
71 Holding plate (bottom) having pin insertion holes at the same position as the three arc centers of the leaf spring 55
73 braces fixed braces 79 the inner diameter R 31 of the screw through holes 75 braces for fixing screws 77 leaf spring 55, R 32, the radius of the three seismic control instruments continuous bending an arc installed in processed beams R 33 Metal leaf spring 81 Cylindrical rubber for vibration damping of arc of inner diameter R 31 of leaf spring 79 83 Cylindrical rubber for vibration damping of arc of inner radius R 32 of leaf spring 79 85 Vibration damping for arc of arc of inner radius R 33 of leaf spring 79 Cylindrical Rubber 87 Guide Roller for Cylindrical Rubber 81 89 Guide Roller for Cylindrical Rubber 83 91 Guide Roller for Cylindrical Rubber 85 93 Retaining Plate with Pin Insertion Holes at the Same Position as the Three Arc Centers of the Leaf Spring 79 (Upper)
95 Holding plate (bottom) with pin insertion holes at the same position as the three arc centers of leaf spring 79
97 Foundation fixture 99 Connection fixture 101 of base fixture 97 and a set of vibration control devices 1011 from a beam Three consecutive through holes 103 for fixing the connection appliance 99 Three radii of inner diameters R 41 , R 42 , R 43 Metal leaf spring 105 for a vibration control device installed on a beam bent into a circular arc 105 Cylindrical rubber for vibration damping of circular arc 107 with an inner diameter R 41 of a leaf spring 103 Cylindrical rubber 109 for vibration damping of an arc with an inner diameter R 42 of a leaf spring 103 Cylindrical rubber 111 for vibration damping of an arc having an inner diameter R 43 of the leaf spring 103 Guide roller 113 for the cylindrical rubber 105 Guide roller 115 for the cylindrical rubber 107 Guide roller 117 for the cylindrical rubber 109 Same as the three arc centers of the leaf spring 103 Holding plate with pin insertion hole in position (top)
119 Holding plate (bottom) having pin insertion holes at the same position as the three arc centers of the leaf spring 103
121 Metal leaf spring 123 for corners bent into seven continuous arcs A holding plate having pin insertion holes at the same position as the seven arc centers of the plate spring 121 (top)
125 Holding plate (bottom) having pin insertion holes at the same position as the seven arc centers of the leaf spring 121
127 Metal plate spring 129 for a beam bent into seven continuous arcs A holding plate having pin insertion holes at the same position as the seven arc centers of the plate spring 127 (top)
131 Holding plate (bottom) having pin insertion holes at the same position as the seven arc centers of the leaf spring 127
133 Metal leaf spring 135 that has been continuously bent by three arcs with each radius of inner diameters R 51 , R 52 , and R 53 135 Made of metal that has been continuously bent by three arcs with each radius of inner diameters R 61 , R 62 , and R 63 Leaf spring 137 Metal leaf spring 139 which is continuously bent by three arcs with respective radii of inner diameters R 71 , R 72 , and R 73 , and circular rubber 141 for vibration damping for arc of inner diameter R 71 of leaf spring 137 Inside diameter of leaf spring 133 Cylindrical rubber 143 for vibration damping for arc of R 52 Cylindrical rubber for vibration damping for arc of inner diameter R 73 of leaf spring 137 Guide roller 147 for cylindrical rubber 139 Guide roller 149 for cylindrical rubber 141 Guide roller for cylindrical rubber 143 151 Retaining plate springs 133, 135, 137, etc. (upper)
153 Holding plate for stacked leaf springs 133, 135, 137, etc. (bottom)
155 Metal leaf spring 157 which has been continuously bent by three arcs with each radius R 81 , R 82 and R 83 157 Metal which has been continuously bent by three arcs with each radius of R 91 , R 92 and R 93 Leaf spring 159 Metal leaf spring 161 continuously bent by three arcs with inner diameters R 101 , R 102 , and R 103 Radial vibration damping cylindrical rubber 163 with inner radius R 101 of leaf spring 159 Inside diameter of leaf spring 155 Cylindrical rubber 165 for vibration damping of arc of R 82 Cylindrical rubber for vibration damping of arc of inner diameter R 103 of leaf spring 159 Guide roller 169 for cylindrical rubber 161 Guide roller 171 for cylindrical rubber 163 Guide roller for cylindrical rubber 165 173 Holding plate for stacked leaf springs 155, 157, 159, etc. (top)
175 Holding plate for bottom leaf springs 155, 157, 159, etc. (bottom)
1001 A set of vibration control devices 1003 that are installed and fixed in the corners having cylindrical rubbers of outer diameters R 11 , R 12 , R 13 (R 11 = R 12 = R 13 ) and leaf springs 1. A set of seismic control devices 1005 to be installed and fixed in the entrance corner to which a function having a fixing portion is added. R 11, R 12 ', R 13 (R 12'> R 11, R 13) 1 set of installed fixed inside corner having a cylindrical rubber and a plate spring 47 of the vibration control device 1009 outer diameter R 21, R 22, A set of vibration control devices 1011 to be installed and fixed in a corner having a cylindrical rubber of R 23 (R 21 ≠ R 22 ≠ R 23 ) and a leaf spring 55 and cylindrical rubber and leaf spring of outer diameters R 31 , R 32 , R 33 A set of vibration control equipment to be fixed to the beam with 79 Has a 013 R 41, R 42, cylindrical rubber and a plate spring 79 of the R Damping device 1015 R 31 1 set of installing fixed to a beam having a cylindrical rubber and a plate spring 103 of the 43, R 32, R 33, muscle A set of vibration control devices 1017 to be installed and fixed on a beam composed of holding plates 35 and 37 having cross-rotating shaft portions. A set of vibration control devices 1019 for a corner using a leaf spring 121 having a plurality of arcs. A pair of vibration control devices 1021 for a beam using a leaf spring 127 having a circular arc of 1001 A pair of vibration control devices 1023 for a corner using a triple plate spring 133, 135, 137 A set of vibration control devices for beams

Claims (9)

厚さtの板バネをn枚重ね合わせた板バネの番号を入隅に近い方から順番に板バネ1、(2、)・・・・、n(n≧1、n:整数)とした場合、n番目の厚さtの板バネnの形状は、直線部(a-a)、内径Rn1の時計回り方向円弧曲げ、内径Rn2の反時計回り方向円弧曲げ、Rn3の時計回り方向円弧曲げ及び直線部(b-b)が連なり、直線部(a-a)の板バネnの平面と直線部(b-b)の板バネnの平面は入隅設置のために90°で直交するそれぞれの平面上に存する構成で成形され、
n1=R11−(n-1)×t、Rn2=R12+(n-1)×t、Rn3=R13−(n-1)×t
で表わされる正数(Rn1>0、Rn2>0、Rn3>0)の関係を有し、当該n重の板バネで形成される3個の円弧の最内側の内径はRn1、R12、Rn3である板バネをn個重ねた板バネと、
外径Rn1、R12、Rn3の3種類の振動減衰用円筒ゴムと、
当該外径Rn1、R12、Rn3の円筒ゴムの内側にそれぞれ密着挿入する3種類の円筒形状ガイドローラーであって、n重の板バネの内径Rn1、R12、Rn3の円弧中心位置に位置決めするための貫通穴を有するガイドローラーと、
板バネの内径Rn1、R12、Rn3の円弧中心位置で3個の円筒ゴムと3個のガイドローラーとが回転摺動可能なように位置決め固定し、n重の板バネとともに挟みこむための機能を有する2枚の抑え板と、
からなる入隅設置用の1組の制震器具。
The number of leaf springs obtained by superposing n leaf springs of thickness t is set to leaf springs 1, (2),..., N (n ≧ 1, n: integer) in order from the closest to the corner. If, n-th shape of the plate spring n of thickness t, the linear portion (a-a), bending clockwise arc of the inner diameter R n1, bending counterclockwise arc of the inner diameter R n2, clockwise R n3 The direction arc bending and the straight portion (bb) are connected, and the plane of the leaf spring n of the straight portion (aa) and the plane of the leaf spring n of the straight portion (bb) are 90 ° for installation in the corner. Are molded in a configuration that exists on each orthogonal plane,
R n1 = R 11 - (n1 ) × t, R n2 = R 12 + (n1) × t, R n3 = R 13 - (n1) × t
The innermost inner diameters of the three arcs formed by the n-fold leaf springs are R n1 , R n1 > 0, R n2 > 0, R n3 > 0. A leaf spring in which n leaf springs of R 12 and R n3 are stacked;
Three types of cylindrical rubber for vibration damping with outer diameters R n1 , R 12 , R n3 ,
Three types of cylindrical guide rollers that are tightly inserted inside the cylindrical rubbers of the outer diameters R n1 , R 12 , and R n3 , respectively, and the arc centers of the inner diameters R n1 , R 12 , and R n3 of the n-fold leaf springs A guide roller having a through hole for positioning at a position;
The inner diameter R n1 of the leaf springs, R 12, three cylindrical rubber arc center position of the R n3 and the three guide rollers are positioned and fixed so as to be rotatable sliding, since sandwiching with n-fold of the leaf spring Two holding plates having the function of
A set of vibration control equipment for installation in the corner.
厚さtの板バネをn枚重ね合わせた板バネの番号を梁に近い方から順番に板バネ1、(2、)・・・・、n(n≧1、n:整数)とした場合、n番目の厚さtの板バネnの形状は、直線部(m-m)、内径Rn1の反時計回り方向円弧曲げ、内径Rn2の時計回り方向円弧曲げ、Rn3の反時計回り方向円弧曲げ及び直線部(n-n)が連なり、直線部(m-m)の板バネnの平面と直線部(n-n)の板バネnの平面は梁又は土台(床)に設置固定するために同一平面に存する構成で成形され、
n1=R11−(n-1)×t、Rn2=R12+(n-1)×t、Rn3=R13−(n-1)×t
で表わされる正数(Rn1>0、Rn2>0、Rn3>0)の関係を有し、当該n重の板バネで形成される3個の円弧の最内側の内径はRn1、R12、Rn3である板バネをn個重ねた板バネと、
外径Rn1、R12、Rn3の3種類の振動減衰用円筒ゴムと、
当該外径Rn1、R12、Rn3の円筒ゴムの内側に装着する3種類の円筒形状ガイドローラーであって、n重の板バネの内径Rn1、R12、Rn3の円弧中心位置に位置決めするための貫通穴を有するガイドローラーと、
n重の板バネの内径Rn1、R12、Rn3の円弧中心位置に、当該3種類の円筒ゴムとガイドローラーとが回転摺動可能なように位置決め固定し、n重の板バネとともに挟みこむ機能を有する2枚の抑え板と、
からなる梁又は床設置用の1組の制震器具。
When the number of leaf springs obtained by superposing n leaf springs of thickness t is the leaf spring 1, (2,)..., N (n ≧ 1, n: integer) in order from the closest to the beam , n-th of the leaf spring n of thickness t shape, straight portion (m-m), bend counterclockwise arc of the inner diameter R n1, bent clockwise arc of the inner diameter R n2, anticlockwise R n3 Directional arc bending and linear part (nn) are connected, and the plane of leaf spring n of linear part (mm) and the plane of leaf spring n of linear part (nn) are installed on the beam or base (floor) Molded in a configuration that lies in the same plane to fix,
R n1 = R 11 - (n1 ) × t, R n2 = R 12 + (n1) × t, R n3 = R 13 - (n1) × t
The innermost inner diameters of the three arcs formed by the n-fold leaf springs are R n1 , R n1 > 0, R n2 > 0, R n3 > 0. A leaf spring in which n leaf springs of R 12 and R n3 are stacked;
Three types of cylindrical rubber for vibration damping with outer diameters R n1 , R 12 , R n3 ,
A three cylindrical guide roller mounted on the inside of the cylindrical rubber of the outer diameter R n1, R 12, R n3 , the arc center position of the inner diameter R n1, R 12, R n3 of n-fold of the leaf spring A guide roller having a through hole for positioning;
the arc center position of the inner diameter of the n-fold of the leaf spring R n1, R 12, R n3 , the three types of the cylindrical rubber and guide rollers are positioned and fixed so as to be rotatable slide, scissors with n-fold of the leaf spring Two holding plates having a function of indenting;
A set of vibration control equipment for beam or floor installation.
n重(n≧1)の板バネの内径Rn1、R12、Rn3の円弧中心位置で3個の円筒ゴムと3個のガイドローラーとが回転摺動可能なように位置決め固定するために、n重の板バネとともに挟みこむための2枚の抑え板であって、
筋交固定用貫通穴73有する抑え板、あるいは筋交回転軸穴部40を有する抑え板とする請求項1記載の入隅用設置の1組の制震器具。
To position and fix the three cylindrical rubbers and the three guide rollers so that they can rotate and slide at the center of the arc of the n-fold (n ≧ 1) inner diameter R n1 , R 12 , R n3 of the leaf spring , Two holding plates for sandwiching with n-layer leaf springs,
The set of vibration control devices for installation in a corner according to claim 1, wherein the holding plate has a through-hole 73 for fixing a bracing or a holding plate having a bracing rotation shaft hole 40.
n重(n≧1)の板バネの内径Rn1、R12、Rn3の円弧の大きさが、R12=Rn1=Rn3、又はR12>Rn1=Rn3、又はRn1≠R12≠Rn3で表わされる請求項1又は請求項3に記載の入隅設置用の1組の制震器具。 The size of the arc of the inner diameter R n1 , R 12 , R n3 of the n-fold (n ≧ 1) leaf spring is R 12 = R n1 = R n3 , or R 12 > R n1 = R n3 , or R n1 ≠ 4. A set of vibration control devices for corner installation according to claim 1 or claim 3, wherein R 12 ≠ R n3 . n重の板バネの内径Rn1、R12、Rn3の円弧中心に円筒ゴムとガイドローラーをn枚の板バネとともに位置決め固定するための抑え板であって、
連結具99固定用の貫通穴101を有する2枚の抑え板、又は回転軸穴付連結器具39用の回転軸穴部40を有する2枚の抑え板によって、円筒ゴムとガイドローラーが回転摺動可能なようにn枚の板バネとともに位置決め固定した請求項2記載の梁又は床設置用の1組の制震器具。
a holding plate for positioning and fixing the cylindrical rubber and the guide roller together with the n leaf springs at the center of the arc of the inner diameter R n1 , R 12 , R n3 of the n-fold leaf spring,
The cylindrical rubber and the guide roller are rotated and slid by the two holding plates having the through hole 101 for fixing the connecting tool 99 or the two holding plates having the rotating shaft hole portion 40 for the connecting device 39 having the rotating shaft hole. 3. A set of vibration control devices for beam or floor installation according to claim 2, which is positioned and fixed together with n leaf springs as possible.
n重(n≧1)の板バネの内径Rn1、R12、Rn3の円弧の大きさが、R12=Rn1=Rn3、又はR12>Rn1=Rn3、又はRn1≠R12≠Rn3で表わされる請求項2又は請求項5に記載の梁又は床設置用の1組の制震器具。 The size of the arc of the inner diameter R n1 , R 12 , R n3 of the n-fold (n ≧ 1) leaf spring is R 12 = R n1 = R n3 , or R 12 > R n1 = R n3 , or R n1 ≠ 6. A set of vibration control devices for beam or floor installation according to claim 2 or 5, wherein R 12 ≠ R n3 . 入隅設置用のn重の板バネの3つの内径Rn1、R12、Rn3の円弧中心と同位置に円筒ゴムとガイドローラーを位置決め固定するための固定ピン用13の挿入穴8を有する抑え板であって、
筋交固定用の貫通穴25を有する抑え板25と27と筋交29及び筋交連結固定部材31と筋交-土台固定部材33、あるいは筋交固定用の貫通穴73を有する抑え板69と71及び筋交77、あるいは回転軸穴部40を有する抑え板35と37及び回転軸穴付連結器具39と土台固定部材41を使って、
入隅に設置した制震器具と土台(床)を接続固定した制震方法。
An insertion hole 8 for a fixing pin 13 for positioning and fixing the cylindrical rubber and the guide roller is provided at the same position as the arc centers of the three inner diameters R n1 , R 12 , and R n3 of the n-fold leaf spring for installation in the corner. A holding plate,
Holding plates 25 and 27 having through holes 25 for fixing the braces, bracing 29 and bracing connection fixing members 31, bracing-base fixing members 33, or holding plates 69 having through holes 73 for fixing braces 71 and bracing 77, or holding plates 35 and 37 having a rotation shaft hole 40 and a connecting device 39 with a rotation shaft hole and a base fixing member 41,
Seismic control method that connects and fixes the vibration control equipment installed in the corner and the base (floor).
梁又は床設置用のn重の板ばねの3つの内径Rn1、R12、Rn3の円弧中心と同位置に円筒ゴムとガイドローラーを位置決め固定するための固定ピン用13の挿入穴8を有する抑え板であって、
連結器具99の固定用貫通穴101を有する抑え板と連結器具99及び土台固定具97、あるいは回転軸穴部40を有する抑え板35と37及び回転軸穴付連結器具39と土台固定部材41を使って、
梁と土台(床)を連結してその相対変位を抑制する制震方法。
An insertion hole 8 for a fixing pin 13 for positioning and fixing the cylindrical rubber and the guide roller at the same position as the arc centers of the three inner diameters R n1 , R 12 , and R n3 of the n-fold leaf spring for beam or floor installation. A holding plate having
The holding plate 99 having the through hole 101 for fixing the connecting device 99 and the connecting device 99 and the base fixture 97, the holding plates 35 and 37 having the rotary shaft hole 40, the connecting device 39 with the rotary shaft hole and the base fixing member 41 are provided. Use,
A seismic control method that connects beams and foundations (floors) and suppresses relative displacement.
梁又は床設置用のn重の1組の制震器具をそれぞれ梁下部と土台(床)に設置固定し、それぞれ制震器具に使用する抑え板93と95を連結器具99で接続固定、あるいはそれぞれの制震器具に使用する回転軸穴付抑え板35と37を回転軸穴付連結器具39でボルト43とナット45で接続固定することにより、
梁と土台に設置したそれぞれの制震器具を連結させた制震方法。
A set of n-layer vibration control devices for beam or floor installation is installed and fixed to the lower part of the beam and the base (floor), respectively, and holding plates 93 and 95 used for the vibration control device are connected and fixed by a connecting device 99, or By connecting and fixing the rotation shaft hole holding plates 35 and 37 used for the respective vibration control devices with bolts 43 and nuts 45 with the rotation shaft hole connecting device 39,
A seismic control method that connects the seismic control devices installed on the beam and foundation.
JP2018028459A 2018-02-21 2018-02-21 Vibration control equipment to be installed on column beams Active JP6406741B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028459A JP6406741B1 (en) 2018-02-21 2018-02-21 Vibration control equipment to be installed on column beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028459A JP6406741B1 (en) 2018-02-21 2018-02-21 Vibration control equipment to be installed on column beams

Publications (2)

Publication Number Publication Date
JP6406741B1 true JP6406741B1 (en) 2018-10-17
JP2019143363A JP2019143363A (en) 2019-08-29

Family

ID=63855150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028459A Active JP6406741B1 (en) 2018-02-21 2018-02-21 Vibration control equipment to be installed on column beams

Country Status (1)

Country Link
JP (1) JP6406741B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881784A (en) * 2019-01-22 2019-06-14 上海大学 A kind of cambered surface slide type three-dimensional shock isolation support

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223042A (en) * 1998-02-04 1999-08-17 Nishimatsu Constr Co Ltd Earthquake resisting reinforcing structure
JP2001207679A (en) * 2000-01-28 2001-08-03 Tatsuji Ishimaru Damper
JP2006057388A (en) * 2004-08-23 2006-03-02 Doko Sangyo:Kk Base isolation construction method of building
JP2007077786A (en) * 2005-09-14 2007-03-29 Masayuki Ito Aseismatic control method by steel plate spring
JP2009221736A (en) * 2008-03-17 2009-10-01 Yukio Kataoka Vibration control device and vibration control structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223042A (en) * 1998-02-04 1999-08-17 Nishimatsu Constr Co Ltd Earthquake resisting reinforcing structure
JP2001207679A (en) * 2000-01-28 2001-08-03 Tatsuji Ishimaru Damper
JP2006057388A (en) * 2004-08-23 2006-03-02 Doko Sangyo:Kk Base isolation construction method of building
JP2007077786A (en) * 2005-09-14 2007-03-29 Masayuki Ito Aseismatic control method by steel plate spring
JP2009221736A (en) * 2008-03-17 2009-10-01 Yukio Kataoka Vibration control device and vibration control structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881784A (en) * 2019-01-22 2019-06-14 上海大学 A kind of cambered surface slide type three-dimensional shock isolation support

Also Published As

Publication number Publication date
JP2019143363A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US8438795B2 (en) Multi-directional torsional hysteretic damper (MTHD)
JP6406741B1 (en) Vibration control equipment to be installed on column beams
Salem Milani et al. Systematic development of a new hysteretic damper based on torsional yielding: part I—design and development
JP2019531449A (en) Horizontal motion vibration isolator
JP2014009547A (en) Joint with lock function to be used for concrete member reinforcing device
JP6739293B2 (en) Vibrating bowl feeder
JP2006275284A (en) Vibration control device
KR101880496B1 (en) Brace having viscoplastic hybrid damper
JP5731685B1 (en) Seismic isolation table device
JP6053530B2 (en) Friction damper
JP2006207144A (en) Seismic response control frame
KR102061304B1 (en) Building attachment unit and Seismic bracing device containing the same
JP5592663B2 (en) Viscoelastic damper device
JP2019100098A (en) Composite damper
JP2001349091A (en) Seismic control wall structure and seismic control wall unit
JP2018080804A (en) Vibration control mechanism and ceiling structure
JP2014001767A (en) Damper device, base isolation apparatus with the same and vibration isolation mount
JP5146754B2 (en) Damping structure
JP2021031866A (en) Brace connecting fitting
JP2017082455A (en) Hysteretic damper and antivibration structure of building
JP3470807B1 (en) Building seismic protection
JP2018040479A (en) Energy absorbing device and base isolation structure
JP4250539B2 (en) Seismic isolation device
JP2022090954A (en) Demolition tool and demolition tool set
JP7475292B2 (en) Viscoelastic Damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6406741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250